WO2014046253A1 - 透明導電膜及び有機エレクトロルミネッセンス素子 - Google Patents

透明導電膜及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2014046253A1
WO2014046253A1 PCT/JP2013/075549 JP2013075549W WO2014046253A1 WO 2014046253 A1 WO2014046253 A1 WO 2014046253A1 JP 2013075549 W JP2013075549 W JP 2013075549W WO 2014046253 A1 WO2014046253 A1 WO 2014046253A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
particles
transparent
conductive layer
inorganic particles
Prior art date
Application number
PCT/JP2013/075549
Other languages
English (en)
French (fr)
Inventor
鈴木 隆行
中村 和明
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014536943A priority Critical patent/JP6015764B2/ja
Publication of WO2014046253A1 publication Critical patent/WO2014046253A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention uses a transparent conductive film that can be suitably used in various fields such as a liquid crystal display element, an organic light emitting element, an inorganic electroluminescent element, a solar cell, an electromagnetic wave shield, electronic paper, and a touch panel, and the transparent conductive film.
  • the present invention relates to an organic electroluminescence element (hereinafter also referred to as an organic EL element).
  • the transparent electrode is an essential constituent technology.
  • transparent electrodes are an indispensable technical element in touch panels other than televisions, mobile phones, electronic paper, various solar cells, various electroluminescence light control devices, and the like.
  • an ITO transparent electrode in which an indium-tin composite oxide (ITO) film is formed on a transparent substrate such as glass or a transparent plastic film by a vacuum deposition method or a sputtering method is mainly used.
  • ITO indium-tin composite oxide
  • ITO indium-tin composite oxide
  • Patent Document 1 discloses a transparent electrode using a binder resin that can be uniformly dispersed in a conductive polymer and an aqueous solvent on a conductive fiber so that it can be used for products requiring such a large area and a low resistance value.
  • Patent Document 2 discloses a technique of a conductive paint and a conductive molded body containing a conductive polymer and fine particles for the purpose of improving water resistance and scratch resistance and suppressing variation in surface resistance value. .
  • Patent Document 1 due to the influence of the hygroscopic dissociative group, it is insufficient to suppress moisture remaining in the film after drying, and the transparent electrode is durable for a long period of time in a high temperature and high humidity environment. It has been found that transparency, conductivity and film strength in the property test, and device performance using the transparent electrode are also adversely affected.
  • the technology described in Patent Document 2 also has an adverse effect on transparency, conductivity and film strength, and device performance using a transparent electrode in a durability test in a long-term, high-temperature, high-humidity environment of the transparent electrode. There was found.
  • the present invention has been made in view of the above-described circumstances, and greatly improves the water volatility in the film during drying, and also greatly improves the water resistance and film strength of the film.
  • Transparent conductive film with little deterioration in transparency, conductivity and film strength even under the environment, and by greatly improving the conductivity, to achieve both transparency and conductivity, using the transparent conductive film, It is an object of the present invention to provide an organic EL element that has excellent light emission uniformity, has little deterioration in light emission uniformity even under long-term, high-temperature, and high-humidity environments, and has an excellent light emission lifetime.
  • a transparent base material a conductive polymer formed on the base material and having a ⁇ -conjugated conductive polymer and a polyanion, and a transparent conductive layer containing inorganic particles;
  • a transparent conductive film provided, wherein the inorganic particles comprise at least two kinds of particles A and B having different average particle diameters, and the difference in average particle diameter between the particles A and the particles B is 20 nm or more and 90 nm or less.
  • the mass ratio of the particles A and the particles B is in the range of 1:10 to 2: 1.
  • the conductive layer made of a metal material wherein the transparent conductive layer containing the conductive polymer and the inorganic particles is electrically connected to the conductive layer made of the metal material.
  • the transparent conductive film according to any one of 4 to 4.
  • An organic electroluminescence device comprising the transparent conductive film according to any one of 1 to 5 as a transparent electrode.
  • a transparent conductive film which is excellent in transparency, conductivity and film strength, and has little deterioration in transparency, conductivity and film strength even under a high temperature and high humidity environment for a long time, and the transparent conductive film It is possible to provide an organic EL element that uses a film and has excellent light emission uniformity, little deterioration in light emission uniformity even under long-term high temperature and high humidity environments, and excellent light emission life.
  • the present invention uses a conductive polymer and at least two kinds of inorganic particles having different average particle diameters as the transparent conductive film, so that the water volatility during drying is greatly improved and the residual moisture in the film after drying is minimized.
  • the water resistance and film strength of the film can be greatly improved.
  • the network of conductive polymer particles easily progresses during the drying process, thereby efficiently forming a network of conductive paths. Therefore, the conductivity can be greatly improved, and both transparency and conductivity can be achieved.
  • FIG. 1A and 1B are schematic views illustrating an example of a transparent conductive film according to an embodiment of the present invention, in which FIG. 1A is a top view and FIG.
  • the transparent conductive film 1 may include a base material 11, a first conductive layer 12, and a second conductive layer 13, and the first conductive layer 12. May be omitted, and only the substrate 11 and the second conductive layer 13 may be configured.
  • the first conductive layer 12 is preferably made of a metal material formed in a pattern
  • the second conductive layer 13 contains a conductive polymer and inorganic particles. That is, in a preferred embodiment of the present invention, the first conductive layer 12 includes a conductive layer formed of a metal material, and the second conductive layer 13 includes a conductive polymer and inorganic particles, and the inorganic particles are average particles. Two types of particles having different diameters are used.
  • conductive refers to a state in which electricity flows, and the sheet resistance measured by a method in accordance with JIS K 7194 “Resistivity Test Method by Conductive Plastic Four-Probe Method” is 1 ⁇ . It means lower than 10 8 ⁇ / ⁇ .
  • the conductive polymer is a conductive polymer having a ⁇ -conjugated conductive polymer and a polyanion.
  • a conductive polymer can be easily obtained by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a poly anion described later. Can be manufactured.
  • the ⁇ -conjugated conductive polymer is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans. , Polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl chain conductive polymers can be used. Among these, polythiophenes or polyanilines are preferable from the viewpoint of conductivity, transparency, stability, and the like, and polyethylenedioxythiophene is most preferable.
  • ⁇ -conjugated conductive polymer precursor monomer a precursor monomer used for forming a ⁇ -conjugated conductive polymer has a ⁇ -conjugated system in the molecule, and even when polymerized by the action of an appropriate oxidizing agent, A ⁇ -conjugated system is formed.
  • precursor monomers include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptyl
  • the poly anion used for the conductive polymer is substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkenylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, substituted or unsubstituted. Polyester and any of these copolymers, which are composed of a structural unit having an anionic group and a structural unit having no anionic group.
  • This poly anion is a solubilized polymer that solubilizes the ⁇ -conjugated conductive polymer in a solvent.
  • the anion group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer, and improves the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the anion group of the polyanion may be a functional group that can cause chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • Such an anion group is preferably a mono-substituted sulfate group, a mono-substituted phosphate group, a phosphate group, a carboxy group, a sulfo group, etc. from the viewpoint of ease of production and stability.
  • the anionic group is more preferably a sulfo group, a monosubstituted sulfate group, or a carboxy group from the viewpoint of the doping effect of the functional group on the ⁇ -conjugated conductive polymer.
  • a sulfonic acid group and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, poly Isoprene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid, etc. Can be mentioned. Further, the polyanion may be a homopolymer of these, or two or more kinds of copolymers.
  • the poly anion may further have F (fluorine atom) in the compound.
  • F fluorine atom
  • Specific examples of such a polyanion include Nafion (manufactured by Dupont) containing a perfluorosulfonic acid group, Flemion (manufactured by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group, and the like. .
  • a heat drying treatment is further performed at 100 to 120 ° C. for 5 minutes or more.
  • the microwaves may be irradiated.
  • Such heat drying treatment is preferable from the viewpoint that the crosslinking reaction is accelerated and the washing resistance and solvent resistance of the coating film are remarkably improved.
  • polystyrene sulfonic acid polystyrene sulfonic acid, polyvinyl sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, or Nafion (manufactured by Dupont) is preferable.
  • These poly anions have high compatibility with the nonconductive polymer added as the binder resin, and can further increase the conductivity of the obtained conductive polymer.
  • the degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units from the viewpoint of the dispersibility of the conductive polymer, and from the viewpoint of solvent solubility and conductivity, the monomer unit is preferably from 50 to A range of 10,000 is more preferable.
  • Examples of the method for producing a polyanion include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and anionic group-containing polymerization. And the like, and the like.
  • Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, a polymerizable monomer having no anionic group may be copolymerized with the anionic group-containing polymerizable monomer.
  • the oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ -conjugated conductive polymer.
  • the obtained polymer is a polyanionic salt
  • it is preferably transformed into a polyanionic acid.
  • the method for transforming into polyanionic acid include ion exchange method using ion exchange resin, dialysis method, ultrafiltration method and the like. Among these, ultrafiltration method is preferable from the viewpoint of easy work.
  • Ratio of ⁇ -conjugated conductive polymer and polyanion contained in conductive polymer, “ ⁇ -conjugated conductive polymer”: “poly anion” is preferably a mass ratio from the viewpoint of conductivity and dispersibility The range is from 1: 1 to 20, and more preferably from 1: 2 to 10 by mass ratio.
  • the oxidant used when the precursor monomer forming the ⁇ -conjugated conductive polymer is chemically oxidatively polymerized in the presence of the polyanion to obtain the conductive polymer according to the present invention is, for example, J. Org. Am. Chem. Soc. 85, 454 (1963), which is suitable for the oxidative polymerization of pyrrole.
  • Such oxidants include, for practical reasons, inexpensive and easy-to-handle oxidants such as iron (III) salts (eg FeCl 3, Fe (ClO 4) 3, iron (III) salts of inorganic acids including organic acids, Iron (III) salts of inorganic acids containing organic residues), hydrogen peroxide, potassium dichromate, alkali persulfate (eg potassium persulfate, sodium persulfate), ammonium, alkali perborate, potassium permanganate, Alternatively, it is preferable to use a copper salt (for example, copper tetrafluoroborate).
  • iron (III) salts eg FeCl 3, Fe (ClO 4) 3
  • iron (III) salts of inorganic acids including organic acids Iron (III) salts of inorganic acids containing organic residues
  • hydrogen peroxide potassium dichromate
  • alkali persulfate eg potassium persulfate, sodium persulfate
  • ammonium alkali
  • metal ions for example, iron ions, cobalt ions, nickel ions, molybdenum ions, vanadium ions
  • metal ions for example, iron ions, cobalt ions, nickel ions, molybdenum ions, vanadium ions
  • persulfates, iron (III) salts containing organic acids, or iron (III) salts of inorganic acids containing organic residues has great application advantages because they are not corrosive.
  • iron (III) salts of inorganic acids containing organic residues include iron (III) salts of sulfuric acid half esters of alkanols having 1 to 20 carbon atoms (for example, lauryl sulfate), alkyl sulfonic acids having 1 to 20 carbon atoms (For example, methane, dodecanesulfonic acid), carboxylic acid having 1 to 20 aliphatic carbon atoms (for example, 2-ethylhexylcarboxylic acid), aliphatic perfluorocarboxylic acid (for example, trifluoroacetic acid, perfluorooctanoic acid), aliphatic dicarboxylic acid Acids (eg oxalic acid), in particular aromatic, optionally alkyl substituted sulfonic acids having 1 to 20 carbon atoms (eg Fe (III) salts of benzesenesulfonic acid, p-toluenesulfonic acid, dodecylbenz
  • a commercially available material can also be preferably used.
  • a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the Clevios series, from Aldrich as PEDOT-PSS 483095 and 560596, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
  • the conductive polymer may contain an organic compound as a secondary dopant.
  • the conductivity can be improved by adding a secondary dopant.
  • an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • Examples of the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable.
  • Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, ⁇ -butyrolactone, and the like.
  • Examples of the ether group-containing compound include diethylene glycol monoethyl ether.
  • Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
  • the inorganic particles in the present invention comprise at least two kinds of particles A and B having different average particle diameters, and the difference in average particle diameter between the particles A and the particles B is 20 nm or more and 90 nm or less.
  • the mass ratio is in the range of 1:10 to 2: 1. Three or more kinds of inorganic particles may be included.
  • the “average particle diameter” means a value measured by a laser diffraction scattering method, and a particle having an integrated value of 50% is defined as an “average particle diameter”.
  • the measuring method of “average particle size” was measured using a particle size distribution measuring device (LS — 13 — 320) manufactured by Beckman Coulter, Inc.
  • Examples of the material of the inorganic particles include silica, alumina, titania, zirconia, boron oxide, magnesium oxide, silicon nitride, aluminum nitride, titanium nitride, zirconium nitride, boron nitride, magnesium nitride, silicon carbide, aluminum carbide, titanium carbide and Examples thereof include boron carbide, kaolinite, talc, zeolite, calcium carbonate, lithium phosphate, calcium phosphate, calcium sulfate, and barium sulfate. These may be used alone or in combination of two or more.
  • silica particles alumina particles or a combination of both are preferable, and silica particles are more preferable.
  • silica examples include organosilica sol, colloidal silica, and vapor phase silica, and commercially available products can be used. Further, the surface of the particles may be subjected to a surface treatment.
  • organosilica sols include, for example, methanol silica sol (dispersed silica sol in methanol), SNOWTEX IPA-ST (dispersed silica sol in isopropyl alcohol), SNOWTEX EG-ST (in ethylene glycol) Silica sol dispersed), Snowtex MEK-ST (silica sol dispersed in methyl ethyl ketone), Snowtex MIBK-ST (silica sol dispersed in methyl isobutyl ketone) (above, manufactured by Nissan Chemical Industries, Ltd.) Etc.
  • methanol silica sol disersed silica sol in methanol
  • SNOWTEX IPA-ST disersed silica sol in isopropyl alcohol
  • SNOWTEX EG-ST in ethylene glycol
  • Silica sol dispersed in ethylene glycol
  • Snowtex MEK-ST sica sol dispersed in methyl ethyl ketone
  • Snowtex MIBK-ST sica sol dis
  • colloidal silica examples include Snowtex C, Snowtex O, Snowtex N, Snowtex S, Snowtex UP, Snowtex PS-M, Snowtex PS-L, Snowtex 20, Snowtex 30, Snowtex 40 (above, manufactured by Nissan Chemical Industries, Ltd.), PL-1 (ultra high purity silica sol), ultra high purity colloidal silica PL-3, ultra high purity colloidal silica PL-7 (above, manufactured by Fuso Chemical Industry Co., Ltd.), etc. Is mentioned.
  • vapor-phase silica examples include Aerosil 50, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil MOX80, Aerosil MOX170 (manufactured by Nippon Aerosil Co., Ltd.) and the like.
  • the inorganic particles may include a true sphere, an elliptical shape and a slightly distorted spherical shape. Furthermore, the shape (chain shape) with which the spherical inorganic particle was continued may be sufficient. Examples of the chain silica particles include product name IPA-ST-UP manufactured by Nissan Chemical Industries, Ltd.
  • the inorganic particles are composed of at least two types of particles A and B having different average particle diameters, and the difference between the average particle diameter of the particles A and the average particle diameter of the particles B is 20 nm or more and 90 nm or less.
  • the difference between the average particle size of the particles A and the average particle size of the particles B is more preferably 40 nm or more and 80 nm or less.
  • the difference in average particle diameter is 20 nm or more and 90 nm or less, it is found that the resistance to cracking when the film is bent is improved even if the ratio of the inorganic particles to the whole film is increased. did. Even if the difference in average particle diameter is less than 20 nm or more than 90 nm, if the ratio of inorganic particles to the entire film increases, the possibility of cracking when the film is bent increases. This is presumed to be due to the optimization of the packing structure between the particles, and it is presumed that the strength of the film is increased and the strength against bending is increased by the small particles entering and bonding in the gaps between the large particles.
  • the average particle size difference is 20 nm or more and 90 nm or less, the resistance to cracking when the film is bent is improved even if the ratio of the inorganic particles to the entire film is increased. This is presumed that the packing structure between the particles is further optimized and the strength against bending is increased.
  • the mass ratio of the inorganic particles A and the inorganic particles B is further defined.
  • the mass ratio of the inorganic particles A and the inorganic particles B is preferably in the range of 1:10 to 2: 1, and more preferably in the range of 1: 4 to 1: 1.
  • voids can be provided inside the layer while maintaining the strength of the film, and water or solvent is layered when the film is dried. It is easy to escape from the inside, and a network structure of a conductive polymer can be formed in the gap, and an efficient conductive network can be formed even if the amount of the conductive polymer is small.
  • the mass ratio of the inorganic particles A and the inorganic particles B in the range of 1: 4 to 1: 1, the filling structure of the inorganic particles A and the inorganic particles B and the balance of the voids are optimized, and the strength of the film is increased.
  • a void can be formed while keeping it, which is more preferable for the present invention.
  • the average particle size of the inorganic particles A is preferably 30 nm or more and 100 nm or less, and the average particle size of the inorganic particles B is preferably 1 nm or more and 50 nm or less. More preferably, the average particle size of A is 50 nm or more and 90 nm or less, and the average particle size of inorganic particles B is 5 nm or more and 30 nm or less. If the average particle diameter of the inorganic particles A is 100 nm or less, the surface roughness of the transparent conductive film is reduced, and adverse effects on performance are suppressed and transparency is improved.
  • the average particle diameter of the inorganic particles A is 30 nm or more, the effect of the void formation can be obtained.
  • the average particle diameter of the inorganic particles B is 50 nm or less, sufficient strength against bending of the conductive film can be obtained.
  • the average particle diameter of the inorganic particles B is 1 nm or more, the effect of the void formation can be obtained.
  • the ratio of the conductive polymer to the inorganic particles is preferably 10 to 50 parts by mass of the conductive polymer when the inorganic particles are 100 parts by mass. More preferably, the conductive polymer is 20 to 40 parts by mass.
  • the reason why the amount of the conductive polymer used is preferably 10 to 50 parts by mass with respect to the binder resin is that when the amount of the conductive polymer used is 50 parts by mass or less with respect to the inorganic particles, it is visible. The influence of the conductive polymer that absorbs light in the light region is suppressed, and the visible light transmittance is increased.
  • the ratio of the conductive polymer does not become too small and the conductive network is reduced. This is because sufficient conductivity is ensured and conductivity is improved. That is, the ratio of the conductive polymer to the inorganic particles is preferably within the above range in order to obtain the improvement in transmittance as much as possible and prevent the decrease in conductivity. Moreover, a dry load can be reduced by containing the inorganic component which does not have a volatile component in the mixture (coating liquid) of a conductive polymer and an inorganic particle.
  • the second conductive layer 13 that is, the mixture of the conductive polymer and the inorganic particles, preferably contains a binder resin.
  • the binder resin binds the conductive polymer and the inorganic particles.
  • the binder resin may be either a thermosetting resin or a thermoplastic resin, for example, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate, or a polyimide resin such as polyimide or polyamideimide.
  • a thermosetting resin such as polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate
  • a polyimide resin such as polyimide or polyamideimide.
  • Polyamide resins such as polyamide 6, polyamide 6, 6, polyamide 12 and polyamide 11, polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, fluororesins such as polychlorotrifluoroethylene, polyvinyl alcohol , Polyvinyl ether, polyvinyl butyral, polyvinyl resin such as polyvinyl acetate, polyvinyl chloride, epoxy resin, xylene resin, aramid resin, silicone resin, polyimide silicone Fat, polyurethane resin, polyurea resin, melamine resin, phenol resin, phenoxy resin, polyether, acrylic resin, polyethylene resin, polypropylene resin, styrene-acrylic copolymer, styrene-butadiene copolymer, ethylene-vinyl acetate copolymer , Vinyl chloride-vinyl acetate copolymer, ethylene-vinyl
  • binder resins at least one of polyurethane, polyester, acrylic resin, polyamide, polyimide, and epoxy resin is preferable from the viewpoint of compatibility with the conductive polymer and transparency. Particularly preferred are polyester and acrylic resin. These binder resins may be dissolved in water or an organic solvent, or may be dispersed in water or an organic solvent. Further, these binder resins may be subjected to a dispersion treatment by adding a solid to the conductive polymer dispersion.
  • the glass transition temperature (Tg) of the binder resin in the present invention is preferably in the range of 30 to 120 ° C.
  • Tg of resin is 30 degreeC or more
  • the water resistance of a resin film improves and the transparency after a hot-water process improves.
  • a resin coating excellent in blocking resistance is obtained.
  • the Tg of the resin is 120 ° C. or lower, a high temperature is not required to form a resin film, and even when a resin base material having poor heat resistance such as PET is used, deformation occurs during film formation. It can be prevented in advance.
  • the ratio of the (conductive polymer + inorganic particles) to the binder resin is preferably 5 to 100 parts by mass of the binder resin when (conductive polymer + inorganic particles) is 100 parts by mass.
  • the reason why the amount of binder resin used is preferably 5 to 100 parts by mass with respect to 100 parts by mass of (conductive polymer + inorganic particles) is that the amount of binder resin used is (conductive polymer + inorganic particles) This is because by setting the amount to 5 to 100 parts by mass with respect to 100 parts by mass, the bonding of inorganic particles can be assisted and the film strength can be improved.
  • the amount of the binder resin used is less than 5 parts by mass, the effect of assisting the bonding of the inorganic particles may be insufficient, and when it exceeds 100 parts by mass, it is formed in the gap between the inorganic particles.
  • the volatile component derived from the binder resin may deteriorate the durability of the film, while the action of inhibiting the formation of the conductive network occurs.
  • the base material 11 in the present invention is a transparent plate-like body that can carry a conductive polymer and inorganic particles, and is also called a substrate.
  • the total light transmittance in the visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (Plastic—Testing method of total light transmittance of transparent material) is 80%.
  • the above is preferably used as the substrate 11.
  • the base material 11 a material that is excellent in flexibility, has a sufficiently low dielectric loss coefficient, and is a material that absorbs microwaves smaller than the conductive layers 12 and 13 is preferably used.
  • a resin substrate, a resin film, and the like are preferably exemplified, but a transparent resin film is preferably used from the viewpoint of productivity and performance such as lightness and flexibility.
  • the transparent resin film is a film having a total light transmittance of 50% or more measured in a visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (plastic-transparent material total light transmittance test method). Say.
  • the transparent resin film that can be preferably used is not particularly limited, and the material, shape, structure, thickness, and the like can be appropriately selected from known ones.
  • transparent resin films include polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, and modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, and cyclic olefin resins.
  • Polyolefin resin films such as polyvinyl chloride, polyvinyl resin such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate ( PC) resin film, polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, etc. .
  • PEEK polyether ether ketone
  • PSF polysulfone
  • PES polyether sulfone
  • PC polycarbonate
  • PC polyamide resin film
  • polyimide resin film acrylic resin film
  • TAC triacetyl cellulose
  • any resin film having a total light transmittance of 80% or more is more preferably used as the substrate 11 according to the present invention.
  • a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film or a polycarbonate film is preferable from the viewpoint of transparency, heat resistance, ease of handling, strength and cost.
  • a biaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene naphthalate film is more preferred.
  • the substrate 11 according to the present invention can be subjected to a surface treatment or an easy-adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about surface treatment and an easily bonding layer.
  • examples of the surface treatment include surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • an inorganic film, an organic film, or a hybrid film of an inorganic substance and an organic substance may be formed on the front or back surface of the film-like base material 11, and the base material 11 on which such a film is formed,
  • Water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. It is preferably a barrier film.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, and the water vapor permeability (25 ⁇ It is preferable that the film be a high barrier film having a temperature of 0.5 ° C. and a relative humidity (90 ⁇ 2)% RH) of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • a material for forming a barrier film formed on the front or back surface of the film-like base material 11 in order to obtain a high-barrier film a material having a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the transparent conductive film 1 is formed by further providing a conductive layer made of a metal material on the base material 11 on which the conductive layer 13 containing the conductive polymer and the binder resin is formed. Is more preferable.
  • the conductive layer 12 made of a metal material according to the present invention is preferably made of a metal material formed in a pattern.
  • a transparent conductive film 1 includes a first conductive layer 12 (hereinafter also referred to as a metal pattern conductive layer 12) made of a metal material formed in a pattern on a substrate 11. It is preferable to have.
  • the first conductive layer 12 is preferably formed using metal particles because it is advantageous for ease of pattern formation, stability over time, and densification of the metal pattern.
  • the metal of the metal particles is not particularly limited as long as it has excellent conductivity, and examples thereof include alloys in addition to metals such as gold, silver, copper, iron, nickel, and chromium. From the viewpoint of conductivity, silver or copper is preferable, and silver or copper may be used alone or in combination, or an alloy of silver and copper, or silver or copper may be plated with the other metal.
  • the average particle size of the metal particles is preferably in the range from the atomic scale to 1000 nm.
  • those having an average particle diameter of 3 to 300 nm are particularly preferred, and those having an average particle diameter of 5 to 100 nm are more preferably used.
  • silver nanoparticles having an average particle diameter of 3 nm to 100 nm are particularly preferable.
  • the aspect ratio (major axis length / minor axis length) of the metal particles is preferably a metal particle close to a sphere of 2.0 or less from the viewpoint of improving the surface smoothness and densifying the metal pattern.
  • the average particle diameter can be easily measured using a commercially available measuring apparatus using a light scattering method. Specifically, it is a value measured using a Zetasizer 1000 (manufactured by Malvern Co., Ltd.) by a laser Doppler method at S25 ° C. and a sample dilution amount of 1 ml.
  • the metal pattern conductive layer 12 preferably used in the present invention is a layer containing metal, and is a layer formed in a pattern so as to have an opening 12a on the transparent substrate 11.
  • the opening 12a is a portion of the transparent substrate 11 that does not have the metal pattern conductive layer 12, and is a light-transmitting portion of the metal pattern.
  • the shape of the pattern is not particularly limited, but for example, a stripe shape, a lattice shape, a honeycomb shape or the like is preferable.
  • the ratio of the opening 12a to the entire surface of the transparent conductive film 1, that is, the opening ratio, is preferably 80% or more from the viewpoint of transparency.
  • the aperture ratio of the stripe pattern having a line width of 100 ⁇ m and a line interval of 1 mm is approximately 90%.
  • the line width of the pattern is preferably 10 to 200 ⁇ m from the viewpoint of transparency and conductivity.
  • the distance between the fine lines of the metal pattern conductive layer 12 is preferably 0.5 to 4 mm from the viewpoint of transparency and conductivity.
  • the length of one side of the metal pattern conductive layer 12 is preferably 0.5 to 4 mm from the viewpoint of transparency and conductivity.
  • the height of the thin line is preferably 0.1 to 3.0 ⁇ m from the viewpoint of conductivity and current link prevention.
  • the metal pattern conductive layer 12 according to the present invention can be obtained by forming a pattern on the substrate 11 by printing a coating liquid for metal pattern conductive layer containing metal particles.
  • the coating liquid for metal pattern conductive layers containing metal particles is a metal particle dispersion containing metal particles described later.
  • the metal particle dispersion contains metal particles in a solvent such as water and alcohol, but may contain a binder, a dispersant for dispersing the metal, and the like as necessary.
  • the metal pattern conductive layer 12 can be formed on the substrate 11 by a printing method such as a gravure printing method, a flexographic printing method, a screen printing method, or an ink jet printing method.
  • a method generally used for electrode pattern formation is applicable to the present invention.
  • the gravure printing method include those described in JP 2009-295980 A, JP 2009-259826 A, JP 2009-96189 A, JP 2009-90662 A, and the like.
  • An example is the method described in Japanese Patent No. -30345.
  • the metal pattern conductive layer 12 is subjected to heat treatment within a range that does not damage the film-like substrate 11. Thereby, fusion and densification of the metal particles proceed, and the metal pattern conductive layer 12 becomes highly conductive.
  • the surface specific resistance of the thin line portion of the metal pattern conductive layer 12 is preferably 100 ⁇ / ⁇ or less, more preferably 10 ⁇ / ⁇ or less from the viewpoint of improving performance when applied to a current-driven optoelectronic device. Further, from the viewpoint of increasing the area, it is more preferably 5 ⁇ / ⁇ or less.
  • Surface specific resistance is, for example, JIS K6911, ASTM It can be measured according to D257, etc. Furthermore, it can be easily measured using a commercially available surface resistivity meter.
  • the surface roughness Ra of the metal pattern conductive layer 12 is preferably 20 nm or less from the viewpoint of surface smoothness.
  • the value of Ra can be measured according to, for example, JIS, B601 (1994), etc. Further, using a commercially available atomic force microscope (AFM) as described below, It can be measured by the method.
  • the AFM use the Seiko Instruments SPI3800N probe station and SPA400 multifunctional unit, set it on the horizontal sample stage on the piezo scanner, approach the cantilever to the sample surface, and reach the region where atomic force works Then, scanning is performed in the XY directions, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction.
  • the piezo scanner a scanner capable of scanning XY20150 ⁇ m and Z25 ⁇ m is used.
  • the cantilever a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc.
  • Ra is measured in a DFM mode (Dynamic Force Mode).
  • DFM mode Dynamic Force Mode
  • 10 ⁇ 10 ⁇ m was performed at a scanning frequency of 0.1 Hz.
  • 10 lines having a length of 10 ⁇ m were drawn at intervals of 0.9 ⁇ m parallel to the thin line, and Ra on the line was calculated, and the average value was taken as the value of Ra.
  • the second conductive layer 13 preferably used in the present invention is obtained by applying the coating liquid containing the conductive polymer and inorganic particles on the base material 11 on which the metal pattern conductive layer 12 is formed. It is formed by coating on the conductive layer 12, heating and drying.
  • the second conductive layer 13 only needs to be electrically connected to the metal pattern conductive layer 12, and may completely cover the metal pattern conductive layer 12, or a part of the metal pattern conductive layer 12 may be covered.
  • the metal pattern conductive layer 12 may be covered.
  • the application of the coating liquid containing conductive polymer and inorganic particles is roll coating method, bar coating method, dip coating method, spin coating method, Any of coating methods such as casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and inkjet method can be used.
  • the transparent conductive film 1 in which a part of the metal pattern conductive layer (first conductive layer) 12 is covered or in contact with the second conductive layer 13 containing a conductive polymer and inorganic particles. Is obtained by forming the first conductive layer 12 on the transfer film by the method described above, and further laminating the second conductive layer 13 containing a conductive polymer and inorganic particles on the transfer film by the method described above.
  • the transparent conductive film 1 of the present invention has high conductivity that cannot be obtained by a metal thin wire or a conductive polymer layer alone, and is in the plane of the transparent conductive film 1. Can be obtained uniformly.
  • the dry film thickness of the second conductive layer 13 is preferably 30 to 2000 nm from the viewpoint of surface smoothness and transparency, more preferably 100 nm or more from the viewpoint of conductivity, and the surface of the transparent electrode 1 From the viewpoint of smoothness, the thickness is more preferably 200 nm or more.
  • the dry film thickness of the second conductive layer 13 is more preferably 1000 nm or less from the viewpoint of transparency.
  • a drying treatment can be appropriately performed.
  • a drying treatment can be performed at the temperature of the range in which the base material 11 and the conductive layers 12 and 13 are not damaged.
  • the drying treatment can be performed at 80 to 150 ° C. for 10 seconds to 15 minutes.
  • cleaning tolerance and solvent tolerance of the transparent conductive film 1 improve remarkably, and element performance improves further.
  • effects such as a reduction in driving voltage and an improvement in lifetime can be obtained.
  • the coating solution described above is a solvent (for example, water, organic solvents (alcohols, glycols, cellosolves, ketones, esters, ethers, amides, carbonized). Hydrogens, etc.).
  • a solvent for example, water, organic solvents (alcohols, glycols, cellosolves, ketones, esters, ethers, amides, carbonized). Hydrogens, etc.).
  • the value of Ry representing the smoothness of the surface of the second conductive layer 13 which is a transparent conductive layer is more preferably 50 nm or less, and further preferably 40 nm or less, from the viewpoint of improving conductivity. preferable.
  • the value of Ra of the second conductive layer 13 which is a transparent conductive layer is more preferably 10 nm or less, and further preferably 5 nm or less.
  • the smoothness of the surface of the second conductive layer 13 which is a transparent conductive layer is Ry ⁇ 50 nm
  • the smoothness of the surface of the second conductive layer 13 which is a transparent conductive layer is Ra ⁇ 10 nm.
  • a commercially available atomic force microscope can be used for the measurement of Ry and Ra as described above.
  • the transparent conductive film 1 preferably has a total light transmittance of 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the electrical resistance value of the second conductive layer 13 which is the transparent conductive layer in the transparent conductive film 1 of the present invention is 1000 ⁇ / as the surface resistivity from the viewpoint of improving the performance when applied to a current-driven optoelectronic device. ⁇ or less is preferable, and 100 ⁇ / ⁇ or less is more preferable.
  • the electrical resistance value of the second conductive layer 13 that is a transparent conductive layer is a performance when applied to a current-driven optoelectronic device.
  • the surface resistivity is preferably 50 ⁇ / ⁇ or less, more preferably 10 ⁇ / ⁇ or less. In particular, it is preferably 1,000 ⁇ / ⁇ or less because it can function as a transparent electrode in various optoelectronic devices.
  • the above-mentioned surface resistivity can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity test method using conductive plastic 4-probe method), and further, a commercially available surface resistivity meter can be used. And can be measured easily.
  • the thickness of the transparent conductive film 1 of this invention there is no restriction
  • An organic EL device includes a transparent conductive film 1 as an electrode, and includes an organic layer including an organic light emitting layer and the transparent conductive film 1.
  • the organic EL device according to the embodiment of the present invention preferably includes the transparent conductive film 1 as an anode, and the organic light-emitting layer and the cathode are arbitrarily selected from materials, configurations, and the like generally used in organic EL devices. Things can be used.
  • the element configuration of the organic EL element is as follows: anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / Cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. it can.
  • the light emitting material or doping material that can be used in the organic light emitting layer includes anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bis.
  • An organic light emitting layer is manufactured by well-known methods, such as vapor deposition, application
  • the thickness of the organic light emitting layer is preferably 0.5 to 500 nm and more preferably 0.5 to 200 nm from the viewpoint of light emission efficiency.
  • the transparent conductive film 1 according to the present invention has both high conductivity and transparency, and is used in various optoelectronic devices such as liquid crystal display elements, organic light emitting elements, inorganic electroluminescent elements, electronic paper, organic solar cells, and inorganic solar cells. In addition, it can be suitably used in fields such as an electromagnetic wave shield and a touch panel. Among them, it can be particularly preferably used as an electrode of an organic EL device or an organic thin film solar cell device in which the smoothness of the transparent electrode surface is strictly required.
  • the organic EL element according to the present invention can emit light uniformly and without unevenness, it is preferably used for lighting applications, and can be used for self-luminous displays, liquid crystal backlights, lighting, and the like. .
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Co., Ltd. was applied to a non-undercoated surface of a polyethylene terephthalate film (Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m, and dried. After coating with a wire bar so that the average film thickness becomes 4 ⁇ m, after drying at 80 ° C. for 3 minutes, curing is performed under a curing condition of 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere, and a smooth layer Formed.
  • the dried sample was further dehumidified by being held for 10 minutes in an atmosphere at a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature ⁇ 8 ° C.).
  • Modification A The sample subjected to the dehumidification treatment was modified under the following conditions to form a gas barrier layer.
  • the dew point temperature during the reforming process was -8 ° C.
  • Example 1> (Preparation of transparent electrode TC-101) First of all, the following coating solution A is extruded to a dry film thickness of 300 nm on the non-barrier surface on the transparent electrode film substrate having gas barrier properties obtained as described above. Apply by adjusting the slit gap of the head, heat drying at 110 ° C. for 5 minutes to form a conductive layer (only the second conductive layer in FIG. 1) made of conductive polymer, inorganic particles and binder resin. The electrode was cut into 8 ⁇ 8 cm. Further, the obtained electrode was heat-treated at 110 ° C. for 30 minutes using an oven to produce a transparent electrode TC-101.
  • Coating liquid A A coating solution having the following formulation was used after stirring and mixing.
  • Conductive polymer dispersion PEDOT-PSS, CLEVIOS PH510, solid content 1.89%, manufactured by Heraeus
  • Inorganic particle A dispersion Snowtex ZL, average particle size 85 nm, silica concentration 40%, manufactured by Nissan Chemical Industries, Ltd.
  • Inorganic particle B dispersion Snowtex 50, average particle size 25 nm, silica concentration 48%, manufactured by Nissan Chemical Industries, Ltd.
  • DMSO Dimethyl sulfoxide
  • Binder resin dispersion plus coat Z-561, resin concentration 25%, manufactured by Kyoyo Chemical Co., Ltd. 0.26 g
  • Transparent electrode TC-101 (Preparation of transparent electrodes TC-102 to TC-115) Transparent electrode TC-101 except that the inorganic particle A dispersion, inorganic particle B dispersion, binder resin, and conductive polymer of coating liquid A were changed to the types and quantity ratios shown in Table 1 in the production of transparent electrode TC-101. Transparent electrodes TC-102 to TC-115 were produced in the same manner as in the above.
  • Transparent electrode TC-101 (Preparation of comparative transparent electrodes TC-116 to TC-121) Transparent electrode TC-101 except that the inorganic particle A dispersion, inorganic particle B dispersion, binder resin, and conductive polymer of coating liquid A were changed to the types and quantity ratios shown in Table 1 in the production of transparent electrode TC-101.
  • Transparent electrodes TC-116 to TC-121 were produced in the same manner as in the above.
  • the strength of the conductive layer film was evaluated by a tape peeling method. Crimping / peeling was repeated 10 times on the conductive layer using a Scotch tape manufactured by Sumitomo 3M Co., and the dropping of the conductive layer was visually observed and evaluated according to the following criteria. ⁇ : Affected part is 5% or less ⁇ : Affected part exceeds 5% but 30% or less ⁇ : Affected part exceeds 30% Evaluation criteria: After forced degradation test Samples evaluated as ⁇ and ⁇ passed the present invention.
  • the cracking property of the conductive layer of the obtained transparent electrode was evaluated. Evaluation was performed by bending the transparent electrode sheet by hand. The evaluation criteria were as follows. ⁇ : The conductive layer of the transparent electrode sheet does not break even when bent. ⁇ : The conductive layer of the transparent electrode sheet does not break, but cracks. ⁇ : The conductive layer of the transparent electrode sheet breaks. Evaluation criteria: After the forced deterioration test, ⁇ . The sample evaluated as passed the present invention.
  • Table 1 shows the evaluation results.
  • “present invention” in the remarks represents that it corresponds to an example of the present invention, and “comparison” represents a comparative example.
  • Snowtex ZL Colloidal silica dispersion manufactured by Nissan Chemical Industries Snowtex 50: Colloidal silica dispersion manufactured by Nissan Chemical Industries Snowtex YL: Colloidal silica dispersion manufactured by Nissan Chemical Industries Snowtex 20: Colloidal silica manufactured by Nissan Chemical Industries Dispersion Snowtex 20L: Colloidal silica dispersion Snowtex PS-M manufactured by Nissan Chemical Industries, Ltd. Colloidal silica dispersion Snowtex MP-1040 manufactured by Nissan Chemical Industries, Ltd. Colloidal silica dispersion Snowtex XL, manufactured by Nissan Chemical Industries Ltd. Colloidal silica dispersion Snowtex XS, manufactured by Chemical Industry Co., Ltd .: Colloidal silica dispersion, plus coat Z-561, manufactured by Nissan Chemical Industries, Ltd. Polyester resin emulsion mobile 8055A, manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd. Dull silica particle composite emulsion
  • the transparent electrodes TC-101 to TC-115 of the present invention are conductive, light transmissive and film even under high temperature and high humidity environment. It can be seen that there is little deterioration in strength, excellent stability, and excellent cracking properties.
  • Example 2 (Preparation of transparent electrode TE-101) First, a first conductive layer made of a metal material formed in a pattern by gravure printing shown below on a non-barrier surface on the transparent electrode film substrate having gas barrier properties obtained as described above. Formed.
  • a silver nanoparticle paste (M-Dot SLP: manufactured by Mitsuboshi Belting, average particle diameter of 20 nm, aspect ratio when 50 particles were observed was 1.5 or less) gravure test machine K303MULTICATOR manufactured by RK Print Coat Instruments Ltd. After printing a thin wire grid having a line width of 50 ⁇ m, a height of 1.5 ⁇ m, and an interval of 1.0 mm, a drying process was performed at 110 ° C. for 5 minutes to form a first conductive layer (see FIG. 1).
  • the following coating solution A was applied using an extrusion method, adjusting the slit gap of the extrusion head to a dry film thickness of 300 nm, 110 ° C., It heat-dried in 5 minutes, the 2nd conductive layer (refer FIG. 1) which consists of a conductive polymer, an inorganic particle, and binder resin was formed, and the obtained electrode was cut out to 8x8 cm. Further, the obtained electrode was heat-treated at 110 ° C. for 30 minutes using an oven to produce a transparent electrode TE-101.
  • Coating liquid A A coating solution having the following formulation was used after stirring and mixing.
  • Conductive polymer dispersion PEDOT-PSS, CLEVIOS PH510, solid content 1.89%, manufactured by Heraeus
  • Inorganic particle A dispersion Snowtex ZL, average particle size 85 nm, silica concentration 40%, manufactured by Nissan Chemical Industries, Ltd.
  • Inorganic particle B dispersion Snowtex 50, average particle size 25 nm, silica concentration 48%, manufactured by Nissan Chemical Industries, Ltd.
  • DMSO Dimethyl sulfoxide
  • Binder resin dispersion plus coat Z-561, resin concentration 25%, manufactured by Kyoyo Chemical Co., Ltd. 0.26 g
  • Transparent electrode TE-101 was prepared except that the inorganic particle A dispersion, inorganic particle B dispersion, binder resin, and conductive polymer of coating liquid A were changed to the types and amount ratios shown in Table 2 in the production of transparent electrode TE-101.
  • Transparent electrodes TE-102 to TE-115 were prepared in the same manner as described above.
  • the TE- A transparent electrode TE-116 was produced in the same manner as the production of 101.
  • the above-mentioned copper nanoparticle paste was prepared by dissolving 0.28 g of polyvinylpyrrolidone having an average molecular weight of 10,000 (manufactured by Tokyo Chemical Industry Co., Ltd.) in 0.72 g of ethylene glycol, glycerin, diethylene glycol, and 2,3-butanediol. Copper nanoparticles (manufactured by Sigma-Aldrich) 4.0 g, three rolls and a mixer were used for kneading. The aspect ratio when observing 50 particles with an electron microscope was 2.0 or less.)
  • Transparent electrode TE-101 was prepared except that the inorganic particle A dispersion, inorganic particle B dispersion, binder resin, and conductive polymer of coating liquid A were changed to the types and amount ratios shown in Table 2 in the production of transparent electrode TE-101.
  • Transparent electrodes TE-118 to TE-123 were produced in the same manner as in the above.
  • the conductivity is remarkably improved by having a conductive layer made of a metal material, and the transparent electrodes TE-101 to TE- of the present invention are compared with the transparent electrodes TE-118 to TE-123 of the comparative examples. It can be seen that No. 117 is less deteriorated in conductivity, light transmittance and film strength even in a high temperature and high humidity environment, and has excellent stability and crack resistance.
  • Example 3 (Production of organic EL device) After the transparent electrode substrate produced in Example 2 was washed with ultrapure water, it was cut into a 30 mm square so that one square tile-shaped transparent pattern with a pattern side length of 20 mm was placed in the center, and used for the anode electrode. The organic EL device was produced respectively. The hole transport layer and subsequent layers were formed by vapor deposition. Organic EL elements OEL-101 to OEL-123 were produced using transparent electrodes TE-101 to TE-123, respectively.
  • Each of the deposition crucibles in a commercially available vacuum deposition apparatus was filled with a constituent material for each layer in a necessary amount for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • an organic EL layer including a hole transport layer, an organic light emitting layer, a hole blocking layer, and an electron transport layer was sequentially formed.
  • each light emitting layer was provided in the following procedures.
  • Compound 2, Compound 3 and Compound 5 are deposited on the formed hole transport layer so that Compound 2 is 13.0% by mass, Compound 3 is 3.7% by mass, and Compound 5 is 83.3% by mass.
  • Co-evaporation was performed in the same region as the hole transport layer at a speed of 0.1 nm / second to form a green-red phosphorescent organic light emitting layer having a maximum emission wavelength of 622 nm and a thickness of 10 nm.
  • Compound 4 and Compound 5 are deposited in the same region as the organic light-emitting layer emitting green-red phosphorescence at a deposition rate of 0.1 nm / second so that Compound 4 is 10.0% by mass and Compound 5 is 90.0% by mass.
  • a blue phosphorescent organic light emitting layer having an emission maximum wavelength of 471 nm and a thickness of 15 nm.
  • a hole blocking layer was formed by depositing compound 6 in a thickness of 5 nm on the same region as the formed organic light emitting layer.
  • a transparent electrode is used as an anode, an anode external takeout terminal and Al as a 15 mm ⁇ 15 mm cathode forming material are mask-deposited under a vacuum of 5 ⁇ 10 ⁇ 4 Pa, and a 100 nm thick anode Formed.
  • a flexible sealing member in which an adhesive is applied around the anode except for the end portion, and polyethylene terephthalate is used as a substrate to deposit Al 2 O 3 with a thickness of 300 nm so that external terminals for the cathode and the anode can be formed.
  • the adhesive was cured by heat treatment to form a sealing film, and an organic EL device having a light emitting area of 15 mm ⁇ 15 mm was produced.
  • emission uniformity For light emission uniformity, a KEITHLEY source measure unit 2400 type was used to apply a DC voltage to the organic EL element to emit light. With respect to the organic EL elements OEL-101 to OEL-123 that emitted light at 1000 cd / m 2 , each light emission luminance unevenness was observed with a 50 ⁇ microscope. In addition, after heating the organic EL element in an oven at 80 ° C. and 60% RH for 3 hours and then adjusting the humidity again at 23 ⁇ 3 ° C. and 55 ⁇ 3% RH for 1 hour or more, the same The emission uniformity was observed. ⁇ : Completely uniform light emission ⁇ : Partial emission unevenness is observed ⁇ : Light emission unevenness is observed over the entire surface Evaluation criteria: After the forced deterioration test, samples evaluated as ⁇ and ⁇ pass the present invention.
  • the obtained organic EL device was continuously emitted at an initial luminance of 5000 cd / m 2 , the voltage was fixed, and the time until the luminance was reduced by half was determined.
  • An organic EL element having an anode electrode made of ITO was produced by the same method as described above, the ratio to this was determined, and evaluated according to the following criteria. ⁇ : 150% or more ⁇ : 100 or more and less than 150% ⁇ : 80 or more and less than 100% ⁇ : less than 80% Evaluation criteria: After the forced deterioration test, samples evaluated as ⁇ , ⁇ , ⁇ passed as the present invention.
  • Table 3 shows the evaluation results.
  • “Invention” in the remarks indicates that it corresponds to an example of the present invention, and “Comparison” indicates that it is a comparative example.
  • the organic EL elements OEL-118 to OEL-123 of the comparative examples are deteriorated in light emission uniformity and life after heating for 3 hours in an environment of 80 ° C. and 60% RH. It can be seen that the light emission uniformity and life of the EL elements OEL-101 to OEL-117 are stable even after heating and have excellent durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

 乾燥時の膜中の水分揮発性を大きく向上させるとともに、膜の耐水性、膜強度も大きく向上させ、長期間、高温、高湿度環境下にあっても透明性、導電性及び膜強度の劣化が少ない透明導電膜を提供する。 透明導電膜(1)は、透明な基材(11)と、基材(11)上に形成されており、π共役系導電性高分子及びポリ陰イオンを有してなる導電性ポリマー、並びに、無機粒子を含有する透明な導電層(13)と、を備え、無機粒子は、少なくとも平均粒径の異なる2種の粒子A及び粒子Bからなり、粒子Aと粒子Bの平均粒径の差は、20nm以上、90nm以下であり、粒子Aと粒子Bの質量比は、1:10から2:1の範囲であることを特徴とする。

Description

透明導電膜及び有機エレクトロルミネッセンス素子
 本発明は、液晶表示素子、有機発光素子、無機電界発光素子、太陽電池、電磁波シールド、電子ペーパー、タッチパネル等の各種分野において好適に用いることができる透明導電膜、及び、当該透明導電膜を用いた有機エレクトロルミネッセンス素子(以後、有機EL素子ともいう)に関する。
 近年、薄型テレビ需要の高まりに伴い、液晶、プラズマ、有機エレクトロルミネッセンス(EL)、フィールドエミッション等、各種方式のディスプレイ技術が開発されている。これら表示方式の異なる何れのディスプレイにおいても、透明電極は必須の構成技術となっている。また、テレビ以外のタッチパネル、携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子等においても、透明電極は欠くことのできない技術要素となっている。
 従来、透明電極としては、ガラスや透明なプラスチックフィルム等の透明基板上に、インジウム-スズの複合酸化物(ITO)膜を真空蒸着法やスパッタリング法で製膜したITO透明電極が主に使用されてきた。しかし、ITOに用いられているインジウムはレアメタルであり、かつ価格の高騰により、脱インジウムが望まれている。また、ディスプレイの大画面化、生産性向上に伴い、フレキシブル基板を用いたロール to ロールの生産技術が所望されている。
 近年、このような大面積かつ低抵抗値が要求される製品にも対応できるよう、特許文献1には、導電性繊維上に導電性ポリマーと水系溶媒に均一分散可能なバインダー樹脂を用いる透明電極の技術が開示されている。また特許文献2には、導電性ポリマーと微粒子を含有して耐水性及び耐擦傷性向上、表面抵抗値のばらつき抑えることを目的とした導電性塗料及び導電性成形体の技術が開示されている。
特開2010-244746号公報 特開2011-116860号公報
 しかし、特許文献1記載の技術では、吸湿性の解離性基の影響により、乾燥後の膜中の水分残留を抑えることが不十分となり、透明電極の長期間、高温、高湿度環境下の耐久性試験での透明性、導電性及び膜強度、並びに、透明電極を用いた素子性能にも悪影響を及ぼすことが判明した。特許文献2記載の技術でも、透明電極の長期間、高温、高湿度環境下の耐久性試験での透明性、導電性及び膜強度、並びに、透明電極を用いた素子性能にも悪影響を及ぼすことが判明した。
 本発明は、前記した事情に鑑みてなされたものであり、乾燥時の膜中の水分揮発性を大きく向上させるとともに、膜の耐水性、膜強度も大きく向上させ、長期間、高温、高湿度環境下にあっても透明性、導電性及び膜強度の劣化が少ない透明導電膜、及び、導電性も大きく向上させることにより、透明性と導電性を両立させ、当該透明導電膜を用いた、発光均一性に優れ、長期間、高温、高湿度環境下にあっても発光均一性の劣化が少なく、発光寿命に優れる有機EL素子を提供することを課題とする。
 本発明の前記課題解決には、少なくとも平均粒径の異なる2種の無機粒子と導電性ポリマーとを用いることが重要であり、より詳しくは、以下の構成により課題が解決される。
1.透明な基材と、前記基材上に形成されており、π共役系導電性高分子及びポリ陰イオンを有してなる導電性ポリマー、並びに、無機粒子を含有する透明な導電層と、を備える透明導電膜であって、前記無機粒子は、少なくとも平均粒径の異なる2種の粒子A及び粒子Bからなり、前記粒子Aと前記粒子Bの平均粒径の差は、20nm以上、90nm以下であり、前記粒子Aと前記粒子Bの質量比は、1:10から2:1の範囲であることを特徴とする透明導電膜。
2.前記無機粒子Aの平均粒径は、30nm以上、100nm以下であり、前記無機粒子Bの平均粒径は、1nm以上、50nm以下であることを特徴とする前記1に記載の透明導電膜。
3.前記導電性ポリマーと前記無機粒子との比率は、前記無機粒子を100質量部としたとき、前記導電性ポリマーが10~50質量部であることを特徴とする前記1又は2に記載の透明導電膜。
4.前記導電層は、さらにバインダー樹脂を含有することを特徴とする前記1から3のいずれかに記載の透明導電膜。
5.金属材料からなる導電層を備え、前記導電性ポリマー及び前記無機粒子を含有する透明な前記導電層は、前記金属材料からなる前記導電層と電気的に接続されていることを特徴とする前記1から4のいずれかに記載の透明導電膜。
6.前記1から5のいずれかに記載の透明導電膜を透明電極として備えることを特徴とする有機エレクトロルミネッセンス素子。
 本発明により、透明性、導電性及び膜強度に優れるとともに、長期間、高温、高湿度環境下にあっても透明性、導電性及び膜強度の劣化が少ない透明導電膜、並びに、当該透明導電膜を用いた、発光均一性に優れ、長期間、高温、高湿度環境下にあっても発光均一性の劣化が少なく、発光寿命に優れる有機EL素子を提供することができる。
本発明の実施形態に係る透明電極の一例を示す概略図であり、(a)は上面図、(b)は(a)のX矢視断面図である。
 以下、本発明を実施するための形態について説明する。本発明は、透明導電膜として、導電性ポリマー及び少なくとも平均粒径の異なる2種の無機粒子を用いることより、乾燥時の水分揮発性を大きく向上させ、乾燥後の膜中の水分残留を極力抑えることができるとともに膜の耐水性、及び膜強度も大きく向上させることができる。また、無機粒子が混合された塗液が、基材上に塗布された工程においても、乾燥過程において導電性ポリマー粒子同士のネットワーク化が容易に進行し、導電パスのネットワークを効率的に形成することにより、導電性も大きく向上させることができ、透明性と導電性が両立できる。したがって、高温、高湿度環境下における環境試験後でも高い導電性、高い透明性及び良好な膜強度を併せ持つ、安定性の優れた透明導電膜を得ることができる。さらには当該透明導電膜を透明電極として用いた高寿命の有機EL素子が得られることを見出したものである。
 以下、本発明の実施形態について説明する。図1は、本発明の実施形態に係る透明導電膜の一例を示す概略図であり、(a)は上面図、(b)はX矢視断面図である。
 図1に示すように、本発明の実施形態に係る透明導電膜1は、基材11と、第1導電層12と、第2導電層13と、を備えてもよく、第1導電層12を省略し、基材11と、第2導電層13のみの構成でもよい。第1導電層12は、パターン状に形成された金属材料からなることが好ましく、第2導電層13は、導電性ポリマー及び無機粒子を含有する。つまり、本発明の好ましい態様は、第1導電層12が、金属材料から形成される導電層、及び、第2導電層13が、導電性ポリマー及び無機粒子を含有し、さらに無機粒子は平均粒径の異なる2種の粒子を用いることである。
<導電性ポリマー>
 本発明において、「導電性」とは、電気が流れる状態を指し、JIS K 7194の「導電電性プラスチックの4探針法による抵抗率試験方法」に準拠した方法で測定したシート抵抗が1×10Ω/□よりも低いことをいう。
 本発明において、導電性ポリマーとは、π共役系導電性高分子とポリ陰イオンとを有してなる導電性ポリマーである。こうした導電性ポリマーは、後記するπ共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後記するポリ陰イオンとの存在下で化学酸化重合することによって、容易に製造することができる。
(π共役系導電性高分子)
 本発明において、π共役系導電性高分子としては、特に限定されず、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、又は、ポリチアジル類の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類又はポリアニリン類が好ましく、ポリエチレンジオキシチオフェンが最も好ましい。
(π共役系導電性高分子前駆体モノマー)
 本発明において、π共役系導電性高分子の形成に用いられる前駆体モノマーとは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。かかる前駆体モノマーとしては、例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。
(ポリ陰イオン)
 本発明において、導電性ポリマーに用いられるポリ陰イオンは、置換又は未置換のポリアルキレン、置換又は未置換のポリアルケニレン、置換又は未置換のポリイミド、置換又は未置換のポリアミド、置換又は未置換のポリエステル、及び、これらの共重合体のいずれかであって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。
 このポリ陰イオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリ陰イオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性及び耐熱性を向上させる。
 ポリ陰イオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよい。かかるアニオン基は、製造の容易さ及び安定性の観点から、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、かかるアニオン基は、官能基のπ共役系導電性高分子へのドープ効果の観点から、スルホ基、一置換硫酸エステル基、又は、カルボキシ基がより好ましい。特にスルホン酸基、カルボキシ基がより好ましい。
 ポリ陰イオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。また、ポリ陰イオンは、これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
 また、ポリ陰イオンは、化合物内にさらにF(フッ素原子)を有するものであってもよい。かかるポリ陰イオンとして、具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)等を挙げることができる。
 これらのうち、ポリ陰イオンとしてスルホン酸を有する化合物を用いた場合には、塗布及び乾燥によって導電性ポリマー含有層を形成した後に、さらに100~120℃で5分以上の加熱乾燥処理を施してからマイクロ波を照射してもよい。かかる加熱乾燥処理は、架橋反応が促進し、塗布膜の洗浄耐性や溶媒耐性が著しく向上するという観点から好ましい。
 さらに、スルホン酸を有する化合物の中でも、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、又は、ナフィオン(Dupont社製)が好ましい。これらのポリ陰イオンは、バインダー樹脂として添加される非導電性ポリマーとの相溶性も高く、さらに、得られる導電性ポリマーの導電性をより高くすることができる。
 ポリ陰イオンの重合度は、導電性ポリマーの分散性の観点からは、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性及び導電性の観点からは、モノマー単位が50~10000個の範囲であることがより好ましい。
 ポリ陰イオンの製造方法としては、例えば、酸を用いてアニオン基を有しないポリマーにアニオン基を直接導入する方法、アニオン基を有しないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法等が挙げられる。
 アニオン基含有重合性モノマーを重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。なお、この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。
 アニオン基含有重合性モノマーの重合に際して使用する酸化剤、酸化触媒及び溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。
 得られたポリマーがポリ陰イオン塩である場合には、ポリ陰イオン酸に変質させることが好ましい。ポリ陰イオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。
 導電性ポリマーに含まれるπ共役系導電性高分子とポリ陰イオンの比率、「π共役系導電性高分子」:「ポリ陰イオン」は、導電性及び分散性の観点から、好ましくは質量比で1:1~20の範囲であり、より好ましくは質量比で1:2~10の範囲である。
 π共役系導電性高分子を形成する前駆体モノマーをポリ陰イオンの存在下で化学酸化重合して、本発明に係る導電性ポリマーを得る際に使用される酸化剤は、例えばJ.Am.Chem.Soc.,85、454(1963)に記載されるピロールの酸化重合に適する、いずれかの酸化剤である。かかる酸化剤としては、実際的な理由のために、安価かつ取り扱い易い酸化剤、例えば鉄(III)塩(例えばFeCl3、Fe(ClO4)3、有機酸を含む
無機酸の鉄(III)塩、有機残基を含む無機酸の鉄(III)塩)、過酸化水素、重クロム酸カリウム、過硫酸アルカリ(例えば過硫酸カリウム、過硫酸ナトリウム)、アンモニウム、過ホウ酸アルカリ、過マンガン酸カリウム、又は、銅塩(例えば四フッ化ホウ酸銅)を用いることが好ましい。加えて、酸化剤として、随時触媒量の金属イオン(例えば鉄イオン、コバルトイオン、ニッケルイオン、モリブデンイオン、バナジウムイオン)の存在下における空気又は酸素も使用することができる。これらの中でも、過硫酸塩、有機酸を含む鉄(III)塩又は有機残基を含む無機酸の鉄(III)塩の使用が腐食性でないために大きな応用上の利点を有する。
 有機残基を含む無機酸の鉄(III)塩の例としては、炭素数1~20のアルカノールの
硫酸半エステルの鉄(III)塩(例えばラウリル硫酸)、炭素数1~20のアルキルスル
ホン酸(例えばメタン、ドデカンスルホン酸)、脂肪族炭素数1~20のカルボン酸(例えば2-エチルヘキシルカルボン酸)、脂肪族パーフルオロカルボン酸(例えばトリフルオロ酢酸、パーフルオロオクタノン酸)、脂肪族ジカルボン酸(例えばシュウ酸)、殊に芳香族の、随時炭素数1~20のアルキル置換されたスルホン酸(例えばベンゼセンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸のFe(III)塩)が挙
げられる。
 こうした導電性ポリマーとしては、市販の材料も好ましく利用することができる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸とからなる導電性ポリマー(PEDOT-PSSと略す)が、H.C.Starck社からCleviosシリーズとして、Aldrich社からPEDOT-PSSの483095、560596として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることができる。
(2次ドーパント)
 導電性ポリマーは、2次ドーパントとして有機化合物を含有してもよい。2次ドーパントを添加することにより導電性を向上させることができる。本発明で用いることができる有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、ヒドロキシ基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物等が挙げられる。前記ヒドロキシ基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリン等が挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトン等が挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、等が挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシド等が挙げられる。これらは、1種単独で使用されてもよいし、2種以上が併用されてもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種が用いられることが好ましい。
<無機粒子>
 本発明における無機粒子は、少なくとも平均粒径の異なる2種の粒子A、及びBからなり、前記粒子Aと粒子Bの平均粒径の差が20nm以上、90nm以下であり、粒子Aと粒子Bの質量比が1:10から2:1の範囲であることを特徴とする。なお無機粒子は3種以上含まれてもよい。
 本発明において、前記「平均粒径」とは、レーザ回折散乱法で測定した値のことを意味し、積算値50%の粒度のものを「平均粒径」とする。
 「平均粒径」の測定方法は、ベックマン・コールター株式会社製、粒度分布測定装置(LS_13_320)を用いて測定した。
 無機粒子の材質としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化ホウ素、酸化マグネシウム、窒化ケイ素、窒化アルミニウム、窒化チタン、窒化ジルコニウム、窒化ホウ素、窒化マグネシウム、炭化ケイ素、炭化アルミニウム、炭化チタンおよび炭化ホウ素、カオリナイト、タルク、ゼオライト、炭酸カルシウム、リン酸リチウム、リン酸カルシウム、硫酸カルシウム、硫酸バリウム等が挙げられる。これらは1種を単独で用いてもよいし、2種以上が併用されてもよい。
 無機粒子の中でも、シリカ粒子、アルミナ粒子又は両者の併用が好ましく、シリカ粒子がより好ましい。
 シリカとしては、オルガノシリカゾル、コロイダルシリカ、気相シリカなどが挙げられ、市販品を用いることができる。また、粒子表面に表面処理がなされていてもよい。
 オルガノシリカゾルの市販品としては、例えば、メタノールシリカゾル(メタノール中にシリカゾルを分散したもの)、スノーテックスIPA-ST(イソプロピルアルコール中にシリカゾルを分散したもの)、スノーテックスEG-ST(エチレングリコール中にシリカゾルを分散したもの)、スノーテックスMEK-ST(メチルエチルケトン中にシリカゾルを分散したもの)、スノーテックスMIBK-ST(メチルイソブチルケトン中にシリカゾルを分散したもの)(以上、日産化学工業株式会社製)などが挙げられる。
 コロイダルシリカの市販品としては、例えば、スノーテックスC、スノーテックスO、スノーテックスN、スノーテックスS、スノーテックスUP、スノーテックスPS-M、スノーテックスPS-L、スノーテックス20、スノーテックス30、スノーテックス40(以上、日産化学工業社製)、PL-1(超高純度シリカゾル)、超高純度コロイダルシリカPL-3、超高純度コロイダルシリカPL-7(以上、扶桑化学工業社製)などが挙げられる。
 気相シリカの市販品としては、例えば、アエロジル50、アエロジル130、アエロジル200、アエロジル300、アエロジル380、アエロジルTT600、アエロジルMOX80、アエロジルMOX170(以上、日本アエロジル社製)などが挙げられる。
 無機粒子は、真球、楕円状ややや歪な球形状のものを含んでいてもよい。さらに、球状の無機粒子が連なった形状(鎖状)のものでもよい。鎖状のシリカ粒子としては、例えば、日産化学工業社製、製品名IPA-ST-UPが挙げられる。
 本発明では無機粒子は少なくとも平均粒径の異なる2種の粒子A及び粒子Bからなり、前記粒子Aの平均粒径と前記粒子Bの平均粒径との差が20nm以上、90nm以下である。ここで、前記粒子Aの平均粒径と前記粒子Bの平均粒径との差は、40nm以上、80nm以下であることがより好ましい。
 本発明者の検討によると、平均粒径の差が20nm以上、90nm以下である場合に、膜全体に対する無機粒子の比率が増えても膜を曲げた際の割れに対する耐性が向上することが判明した。平均粒径の差が20nm未満でも90nmを超えても、膜全体に対する無機粒子の比率が増えた場合、膜を曲げた際に割れる可能性が高くなる。これは粒子同士の充填構造の最適化によるものと推測され、大きな粒子の隙間に小さな粒子が入り結合することにより膜の強度が上がり、曲げに対する強度が強くなっていると推測される。また、平均粒径の差が20nm以上、90nm以下である場合に、膜全体に対する無機粒子の比率が増えても膜を曲げた際の割れに対する耐性が向上することが判明した。これは、粒子同士の充填構造がより最適化され、曲げに対する強度が強くなっていると推測される。
 本発明ではさらに、無機粒子Aと無機粒子Bの質量比を規定することを特徴とする。無機粒子Aと無機粒子Bの質量比は、1:10から2:1の範囲であることが好ましく、1:4から1:1の範囲であることがより好ましい。無機粒子Aと無機粒子Bの質量比を1:10から2:1の範囲にすることにより、膜の強度を保ったまま層内部に空隙をもたせることができ、膜乾燥時に水又は溶剤が層内部から抜けやすくなるとともに、その空隙に導電性ポリマーのネットワーク構造を形成させることができ、導電性ポリマーの量が少なくても効率がよい導電ネットワークを形成することができる。したがって、透明性と導電性を両立させるとともに、導電膜の耐久性試験においても劣化を抑えることができる。また、無機粒子Aと無機粒子Bの質量比を1:4から1:1の範囲にすることにより、無機粒子A及び無機粒子Bの充填構造と空隙のバランスとが最適となり、膜の強度を保ったまま空隙を形成することができ、本発明にはより好ましい。
 各無機粒子A,Bの平均粒子に関しては、前記無機粒子Aの平均粒径が30nm以上、100nm以下であるとともに無機粒子Bの平均粒径が1nm以上、50nm以下であることが好ましく、無機粒子Aの平均粒径が50nm以上、90nm以下であるとともに無機粒子Bの平均粒径が5nm以上、30nm以下であることがより好ましい。無機粒子Aの平均粒子径が100nm以下であれば、透明導電膜の表面粗さが小さくなり性能への悪影響が抑えられるとともに透明性が向上する。また、無機粒子Aの平均粒径が30nm以上であれば、前記空隙形成による効果を得ることができる。また、無機粒子Bの平均粒子径が50nm以下であれば、前記導電膜の曲げに対する強度を十分に得ることができる。また、無機粒子Bの平均粒子径が粒径が1nm以上であれば、前記空隙形成による効果を得ることができる。
(導電性ポリマーと無機粒子との比率)
 本発明において、前記導電性ポリマーと無機粒子(無機粒子A,Bを含む)との比率は、無機粒子を100質量部としたとき、導電性ポリマーが10~50質量部であることが好ましく、導電性ポリマーが20~40質量部であることがより好ましい。ここで、導電性ポリマーの使用量がバインダー樹脂に対して10~50質量部であることが好ましい理由は、導電性ポリマーの使用量が無機粒子に対して50質量部以下の場合には、可視光領域の光を吸収する導電性ポリマーの影響が抑えられ、可視光透過率が増大し、一方、10質量部以上の場合には、導電性ポリマーの比率が小さくなりすぎずに導電性のネットワークが十分に確保されて導電性が向上するためである。すなわち、透過率の向上をできるだけ得るとともに導電性の低下を防ぐためには、導電性ポリマーと無機粒子との比率は前記の範囲であることが好ましい。また揮発成分を持たない無機成分が導電性ポリマーと無機粒子との混合物(塗布液)に含有されることにより乾燥負荷低減を図ることができる。
<バインダ樹脂>
 本発明において、第2導電層13すなわち導電性ポリマーと無機粒子との混合物は、バインダ樹脂を含有することが好ましい。バインダ樹脂は、導電性ポリマーと無機粒子とを結着させるものである。
 具体的には、バインダ樹脂は、熱硬化性樹脂及び熱可塑性樹脂のいずれであってもよく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ポリイミド、ポリアミドイミド等のポリイミド樹脂、ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等のポリアミド樹脂、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレン等のフッ素樹脂、ポリビニルアルコール、ポリビニルエーテル、ポリビニルブチラール、ポリ酢酸ビニル、ポリ塩化ビニル等のビニル樹脂、エポキシ樹脂、キシレン樹脂、アラミド樹脂、シリコーン樹脂、ポリイミドシリコーン樹脂、ポリウレタン樹脂、ポリウレア樹脂、メラミン樹脂、フェノール樹脂、フェノキシ樹脂、ポリエーテル、アクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、スチレン-アクリル共重合体、スチレン-ブタジエン共重合体、エチレン-酢酸ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、エチレン-酢酸ビニル-塩化ビニル共重合体、デンプン類、セルロース類、ポリウロン酸、メチルセルロース塩、カルボキシメチルセルロース塩等の多糖類、ポリエチレンオキサイド樹脂、ポリプロピレンオキサイド樹脂、ポリエチレングリコール樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂等の樹脂が挙げられる。
 バインダー樹脂の中でも、導電性ポリマーとの相溶性及び透明性の観点から、ポリウレタン、ポリエステル、アクリル樹脂、ポリアミド、ポリイミド、エポキシ樹脂のいずれか1種以上が好ましい。特にポリエステル、アクリル樹脂がより好ましい。これらバインダー樹脂は、水又は有機溶剤に溶解されていてもよいし、水又は有機溶剤に分散されていてもよい。また、これらバインダー樹脂は、前記導電性ポリマー分散液に固体添加して分散処理されていてもよい。
 本発明におけるバインダー樹脂のガラス転移温度(Tg)は、30~120℃の範囲が好ましい。樹脂のTgが30℃以上である場合は、樹脂被膜の耐水性が向上し、熱水処理後の透明性が向上する。また、耐ブロッキング性に優れた樹脂被膜が得られ、例えば、フィルムに当該樹脂被膜をコートしたものを巻き取る際に、コートフィルムがブロッキングしてしまうことが未然に防がれる等、操業性が向上する。樹脂のTgが120℃以下である場合には、樹脂皮膜として造膜するのに高温が不要であり、PET等といった耐熱性が劣る樹脂基材を用いても、造膜時に変形を生じることを未然に防ぐことができる。
((導電性ポリマー+無機粒子)とバインダー樹脂との比率)
 本発明において、前記(導電性ポリマー+無機粒子)とバインダー樹脂との比率は、(導電性ポリマー+無機粒子)を100質量部としたとき、バインダー樹脂が5~100質量部であることが好ましい。ここで、バインダー樹脂の使用量が(導電性ポリマー+無機粒子)100質量部に対して5~100質量部であることが好ましい理由は、バインダー樹脂の使用量が(導電性ポリマー+無機粒子)100質量部に対して5~100質量部とすることによって、無機粒子の結合を補助し、膜強度を向上させることができるからである。
 一方、バインダー樹脂の使用量が5質量部未満の場合には、無機粒子の結合を補助する効果としては不十分となるおそれがあり、100質量部を超える場合には、無機粒子の間隙に形成する導電性のネットワーク形成を阻害する作用がでてくるとともにバインダー樹脂由来の揮発成分が膜の耐久性を劣化させるおそれがある。
<基材>
 本発明における基材11は、導電性ポリマー及び無機粒子を担持しうる透明な板状体であり、基板とも呼ばれる。透明導電膜1を得るためには、JIS K 7361-1:1997(プラスチック-透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が80%以上のものが基材11として好ましく用いられる。
 基材11としては、フレキシブル性に優れており、誘電損失係数が十分小さくて、マイクロ波の吸収が導電層12,13よりも小さい材質であるものが好ましく用いられる。
 基材11としては、例えば、樹脂基板、樹脂フィルム等が好適に挙げられるが、生産性の観点並びに軽量性及び柔軟性といった性能の観点から、透明樹脂フィルムを用いることが好ましい。透明樹脂フィルムとは、JIS K 7361-1:1997(プラスチック-透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が50%以上のものをいう。
 好ましく用いることができる透明樹脂フィルムには特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。かかる透明樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができる。
 前記した全光線透過率が80%以上である樹脂フィルムであれば、本発明に係る基材11としてより好ましく用いられる。かかる基材11としては、中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの観点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム又はポリカーボネートフィルムが好ましく、二軸延伸ポリエチレンテレフタレートフィルム又は二軸延伸ポリエチレンナフタレートフィルムがより好ましい。
 本発明に係る基材11には、塗布液の濡れ性及び接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理及び易接着層については、従来公知の技術を使用することができる。
 例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるために2層以上の構成にしてもよい。
 また、フィルム状の基材11の表面又は裏面には、無機物の被膜、有機物の被膜、又は、無機物及び有機物のハイブリッド被膜が形成されていてもよく、かかる被膜が形成された基材11は、JIS K 7129-1992に準拠した方法で測定した水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のバリア性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定した酸素透過度が、1×10-3ml/m・24h・atm以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高バリア性フィルムであることが好ましい。
 高バリア性フィルムとするためにフィルム状の基材11の表面又は裏面に形成されるバリア膜を形成する材料としては、水分、酸素等といった素子の劣化をもたらすものの侵入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該バリア膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層との積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
<金属材料からなる第1導電層>
 本発明は、前記した基材11上に、導電性ポリマー及びバインダー樹脂を含有する導電層13が形成されたものに、さらに金属材料からなる導電層を設けることで透明導電膜1を構成することがより好ましい。本発明に係る金属材料からなる導電層12は、パターン状に形成された金属材料からなることが好ましい。
 図1に示すように、本発明に係る透明導電膜1は、基材11上にパターン状に形成された金属材料からなる第1導電層12(以下、金属パターン導電層12とも記載する)を有することが好ましい。特に、パターン形成のしやすさ、経時安定性、金属パターンの緻密化に有利であることから、第1導電層12が金属粒子を用いて形成されることが好ましい。
(金属粒子)
 金属粒子の金属としては、導電性に優れていれば特に制限はなく、例えば、金、銀、銅、鉄、ニッケル、クロム等の金属の他に合金などを挙げることができる。導電性の観点から銀又は銅が好ましく、銀又は銅単独でもよいし、それぞれの組み合わせでもよく、銀と銅との合金、銀又は銅が他方の金属でめっきされていてもよい。
 金属粒子の平均粒径としては、原子スケールから1000nmの範囲のものが好ましく適用できる。金属粒子の平均粒径が小さいほど金属細線の緻密化(導電性向上)及び表面平滑性に有利であるが、平均粒径が極端に小さい場合には、製造上の制限があり、高コストにもなる。かかる観点から、本発明においては、特に平均粒径が3~300nmであるものが好ましく、5~100nmであるものがより好ましく用いられる。前記した中でも特に、平均粒径3nm~100nmの銀ナノ粒子が好ましい。
 金属粒子のアスペクト比(長径長/短径長)は、表面平滑性向上や金属パターンの緻密化の観点から、2.0以下の球状に近い金属粒子が好ましい。本発明において、平均粒径とは、光散乱方式を用いた市販の測定装置を使用して簡便に計測することが可能である。具体的にはゼータサイザー1000(マルバーン社製)を用いて、レーザドップラー法によりS25℃、サンプル希釈液量1mlにて測定した値をいう。
(金属パターン導電層)
 本発明に好ましく用いられる金属パターン導電層12は、金属を含有する層であり、透明な基材11上に開口部12aを有するようにパターン状に形成された層である。
 開口部12aとは、透明な基材11のうち、金属パターン導電層12を有さない部分であり金属パターンの透光性部分である。パターンの形状には特に制限はないが、例えば、ストライプ状、格子状、ハニカム状等であることが好ましい。透明導電膜1全体の面に対して開口部12aが占める割合、すなわち、開口率は、透明性の観点から、80%以上であることが好ましい。
 例えば、金属パターン導電層12がストライプ状であるとき、線幅100μm、線間隔1mmのストライプ状パターンの開口率は、およそ90%である。パターンの線幅は、透明性及び導電性の観点から、10~200μmが好ましい。ストライプ状又は格子状のパターンにおいて、金属パターン導電層12の細線の間隔は、透明性及び導電性の観点から、0.5~4mmが好ましい。また、ハニカム状のパターンにおいては、金属パターン導電層12の一辺の長さは、透明性及び導電性の観点から、0.5~4mmが好ましい。また、金属パターン導電層12において、細線の高さは、導電性及び電流リンク防止の面から、0.1~3.0μmが好ましい。
(金属パターン導電層の製造方法)
 本発明に係る金属パターン導電層12は、基材11上に、金属粒子を含有する金属パターン導電層用塗布液を印刷によってパターン形成することで得られる。金属粒子を含有する金属パターン導電層用塗布液は、後記する金属粒子を含有する金属粒子分散液である。金属粒子分散液は、水、アルコール等の溶媒中に金属粒子を含有するが、必要に応じバインダー、金属を分散させるための分散剤等を含んでもよい。金属粒子分散液を用い、グラビア印刷法、フレキソ印刷法、スクリーン印刷法、インクジェット印刷法等の印刷方式により金属パターン導電層12を基材11上に形成することができる。
 各印刷方式は、一般的に電極パターン形成に使われる手法が本発明に関しても適用可能である。具体的な例として、グラビア印刷法については特開2009-295980号公報、特開2009-259826号公報、特開2009-96189号公報、特開2009-90662号公報等に記載の方法が、フレキソ印刷法については特開2004-268319号公報、特開2003-168560号公報等に記載の方法が、スクリーン印刷法については特開2010-34161号公報、特開2010-10245号公報、特開2009-302345号公報等に記載の方法が例として挙げられる。
 また、金属パターン導電層12は、フィルム状の基材11にダメージを与えない範囲で加熱処理が施されることが好ましい。これにより、金属粒子の融着及び緻密化が進み、金属パターン導電層12が高導電化する。
(金属パターン導電層の表面比抵抗)
 金属パターン導電層12の細線部の表面比抵抗は、電流駆動型オプトエレクトロニクスデバイスに適用した際の性能向上という観点から、100Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましく、さらには大面積化の観点から、5Ω/□以下であることがより好ましい。表面比抵抗は、例えば、JIS K6911、ASTM
 D257、等に準拠して測定することができ、さらには、市販の表面抵抗率計を用いて簡便に測定することができる。
(金属パターン導電層の表面の粗さRa)
 本発明において、金属パターン導電層12の表面の粗さRaは、表面平滑性の観点から、20nm以下であることが好ましい。Raの値は、例えばJIS、B601(1994)、等に準拠して測定することができ、さらには、下記のように市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いて、以下の方法で測定できる。AFMとして、セイコーインスツル社製SPI3800Nプローブステーション及びSPA400多機能型ユニットを使用し、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉える。ピエゾスキャナーとしては、XY20150μm、Z25μmが走査可能なものを使用される。カンチレバーとしては、セイコーインスツル社製シリコンカンチレバーSI-DF20で、共振周波数120~150kHz、バネ定数12~30nmのものが用いられ、Raを、DFMモード(Dynamic Force Mode)で測定する。測定は、CCDカメラを用いて、金属パターンの細線と測定エリアとが平行又は垂直になるように、探針の先が細線の幅手方向の中心部にくるように調整し、細線の中心部10×10μmを走査周波数0.1Hzで行った。測定後、細線に平行に0.9μmおきに10ヵ所、長さ10μmの線を引き、その線上のRaを算出し、その平均値をRaの値とした。
<第2導電層>
 本発明に好ましく用いられる第2導電層13は、金属パターン導電層12が形成された基材11上に、前記の導電性ポリマー、及び無機粒子を含有する塗布液を、基材11及び金属パターン導電層12上に塗布し、加熱、乾燥することによって形成される。ここで、第2導電層13は、金属パターン導電層12と電気的に接続されていればよく、金属パターン導電層12を完全に被覆してもよいし、金属パターン導電層12の一部を被覆してもよいし、金属パターン導電層12に接触してもよい。
 導電性ポリマー及び無機粒子を含有する塗布液の塗布は、グラビア印刷法、フレキソ印刷法、スクリーン印刷法等の印刷方法に加えて、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、インクジェット法等の塗布法のいずれかを用いることができる。
 また、金属パターン導電層(第1導電層)12の一部を、導電性ポリマーと無機粒子とを含有する第2導電性層13が被覆又は接触している透明導電膜1を製造する方法としては、転写フィルムに第1導電層12を前記した方法で形成し、さらに導電性ポリマーと無機粒子を含有する第2導電層13を前記した方法で転写フィルムに積層したしたものを、フィルム状の基材11に転写する方法、金属パターン導電層(第1導電層)12が形成された基材11の非導電部にインクジェット法等で公知の方法で、導電性ポリマーと無機粒子を含有する第2導電層13を形成する方法等が挙げられる。
 本発明の透明導電膜1は、第1導電層12及び第2導電層13を有することで、金属細線又は導電性ポリマー層単独では得ることのできない高い導電性を、透明導電膜1の面内において均一に得ることができる。
 第2導電層13の乾燥膜厚は、表面平滑性及び透明性の観点から、30~2000nmであることが好ましく、導電性の観点から、100nm以上であることがより好ましく、透明電極1の表面平滑性の点から、200nm以上であることがさらに好ましい。また、第2導電層13の乾燥膜厚は、透明性の観点から、1000nm以下であることがより好ましい。
 導電性ポリマー及び無機粒子を含有する塗布液を導電層12が形成された基材11に塗布した後、適宜乾燥処理を施すことができる。乾燥処理の条件として特に制限はないが、基材11及び導電層12,13が損傷しない範囲の温度で乾燥処理することが好ましい。例えば、80~150℃で10秒から15分の乾燥処理をすることができる。これにより透明導電膜1の洗浄耐性及び溶媒耐性が著しく向上し、さらに素子性能が向上する。特に、当該透明導電膜1を備える有機EL素子においては、駆動電圧の低減及び寿命の向上といった効果が得られる。
 さらに、前記した塗布液は、塗布性等の作業性を高める観点から、溶媒(例えば、水、有機溶媒(アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等))を含んでいてもよい。
 本発明において、透明導電層である第2導電層13の表面の平滑性を表すRyの値は、導電性の向上という観点から、50nm以下であることがより好ましく、40nm以下であることがさらに好ましい。同様に、透明導電層である第2導電層13のRaの値は10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
 本発明において、第2導電層13の表面の平滑性を表すRyとRaは、Ry=最大高さ(表面の山頂部と谷底部との高低差)とRa=算術平均粗さを意味し、JIS B601(1994)に規定される表面粗さに準ずる値である。本発明に係る透明電極1は、透明導電層である第2導電層13の表面の平滑性がRy≦50nm、かつ、透明導電層である第2導電層13の表面の平滑性がRa≦10nmであることが好ましい。本発明において、Ry及びRaの測定には、前記記載と同様に市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることができる。
 本発明において、透明導電膜1は、全光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが特に好ましい。全光透過率は、分光光度計等を用いた公知の方法に従って測定することができる。また、本発明の透明導電膜1における透明導電層である第2導電層13の電気抵抗値としては、電流駆動型オプトエレクトロニクスデバイスに適用した際の性能向上という観点から、表面抵抗率として1000Ω/□以下であることが好ましく、100Ω/□以下であることがより好ましい。さらには、透明導電膜1を電流駆動型オプトエレクトロニクスデバイスに適用するためには、透明導電層である第2導電層13の電気抵抗値としては、電流駆動型オプトエレクトロニクスデバイスに適用した際の性能向上という観点から、表面抵抗率として50Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましい。特に、1000Ω/□以下であると各種オプトエレクトロニクスデバイスにおいて、透明電極として機能することができて好ましい。前記した表面抵抗率は、例えば、JIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)等に準拠して測定することができ、さらには、市販の表面抵抗率計を用いて簡便に測定することができる。
 本発明の透明導電膜1の厚みには特に制限はなく、目的に応じて適宜選択することができるが、一般的に10μm以下であることが好ましく、厚みが薄くなるほど透明性及び柔軟性が向上するためより好ましい。
<有機EL素子>
 本発明の実施形態に係る有機EL素子は、透明導電膜1を電極として備えることを特徴とするものであり、有機発光層を含む有機層と、透明導電膜1と、を備える。本発明の実施形態に係る有機EL素子は、透明導電膜1を陽極として備えることが好ましく、有機発光層及び陰極については、有機EL素子に一般的に使われている材料、構成等の任意のものを用いることができる。
 有機EL素子の素子構成としては、陽極/有機発光層/陰極、陽極/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/有機発光層/電子輸送層/電子注入層/陰極、陽極/ホール注入層/有機発光層/電子注入層/陰極、等の各種の構成のものを挙げることができる。
 また、本発明において、有機発光層に使用できる発光材料又はドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン誘導体、各種蛍光色素、希土類金属錯体、燐光発光材料等が挙げられるが、これらに限定されるものではない。また、これらの化合物のうちから選択された発光材料を90~99.5質量部、ドーピング材料を0.5~10質量部含むようにすることも好ましい。有機発光層は、前記した材料等を用いて、蒸着、塗布、転写等の公知の方法によって製造される。この有機発光層の厚みは、発光効率の観点から、0.5~500nmが好ましく、0.5~200nmがより好ましい。
 本発明に係る透明導電膜1は、高い導電性と透明性とを併せ持ち、液晶表示素子、有機発光素子、無機電界発光素子、電子ペーパー、有機太陽電池、無機太陽電池等の各種オプトエレクトロニクスデバイスに加え、電磁波シールド、タッチパネル等の分野において好適に用いることができる。その中でも、透明電極表面の平滑性が厳しく求められる有機EL素子や有機薄膜太陽電池素子の電極として特に好ましく用いることができる。
 また、本発明に係る有機EL素子は、均一にムラなく発光させることができるため、照明用途で用いることが好ましいものであり、自発光型ディスプレイ、液晶用バックライト、照明等に用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」及び「%」の表示を用いることがあるが、特に断りがない限り「質量部」及び「質量%」を表す。
<基板の作製>
 厚み100μmのポリエチレンテレフタレートフィルム(コスモシャインA4100、東洋紡績株式会社製)の下引き加工していない面に、JSR株式会社製UV硬化型有機/無機ハイブリッドハードコート材:OPSTAR Z7501を塗布、乾燥後の平均膜厚が4μmになるようにワイヤーバーで塗布した後、80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用して硬化条件1.0J/cmで硬化を行い、平滑層を形成した。
 続いて、前記平滑層を設けた試料上にガスバリア層を、以下に示す条件で形成した。
(ガスバリア層塗布液)
 パーヒドロポリシラザン(PHPS、AZエレクトロニックマテリアルズ(株)製アクアミカ NN320)の20%ジブチルエーテル溶液をワイヤレスバーにて、乾燥後の(平均)膜厚が、0.30μmとなるように塗布し、塗布試料を得た。
(第一工程;乾燥処理)
 得られた塗布試料を温度85℃、湿度55%RHの雰囲気下で1分処理し、乾燥試料を得た。
(第二工程;除湿処理)
 乾燥試料をさらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。
(改質処理A)
 除湿処理を行った試料を下記の条件で改質処理を行い、ガスバリア層を形成した。改質処理時の露点温度は-8℃で実施した。
(改質処理装置)
 株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、波長172nm、ランプ封入ガス Xe 稼動ステージ上に固定した試料を以下の条件で改質処理を行った。
(改質処理条件)
 エキシマ光強度  60mW/cm(172nm)
 試料と光源の距離 1mm
 ステージ加熱温度 70℃
 照射装置内の酸素濃度 1%
 エキシマ照射時間  3秒
 前記のようにしてガスバリア性を有する透明電極(透明導電膜)用のフィルム基板(基材)を作製した。
<実施例1>
(透明電極TC-101の作製)
 まず第一に、前記したように得られたガスバリア性を有する透明電極用フィルム基板上のバリアのない面に、下記塗布液Aを、押し出し法を用いて、乾燥膜厚300nmになるように押し出しヘッドのスリット間隙を調整して塗布し、110℃、5分で加熱乾燥し、導電性ポリマー、無機粒子、バインダー樹脂からなる導電層(図1の第2導電層のみ)を形成し、得られた電極を8×8cmに切り出した。さらに得られた電極を、オーブンを用いて110℃、30分加熱処理することで透明電極TC-101を作製した。
(塗布液A)
 下記処方の塗布液を撹拌混合して使用した。
 導電性ポリマー分散液(PEDOT-PSS、CLEVIOS PH510、固形分濃度1.89%、Heraeus社製) 1.67g
 無機粒子A分散体(スノーテックスZL、平均粒径85nm、シリカ濃度40%、日産化学工業社製)0.075g
 無機粒子B分散体(スノーテックス50、平均粒径25nm、シリカ濃度48%、日産化学工業社製 )0.156g
 ジメチルスルホキシド(DMSO) 0.16g
 バインダー樹脂分散体(プラスコートZ-561,樹脂濃度25%、互応化学工業社製)0.26g
(透明電極TC-102~TC-115の作製)
 透明電極TC-101の作製において、塗布液Aの無機粒子A分散体、無機粒子B分散体、バインダー樹脂、導電性ポリマーを表1記載の種類と量比に変更した以外は透明電極TC-101の作製と同様にして、透明電極TC-102~TC-115を作製した。
(比較透明電極TC-116~TC-121の作製)
 透明電極TC-101の作製において、塗布液Aの無機粒子A分散体、無機粒子B分散体、バインダー樹脂、導電性ポリマーを表1記載の種類と量比に変更した以外は透明電極TC-101の作製と同様にして、透明電極TC-116~TC-121を作製した。
<透明電極の評価>
 得られた透明電極の透明性、表面抵抗(導電性)、膜強度、割れ性を下記に記載のように評価した。また、透明電極の安定性を評価するため、80℃、90%RHの環境下で6日間置く強制劣化試験後の透明電極試料の、透明性、表面抵抗、膜強度、割れ性の評価を行った。
(透明性)
 JIS K 7361-1:1997に準拠して、東京電色社製 HAZE METER NDH5000を用いて、全光線透過率を測定し、下記基準で評価した。
 ○:80%以上
 △:75%以上80%未満
 ×:75%未満
 評価基準:強制劣化試験後、○,△と評価された試料が本発明として合格
(表面抵抗)
 JIS K 7194:1994に準拠して、抵抗率計(ロレスタGP(MCP-T610型):(株)ダイヤインスツルメンツ社製)を用いて表面抵抗を測定した。
(膜強度)
 導電層の膜の強度を、テープ剥離法により評価した。
 導電層の上に住友スリーエム社製スコッチテープを用いて圧着/剥離を10回繰り返し、導電層の脱落を目視観察し、下記基準で評価した。
 ○:影響を受けている部分が5%以下
 △:影響を受けている部分が5%を超えるが30%以下
 ×:影響を受けている部分が30%を超える
 評価基準:強制劣化試験後、○,△と評価された試料が本発明として合格
(割れ性)
 得られた透明電極の導電層の割れ性評価を行った。透明電極シートを手で折り曲げることにより評価を行った。評価基準は以下の通りとした。
 ○:折り曲げても透明電極シートの導電層が割れない
 △:透明電極シートの導電層は割れないが、ひびがはいる
 ×:透明電極シートの導電層が割れる
 評価基準:強制劣化試験後、○と評価された試料が本発明として合格
 評価の結果を表1に示す。表1において、備考における「本発明」は本発明の実施例に該当することを表し、「比較」は比較例であることを表す。
Figure JPOXMLDOC01-appb-T000001
スノーテックスZL:日産化学工業社製コロイダルシリカ分散体
スノーテックス50:日産化学工業社製コロイダルシリカ分散体
スノーテックスYL:日産化学工業社製コロイダルシリカ分散体
スノーテックス20:日産化学工業社製コロイダルシリカ分散体
スノーテックス20L:日産化学工業社製コロイダルシリカ分散体
スノーテックスPS-M:日産化学工業社製コロイダルシリカ分散体
スノーテックスMP-1040:日産化学工業社製コロイダルシリカ分散体
スノーテックスXL:日産化学工業社製コロイダルシリカ分散体
スノーテックスXS:日産化学工業社製コロイダルシリカ分散体
プラスコートZ-561:互応化学工業社性ポリエステル樹脂エマルジョン
モビニール8055A:日本合成化学工業社製アクリル樹脂/コロイダルシリカ粒子複合エマルジョン
 表1から、比較例の透明電極TC-116~TC-121と比べて、本発明の透明電極TC-101~TC-115は、高温、高湿度環境下においても導電性、光透過性及び膜強度の劣化が少なく、安定性に優れ、さらに割れ性に対しても優れることが分かる。
<実施例2>
(透明電極TE-101の作製)
 まず第一に、前記したように得られたガスバリア性を有する透明電極用フィルム基板上のバリアのない面に、以下に示すグラビア印刷によりパターン状に形成された金属材料からなる第1導電層を形成した。
 銀ナノ粒子ペースト(M-Dot SLP:三ツ星ベルト製、平均粒径20nm、粒子50個観察した時のアスペクト比は1.5以下であった。)をRK Print Coat Instruments Ltd製グラビア印刷試験機K303MULTICOATERを用いて線幅50μm、高さ1.5μm、間隔1.0mmの細線格子を印刷した後、110℃、5分の乾燥処理を行い第1導電層(図1参照)を形成した。
 次に、第1導電層を形成した透明電極上に、下記塗布液Aを、押し出し法を用いて、乾燥膜厚300nmになるように押し出しヘッドのスリット間隙を調整して塗布し、110℃、5分で加熱乾燥し、導電性ポリマー、無機粒子とバインダー樹脂からなる第2導電層(図1参照)を形成し、得られた電極を8×8cmに切り出した。さらに得られた電極を、オーブンを用いて110℃、30分加熱処理することで透明電極TE-101を作製した。
(塗布液A)
 下記処方の塗布液を撹拌混合して使用した。
 導電性ポリマー分散液(PEDOT-PSS、CLEVIOS PH510、固形分濃度1.89%、Heraeus社製) 1.67g
 無機粒子A分散体(スノーテックスZL、平均粒径85nm、シリカ濃度40%、日産化学工業社製)0.075g
 無機粒子B分散体(スノーテックス50、平均粒径25nm、シリカ濃度48%、日産化学工業社製 )0.156g
 ジメチルスルホキシド(DMSO) 0.16g
 バインダー樹脂分散体(プラスコートZ-561,樹脂濃度25%、互応化学工業社製)0.26g
(透明電極TE-102~TE-115の作製)
 透明電極TE-101の作製において、塗布液Aの無機粒子A分散体、無機粒子B分散体、バインダー樹脂、導電性ポリマーを表2記載の種類と量比に変更した以外は透明電極TE-101の作製と同様にして、透明電極TE-102~TE-115を作製した。
(透明電極TE-116の作製)
 透明電極TE-101の作製において、銀ナノ粒子ペーストに代えて銅ナノ粒子ペーストを用いてパターン状に形成された金属材料からなる第1導電層(図1参照)を形成した以外は、TE-101の作製と同様にして、透明電極TE-116を作製した。(前記、銅ナノ粒子ペーストは平均分子量10000のポリビニルピロリドン(東京化成社製)0.28gを0.72gのエチレングリコール、グリセリン、ジエチレングリコール、2,3-ブタンジオールに溶解させ、平均粒径50nmの銅ナノ粒子(シグマアルドリッチ社製)4.0gと3本ロール及びミキサーを用いて混練し作製した。粒子50個を電子顕微鏡で観察した時のアスペクト比は2.0以下であった。)
(透明電極TE-117の作製)
 透明電極TE-101の作製において、銀ナノ粒子ペーストに代えて銀ナノワイヤ分散液を用いてパターン状に形成された金属材料からなる第1導電層(図1参照)を形成した以外は、TE-101の作製と同様にして、透明電極TE-117を作製した。(前記、銀ナノワイヤ分散液は、Adv.Mater.,2002,14,833~837に記載の方法を参考に、PVP K30(分子量5万;ISP社製)を利用して、平均短径75nm、平均長さ35μmの銀ナノワイヤを作製し、限外濾過膜を用いて銀ナノワイヤを濾別、洗浄処理した後、ヒドロキシプロピルメチルセルロース60SH-50(信越化学工業社製)を銀に対し25質量%加えた水溶液に再分散し、銀ナノワイヤ分散液を調製した。)
(比較透明電極TE-118~TE-123の作製)
 透明電極TE-101の作製において、塗布液Aの無機粒子A分散体、無機粒子B分散体、バインダー樹脂、導電性ポリマーを表2記載の種類と量比に変更した以外は透明電極TE-101の作製と同様にして、透明電極TE-118~TE-123を作製した。
<透明電極の評価>
 得られた透明電極は実施例1と同様に評価した。
 評価の結果を表2に示す。表2において、備考における「本発明」は本発明の実施例に該当することを表し、「比較」は比較例であることを表す。
Figure JPOXMLDOC01-appb-T000002
 表2から、金属材料からなる導電層を有することで導電性が格段に向上し、かつ比較例の透明電極TE-118~TE-123と比べて、本発明の透明電極TE-101~TE-117は、高温、高湿度環境下においても導電性、光透過性及び膜強度の劣化が少なく、安定性に優れ、さらに割れ性に対しても優れることが分かる。
<実施例3>
(有機ELデバイスの作製)
 実施例2で作製した透明電極基板を超純水で洗浄後、パターン辺長20mmの正方形タイル状透明パターン一個が中央に配置されるように30mm角に切り出し、アノード電極に用いて、以下の手順でそれぞれ有機ELデバイスを作製した。正孔輸送層以降は蒸着により形成した。透明電極TE-101~TE-123を用い、それぞれ有機EL素子OEL-101~OEL-123を作製した。
 市販の真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々素子作製に必要量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 まず、正孔輸送層、有機発光層、正孔阻止層、電子輸送層からなる有機EL層を順次形成した。
(正孔輸送層の形成)
 真空度1×10-4Paまで減圧した後、化合物1の入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で蒸着し、厚さ30nmの正孔輸送層を設けた。
(有機発光層の形成)
 次に、以下の手順で各発光層を設けた。
 形成した正孔輸送層上に、化合物2が13.0質量%、化合物3が3.7質量%、化合物5が83.3質量%になるように、化合物2、化合物3及び化合物5を蒸着速度0.1nm/秒で正孔輸送層と同じ領域に共蒸着し、発光極大波長が622nm、厚さ10nmの緑赤色燐光発光の有機発光層を形成した。
 続いて、化合物4が10.0質量%、化合物5が90.0質量%になるように、化合物4及び化合物5を蒸着速度0.1nm/秒で緑赤色燐光発光の有機発光層と同じ領域に共蒸着し、発光極大波長が471nm、厚さ15nmの青色燐光発光の有機発光層を形成した。
(正孔阻止層の形成)
 さらに、形成した有機発光層と同じ領域に、化合物6を膜厚5nmに蒸着して正孔阻止層を形成した。
(電子輸送層の形成)
 引き続き、形成した正孔阻止層と同じ領域に、CsFを膜厚比で10%になるように化合物6と共蒸着し、厚さ45nmの電子輸送層を形成した。
Figure JPOXMLDOC01-appb-C000003
(カソード電極の形成)
 形成した電子輸送層の上に、透明電極を陽極として陽極外部取り出し端子及び15mm×15mmの陰極形成用材料としてAlを5×10-4Paの真空下にてマスク蒸着し、厚さ100nmの陽極を形成した。
 さらに、陰極及び陽極の外部取り出し端子が形成できるように、端部を除き陽極の周囲に接着剤を塗り、ポリエチレンテレフタレートを基板としAlを厚さ300nmで蒸着した可撓性封止部材を貼合した後、熱処理で接着剤を硬化させ封止膜を形成し、発光エリア15mm×15mmの有機EL素子を作製した。
<有機EL素子の評価>
 得られた有機EL素子について発光ムラ及び寿命を下記のように評価した。
(発光均一性)
 発光均一性は、KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させた。1000cd/mで発光させた有機EL素子OEL-101~OEL-123について、50倍の顕微鏡で各々の発光輝度ムラを観察した。また、有機EL素子をオーブンにて80℃、60%RHの環境下で3時間加熱したのち、再び前記23±3℃、55±3%RHの環境下で1時間以上調湿した後、同様に発光均一性を観察した。
 ○:完全に均一発光している
 △:部分的に発光ムラが見られる
 ×:全面にわたって発光ムラが見られる
 評価基準:強制劣化試験後、○,△と評価された試料が本発明として合格
(寿命)
 得られた有機EL素子の、初期の輝度を5000cd/mで連続発光させて、電圧を固定して、輝度が半減するまでの時間を求めた。アノード電極をITOとした有機EL素子を前記した方法と同様の方法で作製し、これに対する比率を求め、以下の基準で評価した。
 ◎:150%以上
 ○:100以上150%未満
 △:80以上100%未満
 ×:80%未満
 評価基準:強制劣化試験後、◎,○,△と評価された試料が本発明として合格
 評価の結果を表3に示す。表3において、備考における「本発明」は本発明の実施例に該当することを表し、「比較」は比較例であることを表す。
Figure JPOXMLDOC01-appb-T000004
 表3から、比較例の有機EL素子OEL-118~OEL-123は80℃、60%RHの環境下で3時間の加熱後、発光均一性、寿命が劣化するのに対し、本発明の有機EL素子OEL-101~OEL-117の発光均一性、寿命は加熱後でも安定しており耐久性に優れることが分かる。
 1   透明導電膜
 11  基材
 12  第1導電層
 13  第2導電層

Claims (6)

  1.  透明な基材と、
     前記基材上に形成されており、π共役系導電性高分子及びポリ陰イオンを有してなる導電性ポリマー、並びに、無機粒子を含有する透明な導電層と、
     を備える透明導電膜であって、
     前記無機粒子は、少なくとも平均粒径の異なる2種の粒子A及び粒子Bからなり、
     前記粒子Aと前記粒子Bの平均粒径の差は、20nm以上、90nm以下であり、
     前記粒子Aと前記粒子Bの質量比は、1:10から2:1の範囲である
     ことを特徴とする透明導電膜。
  2.  前記無機粒子Aの平均粒径は、30nm以上、100nm以下であり、
     前記無機粒子Bの平均粒径は、1nm以上、50nm以下である
     ことを特徴とする請求項1に記載の透明導電膜。
  3.  前記導電性ポリマーと前記無機粒子との比率は、前記無機粒子を100質量部としたとき、前記導電性ポリマーが10~50質量部である
     ことを特徴とする請求項1又は請求項2に記載の透明導電膜。
  4.  前記導電層は、さらにバインダー樹脂を含有する
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の透明導電膜。
  5.  金属材料からなる導電層を備え、
     前記導電性ポリマー及び前記無機粒子を含有する透明な前記導電層は、前記金属材料からなる前記導電層と電気的に接続されている
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の透明導電膜。
  6.  請求項1から請求項5のいずれか一項に記載の透明導電膜を透明電極として備える
     ことを特徴とする有機エレクトロルミネッセンス素子。
PCT/JP2013/075549 2012-09-20 2013-09-20 透明導電膜及び有機エレクトロルミネッセンス素子 WO2014046253A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536943A JP6015764B2 (ja) 2012-09-20 2013-09-20 透明導電膜及び有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-207427 2012-09-20
JP2012207427 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046253A1 true WO2014046253A1 (ja) 2014-03-27

Family

ID=50341552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075549 WO2014046253A1 (ja) 2012-09-20 2013-09-20 透明導電膜及び有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JP6015764B2 (ja)
WO (1) WO2014046253A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142894A1 (ja) * 2017-01-31 2018-08-09 日東電工株式会社 透明導電性フィルム
US10262808B2 (en) 2015-12-24 2019-04-16 Industrial Technology Research Institute Conductive composite and capacitor utilizing the same
JP2019175741A (ja) * 2018-03-29 2019-10-10 株式会社アルバック 透明電極シート

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948874A (ja) * 1995-07-14 1997-02-18 Abb Res Ltd 電気および熱伝導性合成物質およびこの合成物質の使用
JP2008257934A (ja) * 2007-04-03 2008-10-23 Konica Minolta Holdings Inc 導電性ポリマー組成物及びその製造方法
JP2010507727A (ja) * 2006-10-25 2010-03-11 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 銀含有水性処方物および導電性または反射性コーティングを製造するためのその使用
JP2010138325A (ja) * 2008-12-12 2010-06-24 Hitachi Maxell Ltd プロトン伝導性複合電解質膜、それを用いた膜電極接合体及び燃料電池
JP2011116860A (ja) * 2009-12-03 2011-06-16 Shin Etsu Polymer Co Ltd 導電性塗料およびその製造方法、導電性成形体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023020A (ja) * 2010-06-17 2012-02-02 Ricoh Co Ltd 有機エレクトロルミネッセンス素子、その製造方法及び発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948874A (ja) * 1995-07-14 1997-02-18 Abb Res Ltd 電気および熱伝導性合成物質およびこの合成物質の使用
JP2010507727A (ja) * 2006-10-25 2010-03-11 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 銀含有水性処方物および導電性または反射性コーティングを製造するためのその使用
JP2008257934A (ja) * 2007-04-03 2008-10-23 Konica Minolta Holdings Inc 導電性ポリマー組成物及びその製造方法
JP2010138325A (ja) * 2008-12-12 2010-06-24 Hitachi Maxell Ltd プロトン伝導性複合電解質膜、それを用いた膜電極接合体及び燃料電池
JP2011116860A (ja) * 2009-12-03 2011-06-16 Shin Etsu Polymer Co Ltd 導電性塗料およびその製造方法、導電性成形体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10262808B2 (en) 2015-12-24 2019-04-16 Industrial Technology Research Institute Conductive composite and capacitor utilizing the same
WO2018142894A1 (ja) * 2017-01-31 2018-08-09 日東電工株式会社 透明導電性フィルム
CN110178187A (zh) * 2017-01-31 2019-08-27 日东电工株式会社 透明导电性薄膜
CN110178187B (zh) * 2017-01-31 2021-04-13 日东电工株式会社 透明导电性薄膜
JP2019175741A (ja) * 2018-03-29 2019-10-10 株式会社アルバック 透明電極シート
JP7048386B2 (ja) 2018-03-29 2022-04-05 株式会社アルバック 透明電極シート

Also Published As

Publication number Publication date
JP6015764B2 (ja) 2016-10-26
JPWO2014046253A1 (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
US9005747B2 (en) Transparent electrode and organic electronic element using same
JP5987843B2 (ja) 透明電極形成用組成物、透明電極、有機電子素子および透明電極の製造方法
JP5888084B2 (ja) 有機電子素子用透明電極、有機電子素子用透明電極の製造方法、及び有機電子素子
JP6020554B2 (ja) 導電膜及び有機エレクトロルミネッセンス素子
JP5655745B2 (ja) 透明電極及び有機エレクトロルミネッセンス素子
WO2014034920A1 (ja) 透明電極およびその製造方法ならびに有機電子デバイス
US9640762B2 (en) Method for producing transparent electrode and organic EL element
JP6024351B2 (ja) 導電膜及び有機エレクトロルミネッセンス素子並びに導電膜の製造方法
JP5761058B2 (ja) 透明導電膜の製造方法及び有機エレクトロルミネッセンス素子
WO2013061967A1 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP5782855B2 (ja) 透明電極及び有機エレクトロルミネッセンス素子
JP6015764B2 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP2014229397A (ja) 導電膜の製造方法、導電膜、有機電子素子及びタッチパネル
JP6003582B2 (ja) 透明電極の製造方法
US10103347B2 (en) Transparent electrode, method for manufacturing same, and organic electroluminescent element
JP5831303B2 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP2013131319A (ja) 透明導電膜及び有機エレクトロルミネッセンス素子並びに透明導電膜の製造方法
JP5884671B2 (ja) 透明導電膜、有機エレクトロルミネッセンス素子及び透明導電膜の製造方法
JP5834954B2 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP2012243401A (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP2012138311A (ja) 透明導電膜基板および有機エレクトロルミネッセンス素子
JP5494390B2 (ja) 透明導電膜、および有機エレクトロルミネッセンス素子
WO2015093342A1 (ja) 導電性フィルムの製造方法、導電性フィルム、有機電子素子及びタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838774

Country of ref document: EP

Kind code of ref document: A1