WO2014050821A1 - 検体搬送システム - Google Patents

検体搬送システム Download PDF

Info

Publication number
WO2014050821A1
WO2014050821A1 PCT/JP2013/075724 JP2013075724W WO2014050821A1 WO 2014050821 A1 WO2014050821 A1 WO 2014050821A1 JP 2013075724 W JP2013075724 W JP 2013075724W WO 2014050821 A1 WO2014050821 A1 WO 2014050821A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
sample
downstream
transport system
modules
Prior art date
Application number
PCT/JP2013/075724
Other languages
English (en)
French (fr)
Inventor
大 高野
鈴木 勝弘
Original Assignee
日立アロカメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アロカメディカル株式会社 filed Critical 日立アロカメディカル株式会社
Priority to EP13840409.0A priority Critical patent/EP2902788B1/en
Priority to CN201380048135.9A priority patent/CN104641239B/zh
Priority to US14/411,969 priority patent/US9874577B2/en
Publication of WO2014050821A1 publication Critical patent/WO2014050821A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • G01N2035/00643Quality control of instruments detecting malfunctions in conveying systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0412Block or rack elements with a single row of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0462Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0467Switching points ("aiguillages")
    • G01N2035/047Switching points ("aiguillages") diverging, e.g. sending carriers to different analysers

Definitions

  • the present invention relates to a sample transport system.
  • the sample transport system is a system that transports a sample contained in a sample rack, for example, and transports a sample rack containing a sample obtained from a sample pretreatment device or the like to an analysis device of the sample.
  • a plurality of analyzers are connected to the sample transport system, and the sample transport system appropriately controls, for example, a turn unit that changes the transport route of the sample, so that the sample among the plurality of analyzers is connected to the sample.
  • the sample is transported to the analyzer specified accordingly (see Patent Documents 1 and 2).
  • a central control unit that controls and manages the entire system.
  • a central control unit composed of a computer or the like controls a plurality of turn units in the sample transport system according to the sample or sample rack, and transports them to the analyzer according to the sample or sample rack.
  • the present invention has been made in the course of its research and development, and an object thereof is to realize an improved system configuration related to the sample transport system.
  • a sample transport system suitable for the above object is a sample transport system including a plurality of modules, and a plurality of paths for transporting a sample from upstream to downstream are formed by the plurality of modules, and the plurality of modules Includes an intermediate module arranged in the middle of each path.
  • the intermediate module includes a means for connecting other modules to the upstream side and the downstream side, and a sample carried from the upstream side to the downstream side.
  • Means for carrying out and means for transmitting the destination signal of the sample obtained from the upstream side to the downstream side, and the plurality of modules can be freely combined with each other, and adjacent modules are connected to each other
  • the plurality of paths are formed, and each module is transported from the upstream side to the downstream side corresponding to the destination signal. Conveyed along a path corresponding to the above signal, characterized in that.
  • the sample transport system is composed of a plurality of modules, and these modules can be freely combined with each other. Therefore, for example, a user who needs the sample transport system can configure a desired system by freely combining a plurality of modules. Then, in the configured sample transport system, each module transports the sample carried in from the upstream side to the downstream side corresponding to the destination signal, thereby transporting the sample along the path corresponding to the destination signal. Therefore, for example, it is possible to realize a sample transport system in which the control by the central control unit that manages the entire system is significantly reduced, and preferably does not require the central control unit.
  • the intermediate module transmits the destination signal associated with the sample to the downstream side in association with the sample when carrying out the sample loaded from the upstream side to the downstream side.
  • the intermediate module includes a branch module capable of connecting a plurality of downstream modules to the downstream side, and the branch module selects the destination signal from among the plurality of downstream modules based on the destination signal. Means for selecting a downstream module corresponding to the above.
  • the sample is stored in a sample rack
  • the branch module includes means for rotating the sample rack carried from the upstream side, and according to the destination signal associated with the sample rack.
  • a downstream module corresponding to the destination signal is selected by rotating the sample rack.
  • a code for specifying the path is associated with each of a plurality of paths formed by freely combining the plurality of modules, and the destination signal includes a plurality of codes for the plurality of paths.
  • the branch module rotates a sample rack in a rotation direction corresponding to a code specified by the destination signal, thereby a plurality of downstreams associated with a plurality of rotation directions.
  • a downstream module of a path corresponding to the code is selected from the modules.
  • the branch module includes means for freely setting the rotation direction of the sample rack for each code associated with a plurality of paths according to a free combination of a plurality of modules including the branch module. It is characterized by comprising.
  • an improved system configuration related to the sample transport system is realized.
  • a user who needs a sample transport system can configure a desired system by freely combining a plurality of modules.
  • FIG. 1 is a diagram showing an overall configuration of a sample transport system 100 suitable for implementing the present invention.
  • the sample transport system 100 is a system for transporting a sample output from a sample output device A such as a sample pretreatment device to a plurality of analyzers E (E1 to E7).
  • the sample is stored in a container such as a test tube, and one or more containers storing the sample are stored in the sample rack, and the sample transport system 100 transports the sample rack.
  • a straight line M is a straight line module
  • a turn M is a turn module
  • a connection M is a connection module. That is, in the specific example shown in FIG. 1, the sample transport system 100 includes a straight line module B (B1 to B3), a turn module C (C1 to C3), and a connection module D (D1 to D7).
  • the plurality of modules can be freely combined with each other.
  • the adjacent modules are connected in a structural and communication manner, and a sample rack output from one sample output device A is connected to a plurality of analyzers E (E1 to E1 to E1).
  • a plurality of routes for conveying to E7) are formed.
  • the sample transport system 100 illustrated in FIG. 1 is merely an example of a combination of a plurality of modules, and the sample transport system 100 may be configured with a combination different from the example illustrated in FIG.
  • the straight line module B is a module that linearly moves the sample rack loaded from the upstream side and carries it out to the downstream side.
  • the straight line module B1 linearly moves a sample rack that is output from the sample output device A and is carried into the straight line module B1, and carries it out to the turn module C3.
  • the straight line module B includes a straight conveyor, and moves the sample rack by placing the sample rack on the straight conveyor.
  • a sample rack stopper and a sensor for detecting the presence / absence of the sample rack are provided at the entrance (upstream side) of the conveyor.
  • a stopper and a sensor are provided at the exit (downstream side) of the conveyor. It is done.
  • the turn module C is a module that rotates and moves the sample rack carried in from the upstream side and carries it out to a desired downstream side according to the sample rack.
  • the turn module C3 rotates and moves the sample rack loaded from the straight line module B1 in the rotation direction (direction 1 to direction 3) according to the sample rack, thereby connecting the connection module D6, the connection module D7, and the straight line module B2.
  • the sample rack is carried out to any of the above.
  • the turn module C is provided with a turntable, and a sample rack carried from the upstream side is placed on the turntable and rotated in a direction according to the sample rack, and corresponds to any one of directions 1 to 3.
  • the sample rack is carried out to the downstream side.
  • a stopper for the sample rack and a sensor for detecting the presence or absence of the sample rack are provided at the inlet (upstream side) of the turntable.
  • the stopper and the sensor are also provided at the outlet (downstream side) of the turntable. Is provided.
  • connection module D is a module for carrying out the sample rack carried in from the upstream side to the analyzer E on the downstream side.
  • connection module D6 carries out the sample rack carried in from the direction 2 of the turn module C3 to the analyzer E6.
  • a straight line module B shows a straight line module B, a turn module C, and a connection module D as representative examples of a plurality of modules, but other modules may be provided as necessary.
  • a buffer module that temporarily retracts the loaded sample rack and changes the sample rack unloading order may be provided.
  • linear modules having different lengths or turn modules having different numbers of directions may be provided.
  • a traverse transfer module or an elevator transfer module may be provided as the branch module instead of the turn module or in addition to the turn module.
  • the traverse transport module is a module that slides the sample rack carried in from the upstream side in a horizontal plane and carries it out to a desired downstream side corresponding to the sample rack.
  • the traverse transport module for example, slides the sample rack that is carried in from the upstream side in a direction perpendicular to the carry-in direction of the sample rack in the horizontal plane and carries it out to the desired downstream side.
  • the elevator transport module is a module that moves the sample rack carried in from the upstream side in the vertical direction (vertical direction) and carries it out to a desired downstream side corresponding to the sample rack.
  • a branch module that can select a desired downstream side without rotating the sample rack such as a traverse transfer module or an elevator transfer module, may be used.
  • a branch module in which the rotation of the sample rack, the slide in the horizontal plane, and the movement in the vertical direction are appropriately combined may be used.
  • the sample transport system 100 in FIG. 1 transports the sample rack along the path indicated by the destination code signal based on the destination code signal associated with each sample rack.
  • Each module constituting the sample transport system 100 transmits a destination code signal associated with the sample rack to the downstream side in association with the sample rack when unloading the sample rack loaded from the upstream side to the downstream side. To do.
  • the destination code signal is transmitted in parallel with the carry-out of the sample rack.
  • the turn module C rotates the sample rack in any of directions 1 to 3 according to the destination code signal transmitted together with the sample rack, and selects the downstream side corresponding to the destination code signal.
  • the turn module C has a function that can freely set the rotation direction of the sample rack for each code indicated by the destination code signal in accordance with a free combination of a plurality of modules including the turn module C. Therefore, setting of the rotation direction for the turn module C and control of the rotation direction in the turn module C will be described.
  • FIG. 2 is a diagram showing a specific example 1 of setting and control of the turn module.
  • FIG. 2 shows a specific example of the setting of the rotation direction for the three turn modules C (C1 to C3) in the sample transport system 100 of FIG.
  • a plurality of analyzers E (E1 to E7) in FIG. 2 also correspond to each analyzer E in the sample transport system 100 in FIG.
  • the destination code signal is composed of 3 bits, and each code specified by 3 bits is associated with each analyzer E. That is, each code is associated with a route to each analyzer E. For example, when each code is shown in the order of bit2, bit1, and bit0, the destination code signal (L, L, H) is associated with the analyzer E1, and the destination code signal (L, H, H) is associated with the analyzer E2. L) is associated.
  • each turn module C is provided with a plurality of direction switches (direction SW).
  • direction SW of SW1 to SW7 is associated with each code of the destination code signal.
  • SW1 is associated with the destination code signal (L, L, H)
  • SW2 is associated with the destination code signal (L, H, L).
  • Each direction SW of SW1 to SW7 is composed of 2 setting bits that determine the rotation direction.
  • the setting bits for each direction SW are set according to the constructed system by a system builder who constructs the sample transport system 100 (FIG. 1) by freely combining a plurality of modules, for example.
  • the rotation direction of the sample rack corresponding to the direction SW is set by a 2-bit setting bit included in each direction SW.
  • the setting bits of each direction SW are shown in the order of bit1 and bit0 in the specific example 1 of FIG.
  • the setting bit (ON, ON) is set to 90 degrees to the left.
  • the setting relating to the direction SW of each turn module C shown in FIG. 2 corresponds to the transport path in the sample transport system 100 of FIG. Therefore, the control of each turn module C in the specific example 1 of FIG. 2 will be described with reference to FIG.
  • the straight line module B1 associates the destination code signal (L, L, H) with the sample rack and assigns the sample rack to the sample rack. While carrying out to the turn module C3, a destination code signal (L, L, H) is transmitted to the turn module C3.
  • the turn module C3 uses the setting bits (OFF, ON) of SW1 corresponding to the destination code signal (L, L, H) among the plurality of directions SW. That is, the rotation direction of the sample rack is controlled to the direction 1 of 0 degree, and the sample rack is carried out to the linear module B2.
  • the straight line module B2 carries the loaded sample rack to the turn module C2, and transmits a destination code signal (L, L, H) associated with the sample rack to the turn module C2.
  • the turn module C2 uses the setting bits (OFF, ON) of SW1 corresponding to the destination code signal (L, L, H) among the plurality of directions SW. That is, the rotation direction of the sample rack is controlled to the direction 1 of 0 degree, and the sample rack is carried out to the straight line module B3.
  • the straight line module B3 carries out the loaded sample rack to the turn module C1, and transmits a destination code signal (L, L, H) associated with the sample rack to the turn module C1.
  • the turn module C1 uses setting bits (OFF, ON) of SW1 corresponding to destination code signals (L, L, H) among a plurality of directions SW. That is, the rotation direction of the sample rack is controlled to the direction 1 of 0 degree, and the sample rack is carried out to the connection module D1. Then, the connection module D1 carries out the loaded sample rack to the analyzer E1.
  • the sample rack is transported from the most upstream linear module B1 to the most downstream connection module D1 along the path from the sample output device A to the analyzer E1 formed in the sample transport system 100.
  • the linear module B1 associates the destination code signal (H, H, L) with the sample rack, and the sample rack. Is transferred to the turn module C3, and a destination code signal (H, H, L) is transmitted to the turn module C3.
  • the turn module C3 uses the setting bits (ON, OFF) of SW6 corresponding to the destination code signal (H, H, L) among the plurality of directions SW.
  • the rotation direction of the sample rack is controlled to the direction 2 of 90 degrees to the right, and the sample rack is carried out to the connection module D6.
  • the connection module D6 carries out the loaded sample rack to the analyzer E6.
  • the sample rack is transported from the most upstream linear module B1 to the most downstream connection module D6 along the path from the sample output device A to the analyzer E6 formed in the sample transport system 100. Since the turn modules C2 and C1 are not used for the path from the sample output device A to the analyzer E6, the turn modules C2 and C1 correspond to the destination code signals (H, H, and L) of the analyzer E6.
  • the setting bit of SW6 is not set to (OFF, OFF).
  • FIG. 3 is a diagram showing a specific example 2 of the setting and control of the turn module.
  • FIG. 3 shows a specific example of the setting of the rotation direction for the three turn modules C (C1 to C3) in the sample transport system 100 of FIG.
  • a plurality of analyzers E (E1 to E7) in FIG. 3 also correspond to each analyzer E in the sample transport system 100 in FIG.
  • the destination code signal is composed of 3 bits, and each code specified by 3 bits is associated with each analyzer E. . That is, each code is associated with a route to each analyzer E.
  • each turn module C is provided with three rows of dip switches (DPSW) from SW1 to SW3.
  • Each switch row (SW1 to SW3) is composed of a 7-bit dip switch.
  • Each bit (bit 1 to bit 7) of the dip switch is associated with each code of the destination code signal.
  • bit 1 of the dip switch is associated with the destination code signal (L, L, H)
  • bit 2 of the dip switch is associated with the destination code signal (L, H, L).
  • the rotation direction of the sample rack in each turn module C is determined by the setting of the three rows of dip switches (DPSW) from SW1 to SW3.
  • the three rows of dip switches (DPSW) are set according to the constructed system by a system builder who constructs the sample transport system 100 (FIG. 1) by freely combining a plurality of modules, for example.
  • the setting state of the dip switch is shown in the order of SW1, SW2, SW3, the setting state (ON, OFF, OFF) is set to 0 degree in the rotation direction, and the setting state (OFF, ON, OFF) ) Is 90 degrees to the right, and the setting state (OFF, OFF, ON) is 90 degrees to the left.
  • the straight line module B1 associates the destination code signal (L, H, H) with the sample rack and assigns the sample rack to the sample rack. While carrying out to the turn module C3, a destination code signal (L, H, H) is transmitted to the turn module C3.
  • the turn module C3 uses the setting state (ON, OFF, OFF) of bit3 corresponding to the destination code signal (L, H, H) among the 7-bit DIP switches. That is, the rotation direction of the sample rack is controlled to the direction 1 of 0 degree, and the sample rack is carried out to the linear module B2.
  • the straight line module B2 carries the loaded sample rack to the turn module C2, and transmits a destination code signal (L, H, H) associated with the sample rack to the turn module C2.
  • the turn module C2 uses the setting state (ON, OFF, OFF) of bit3 corresponding to the destination code signal (L, H, H) among the 7-bit DIP switches. That is, the rotation direction of the sample rack is controlled to the direction 1 of 0 degree, and the sample rack is carried out to the straight line module B3.
  • the straight line module B3 carries out the loaded sample rack to the turn module C1, and transmits a destination code signal (L, H, H) associated with the sample rack to the turn module C1.
  • the turn module C1 uses the setting state (OFF, OFF, ON) of bit3 corresponding to the destination code signal (L, H, H) among the 7-bit DIP switches. That is, the rotation direction of the sample rack is controlled to the direction 3 of 90 degrees to the left, and the sample rack is carried out to the connection module D3. Then, the connection module D3 carries out the loaded sample rack to the analyzer E3.
  • the sample rack is transported from the most upstream linear module B1 to the most downstream connection module D3 along the path from the sample output device A to the analyzer E3 formed in the sample transport system 100.
  • the straight line module B1 associates the destination code signal (H, H, H) with the sample rack, and the sample rack. Is transferred to the turn module C3, and a destination code signal (H, H, H) is transmitted to the turn module C3.
  • the turn module C3 uses the setting state (OFF, OFF, ON) of bit7 corresponding to the destination code signal (H, H, H) among the 7-bit DIP switches. That is, the rotation direction of the sample rack is controlled to the direction 3 of 90 degrees to the left, and the sample rack is carried out to the connection module D7. Then, the connection module D7 carries out the loaded sample rack to the analyzer E7.
  • the sample rack is transported from the most upstream linear module B1 to the most downstream connection module D7 along the path from the sample output device A to the analyzer E7 formed in the sample transport system 100. Since the turn modules C2 and C1 are not used for the path from the sample output device A to the analyzer E7, the turn modules C2 and C1 correspond to the destination code signal (H, H, H) of the analyzer E7.
  • the setting state of bit 7 is not set to (OFF, OFF, OFF).
  • each turn module C is controlled according to the setting state relating to the switch, and the sample rack is transported from the sample output device A to the desired analyzer E.
  • the setting state of bit7 in the dip switch of the turn module C3 is changed from (OFF, OFF, ON) to ( (OFF, OFF, OFF).
  • the setting state of bit7 corresponding to the destination code signal (H, H, H) of the analyzer E7 is not set to (OFF, OFF, OFF), and the sample rack is sent to the analyzer E7. Is controlled not to be carried out.
  • the setting state of bit7 in the dip switch of the turn module C3 may be returned to (OFF, OFF, ON).
  • the sample rack output from the sample output device A is transported to the analysis device E corresponding to the destination code signal.
  • the configuration of each module used in the sample transport system 100 in FIG. 1 will be described.
  • FIG. 4 is a diagram showing the configuration of each module.
  • Each module includes a connecting portion for connecting another module or device to the upstream side and the downstream side.
  • Each module further includes a rack transport unit 50 configured by, for example, a conveyor or a stopper, and transports the sample racks loaded from the upstream side to the downstream side.
  • a sensor 20 for detecting the presence or absence of the sample rack is provided at the entrance (upstream side) of the conveyor on which the sample rack is placed and moved.
  • the sensor 20 is also provided at the exit (downstream side) of the conveyor.
  • the presence or absence of a sample rack in each module is confirmed based on the detection result of the sensor 20.
  • Control unit 10 controls each module. Since the control unit 10 only needs to control each module having the control unit 10, for example, a relatively small-scale microcomputer or the like is used without using a relatively large-scale CPU mounted on a computer or the like. Can be realized.
  • the display unit 30 displays the setting status in each module.
  • the display unit 30 may be embodied by a display device such as an LCD, for example, but may be realized by a simple configuration that expresses the setting state of the direction SW (FIG. 2) and the dip switch (FIG. 3) by LEDs. Good.
  • the operation unit 40 receives an operation from a user, particularly a system builder who constructs a sample transport system.
  • the operation unit 40 may be realized by, for example, a touch panel together with the display unit 30, or may be configured by a plurality of switches for switching ON / OFF of the direction SW (FIG. 2) and the DIP switch (FIG. 3).
  • a turn module is provided with a rack rotating unit 60 constituted by a turntable or the like for rotating a sample rack.
  • a rack retracting unit 70 for retracting and changing the sample rack carry-out order is provided.
  • an analyzer connecting unit 80 for connecting an analyzer to the downstream side is provided.
  • each module exchanges various signals between the upstream module connected to the upstream side and the downstream module connected to the downstream side. For example, a rack request signal, a module status signal, and a node signal train are sent from each module to the upstream module, and sent from the downstream module to each module. Further, the destination code signal and the rack sending signal are sent from the upstream module to each module, and sent from each module to the downstream module.
  • FIG. 5 is a timing chart of signals exchanged between modules when a sample rack is exchanged.
  • the timing chart of FIG. 5 shows various signals exchanged when the sample rack is exchanged between the upstream module and the downstream module connected to each other. That is, FIG. 5 shows a destination code signal, a rack sending signal, a rack request signal, and a module status signal. These signals are all set to H (OFF) in the initialization process of the system immediately after the power of the sample transport system 100 (FIG. 1) is turned on (ON), for example.
  • the module status signal is a signal indicating whether or not the module that outputs the signal is in a state where it can accept the sample rack.
  • the module status signal is, for example, H (OFF) when it is in an unacceptable state and L (ON) when it is in an acceptable state.
  • the module status signal output from the downstream module to the upstream module is set to L (ON) at time T1. That is, it shows that the downstream module is ready to accept the sample rack at time T1.
  • the upstream module outputs a destination code signal associated with the sample rack.
  • the destination code signal is composed of, for example, 3 bits, and each code specified by 3 bits is associated with each analyzer E (see FIGS. 2 and 3).
  • the destination code signal output from the upstream module to the downstream module is set to L (ON) at time T2. That is, at least one bit of the destination code signal composed of 3 bits is set to L (ON) at time T2.
  • the downstream module determines whether or not the sample rack corresponding to the destination code signal may be accepted. Is set to L (ON). For example, it is determined whether or not the sample rack may be accepted based on a node signal sequence that will be described in detail later. In the example shown in FIG. 5, the rack request signal output from the downstream module to the upstream module is set to L (ON) at time T3.
  • the upstream module When the upstream module confirms that the rack request signal is L (ON), it sets the rack sending signal to L (ON).
  • the rack sending signal is a signal indicating the timing for carrying out the sample rack.
  • the rack sending signal output from the upstream module to the downstream module is set to L (ON) at time T4. Then, the upstream module operates the rack transport unit at time T4 to start unloading the sample rack, and the downstream module also operates the rack transport unit to start loading the sample rack at time T4. To do.
  • the sample rack is unloaded and loaded between the upstream module and the downstream module, and when the loading of the sample rack is completed in the downstream module, the downstream module performs the sample rack loading operation.
  • the rack request signal is set to H (OFF).
  • the rack request signal output from the downstream module to the upstream module is set to H (OFF) at time T5.
  • the upstream module When the upstream module confirms that the rack request signal is H (OFF), it ends the sample rack carry-out operation, sets the rack sending signal to H (OFF), and all destination code signals are also H (OFF). ). In the example shown in FIG. 5, the rack sending signal and the destination code signal output from the upstream module to the downstream module are set to H (OFF) at time T6.
  • the module status signal is set to H (OFF).
  • the module state signal output from the downstream module to the upstream module is set to H (OFF) at time T7. That is, since the sample rack is in the downstream module at the time T7, the downstream module cannot receive the next sample rack.
  • the module state signal is set to L (ON) again.
  • the module state signal is set to L (ON) at time T1 (2), and the next sample rack is ready to be received, and the next sample rack is exchanged with the upstream module. Done.
  • a plurality of sample racks can reach the analyzer E corresponding to the destination code signal of each sample rack one after another. Be transported.
  • a plurality of modules constituting the sample transport system 100 can be freely combined with each other, and adjacent modules are connected structurally and in communication, thereby forming, for example, the sample transport system 100 of FIG. . That is, a plurality of paths for conveying the sample rack output from one sample output device A to the plurality of analyzers E (E1 to E7) are formed. Each route is associated with a node signal indicating whether or not the route can be transported, and a node signal sequence including a plurality of node signals for a plurality of routes is formed.
  • Each module constituting the sample transport system 100 transmits the node signal sequence obtained from the downstream side to the upstream side under the control of the control unit 10 (FIG. 4) included in the module, and the module cannot be transported.
  • the node signal of the path including the module in the node signal train to be transmitted is changed so as not to be conveyed.
  • a response to retention of the sample rack in the sample transport system 100 is performed.
  • 6 to 8 are diagrams for explaining a specific example of the node signal string and control using the same in the sample transport system 100 of FIG. A specific example will be described with reference to FIG. 1 and using each of FIGS.
  • FIG. 6 is a diagram showing a specific example when all modules can be transported.
  • the node signal string is composed of a plurality of nodes. Each node is associated with each of a plurality of routes in the sample transport system 100.
  • the node 1 is associated with the path to the analysis device E1, that is, the path from the most upstream straight line module B1 to the most downstream connection module D1.
  • the node 2 is associated with a path to the analyzer E2, that is, a path from the most upstream straight line module B1 to the most downstream connection module D2.
  • the nodes 3 to 7 are associated with the paths to the analysis devices E of the analysis devices E3 to E7. Note that the node 8 is not used in the specific example of FIG.
  • all the nodes from the node 1 to the node 8 constituting the node signal train are all turned OFF in the system initialization process immediately after the sample transport system 100 is turned on (ON), for example.
  • the node signal sequence is sequentially transmitted from the downstream module to the upstream module.
  • the connection module D1 is the most downstream module in the path of the node 1 corresponding to the analyzer E1, and the analyzer E1 connected downstream can accept the sample rack. If it is in a state where it can be accepted and accepted, the node 1 corresponding to the analyzer E1 is turned ON (can be transported). In the example of FIG. 6, the node 1 is turned on (can be transported) by the connection module D1.
  • connection module D2 is the most downstream module in the path of the node 2 corresponding to the analyzer E2, and confirms whether or not the analyzer E2 can accept the sample rack.
  • the node 2 corresponding to the analyzer E2 is turned ON (can be transported).
  • the node 2 is turned on (can be transported) by the connection module D2.
  • connection modules D3 to D7 confirm the states of the analyzers E3 to E7 connected to each, and when the sample racks can be received, the corresponding nodes are turned ON (can be transported). To do.
  • all the analyzers E1 to E7 can receive the sample rack, and each of the connection modules D1 to D7 turns on the corresponding node among the nodes 1 to 7 (can carry). It is said.
  • the node signal sequence is sequentially transmitted from the downstream module to the upstream module.
  • the connection modules D1 to D3 are connected to the downstream side of the turn module C1. Therefore, a node signal string is transmitted from each of the connection modules D1 to D3 to the turn module C1.
  • the turn module C1 aggregates the node signal sequences obtained from the connection modules D1 to D3 and transmits them to the upstream side of the turn module C1.
  • each of the connection modules D1 to D3 since each of the connection modules D1 to D3 turns on the corresponding node among the nodes 1 to 3, the turn module C1 turns all the nodes 1 to 3 on.
  • a node signal sequence that is turned ON is generated, and the generated node signal sequence is transmitted to the upstream linear module B3.
  • the straight line module B3 transmits the node signal train transmitted from the turn module C1 to the upstream turn module C2.
  • connection modules D4 and D5 and the linear module B3 are connected to the turn module C2 on the downstream side. Therefore, a node signal sequence is transmitted from each of the connection modules D4, D5 and the straight line module B3 to the turn module C2.
  • the turn module C2 aggregates the node signal trains obtained from the connection modules D4, D5 and the straight line module B3 and transmits them to the upstream side of the turn module C2.
  • each of the connection modules D4 and D5 turns on the corresponding node of the nodes 4 and 5, and in the node signal sequence obtained from the straight line module B3, the nodes 1 to Node 3 is turned on. Therefore, the turn module C2 generates a node signal sequence in which all the nodes 1 to 5 are turned ON, and transmits the generated node signal sequence to the upstream linear module B2.
  • the straight line module B2 transmits the node signal train transmitted from the turn module C2 to the upstream turn module C3.
  • connection module D6, D7 and the linear module B2 are connected to the turn module C3 on the downstream side. Therefore, the node signal train is transmitted from each of the connection modules D6 and D7 and the straight line module B2 to the turn module C3.
  • the turn module C3 aggregates the node signal sequences obtained from the connection modules D6 and D7 and the straight line module B2 and transmits them to the upstream side of the turn module C3.
  • each of the connection modules D6 and D7 turns on the corresponding node among the nodes 6 and 7, and further, in the node signal sequence obtained from the straight line module B2, the nodes 1 to Node 5 is ON. Therefore, the turn module C3 generates a node signal sequence in which all the nodes 1 to 7 are turned on, and transmits the generated node signal sequence to the upstream linear module B1.
  • the straight line module B1 arranged at the uppermost stream refers to the node signal sequence transmitted from the downstream side with respect to the sample output device A connected to the upstream side, and sets the sample rack to be transported to each path.
  • the straight line module B1 is set to ON (can be transported) in the node signal train while avoiding the request of the sample rack transported to the path corresponding to the node that is OFF (impossible to transport) in the node signal train. Request a sample rack to be transported to the path corresponding to the node.
  • the module B1 can request the sample output apparatus A for sample racks related to all paths from the node 1 to the node 7.
  • FIG. 7 is a diagram showing a specific example when the connection module cannot be transported.
  • FIG. 7 shows a specific example in a case where a state in which transport is impossible in the connection module D3 occurs from a state in which all modules can be transported (FIG. 6).
  • connection module D3 confirms the state of the analyzer E3 connected to the downstream side and can receive the sample rack, so the node 3 is turned on (can be transported). I was trying.
  • connection module D3 turns off the node 3 (impossible to carry) as shown in FIG. Even when some trouble occurs in the connection module D3 itself and the sample rack cannot be accepted, the connection module D3 turns off the node 3 (impossible to carry).
  • the node 3 When the node 3 is turned off in the node signal sequence obtained from the connection module D3, the node 3 is also turned off in the turn module C1 that aggregates the node signal sequences of the connection modules D1 to D3, and is integrated in the turn module C1.
  • the node signal train is transmitted to the turn module C2 via the straight line module B3.
  • the node 3 When the node 3 is turned off in the node signal train obtained from the straight line module B3, the node 3 is also turned off in the turn module C2 that collects the node signal trains of the straight line module B3 and the connection modules D4 and D5.
  • the node signal sequence aggregated in is transmitted to the turn module C3 via the straight line module B2.
  • the node 3 When the node 3 is turned off in the node signal sequence obtained from the straight line module B2, the node 3 is also turned off in the turn module C3 that collects the node signal sequences of the straight line module B2 and the connection modules D6 and D7. The node signal sequence aggregated in is transmitted to the straight line module B1.
  • the straight line module B1 arranged at the uppermost stream refers to the node signal sequence transmitted from the downstream side with respect to the sample output device A connected to the upstream side, and sets the sample rack to be transported to each path.
  • the straight line module B1 is set to ON (can be transported) in the node signal train while avoiding the request of the sample rack transported to the path corresponding to the node that is OFF (impossible to transport) in the node signal train. Request a sample rack to be transported to the path corresponding to the node.
  • the straight line module B1 requests the sample rack regarding the path of the node that is ON while avoiding the request of the sample rack regarding the path of the node 3. To do.
  • the sample rack for which the request is avoided is temporarily kept in the sample output device A, for example. If the sample transport system 100 is transporting the sample rack of the node 3 when the path of the node 3 is turned off, the sample rack is transported to a location where the sample rack can be transported, for example, to the connection module D3. That is, by preventing the sample rack from staying in the upstream side of the sample transport system 100 as much as possible, it is possible to secure a path from the analyzers E1 and E2 to the analyzers E4 to E7.
  • FIG. 8 is a diagram showing a specific example when the turn module cannot be transported.
  • FIG. 8 shows a specific example in a case where a state in which transfer is impossible in the turn module C1 occurs from a state in which all modules can be transferred (FIG. 6).
  • the turn module C1 is configured such that each of the downstream connection modules D1 to D3 has the corresponding node among the nodes 1 to 3 turned ON. A node signal sequence in which all nodes are turned on was generated.
  • the turn module C1 turns off all nodes on the path including the turn module C1 itself. That is, as shown in FIG. 8, the turn module C1 turns off all of the nodes 1 to 3 corresponding to the route to the connection modules D1 to D3 (analyzers E1 to E3) with which the turn module C1 is involved (impossible to carry). And The node signal string collected in the turn module C1 is transmitted to the turn module C2 via the straight line module B3.
  • nodes 1 to 3 are turned off in the node signal sequence obtained from the straight line module B3, nodes 1 to 3 are also turned off in the turn module C2 that aggregates the node signal sequences of the straight line module B3 and the connection modules D4 and D5. Then, the node signal string aggregated in the turn module C2 is transmitted to the turn module C3 via the straight line module B2.
  • nodes 1 to 3 in the node signal sequence obtained from the straight line module B2 are turned off, the nodes 1 to 3 are also turned off in the turn module C3 that aggregates the node signal sequences of the straight line module B2 and the connection modules D6 and D7. Then, the node signal string aggregated in the turn module C3 is transmitted to the straight line module B1.
  • the straight line module B1 arranged at the uppermost stream refers to the node signal sequence transmitted from the downstream side with respect to the sample output device A connected to the upstream side, and sets the sample rack to be transported to each path. Request.
  • the straight line module B1 is transported to the path corresponding to the node turned on in the node signal train while avoiding the request of the sample rack transported to the path corresponding to the node turned off in the node signal train. Request a sample rack.
  • the straight line module B1 avoids the request of the sample rack regarding the route from the node 1 to the node 3, and the node that is turned ON. Request a sample rack for the route.
  • the sample rack for which the request is avoided temporarily stands by in the sample output device A.
  • the sample transport system 100 is transporting the sample racks of the node 1 to the node 3 at the time when the path of the node 1 to the node 3 is turned OFF, the sample rack can be transported to, for example, a straight line. Transport to module B3. That is, by preventing the sample rack from staying in the upstream side of the sample transport system 100 as much as possible, a path from the analyzers E4 to E7 can be secured.
  • FIG. 9 is a diagram showing a specific example when the linear module cannot be transported.
  • FIG. 9 shows a specific example in a case where a state in which transfer is impossible in the straight line module B2 occurs from a state in which all modules can be transferred (FIG. 6).
  • the straight line module B2 has obtained a node signal sequence in which all of the nodes 1 to 5 are turned on from the downstream turn module C2.
  • the straight line module B2 turns off all nodes in the path including the straight line module B2 itself. That is, as shown in FIG. 9, the straight line module B2 turns off all the nodes 1 to 5 corresponding to the paths to the connection modules D1 to D5 (analyzers E1 to E5) in which the straight line module B2 is involved (impossible to carry). And The node signal sequence changed in the straight line module B2 is transmitted to the turn module C3.
  • the nodes 1 to 5 in the node signal sequence obtained from the straight line module B2 are turned off, the nodes 1 to 5 are also turned off in the turn module C3 that aggregates the node signal sequences of the straight line module B2 and the connection modules D6 and D7. Then, the node signal string aggregated in the turn module C3 is transmitted to the straight line module B1.
  • the straight line module B1 arranged at the uppermost stream refers to the node signal sequence transmitted from the downstream side with respect to the sample output device A connected to the upstream side, and sets the sample rack to be transported to each path. Request.
  • the straight line module B1 is transported to the path corresponding to the node turned on in the node signal train while avoiding the request of the sample rack transported to the path corresponding to the node turned off in the node signal train. Request a sample rack.
  • the straight line module B1 avoids the request of the sample rack regarding the route from the node 1 to the node 5, and Request a sample rack for the route.
  • the sample rack for which the request is avoided temporarily stands by in the sample output device A.
  • B straight line module C turn module, D connection module, 100 specimen transport system.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

検体搬送システム100は、直線モジュールB(B1~B3)とターンモジュールC(C1~C3)と接続モジュールD(D1~D7)で構成されている。複数のモジュールは、互いに自在に組み合わせることが可能であり、隣接するモジュール同士が構造的かつ通信的に接続され、1つの検体出力装置Aから出力される検体ラックを複数の分析装置E(E1~E7)まで搬送する複数の経路を形成する。各モジュールは、上流側から搬入される検体ラックを下流側へ搬出するにあたり、その検体ラックに対応付けられた行先信号をその検体ラックに付随させて下流側へ伝送する。そして、各モジュールが上流側から搬入される検体ラックをその行先信号に対応した下流側へ搬出することにより、検体ラックがその行先信号に対応した経路に沿って搬送される。

Description

検体搬送システム
 本発明は、検体搬送システムに関する。
 検体搬送システムは、例えば検体ラックに収容された検体を搬送するシステムであり、検体前処理装置などから得られる検体を収容した検体ラックをその検体の分析装置などへ搬送する。検体搬送システムには、例えば複数の分析装置が接続されており、検体搬送システムは、例えば検体の搬送経路を変更するターンユニットなどを適宜制御することにより、それら複数の分析装置のうち、検体に応じて特定される分析装置に対してその検体を搬送する(特許文献1,2参照)。
 一般的に、検体搬送システムなどのシステムにおいては、システム全体を制御して管理する中央制御部が設けられる。例えばコンピュータなどにより構成される中央制御部が、検体または検体ラックに応じて、検体搬送システム内の複数のターンユニットなどを制御することにより、その検体または検体ラックに応じた分析装置へそれらを搬送する。
特開2007-315835号公報 特開2000-55924号公報
 上述した背景技術に鑑み、本願の発明者は、検体搬送システムに関する新たなシステム構成について研究開発を重ねてきた。特に、中央制御部による制御を大幅に軽減し、望ましくは中央制御部を必要としないシステム構成に注目した。
 本発明は、その研究開発の過程において成されたものであり、その目的は、検体搬送システムに関する改良されたシステム構成を実現することにある。
 上記目的にかなう好適な検体搬送システムは、複数のモジュールで構成される検体搬送システムであって、前記複数のモジュールにより、上流から下流へ検体を搬送する複数の経路が形成され、前記複数のモジュールには、各経路の途中に配置される中間モジュールが含まれており、前記中間モジュールは、上流側と下流側に他のモジュールを接続する手段と、上流側から搬入される検体を下流側へ搬出する手段と、上流側から得られる検体の行先信号を下流側へ伝送する手段と、を備え、前記複数のモジュールは、互いに自在に組み合わせることが可能であり、隣接するモジュール同士が接続されて前記複数の経路を形成し、各モジュールが上流側から搬入される検体をその行先信号に対応した下流側へ搬出することにより、検体をその行先信号に対応した経路に沿って搬送する、ことを特徴とする。
 上記検体搬送システムは、複数のモジュールで構成され、これら複数のモジュールは、互いに自在に組み合わせることが可能である。そのため、例えば検体搬送システムを必要とするユーザが、複数のモジュールを自在に組み合わせて、所望のシステムを構成することができる。そして、構成された検体搬送システム内において、各モジュールが上流側から搬入される検体をその行先信号に対応した下流側へ搬出することにより、検体を行先信号に対応した経路に沿って搬送する。そのため、例えば、システム全体を管理する中央制御部による制御が大幅に軽減された、望ましくは、中央制御部を必要としない検体搬送システムを実現することができる。
 望ましい具体例において、前記中間モジュールは、上流側から搬入される検体を下流側へ搬出するにあたり、その検体に対応付けられた前記行先信号をその検体に付随させて下流側へ伝送する、ことを特徴とする。
 望ましい具体例において、前記中間モジュールには、下流側に複数の下流モジュールを接続できる分岐モジュールが含まれており、前記分岐モジュールは、前記行先信号に基づいて複数の下流モジュールの中からその行先信号に対応した下流モジュールを選択する手段を備える、ことを特徴とする。
 望ましい具体例において、前記検体は検体ラックに収容されており、前記分岐モジュールは、上流側から搬入される検体ラックを回転させる手段を備え、その検体ラックに対応付けられた前記行先信号に応じてその検体ラックを回転させることにより、その行先信号に対応した下流モジュールを選択する、ことを特徴とする。
 望ましい具体例において、前記複数のモジュールの自在な組み合わせにより形成される複数の経路の各々に対してその経路を特定するコードが対応付けられ、前記行先信号は、当該複数の経路についての複数のコードのいずれかを特定するように構成され、前記分岐モジュールは、前記行先信号により特定されるコードに応じた回転方向に検体ラックを回転させることにより、複数の回転方向に対応付けられた複数の下流モジュールの中から、そのコードに対応した経路の下流モジュールを選択する、ことを特徴とする。
 望ましい具体例において、前記分岐モジュールは、当該分岐モジュールを含む複数のモジュールの自在な組み合わせに応じて、複数の経路に対応付けられた各コードごとに検体ラックの回転方向を自在に設定できる手段を備える、ことを特徴とする。
 本発明により、検体搬送システムに関する改良されたシステム構成が実現される。例えば、本発明の好適な態様によれば、検体搬送システムを必要とするユーザが、複数のモジュールを自在に組み合わせて、所望のシステムを構成することができる。また、システム全体を管理する中央制御部による制御が大幅に軽減された、望ましくは、中央制御部を必要としない検体搬送システムを実現することができる。
本発明の実施において好適な検体搬送システムの全体構成を示す図である。 ターンモジュールの設定と制御の具体例1を示す図である。 ターンモジュールの設定と制御の具体例2を示す図である。 各モジュールの構成を示す図である。 モジュール間で遣り取りされる信号のタイミングチャートである。 全モジュールが搬送可能な場合の具体例を示す図である。 接続モジュールが搬送不能な場合の具体例を示す図である。 ターンモジュールが搬送不能な場合の具体例を示す図である。 直線モジュールが搬送不能な場合の具体例を示す図である。
 図1は、本発明の実施において好適な検体搬送システム100の全体構成を示す図である。検体搬送システム100は、検体前処理装置などの検体出力装置Aから出力される検体を複数の分析装置E(E1~E7)まで搬送するシステムである。検体は例えば試験管などの容器に収められ、さらに検体を収めた1本以上の容器が検体ラックに収容され、検体搬送システム100は、その検体ラックを搬送する。
 図1の検体搬送システム100は、複数のモジュールで構成される。図1において、直線Mは直線モジュールであり、ターンMはターンモジュールであり、接続Mは接続モジュールである。つまり、図1に示す具体例において、検体搬送システム100は、直線モジュールB(B1~B3)とターンモジュールC(C1~C3)と接続モジュールD(D1~D7)で構成されている。
 複数のモジュールは、互いに自在に組み合わせることが可能であり、隣接するモジュール同士が構造的かつ通信的に接続され、1つの検体出力装置Aから出力される検体ラックを複数の分析装置E(E1~E7)まで搬送する複数の経路を形成する。なお、図1に示す検体搬送システム100は、複数のモジュールの組み合わせの一例に過ぎず、図1に示す例とは異なる組み合わせにより検体搬送システム100を構成してもよい。
 直線モジュールBは、上流側から搬入される検体ラックを直線的に移動させて下流側へ搬出するモジュールである。例えば、直線モジュールB1は、検体出力装置Aから出力されて直線モジュールB1に搬入される検体ラックを直線的に移動させてターンモジュールC3へ搬出する。
 直線モジュールBは、直線状のコンベアを備えており、その直線状のコンベアに検体ラックを載せてその検体ラックを移動させる。なお、例えば、コンベアの入口(上流側)には、検体ラックのストッパと検体ラックの有無を検知するセンサが設けられ、また、例えば、コンベアの出口(下流側)にも、ストッパとセンサが設けられる。
 ターンモジュールCは、上流側から搬入される検体ラックを回転移動させて検体ラックに応じた所望の下流側へ搬出するモジュールである。例えば、ターンモジュールC3は、直線モジュールB1から搬入される検体ラックを、その検体ラックに応じた回転方向(方向1~方向3)に回転移動させて、接続モジュールD6と接続モジュールD7と直線モジュールB2のいずれかにその検体ラックを搬出する。
 ターンモジュールCは、ターンテーブルを備えており、上流側から搬入される検体ラックをターンテーブルに載せてその検体ラックに応じた方向に回転移動させ、方向1~方向3のいずれかの方向に対応した下流側へその検体ラックを搬出する。なお、例えば、ターンテーブルの入口(上流側)には、検体ラックのストッパと検体ラックの有無を検知するセンサが設けられ、また、例えば、ターンテーブルの出口(下流側)にも、ストッパとセンサが設けられる。
 接続モジュールDは、上流側から搬入される検体ラックを下流側の分析装置Eへ搬出するモジュールである。例えば、接続モジュールD6は、ターンモジュールC3の方向2から搬入される検体ラックを分析装置E6に搬出する。
 図1には、複数のモジュールの代表例として、直線モジュールBとターンモジュールCと接続モジュールDを示しているが、必要に応じて、これら以外のモジュールが設けられてもよい。例えば、搬入した検体ラックを一時的に退避させて検体ラックの搬出順序を変更するバッファモジュールなどが設けられてもよい。また、互いに長さの異なる直線モジュールや、互いに方向数の異なるターンモジュールなどが設けられてもよい。
 さらに、分岐モジュールとして、ターンモジュールに代えて又はターンモジュールに加えて、例えばトラバース搬送モジュールやエレベータ搬送モジュールなどが設けられてもよい。
 トラバース搬送モジュールは、上流側から搬入される検体ラックを水平面内でスライドさせて検体ラックに応じた所望の下流側へ搬出するモジュールである。トラバース搬送モジュールは、例えば、上流側から搬入される検体ラックを水平面内で検体ラックの搬入方向に対して直角方向にスライドさせて所望の下流側へ搬出する。一方、エレベータ搬送モジュールは、上流側から搬入される検体ラックを鉛直方向(上下方向)に移動させて検体ラックに応じた所望の下流側へ搬出するモジュールである。
 トラバース搬送モジュールやエレベータ搬送モジュールのように、検体ラックを回転させずに、所望の下流側を選択できる分岐モジュールが利用されてもよい。もちろん、検体ラックの回転と水平面内のスライドと鉛直方向の移動とを適宜に組み合わせた分岐モジュールを利用してもよい。
 図1の検体搬送システム100は、各検体ラックに対応付けられた行先コード信号に基づいて、その行先コード信号が示す経路に沿ってその検体ラックを搬送する。検体搬送システム100を構成する各モジュールは、上流側から搬入される検体ラックを下流側へ搬出するにあたり、その検体ラックに対応付けられた行先コード信号をその検体ラックに付随させて下流側へ伝送する。例えば検体ラックの搬出と並行して行先コード信号が伝送される。
 特に、ターンモジュールCは、検体ラックと共に伝送される行先コード信号に応じて、その検体ラックを方向1~方向3のいずれかに回転させて、その行先コード信号に応じた下流側を選択する。ターンモジュールCは、ターンモジュールCを含む複数のモジュールの自在な組み合わせに応じて、行先コード信号が示す各コードごとに検体ラックの回転方向を自在に設定できる機能を備える。そこで、ターンモジュールCに対する回転方向の設定とターンモジュールCにおける回転方向の制御について説明する。
 図2は、ターンモジュールの設定と制御の具体例1を示す図である。図2は、図1の検体搬送システム100内における3つのターンモジュールC(C1~C3)に対する回転方向の設定と各ターンモジュールCにおける回転方向の制御の具体例を示している。図2における複数の分析装置E(E1~E7)も、図1の検体搬送システム100内における各分析装置Eに対応している。
 図2において、行先コード信号は3ビットで構成されており、3ビットで特定される各コードが各分析装置Eに対応付けられている。つまり、各分析装置Eまでの経路に各コードが対応付けられている。例えば、bit2,bit1,bit0の順に各コードを示すと、分析装置E1には行先コード信号(L,L,H)が対応付けられており、分析装置E2には行先コード信号(L,H,L)が対応付けられている。
 また、図2の具体例1において、各ターンモジュールCには、複数の方向スイッチ(方向SW)が設けられている。SW1~SW7の各方向SWは、行先コード信号の各コードに対応付けられている。例えば、SW1は行先コード信号(L,L,H)に対応付けられており、SW2は行先コード信号(L,H,L)に対応付けられている。
 SW1~SW7の各方向SWは、回転方向を決定する2ビットの設定ビットで構成されている。各方向SWの設定ビットは、例えば、複数のモジュールを自在に組み合わせて検体搬送システム100(図1)を構築するシステム構築者により、構築されたシステムに応じて設定される。
 各方向SWが備える2ビットの設定ビットにより、その方向SWに対応した検体ラックの回転方向が設定される。図2の具体例1において各方向SWの設定ビットをbit1,bit0の順に示すと、設定ビット(OFF,ON)は回転方向が0度とされ、設定ビット(ON,OFF)は回転方向が右90度とされ、設定ビット(ON,ON)は回転方向が左90度とされる。
 図2に示す各ターンモジュールCの方向SWに関する設定は、図1の検体搬送システム100における搬送経路に対応している。そこで、図1を参照しつつ、図2の具体例1における各ターンモジュールCの制御について説明する。
 例えば、分析装置E1で分析される検体ラックが検体出力装置Aから出力されると、直線モジュールB1は、その検体ラックに行先コード信号(L,L,H)を対応付けて、その検体ラックをターンモジュールC3へ搬出すると共に、行先コード信号(L,L,H)をターンモジュールC3へ伝送する。
 ターンモジュールC3は、複数の方向SWのうち、行先コード信号(L,L,H)に対応したSW1の設定ビット(OFF,ON)を利用する。つまり、検体ラックの回転方向が0度の方向1に制御され、直線モジュールB2へ検体ラックが搬出される。直線モジュールB2は、搬入された検体ラックをターンモジュールC2へ搬出すると共に、その検体ラックに対応付けられた行先コード信号(L,L,H)をターンモジュールC2へ伝送する。
 ターンモジュールC2は、複数の方向SWのうち、行先コード信号(L,L,H)に対応したSW1の設定ビット(OFF,ON)を利用する。つまり、検体ラックの回転方向が0度の方向1に制御され、直線モジュールB3へ検体ラックが搬出される。直線モジュールB3は、搬入された検体ラックをターンモジュールC1へ搬出すると共に、その検体ラックに対応付けられた行先コード信号(L,L,H)をターンモジュールC1へ伝送する。
 ターンモジュールC1は、複数の方向SWのうち、行先コード信号(L,L,H)に対応したSW1の設定ビット(OFF,ON)を利用する。つまり、検体ラックの回転方向が0度の方向1に制御され、接続モジュールD1へ検体ラックが搬出される。そして、接続モジュールD1は、搬入された検体ラックを分析装置E1へ搬出する。
 こうして、検体搬送システム100内に形成される検体出力装置Aから分析装置E1までの経路に沿って、最上流の直線モジュールB1から最下流の接続モジュールD1まで、検体ラックが搬送される。
 また、例えば、分析装置E6で分析される検体ラックが検体出力装置Aから出力されると、直線モジュールB1は、その検体ラックに行先コード信号(H,H,L)を対応付けてその検体ラックをターンモジュールC3へ搬出すると共に、行先コード信号(H,H,L)をターンモジュールC3へ伝送する。
 ターンモジュールC3は、複数の方向SWのうち、行先コード信号(H,H,L)に対応したSW6の設定ビット(ON,OFF)を利用する。つまり、検体ラックの回転方向が右90度の方向2に制御され、接続モジュールD6へ検体ラックが搬出される。そして接続モジュールD6は、搬入された検体ラックを分析装置E6へ搬出する。
 こうして、検体搬送システム100内に形成される検体出力装置Aから分析装置E6までの経路に沿って、最上流の直線モジュールB1から最下流の接続モジュールD6まで、検体ラックが搬送される。なお、検体出力装置Aから分析装置E6までの経路には、ターンモジュールC2,C1が利用されないため、ターンモジュールC2,C1において、分析装置E6の行先コード信号(H,H,L)に対応したSW6の設定ビットが(OFF,OFF)の未設定とされている。
 検体出力装置Aから分析装置E1と分析装置E6までの制御の具体例を説明したが、他の分析装置E(E2~E5,E7)についても、図2に示す各ターンモジュールCの方向SWに関する設定に従って各ターンモジュールCが制御され、検体ラックが検体出力装置Aから所望の分析装置Eまで搬送される。
 図3は、ターンモジュールの設定と制御の具体例2を示す図である。図3は、図1の検体搬送システム100内における3つのターンモジュールC(C1~C3)に対する回転方向の設定と各ターンモジュールCにおける回転方向の制御の具体例を示している。図3における複数の分析装置E(E1~E7)も、図1の検体搬送システム100内における各分析装置Eに対応している。
 また、図2の具体例1と同様に、図3の具体例2においても、行先コード信号は3ビットで構成され、3ビットで特定される各コードが各分析装置Eに対応付けられている。つまり、各分析装置Eまでの経路に各コードが対応付けられている。
 図3の具体例2において、各ターンモジュールCには、SW1からSW3までの3列のディップスイッチ(DPSW)が設けられている。各スイッチ列(SW1~SW3)は、7ビットのディップスイッチで構成されている。ディップスイッチの各ビット(bit1~bit7)は、行先コード信号の各コードに対応付けられている。例えば、ディップスイッチのbit1は行先コード信号(L,L,H)に対応付けられており、ディップスイッチのbit2は行先コード信号(L,H,L)に対応付けられている。
 図3の具体例2においては、SW1からSW3までの3列のディップスイッチ(DPSW)の設定により、各ターンモジュールCにおける検体ラックの回転方向が決定される。3列のディップスイッチ(DPSW)は、例えば、複数のモジュールを自在に組み合わせて検体搬送システム100(図1)を構築するシステム構築者により、構築されたシステムに応じて設定される。
 図3の具体例2において、SW1,SW2,SW3の順にディップスイッチの設定状態を示すと、設定状態(ON,OFF,OFF)は回転方向が0度とされ、設定状態(OFF,ON,OFF)は回転方向が右90度とされ、設定状態(OFF,OFF,ON)は回転方向が左90度とされる。
 図3に示す各ターンモジュールCのディップスイッチに関する設定も、図1の検体搬送システム100における搬送経路に対応している。そこで、図1を参照しつつ、図3の具体例2における各ターンモジュールCの制御について説明する。
 例えば、分析装置E3で分析される検体ラックが検体出力装置Aから出力されると、直線モジュールB1は、その検体ラックに行先コード信号(L,H,H)を対応付けて、その検体ラックをターンモジュールC3へ搬出すると共に、行先コード信号(L,H,H)をターンモジュールC3へ伝送する。
 ターンモジュールC3は、7ビットのディップスイッチのうち、行先コード信号(L,H,H)に対応したbit3の設定状態(ON,OFF,OFF)を利用する。つまり、検体ラックの回転方向が0度の方向1に制御され、直線モジュールB2へ検体ラックが搬出される。直線モジュールB2は、搬入された検体ラックをターンモジュールC2へ搬出すると共に、その検体ラックに対応付けられた行先コード信号(L,H,H)をターンモジュールC2へ伝送する。
 ターンモジュールC2は、7ビットのディップスイッチのうち、行先コード信号(L,H,H)に対応したbit3の設定状態(ON,OFF,OFF)を利用する。つまり、検体ラックの回転方向が0度の方向1に制御され、直線モジュールB3へ検体ラックが搬出される。直線モジュールB3は、搬入された検体ラックをターンモジュールC1へ搬出すると共に、その検体ラックに対応付けられた行先コード信号(L,H,H)をターンモジュールC1へ伝送する。
 ターンモジュールC1は、7ビットのディップスイッチのうち、行先コード信号(L,H,H)に対応したbit3の設定状態(OFF,OFF,ON)を利用する。つまり、検体ラックの回転方向が左90度の方向3に制御され、接続モジュールD3へ検体ラックが搬出される。そして、接続モジュールD3は、搬入された検体ラックを分析装置E3へ搬出する。
 こうして、検体搬送システム100内に形成される検体出力装置Aから分析装置E3までの経路に沿って、最上流の直線モジュールB1から最下流の接続モジュールD3まで、検体ラックが搬送される。
 また、例えば、分析装置E7で分析される検体ラックが検体出力装置Aから出力されると、直線モジュールB1は、その検体ラックに行先コード信号(H,H,H)を対応付けてその検体ラックをターンモジュールC3へ搬出すると共に、行先コード信号(H,H,H)をターンモジュールC3へ伝送する。
 ターンモジュールC3は、7ビットのディップスイッチのうち、行先コード信号(H,H,H)に対応したbit7の設定状態(OFF,OFF,ON)を利用する。つまり、検体ラックの回転方向が左90度の方向3に制御され、接続モジュールD7へ検体ラックが搬出される。そして、接続モジュールD7は、搬入された検体ラックを分析装置E7へ搬出する。
 こうして、検体搬送システム100内に形成される検体出力装置Aから分析装置E7までの経路に沿って、最上流の直線モジュールB1から最下流の接続モジュールD7まで、検体ラックが搬送される。なお、検体出力装置Aから分析装置E7までの経路には、ターンモジュールC2,C1が利用されないため、ターンモジュールC2,C1において、分析装置E7の行先コード信号(H,H,H)に対応したbit7の設定状態が(OFF,OFF,OFF)の未設定とされている。
 検体出力装置Aから分析装置E3と分析装置E7までの制御の具体例を説明したが、他の分析装置E(E1,E2,E4~E6)についても、図3に示す各ターンモジュールCのディップスイッチに関する設定状態に従って各ターンモジュールCが制御され、検体ラックが検体出力装置Aから所望の分析装置Eまで搬送される。
 なお、図3に示す設定状態において、例えば故障などにより分析装置E7が利用できない状態となった場合には、ターンモジュールC3のディップスイッチのうちbit7の設定状態を(OFF,OFF,ON)から(OFF,OFF,OFF)に変更すればよい。これにより、ターンモジュールC3において、分析装置E7の行先コード信号(H,H,H)に対応したbit7の設定状態が(OFF,OFF,OFF)の未設定とされて、分析装置E7へ検体ラックが搬出されないように制御される。もちろん、分析装置E7が利用できる状態となった場合には、ターンモジュールC3のディップスイッチのうちbit7の設定状態を(OFF,OFF,ON)に戻してやればよい。
 以上のようにして、検体出力装置Aから出力された検体ラックが行先コード信号に対応した分析装置Eまで搬送される。次に、図1の検体搬送システム100に利用される各モジュールの構成について説明する。
 図4は、各モジュールの構成を示す図である。各モジュールは、上流側と下流側に他のモジュールまたは装置を接続する接続部を備えている。各モジュールは、さらに、例えばコンベアやストッパなどにより構成されるラック搬送部50を備えており、上流側から搬入される検体ラックを下流側へ搬出する。
 検体ラックを載せて移動させるコンベアの入口(上流側)には、検体ラックの有無を検知するセンサ20が設けられ、また、例えば、コンベアの出口(下流側)にも、センサ20が設けられる。例えば、センサ20の検出結果に基づいて、各モジュール内における検体ラックの有無が確認される。
 制御部10は、各モジュール内を制御する。制御部10は、その制御部10を有する各モジュールのみを制御すればよいため、例えば、コンピュータなどに搭載される比較的大規模なCPUなどを利用せずに、比較的小規模のマイコンなどにより実現することができる。
 表示部30には、各モジュール内の設定状態などが表示される。表示部30は、例えばLCDなどの表示デバイスで具現化されてもよいが、方向SW(図2)やディップスイッチ(図3)の設定状態をLEDなどにより表現する簡易な構成で実現されてもよい。
 操作部40は、ユーザ特に検体搬送システムを構築するシステム構築者からの操作を受け付ける。操作部40は、例えば表示部30と共にタッチパネルなどにより実現されてもよいし、方向SW(図2)やディップスイッチ(図3)のON/OFFを切り替える複数個のスイッチで構成されてもよい。
 各モジュールに共通する構成は以上のとおりである。さらに、モジュールの種類に応じて、例えば、ターンモジュールであれば、検体ラックを回転させるターンテーブルなどにより構成されるラック回転部60を備えており、バッファモジュールであれば、検体ラックを一時的に退避させて検体ラックの搬出順序を変更するためのラック退避部70を備えており、接続モジュールであれば、下流側に分析装置を接続する分析装置接続部80を備えている。
 また、各モジュールは、上流側に接続される上流モジュールと下流側に接続される下流モジュールとの間において各種の信号を遣り取りする。例えば、ラック要求信号とモジュール状態信号とノード信号列が、各モジュールから上流モジュールへ送られ、下流モジュールから各モジュールへ送られる。また、行先コード信号とラック送付信号が、上流モジュールから各モジュールへ送られ、各モジュールから下流モジュールへ送られる。
 図5は、検体ラックを授受する際にモジュール間で遣り取りされる信号のタイミングチャートである。図5のタイミングチャートには、互いに接続された上流側のモジュールと下流側のモジュールとの間において、検体ラックを授受する際に遣り取りされる各種信号が示されている。つまり、図5には、行先コード信号とラック送付信号とラック要求信号とモジュール状態信号が図示されている。なお、これらの信号は、例えば、検体搬送システム100(図1)の電源が投入(ON)された直後のシステムの初期化処理において全てH(OFF)とされる。
 検体ラックの授受においては、まず、モジュール状態信号が参照される。モジュール状態信号は、その信号を出力するモジュールが、検体ラックを受け入れ可能な状態にあるか否かを示す信号である。モジュール状態信号は、例えば、受け入れ不可能な状態の場合にH(OFF)とされ、受け入れ可能な状態の場合にL(ON)とされる。
 図5に示す例では、下流側のモジュールから上流側のモジュールへ出力されるモジュール状態信号が時刻T1においてL(ON)とされている。つまり、時刻T1において下流側のモジュールが検体ラックを受け入れ可能な状態となったことを示している。モジュール状態信号がL(ON)とされると、上流側のモジュールが検体ラックに対応付けられた行先コード信号を出力する。
 行先コード信号は、例えば3ビットで構成されており、3ビットで特定される各コードが各分析装置Eに対応付けられている(図2,図3参照)。図5に示す例では、上流側のモジュールから下流側のモジュールへ出力される行先コード信号が時刻T2においてL(ON)とされている。つまり、3ビットで構成される行先コード信号のうちの少なくとも1ビットが時刻T2においてL(ON)とされる。
 行先コード信号がL(ON)とされると、下流側のモジュールは、その行先コード信号に対応した検体ラックを受け入れてもよいか否かを判断し、受け入れてもよい場合に、ラック要求信号をL(ON)とする。例えば、後に詳述するノード信号列に基づいて、検体ラックを受け入れてもよいか否かが判断される。図5に示す例では、下流側のモジュールから上流側のモジュールへ出力されるラック要求信号が時刻T3においてL(ON)とされている。
 上流側のモジュールは、ラック要求信号がL(ON)とされたことを確認すると、ラック送付信号をL(ON)とする。ラック送付信号は、検体ラックを搬出するタイミングを示す信号である。図5に示す例では、上流側のモジュールから下流側のモジュールへ出力されるラック送付信号が時刻T4においてL(ON)とされている。そして、上流側のモジュールは、時刻T4においてラック搬送部を作動させて検体ラックの搬出を開始し、また、下流側のモジュールも時刻T4においてラック搬送部を作動させてその検体ラックの搬入を開始する。
 こうして、上流側のモジュールと下流側のモジュールとの間において、検体ラックの搬出と搬入が開始され、下流側のモジュールにおいて検体ラックの搬入が完了すると、下流側のモジュールは、検体ラックの搬入動作を終了させると共に、ラック要求信号をH(OFF)とする。図5に示す例では、下流側のモジュールから上流側のモジュールへ出力されるラック要求信号が時刻T5においてH(OFF)とされている。
 上流側のモジュールは、ラック要求信号がH(OFF)とされたことを確認すると、検体ラックの搬出動作を終了させると共に、ラック送付信号をH(OFF)とし、行先コード信号も全てH(OFF)とする。図5に示す例では、上流側のモジュールから下流側のモジュールへ出力されるラック送付信号と行先コード信号が時刻T6においてH(OFF)とされている。
 下流側のモジュールは、ラック送付信号がH(OFF)とされたことを確認すると、モジュール状態信号をH(OFF)とする。図5に示す例では、下流側のモジュールから上流側のモジュールへ出力されるモジュール状態信号が時刻T7においてH(OFF)とされている。つまり、この時刻T7の時点において、下流側のモジュール内に検体ラックがあるため、下流側のモジュールが次の検体ラックを受け入れることができない状態を示している。
 なお、下流側のモジュール内にあった検体ラックが、さらに下流側のモジュールへ搬出されると、検体ラックを搬出し終えた下流側のモジュールは、上流側のモジュールから次の検体ラックを受け入れることが可能な状態となるため、モジュール状態信号を再びL(ON)とする。図5に示す例では、時刻T1(2)においてモジュール状態信号がL(ON)とされ、次の検体ラックを受け入れ可能な状態となり、上流側のモジュールとの間で次の検体ラックの授受が行われる。
 上流側のモジュールと下流側のモジュールとの間において上述した信号の遣り取りで検体ラックを次々に授受することにより、複数の検体ラックが次々に各検体ラックの行先コード信号に対応した分析装置Eまで搬送される。
 次に、図1の検体搬送システム100において利用されるノード信号列について説明する。検体搬送システム100を構成する複数のモジュールは、互いに自在に組み合わせることが可能であり、隣接するモジュール同士が構造的かつ通信的に接続され、これにより例えば図1の検体搬送システム100が形成される。つまり、1つの検体出力装置Aから出力される検体ラックを複数の分析装置E(E1~E7)まで搬送する複数の経路が形成される。各経路にはその経路における搬送の可否を示すノード信号が対応付けられ、複数の経路についての複数のノード信号からなるノード信号列が構成される。
 検体搬送システム100を構成する各モジュールは、そのモジュールが備える制御部10(図4)の制御により、下流側から得られるノード信号列を上流側へ伝送し、さらに、そのモジュールが搬送不能となった場合に、伝送するノード信号列内においてそのモジュールが含まれる経路のノード信号を搬送不能に変更する。このノード信号列を利用して、検体搬送システム100内における検体ラックの滞留などへの対応が行われる。
 図6から図8は、図1の検体搬送システム100におけるノード信号列とそれを利用した制御の具体例を説明するための図である。そこで、図1を参照しつつ、図6から図8の各図を利用して具体例を説明する。
 図6は、全モジュールが搬送可能な場合の具体例を示す図である。ノード信号列は、複数のノードで構成されている。そして、検体搬送システム100における複数の経路の各々に各ノードが対応付けられている。
 図6に示す具体例において、ノード1は、分析装置E1までの経路、つまり、最上流の直線モジュールB1から最下流の接続モジュールD1までの経路に対応付けられている。また、ノード2は、分析装置E2までの経路、つまり、最上流の直線モジュールB1から最下流の接続モジュールD2までの経路に対応付けられている。同様に、分析装置E3~E7の各分析装置Eまでの経路に、ノード3~7が対応付けられている。なお、図6の具体例においてノード8は利用されていない。
 また、ノード信号列を構成するノード1からノード8までの全ノードは、例えば、検体搬送システム100の電源が投入(ON)された直後のシステムの初期化処理において全てOFFとされる。
 ノード信号列は、下流側のモジュールから上流側のモジュールへ次々に伝送される。例えば、図6と図1の例において、接続モジュールD1は、分析装置E1に対応したノード1の経路における最下流のモジュールであり、下流側に接続された分析装置E1が検体ラックを受け入れることができる状態か否かを確認し、受け入れることができる状態である場合に、分析装置E1に対応したノード1をON(搬送可能)とする。図6の例では接続モジュールD1によりノード1がON(搬送可能)とされている。
 また、接続モジュールD2は、分析装置E2に対応したノード2の経路における最下流のモジュールであり、分析装置E2が検体ラックを受け入れることができる状態か否かを確認し、受け入れることができる状態である場合に、分析装置E2に対応したノード2をON(搬送可能)とする。図6の例では、接続モジュールD2によりノード2がON(搬送可能)とされている。
 同様に、接続モジュールD3~D7は、各々に接続された分析装置E3~E7の状態を確認し、検体ラックを受け入れることができる状態である場合に、対応する各ノードをON(搬送可能)とする。図6の例では、全ての分析装置E1~E7が検体ラックを受け入れることが可能であり、接続モジュールD1~D7の各々が、ノード1~ノード7のうちの対応するノードをON(搬送可能)としている。
 ノード信号列は、下流側のモジュールから上流側のモジュールへ次々に伝送される。例えば、図6と図1の例において、接続モジュールD1~D3は、ターンモジュールC1の下流側に接続されている。そのため、接続モジュールD1~D3の各々からターンモジュールC1へノード信号列が伝送される。ターンモジュールC1は、接続モジュールD1~D3から得られるノード信号列を集約して、ターンモジュールC1の上流側へ伝送する。
 つまり、図6の例においては、接続モジュールD1~D3の各々が、ノード1~ノード3のうちの対応するノードをONとしているため、ターンモジュールC1は、ノード1~ノード3の全てのノードをONとしたノード信号列を生成し、生成したノード信号列を上流側の直線モジュールB3へ伝送する。直線モジュールB3は、ターンモジュールC1から伝送されたノード信号列を上流側のターンモジュールC2へ伝送する。
 ターンモジュールC2には、その下流側に、接続モジュールD4,D5と直線モジュールB3が接続されている。そのため、接続モジュールD4,D5と直線モジュールB3の各々からターンモジュールC2へノード信号列が伝送される。ターンモジュールC2は、接続モジュールD4,D5と直線モジュールB3から得られるノード信号列を集約して、ターンモジュールC2の上流側へ伝送する。
 つまり、図6の例においては、接続モジュールD4,D5の各々がノード4,ノード5のうちの対応するノードをONとしており、さらに、直線モジュールB3から得られるノード信号列内において、ノード1~ノード3がONとされている。そのため、ターンモジュールC2は、ノード1~ノード5の全てのノードをONとしたノード信号列を生成し、生成したノード信号列を上流側の直線モジュールB2へ伝送する。直線モジュールB2はターンモジュールC2から伝送されたノード信号列を上流側のターンモジュールC3へ伝送する。
 ターンモジュールC3には、その下流側に、接続モジュールD6,D7と直線モジュールB2が接続されている。そのため、接続モジュールD6,D7と直線モジュールB2の各々からターンモジュールC3へノード信号列が伝送される。ターンモジュールC3は、接続モジュールD6,D7と直線モジュールB2から得られるノード信号列を集約して、ターンモジュールC3の上流側へ伝送する。
 つまり、図6の例においては、接続モジュールD6,D7の各々がノード6,ノード7のうちの対応するノードをONとしており、さらに、直線モジュールB2から得られるノード信号列内において、ノード1~ノード5がONとされている。そのため、ターンモジュールC3は、ノード1~ノード7の全てのノードをONとしたノード信号列を生成し、生成したノード信号列を上流側の直線モジュールB1へ伝送する。
 そして、最上流に配置されている直線モジュールB1は、上流側に接続される検体出力装置Aに対して、下流側から伝送されたノード信号列を参照して、各経路に搬送する検体ラックを要求する。直線モジュールB1は、ノード信号列内においてOFF(搬送不能)とされているノードに対応した経路へ搬送される検体ラックの要求を避けつつ、ノード信号列内においてON(搬送可能)とされているノードに対応した経路へ搬送される検体ラックを要求する。
 つまり、図6の例においては、ノード1~ノード7の全ての経路がON(搬送可能)とされており、分析装置E1~E7の全てにおいて検体ラックを受け入れることができる状態にあるため、直線モジュールB1は、ノード1~ノード7の全ての経路に関する検体ラックを検体出力装置Aに要求することができる。
 図7は、接続モジュールが搬送不能な場合の具体例を示す図である。図7は、全モジュールが搬送可能な状態(図6)から、接続モジュールD3において搬送不能な状態が発生した場合の具体例を示している。
 先に説明した図6の例において、接続モジュールD3は、下流側に接続された分析装置E3の状態を確認し、検体ラックを受け入れることができる状態であったため、ノード3をON(搬送可能)としていた。
 ところが、例えば、分析装置E3において既に搬送された検体ラックに関する分析が行われており、次の検体ラックを受け入れることができない状態や、分析装置E3において何らかのトラブルが発生して検体ラックを受け入れることができない状態になると、図7に示すように、接続モジュールD3はノード3をOFF(搬送不能)とする。なお、接続モジュールD3自身に何らかのトラブルが発生して検体ラックを受け入れることができない場合にも、接続モジュールD3はノード3をOFF(搬送不能)とする。
 接続モジュールD3から得られるノード信号列内においてノード3がOFFになると、接続モジュールD1~D3のノード信号列を集約するターンモジュールC1においても、ノード3がOFFとされ、ターンモジュールC1において集約されたノード信号列が直線モジュールB3を経由してターンモジュールC2へ伝送される。
 直線モジュールB3から得られるノード信号列内においてノード3がOFFになると、直線モジュールB3と接続モジュールD4,D5のノード信号列を集約するターンモジュールC2においても、ノード3がOFFとされ、ターンモジュールC2において集約されたノード信号列が直線モジュールB2を経由してターンモジュールC3へ伝送される。
 直線モジュールB2から得られるノード信号列内においてノード3がOFFになると、直線モジュールB2と接続モジュールD6,D7のノード信号列を集約するターンモジュールC3においても、ノード3がOFFとされ、ターンモジュールC3において集約されたノード信号列が直線モジュールB1へ伝送される。
 そして、最上流に配置されている直線モジュールB1は、上流側に接続される検体出力装置Aに対して、下流側から伝送されたノード信号列を参照して、各経路に搬送する検体ラックを要求する。直線モジュールB1は、ノード信号列内においてOFF(搬送不能)とされているノードに対応した経路へ搬送される検体ラックの要求を避けつつ、ノード信号列内においてON(搬送可能)とされているノードに対応した経路へ搬送される検体ラックを要求する。
 図7の例においては、ノード3の経路がOFFとされているため、直線モジュールB1は、ノード3の経路に関する検体ラックの要求を避けつつ、ONとされているノードの経路に関する検体ラックを要求する。要求を避けられた検体ラックは、例えば検体出力装置A内において一時的に待機させる。なお、ノード3の経路がOFFとされた時点において検体搬送システム100がノード3の検体ラックを搬送している場合には、その検体ラックを搬送可能な箇所まで、例えば接続モジュールD3まで搬送する。つまり、可能な限り検体搬送システム100の上流側に検体ラックが滞留しないようにすることで、分析装置E1,E2と分析装置E4~分析装置E7までの経路を確保することができる。
 図8は、ターンモジュールが搬送不能な場合の具体例を示す図である。図8は、全モジュールが搬送可能な状態(図6)から、ターンモジュールC1において搬送不能な状態が発生した場合の具体例を示している。
 先に説明した図6の例において、ターンモジュールC1は、下流側の接続モジュールD1~D3の各々が、ノード1~ノード3のうちの対応するノードをONとしているため、ノード1~ノード3の全てのノードをONとしたノード信号列を生成した。
 ところが、例えば、ターンモジュールC1において何らかのトラブルが発生して検体ラックを受け入れることができない状態になると、ターンモジュールC1は、ターンモジュールC1自身が含まれる経路のノードを全てOFFとする。つまり、図8に示すように、ターンモジュールC1は、ターンモジュールC1が関与する接続モジュールD1~D3(分析装置E1~E3)への経路に対応したノード1~ノード3を全てOFF(搬送不能)とする。ターンモジュールC1において集約されたノード信号列は、直線モジュールB3を経由してターンモジュールC2へ伝送される。
 直線モジュールB3から得られるノード信号列内においてノード1~ノード3がOFFになると、直線モジュールB3と接続モジュールD4,D5のノード信号列を集約するターンモジュールC2においても、ノード1~ノード3がOFFとされ、ターンモジュールC2において集約されたノード信号列が直線モジュールB2を経由してターンモジュールC3へ伝送される。
 直線モジュールB2から得られるノード信号列内においてノード1~ノード3がOFFになると、直線モジュールB2と接続モジュールD6,D7のノード信号列を集約するターンモジュールC3においても、ノード1~ノード3がOFFとされ、ターンモジュールC3において集約されたノード信号列が直線モジュールB1へ伝送される。
 そして、最上流に配置されている直線モジュールB1は、上流側に接続される検体出力装置Aに対して、下流側から伝送されたノード信号列を参照して、各経路に搬送する検体ラックを要求する。直線モジュールB1は、ノード信号列内においてOFFとされているノードに対応した経路へ搬送される検体ラックの要求を避けつつ、ノード信号列内においてONとされているノードに対応した経路へ搬送される検体ラックを要求する。
 図8の例においては、ノード1~ノード3の経路がOFFとされているため、直線モジュールB1は、ノード1~ノード3の経路に関する検体ラックの要求を避けつつ、ONとされているノードの経路に関する検体ラックを要求する。要求を避けられた検体ラックは例えば検体出力装置A内において一時的に待機させる。なお、ノード1~ノード3の経路がOFFとされた時点において検体搬送システム100がノード1~ノード3の検体ラックを搬送している場合には、その検体ラックを搬送可能な箇所まで、例えば直線モジュールB3まで搬送する。つまり、可能な限り検体搬送システム100の上流側に検体ラックが滞留しないようにすることで、分析装置E4~分析装置E7までの経路を確保することができる。
 図9は、直線モジュールが搬送不能な場合の具体例を示す図である。図9は、全モジュールが搬送可能な状態(図6)から、直線モジュールB2において搬送不能な状態が発生した場合の具体例を示している。
 先に説明した図6の例において、直線モジュールB2は、下流側のターンモジュールC2から、ノード1~ノード5の全てのノードをONとしたノード信号列を得ていた。
 ところが、例えば、直線モジュールB2において何らかのトラブルが発生して検体ラックを受け入れることができない状態になると、直線モジュールB2は、直線モジュールB2自身が含まれる経路のノードを全てOFFとする。つまり、図9に示すように、直線モジュールB2は、直線モジュールB2が関与する接続モジュールD1~D5(分析装置E1~E5)への経路に対応したノード1~ノード5を全てOFF(搬送不能)とする。直線モジュールB2において変更されたノード信号列は、ターンモジュールC3へ伝送される。
 直線モジュールB2から得られるノード信号列内においてノード1~ノード5がOFFになると、直線モジュールB2と接続モジュールD6,D7のノード信号列を集約するターンモジュールC3においても、ノード1~ノード5がOFFとされ、ターンモジュールC3において集約されたノード信号列が直線モジュールB1へ伝送される。
 そして、最上流に配置されている直線モジュールB1は、上流側に接続される検体出力装置Aに対して、下流側から伝送されたノード信号列を参照して、各経路に搬送する検体ラックを要求する。直線モジュールB1は、ノード信号列内においてOFFとされているノードに対応した経路へ搬送される検体ラックの要求を避けつつ、ノード信号列内においてONとされているノードに対応した経路へ搬送される検体ラックを要求する。
 図9の例においては、ノード1~ノード5の経路がOFFとされているため、直線モジュールB1は、ノード1~ノード5の経路に関する検体ラックの要求を避けつつ、ONとされているノードの経路に関する検体ラックを要求する。要求を避けられた検体ラックは例えば検体出力装置A内において一時的に待機させる。なお、ノード1~ノード5の経路がOFFとされた時点において検体搬送システム100がノード1~ノード5の検体ラックを搬送している場合には、その検体ラックを搬送可能な箇所まで搬送し、可能な限り検体搬送システム100の上流側に検体ラックが滞留しないようにする。
 以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。
 B 直線モジュール、C ターンモジュール、D 接続モジュール、100 検体搬送システム。

Claims (15)

  1.  複数のモジュールで構成される検体搬送システムであって、
     前記複数のモジュールにより、上流から下流へ検体を搬送する複数の経路が形成され、前記複数のモジュールには、各経路の途中に配置される中間モジュールが含まれており、
     前記中間モジュールは、上流側と下流側に他のモジュールを接続する手段と、上流側から搬入される検体を下流側へ搬出する手段と、上流側から得られる検体の行先信号を下流側へ伝送する手段と、を備え、
     前記複数のモジュールは、互いに自在に組み合わせることが可能であり、隣接するモジュール同士が接続されて前記複数の経路を形成し、各モジュールが上流側から搬入される検体をその行先信号に対応した下流側へ搬出することにより、検体をその行先信号に対応した経路に沿って搬送する、
     ことを特徴とする検体搬送システム。
  2.  請求項1に記載の検体搬送システムにおいて、
     前記中間モジュールは、上流側から搬入される検体を下流側へ搬出するにあたり、その検体に対応付けられた前記行先信号をその検体に付随させて下流側へ伝送する、
     ことを特徴とする検体搬送システム。
  3.  請求項1に記載の検体搬送システムにおいて、
     前記中間モジュールには、下流側に複数の下流モジュールを接続できる分岐モジュールが含まれており、
     前記分岐モジュールは、前記行先信号に基づいて複数の下流モジュールの中からその行先信号に対応した下流モジュールを選択する手段を備える、
     ことを特徴とする検体搬送システム。
  4.  請求項3に記載の検体搬送システムにおいて、
     前記検体は検体ラックに収容されており、
     前記分岐モジュールは、上流側から搬入される検体ラックに対応付けられた前記行先信号に対応した下流モジュールを選択し、選択した下流モジュールへその検体ラックを搬出する、
     ことを特徴とする検体搬送システム。
  5.  請求項4に記載の検体搬送システムにおいて、
     前記分岐モジュールは、上流側から搬入される検体ラックを回転させる手段を備え、その検体ラックに対応付けられた前記行先信号に応じてその検体ラックを回転させることにより、その行先信号に対応した下流モジュールを選択する、
     ことを特徴とする検体搬送システム。
  6.  請求項5に記載の検体搬送システムにおいて、
     前記複数のモジュールの自在な組み合わせにより形成される複数の経路の各々に対してその経路を特定するコードが対応付けられ、
     前記分岐モジュールは、当該分岐モジュールを含む複数のモジュールの自在な組み合わせに応じて、複数の経路に対応付けられた各コードごとに検体ラックの回転方向を自在に設定できる手段を備える、
     ことを特徴とする検体搬送システム。
  7.  請求項1に記載の検体搬送システムにおいて、
     前記複数のモジュールの自在な組み合わせにより形成される複数の経路の各々に対してその経路を特定するコードが対応付けられ、
     前記行先信号は、当該複数の経路についての複数のコードのいずれかを特定するように構成される、
     ことを特徴とする検体搬送システム。
  8.  請求項7に記載の検体搬送システムにおいて、
     前記中間モジュールには、下流側に複数の下流モジュールを接続できる分岐モジュールが含まれており、
     前記分岐モジュールは、複数の下流モジュールの中から前記行先信号により特定されるコードに対応した経路の下流モジュールを選択する手段を備える、
     ことを特徴とする検体搬送システム。
  9.  請求項8に記載の検体搬送システムにおいて、
     前記検体は検体ラックに収容されており、
     前記分岐モジュールは、上流側から搬入される検体ラックに対応付けられた前記行先信号により特定されるコードに対応した経路の下流モジュールを選択し、選択した下流モジュールへその検体ラックを搬出する、
     ことを特徴とする検体搬送システム。
  10.  請求項9に記載の検体搬送システムにおいて、
     前記分岐モジュールは、上流側から搬入される検体ラックを回転させる手段を備える、
     ことを特徴とする検体搬送システム。
  11.  請求項10に記載の検体搬送システムにおいて、
     前記分岐モジュールは、上流側から搬入される検体ラックに対応付けられた前記行先信号により特定されるコードに応じた回転方向にその検体ラックを回転させることにより、そのコードに対応した経路の下流モジュールを選択する、
     ことを特徴とする検体搬送システム。
  12.  請求項11に記載の検体搬送システムにおいて、
     前記分岐モジュールは、当該分岐モジュールを含む複数のモジュールの自在な組み合わせに応じて、複数の経路に対応付けられた各コードごとに当該コードに応じた回転方向を自在に設定できる手段を備える、
     ことを特徴とする検体搬送システム。
  13.  請求項1に記載の検体搬送システムにおいて、
     前記各経路にはその経路における搬送の可否を示すノード信号が対応付けられ、前記複数の経路についての複数のノード信号からなるノード信号列が構成され、
     前記中間モジュールは、
     下流側から得られるノード信号列を上流側へ伝送する機能と、
     当該中間モジュールが搬送不能となった場合に、前記伝送するノード信号列内において当該中間モジュールが含まれる経路のノード信号を搬送不能に変更する機能と、
     を備える、
     ことを特徴とする検体搬送システム。
  14.  請求項13に記載の検体搬送システムにおいて、
     前記中間モジュールには、下流側に複数の下流モジュールを接続できる分岐モジュールが含まれており、
     前記分岐モジュールは、下流側に接続される複数の下流モジュールから得られるノード信号列を集約して上流側へ伝送する機能を備える、
     ことを特徴とする検体搬送システム。
  15.  請求項14に記載の検体搬送システムにおいて、
     前記複数のモジュールには、各経路の最上流に配置される最上流モジュールと、各経路の最下流に配置される最下流モジュールと、が含まれており、
     前記最上流モジュールは、下流側に接続される下流モジュールから得られるノード信号列を参照し、ノード信号が搬送不能を示す経路に搬送する検体の要求を避けつつ、ノード信号が搬送可能を示す経路に搬送する検体を上流側に接続される装置に要求する機能を備え、
     前記最下流モジュールは、下流側に接続された分析装置が検体を受け入れることができない場合に、当該最下流モジュールを経由した当該分析装置への経路のノード信号を搬送不能に変更する機能を備える、
     ことを特徴とする検体搬送システム。
PCT/JP2013/075724 2012-09-26 2013-09-24 検体搬送システム WO2014050821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13840409.0A EP2902788B1 (en) 2012-09-26 2013-09-24 Specimen transportation system
CN201380048135.9A CN104641239B (zh) 2012-09-26 2013-09-24 样本输送系统
US14/411,969 US9874577B2 (en) 2012-09-26 2013-09-24 Kolspecimen transportation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-213099 2012-09-26
JP2012213099A JP5551220B2 (ja) 2012-09-26 2012-09-26 検体搬送システム

Publications (1)

Publication Number Publication Date
WO2014050821A1 true WO2014050821A1 (ja) 2014-04-03

Family

ID=50388220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075724 WO2014050821A1 (ja) 2012-09-26 2013-09-24 検体搬送システム

Country Status (5)

Country Link
US (1) US9874577B2 (ja)
EP (1) EP2902788B1 (ja)
JP (1) JP5551220B2 (ja)
CN (1) CN104641239B (ja)
WO (1) WO2014050821A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3222564A4 (en) * 2014-11-18 2018-11-14 Itoh Denki Co., Ltd. Conveyor device, conveyor system, zone controller, cad device, and method for manufacturing conveyor device
US10352953B2 (en) 2015-05-22 2019-07-16 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954096A (ja) * 1995-08-16 1997-02-25 A & T:Kk 検体搬送システムにおける搬送装置
JP2000055924A (ja) 1998-08-07 2000-02-25 Hitachi Ltd 検体処理システム
JP2000314737A (ja) * 1999-05-06 2000-11-14 Hitachi Ltd 検体搬送システム
JP2001099844A (ja) * 1999-09-29 2001-04-13 Hitachi Ltd 検体搬送装置
JP2001242179A (ja) * 2000-02-28 2001-09-07 Hitachi Ltd 検体搬送システム
JP2003098180A (ja) * 2001-09-27 2003-04-03 Aloka Co Ltd 検体処理システム
JP2004286748A (ja) * 2003-03-21 2004-10-14 Delta Biologicals Srl 医学的分析を行うためのモジュール式装置
JP2007315835A (ja) 2006-05-24 2007-12-06 Aloka Co Ltd ラック搬送システム
JP2008241513A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd マイクロプレートの搬送装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470048B2 (ja) 1998-09-11 2003-11-25 アロカ株式会社 検体搬送システムおよび検体搬送方法
JP3588067B2 (ja) 2001-08-31 2004-11-10 照明 伊藤 検体搬送システム
JP2003121451A (ja) 2001-10-12 2003-04-23 Hitachi Sci Syst Ltd 自動分析装置
US6848933B1 (en) * 2001-11-13 2005-02-01 Rockwell Automation Technologies, Inc. System and methodology providing coordinated and modular conveyor zone control
JP3990945B2 (ja) * 2002-06-28 2007-10-17 株式会社日立ハイテクノロジーズ 自動分析装置
US8150548B2 (en) * 2005-11-07 2012-04-03 Sasan Raghibizadeh Apparatus for process automation using pin array and actuators
JP5192263B2 (ja) 2008-03-07 2013-05-08 シスメックス株式会社 分析装置および検体の搬送方法
DE102008059529A1 (de) * 2008-11-28 2010-06-02 Karlsruher Institut für Technologie Dezentral gesteuerte Materialförderung
JP5485766B2 (ja) 2010-03-30 2014-05-07 シスメックス株式会社 検体ラック搬送システム
GB2487234B (en) 2011-01-17 2017-08-02 Agilent Technologies Inc Fluidic network with distributed netlist
DE202012001229U1 (de) 2012-02-07 2012-04-04 Transnorm System Gmbh Fördervorrichtung zum Transport und/oder Sortieren von Gegenständen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954096A (ja) * 1995-08-16 1997-02-25 A & T:Kk 検体搬送システムにおける搬送装置
JP2000055924A (ja) 1998-08-07 2000-02-25 Hitachi Ltd 検体処理システム
JP2000314737A (ja) * 1999-05-06 2000-11-14 Hitachi Ltd 検体搬送システム
JP2001099844A (ja) * 1999-09-29 2001-04-13 Hitachi Ltd 検体搬送装置
JP2001242179A (ja) * 2000-02-28 2001-09-07 Hitachi Ltd 検体搬送システム
JP2003098180A (ja) * 2001-09-27 2003-04-03 Aloka Co Ltd 検体処理システム
JP2004286748A (ja) * 2003-03-21 2004-10-14 Delta Biologicals Srl 医学的分析を行うためのモジュール式装置
JP2007315835A (ja) 2006-05-24 2007-12-06 Aloka Co Ltd ラック搬送システム
JP2008241513A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd マイクロプレートの搬送装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3222564A4 (en) * 2014-11-18 2018-11-14 Itoh Denki Co., Ltd. Conveyor device, conveyor system, zone controller, cad device, and method for manufacturing conveyor device
US10322883B2 (en) 2014-11-18 2019-06-18 Itoh Denki Co. Conveyor device, conveyor system, zone controller, CAD device, and method for manufacturing conveyor device
US10352953B2 (en) 2015-05-22 2019-07-16 Roche Diagnostics Operations, Inc. Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system

Also Published As

Publication number Publication date
US9874577B2 (en) 2018-01-23
EP2902788B1 (en) 2020-04-01
CN104641239A (zh) 2015-05-20
CN104641239B (zh) 2017-09-05
JP5551220B2 (ja) 2014-07-16
JP2014066639A (ja) 2014-04-17
EP2902788A1 (en) 2015-08-05
US20150168433A1 (en) 2015-06-18
EP2902788A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2014050822A1 (ja) 検体搬送システム
JP6446519B2 (ja) 検体搬送方法
JPWO2010087303A1 (ja) 自動分析装置および自動分析方法
US9650214B2 (en) Multiple carrier handling in a pneumatic transport system
JP5551220B2 (ja) 検体搬送システム
CN101417751A (zh) 气动物流传输系统
CN109975568A (zh) 样本架调度控制方法、系统以及医学检测设备
JP2007315835A (ja) ラック搬送システム
CN103339511A (zh) 检体输送系统及其控制方法
CN111279198B (zh) 自动分析装置
CN105834344A (zh) 一种抽屉式送钉机构
JP2013140104A (ja) 検体前処理搬送システム
JP7208418B2 (ja) 仕分け装置および仕分け方法
JP6055326B2 (ja) 検体搬送システム
JP2001242179A (ja) 検体搬送システム
JP6091127B2 (ja) 検体前処理システム
RU2590549C1 (ru) Автоматическая система аналитического контроля пульповых продуктов
EP3492925A2 (en) Sample and supplies track
JPS5958336A (ja) 検体搬送装置
JP5569024B2 (ja) ワーク搬送装置及びワーク搬送装置の制御方法
JP2006349460A (ja) 自動分析装置の容器搬送機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14411969

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013840409

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE