WO2014046235A1 - インバータ制御装置及びインバータ制御方法 - Google Patents

インバータ制御装置及びインバータ制御方法 Download PDF

Info

Publication number
WO2014046235A1
WO2014046235A1 PCT/JP2013/075451 JP2013075451W WO2014046235A1 WO 2014046235 A1 WO2014046235 A1 WO 2014046235A1 JP 2013075451 W JP2013075451 W JP 2013075451W WO 2014046235 A1 WO2014046235 A1 WO 2014046235A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
command value
axis
current
compensation
Prior art date
Application number
PCT/JP2013/075451
Other languages
English (en)
French (fr)
Inventor
高橋 直樹
正治 満博
藤原 健吾
洋輔 福永
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201380047526.9A priority Critical patent/CN104620497B/zh
Priority to US14/428,671 priority patent/US9209722B2/en
Priority to EP13839229.5A priority patent/EP2899876B1/en
Priority to JP2014536932A priority patent/JP5930052B2/ja
Publication of WO2014046235A1 publication Critical patent/WO2014046235A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/50Vector control arrangements or methods not otherwise provided for in H02P21/00- H02P21/36
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/153Controlling commutation time wherein the commutation is advanced from position signals phase in function of the speed

Definitions

  • the present invention relates to an inverter control device and an inverter control method.
  • a power converter that supplies AC power to the AC motor, and a two-phase rotary shaft that is detected at a predetermined sampling time and uses at least the rotation angle of the AC motor as a coordinate conversion angle in order to control the power converter
  • a motor control device having a rotation coordinate conversion means for converting from a three-phase shaft to a three-phase shaft, a rotation angle delayed corresponding to the sampling time is added to at least the rotation angle of the AC motor detected every predetermined sampling time
  • a control apparatus for an AC motor characterized in that a first rotation angle compensation means is provided and the added rotation angle is used as a coordinate conversion angle.
  • the present invention calculates the phase advance amount based on the phase compensation time and the rotational speed of the motor, advances the phase based on the characteristic of the motor according to the phase advance amount, in the opposite direction to the phase, and The above problem is solved by compensating the phase of the dq axis non-interference voltage command value with the same compensation amount as the phase advance amount.
  • the present invention it is possible to suppress the decrease in the gain margin while suppressing the decrease in the phase margin with respect to the change in the rotation speed of the motor, and to compensate for the phase difference between the non-interference voltage and the interference voltage. As a result, the control system can be stabilized.
  • FIG. 1 It is a block diagram of the inverter control apparatus concerning embodiment of this invention. It is a block diagram of the stability compensator of FIG. It is a block diagram of the non-interference phase compensator of FIG. (A) is a graph which shows the gain characteristic of the inverter control apparatus of FIG. 1, and the gain characteristic of a comparative example, (b) is a graph which shows the phase characteristic of the inverter control apparatus of FIG. 1, and the phase characteristic of a comparative example.
  • (a) is a graph showing the characteristics of the phase margin with respect to the phase compensation time (t pm )
  • (b) is a graph showing the characteristics of the phase margin with respect to the phase advance amount ( ⁇ c). .
  • (a) is a d-axis current characteristic with respect to time of the reference example
  • (b) is a d-axis current characteristic with respect to time of the present invention
  • (c) is a d-axis current characteristic with respect to time of the present invention. It is a graph which shows.
  • (a) shows the q-axis current characteristic with respect to time of the reference example
  • (b) shows the q-axis current characteristic with respect to the time of the present invention
  • (c) shows the q-axis current with respect to the time of the present invention. It is a graph which shows a characteristic.
  • FIG. 1 is a block diagram of a motor control device according to an embodiment of the invention. Although detailed illustration is omitted, when the inverter control device of this example is provided in an electric vehicle, the three-phase AC power permanent magnet motor 8 is driven as a travel drive source and is coupled to the axle of the electric vehicle.
  • the motor control apparatus of this example is applicable also to vehicles other than electric vehicles, such as a hybrid vehicle (HEV), for example.
  • HEV hybrid vehicle
  • the inverter control device of this example is a control device that controls the operation of the motor 8, and is a current-voltage map 1, a current controller 2, a coordinate converter 3, a PWM (Pulse Width Modulation) converter 4, A battery 5, an inverter 6, a current sensor 7, a magnetic pole position detector 9, a coordinate converter 10, a rotation speed calculator 11, an LPF (Low Pass Filter) 12, an A / D converter 13, A pulse counter 14, a dead time compensator 15, a stability compensator 16, and a non-interfering phase compensator 17 are provided.
  • a PWM Pulse Width Modulation
  • a torque command value (T * ) input from the outside as an output target value of the motor 8 and an angular frequency ( ⁇ ) that is the rotation speed of the motor 8 that is the output of the rotation speed calculator 11.
  • a voltage (V dc ) that is a detection voltage of the battery 5 is input.
  • the torque command value (T * ), the angular frequency ( ⁇ ), and the voltage (V dc ) are used as indexes, and the dq axis current command value (i * d , i * q ) and the dq axis non-interference voltage.
  • a map for outputting command values (V * d_dcpl , V * q_dcpl ) is stored.
  • the current-voltage map 1 refers to the dq-axis current command value (i * d ) corresponding to the input torque command value (T * ), angular frequency ( ⁇ ), and voltage (V * dc ) by referring to the map.
  • I * q ) and dq axis non-interference voltage command values (V * d_dcpl , V * q_dcpl ) are calculated and output.
  • the dq axis represents a component of the rotating coordinate system.
  • dq-axis non-interference voltage command values (V * d_dcpl , V * q_dcpl )
  • the command values (V * d_dcpl , V * q_dcpl ) are voltages for canceling the interference voltage.
  • dq-axis interference voltage command value, the angular frequency (omega), the inductance (L d, L q) of the dq axes and the dq-axis current (i d, i q) is calculated by.
  • the dq axis non-interference voltage command values (V * d_dcpl , V * q_dcpl ) are output to the non-interference phase compensator 17.
  • the non-interference phase compensator 17 compensates the phase of the dq-axis non-interference voltage command values (V * d_dcpl , V * q_dcpl ) according to the phase compensation amount compensated by the stability compensator 16 described later.
  • the phase difference between the interference voltage between the dq axes and the dq axis non-interference voltage is compensated.
  • the detailed configuration of the non-interference phase compensator 17 will be described later.
  • non-interference voltage control unit 18 includes the current-voltage map 1, the LPF 12, and the non-interference phase compensator 17.
  • the current controller 2 includes a low-pass filter (LPF) 12, a PI controller 19, and an adder.
  • LPF low-pass filter
  • the LPF 12 receives the compensated dq-axis non-interference voltage command values (V * d_dcpl_c , V * q_dcpl_c ) compensated by the non-interference phase compensator 17, cuts the high frequency band, and outputs voltage command values (V * d_dcpl_flt , V * Q_dcpl_flt ) is output.
  • PI controller 19 dq-axis current based on the detected current of the current sensor 7 (i d, i q) a, dq axis current command values (i * d, i * q ) to match the, dq-axis tracking voltage Command values (V * d_FB , V * q_FB ) are calculated.
  • the PI controller 19 performing the dq-axis current (i d, i q) and, dq axis current command values (i * d, i * q ) from the deviation, proportional calculation and an integral calculation of (PI control calculation)
  • the dq-axis current (i d , i q ) is feedback-controlled by the current controller 2 so that the dq-axis current follows the dq-axis current command value (i * d , i * q ).
  • An adder provided between the LPF 12 and the stability compensator 16 and between the PI controller 19 and the stability compensator 16 includes voltage command values (V * d_dcpl_flt , V * q_dcpl_flt ) and a dq axis following voltage command.
  • value (V * d_FB, V * q_FB ) by adding the, dq-axis voltage command value (V * d, V * q ) is calculated, dq-axis voltage command value to the stability compensator 16 (V * d, V * Q ) is output.
  • the stability compensator 16 compensates the dq axis voltage command values (V * d , V * q ) based on the angular frequency ( ⁇ ), and the compensated dq axis voltage command values (V * d_c , V * q_c ). Is output to the coordinate converter 3. Details of the stability compensator 16 will be described later.
  • the coordinate converter 3 receives the compensated dq-axis voltage command values (V * d_c , V * q_c ) of the stability compensator 16 and the phase amount ( ⁇ ′) output from the dead time compensator 15 as follows .
  • the compensated dq-axis voltage command values (V * d_c , V * q_c ) of the rotating coordinate system are used as the u, v, and w-axis voltage command values (V * u , V * v ) of the fixed coordinate system. , V * w ).
  • the PWM converter 4 drives drive signals (D * uu , D * ul , D * vu , D) of the inverter 6.
  • Vl , D * wu , D * wl are generated and output to the inverter 6.
  • the switching element switches on and off based on the PWM pulse signal.
  • the battery 5 is a DC power source including a secondary battery, and serves as a power source for the vehicle in this example.
  • the inverter 6 is configured by a three-phase inverter circuit in which a plurality of circuits in which switching elements (not shown) such as MOSFETs and IGBTs are connected in pairs are connected.
  • a drive signal (D * uu , D * ul , D * vu , D * vl , D * wu , D * wl ) is input to each switching element.
  • the DC voltage of the DC power supply is converted into AC voltage (V u , V v , V w ) by the switching operation of the switching element, and is input to the motor 8.
  • the inverter 6 converts the AC voltage output from the motor 8 into a DC voltage and outputs it to the battery 5. Thereby, the battery 5 is charged.
  • the current sensor 7 is provided for each of the U phase and the V phase, detects the phase current (i u , i v ), and outputs it to the A / D converter 13.
  • the A / D converter 13 samples the phase current (i u , i v ), and outputs the sampled phase current (i us , i vs ) to the coordinate converter 10.
  • the w-phase current is not detected by the current sensor 7. Instead, the coordinate converter 10 uses the following equation 2 based on the input phase currents (i us , i vs ) to indicate the w-phase phase.
  • the current (i ws ) is calculated.
  • the w-phase current may be detected by the current sensor 7 provided in the w-phase.
  • the motor 8 is a multiphase motor and is connected to the inverter 6.
  • the motor 8 also operates as a generator.
  • the magnetic pole position detector 9 is a detector that is provided in the motor 8 and detects the position of the magnetic pole of the motor 8, and outputs A-phase, B-phase, and Z-phase pulses corresponding to the position of the magnetic pole to the pulse counter 14.
  • the pulse counter 14 counts the pulses output from the magnetic pole position detector 9 to obtain a detection value ( ⁇ ) that is position information of the rotor of the motor 8 and outputs the detection value ( ⁇ ) to the rotation speed calculator 11.
  • the rotation speed calculator 11 calculates the angular frequency ( ⁇ ) of the motor 8 from the detection value ( ⁇ ) of the magnetic pole position detector 9.
  • the coordinate converter 10 is a control unit that performs three-phase to two-phase conversion, and receives the phase current (i us , i vs , i ws ) and the detection value ( ⁇ ) of the pulse counter 14 as inputs according to the following equation (3): phase current of the fixed coordinate system (i us, i vs, i ws) converts the dq-axis current of the rotating coordinate system (i d, i q) to.
  • the inverter control device of the present embodiment performs control by the current control loop.
  • Dead time compensator 15 a voltage command value (V * u, V * v , V * w) from the determined AC voltage (V u, V v, V w) up is applied to the motor 8 Compensates for voltage output delay, delay due to dead time due to zero-order sampling hold in the current sensor 7 and A / D converter 13, delay due to noise cut filter, etc., and to detect the detected value ( ⁇ ) and angular frequency ( ⁇ ) As an input, the phase amount ( ⁇ ′) is output to the coordinate converter 3.
  • FIG. 2 is a block diagram of the stability compensator 16.
  • the stability compensator 16 uses the rotational coordinate transformation in orthogonal coordinates to calculate the compensated dq-axis voltage command values (V * d_c , V * q_c ) from the dq-axis voltage command values (V * d , V * q ). Arithmetic.
  • the advance amount ( ⁇ ) of the phase rotated by the rotation coordinate conversion of the stability compensator 16 is calculated from the phase compensation time (t pm ) and the angular frequency ( ⁇ ).
  • the phase compensation time (t pm ) is a value determined on the basis of the unique characteristics of the motor 8 and is a preset value.
  • the torque command value (T * ) input from the outside, the detected voltage (V dc ) of the battery 5, the rotational speed ( ⁇ ) of the motor 8, the temperature of the motor, and the phase compensation time (t pm ) Is stored in the lookup table.
  • phase compensation time (t pm ) is calculated. Further, the phase advance amount ( ⁇ ) is calculated by taking the product of the angular frequency ( ⁇ ) and the phase compensation time (t pm ) which is the output value of the table.
  • FIG. 3 is a block diagram of the non-interfering phase compensator 17.
  • the non-interference phase compensator 17 uses the rotation coordinate transformation to compensate the dq-axis non-interference voltage command value (V * d_dcpl_c , V * q_dcpl_c ) from the dq-axis non-interference voltage command value (V * d_dcpl , V * q_dcpl ). Is calculated.
  • the q-axis non-interference voltage command value (V * q_dcpl ) is multiplied by sin (- ⁇ ) from the product obtained by multiplying the d-axis non-interference voltage command value (V * d_dcpl ) by cos ( ⁇ ).
  • the compensated d-axis non-interference voltage command value (V * d_dcpl_c ) is calculated, and the q-axis non-interference voltage command value (V * q_dcpl ) is multiplied by cos ( ⁇ ), and d
  • the compensated q-axis non-interference voltage command value (V * q_dcpl_c ) is calculated by adding a value obtained by multiplying the axis non-interference voltage command value (V * d_dcpl ) by sin ( ⁇ ).
  • the non-interference phase compensator 17 sets the rotating phase to ( ⁇ ), so that the dq-axis non-interference voltage command value is opposite to the rotation direction of the rotational coordinate conversion of the stability compensator 16.
  • V * d_dcpl , V * q_dcpl is subjected to rotational coordinate conversion to calculate a compensated dq-axis non-interference voltage command value (V * d_dcpl_c , V * q_dcpl_c ).
  • the compensation amount ( ⁇ ) of the phase rotated by the rotational coordinate transformation of the non-interference phase compensator 17 is the same compensation amount as the phase advance amount ( ⁇ ) which is the compensation amount of the stability compensator 16, and the phase advance amount The direction is opposite to the rotational direction of the quantity ( ⁇ ). Therefore, the compensation amount of the phase of the non-interference phase compensator 17 is calculated by the phase compensation time (t pm ) and the angular frequency ( ⁇ ) similarly to the compensation amount of the stability compensator 16. Thereby, the non-interference phase compensator 17 is configured to cancel the phase compensation by the stability compensator 16.
  • FIG. 4 shows a round transfer characteristic boat diagram in the current control system of the inverter control device, where (a) shows the gain characteristic with respect to the angular frequency, and (b) shows the phase characteristic with respect to the angular frequency.
  • graph a shows the characteristic of the present invention
  • graph b shows the characteristic of the comparative example in which the phase compensation time (t pm ) is not set.
  • the phase margin can be ensured while reducing the phase delay in the low frequency region, and the gain reduction in the high frequency region can be pushed, so that readjustment of the phase margin or gain margin can be omitted. Further, in this example, since the phase difference between the interference voltage and the non-interference voltage caused by the compensation of the phase margin that is lowered due to the inherent characteristic of the motor 8 is eliminated, the current response can be improved.
  • FIG. 12 is a block diagram showing an inverter control device according to another embodiment of the invention.
  • the non-interfering phase compensator 17 is omitted from the non-interfering voltage control unit 18 with respect to the first embodiment described above. Since the configuration other than this is the same as that of the first embodiment described above, the description thereof is incorporated as appropriate.
  • FIG. 14 is a block diagram showing an inverter control device according to another embodiment of the invention. This example is different from the first embodiment described above in that a non-interference voltage command calculator 31 is provided. Since the configuration other than this is the same as that of the first embodiment described above, the descriptions of the first embodiment and the second embodiment are incorporated as appropriate.
  • the non-interference voltage control unit 18 includes a current-voltage map 1, an LPF 12, and a non-interference voltage command calculation unit 31.
  • Non-interference voltage command calculator 31 based on the input dq-axis current (i d, i q) and each frequency (omega), using the formula 4 below, dq-axis non-interacting voltage command value (V * d_dcpl , V * q_dcpl ), and outputs it to the non-interference voltage compensator 17.
  • [Phi a indicates the intensity of the magnetic flux of the motor 8, shown L d, L q is inductance of dq-axis, respectively.
  • the compensation amount equal to the phase advance amount ( ⁇ ) in the direction opposite to the phase of the stability compensator 16 using the phase advance amount ( ⁇ ) by the calculation by the non-interference voltage command calculating unit 31.
  • the phases of the interference voltage and the non-interference voltage command value are compensated.
  • the phase difference between the interference voltage and the non-interference voltage caused by the compensation of the phase margin that decreases due to the inherent characteristics of the motor 8 is eliminated, so that the current response can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

直流電源から入力される直流電力を交流電力に変換し、モータに供給するインバータ6と、インバー6から出力される交流電圧の指令値を、交流電流の検出値に基づき算出する指令値算出手段と、指令値又は検出値の位相を補償する位相補償手段と、位相補償手段により補償された指令値に基づきインバータ6を制御するインバータ制御手段と、モータ8の回転速度を検出するモータ回転速度検出手段と、dq軸間で互いに干渉する干渉電圧を打ち消すdq軸非干渉電圧指令値を演算し、指令値算出手段に出力するdq軸非干渉電圧指令値演算手段と、位相補償手段によって補償された位相の補償量に応じて位相を補償する逆位相補償手段と、を備え、位相補償手段は、所定の位相余裕を得るために設定された位相補償時間及び回転速度に基づき位相進み量を算出し、位相進み量で、モータの固有の特性に基づく位相を補償し、逆位相補償手段は、位相補償手段によって補償される位相と逆方向に、位相進み量と同じ補償量で、dq軸非干渉電圧指令値の位相を補償する。

Description

インバータ制御装置及びインバータ制御方法
 本発明は、インバータ制御装置及びインバータ制御方法に関するものである。
 本出願は、2012年9月21日に出願された日本国特許出願の特願2012―208063号に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
 交流電動機に交流電力を供給する電力変換器と、この電力変換器を制御するために、所定のサンプリング時間毎に検出される、少なくとも前記交流電動機の回転角を座標変換角とする2相回転軸から3相軸へ変換する回転座標変換手段を備えた電動機の制御装置において、所定のサンプリング時間毎に検出される少なくとも前記交流電動機の回転角に、前記サンプリング時間に対応して遅れる回転角を加算する第1の回転角補償手段を設け、この加算された回転角を座標変換角とすることを特徴とする交流電動機の制御装置が開示されている。
特開平6-335227号公報
 しかしながら、モータ固有の特性による位相余裕の低下に対応しておらず、制御系が不安定になっている、という問題があった。
 本発明が解決しようとする課題は、安定な制御系であるインバータ制御装置及び制御方法を提供することである。
 本発明は、位相補償時間及びモータの回転速度に基づき位相進み量を算出し、当該位相進み量に応じて、モータの固有の特性に基づく位相を進ませ、当該位相と逆方向に、かつ、当該位相進み量と同じ補償量で、dq軸非干渉電圧指令値の位相を補償することによって上記課題を解決する。
 本発明によれば、モータの回転速度の変化に対して、位相余裕の低下が抑制されつつ、ゲイン余裕の低下が抑制され、また、非干渉電圧と干渉電圧との位相差も補償されるため、その結果として、制御系を安定化させることができる。
本発明の実施形態にかかるインバータ制御装置のブロック図である。 図1の安定性補償器のブロック図である。 図1の非干渉位相補償器のブロック図である。 (a)は図1のインバータ制御装置のゲイン特性及び比較例のゲイン特性を示すグラフであり、(b)は図1のインバータ制御装置の位相特性及び比較例の位相特性を示すグラフである。 図1のインバータ制御装置において、(a)は位相補償時間(tpm)に対する位相余裕の特性を示すグラフであり、(b)は位相進み量(Δθc)に対する位相余裕の特性を示すグラフである。 図1のインバータ制御装置において、(a)は参考例の時間に対するd軸電流特性、(b)は本発明の時間に対するd軸電流特性を、(c)は本発明の時間に対するd軸電流特性を示すグラフである。 図1のインバータ制御装置において、(a)は参考例の時間に対するq軸電流特性を、(b)は本発明の時間に対するq軸電流特性を、(c)は本発明の時間に対するq軸電流特性を示すグラフである。 図1のインバータ制御装置において、(a)は参考例の時間に対するd軸電圧特性を、(b)は本発明の時間に対するd軸電圧特性を、(c)は本発明の時間に対するd軸電圧特性を示すグラフである。 図1のインバータ制御装置において、(a)は参考例の時間に対するq軸電圧特性を、(b)は本発明の時間に対するq軸電圧特性を、(c)は本発明の時間に対するq軸電圧特性を示すグラフである。 図1のインバータ制御装置の制御手順を示すフローチャートである。 図1のインバータ制御装置の変形例に係る電流制御器及び安定性補償器のブロック図である。 本発明の他の実施形態にかかるインバータ制御装置のブロック図である。 図12のインバータ制御装置の制御手順を示すフローチャートである。 本発明の他の実施形態にかかるインバータ制御装置のブロック図である。 図14のインバータ制御装置の制御手順を示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 図1は、発明の実施形態に係るモータ制御装置のブロック図である。詳細な図示は省略するが、本例のインバータ制御装置を電気自動車に設ける場合に、三相交流電力の永久磁石モータ8は、走行駆動源として駆動し、電気自動車の車軸に結合されている。なお本例のモータ制御装置は、例えばハイブリッド自動車(HEV)等の電気自動車以外の車両にも適用可能である。
 本例のインバータ制御装置は、モータ8の動作を制御する制御装置であって、電流電圧マップ1と、電流制御器2と、座標変換器3と、PWM(Pulse Width Modulation)変換器4と、バッテリ5と、インバータ6と、電流センサ7と、磁極位置検出器9と、座標変換器10と、回転数演算器11と、LPF(Low Pass Filter)12と、A/D変換器13と、パルスカウンタ14と、むだ時間補償器15と、安定性補償器16と、非干渉位相補償器17とを備える。
 電流電圧マップ1には、モータ8の出力目標値として外部より入力されるトルク指令値(T)と、回転数演算器11の出力である、モータ8の回転速度である角周波数(ω)、及び、バッテリ5の検出電圧である電圧(Vdc)が入力される。電流電圧マップ1には、トルク指令値(T)、角周波数(ω)、電圧(Vdc)を指標として、dq軸電流指令値(i 、i )及びdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を出力するためのマップが格納されている。電流電圧マップ1は、当該マップを参照することにより、入力されたトルク指令値(T)、角周波数(ω)及び電圧(V dc)に対応する、dq軸電流指令値(i 、i )及びdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を算出し、出力する。ここで、dq軸は、回転座標系の成分を示している。dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)について、d軸及びq軸に電流が流れると、d軸及びq軸には互いに干渉する干渉電圧が発生し、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)は当該干渉電圧を打ち消すための電圧である。dq軸干渉電圧指令値は、角周波数(ω)、dq軸のインダクタンス(L、L)及びdq軸電流(i、i)により演算される。dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)は、非干渉位相補償器17に出力される。
 非干渉位相補償器17は、後述する安定性補償器16によって補償された位相の補償量に応じて、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)の位相を補償することで、dq軸間の干渉電圧とdq軸非干渉電圧との位相差を補償する。なお、非干渉位相補償器17の詳細な構成等は後述する。
 また、非干渉電圧制御部18は、電流電圧マップ1、LPF12及び非干渉位相補償器17により構成されている。
 電流制御器2は、dq軸電流指令値(i 、i )、補償後dq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)及びdq軸電流(i、i)を入力として、制御演算を行い、dq軸電圧指令値(V 、V )を安定性補償器16に出力する。電流制御器2は、ローパスフィルター(LPF)12と、PI制御器19と、加算器を有している。
 LPF12は、非干渉位相補償器17により補償された補償後dq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)を入力として、高周波帯域をカットし、電圧指令値(V d_dcpl_flt、V q_dcpl_flt)を出力する。
 PI制御器19は、電流センサ7の検出電流に基づくdq軸電流(i、i)を、dq軸電流指令値(i 、i )に一致させるための、dq軸追従電圧指令値(V d_FB、V q_FB)を演算する。PI制御器19は、dq軸電流(i、i)と、dq軸電流指令値(i 、i )との偏差から、比例演算及び積分演算(PI制御演算)を行うことで、dq軸電流(i、i)を電流制御器2にフィードバック制御させて、dq軸電流をdq軸電流指令値(i 、i )に追従させる制御器である。
 LPF12と安定性補償器16の間、及び、PI制御器19と安定性補償器16の間に設けられた加算器は、電圧指令値(V d_dcpl_flt、V q_dcpl_flt)とdq軸追従電圧指令値(V d_FB、V q_FB)を加算することで、dq軸電圧指令値(V 、V )演算し、安定性補償器16にdq軸電圧指令値(V 、V )を出力する。
 安定性補償器16は、角周波数(ω)に基づき、dq軸電圧指令値(V 、V )を補償し、補償後のdq軸電圧指令値(V d_c、V q_c)を座標変換器3に出力する。なお、安定性補償器16の詳細は後述する。
 座標変換器3は、安定性補償器16の補償後dq軸電圧指令値(V d_c、V q_c)及びむだ時間補償器15から出力される位相量(θ’)を入力として、下記の式1を用いて、当該回転座標系の補償後dq軸電圧指令値(V d_c、V q_c)を固定座標系のu、v、w軸の電圧指令値(V 、V 、V )に変換する。
Figure JPOXMLDOC01-appb-M000001
 PWM変換器4は、入力される電圧指令値(V 、V 、V )に基づき、インバータ6のスイッチング素子の駆動信号(D uu、D ul、D vu、D vl、D wu、D wl)を生成し、インバータ6に出力する。スイッチング素子は、PWMのパルス信号に基づいてオン及びオフを切り換える。
 バッテリ5は、二次電池を含む直流電源であり、本例の車両の動力源となる。インバータ6は、MOSFETやIGBT等のスイッチング素子(図示しない)を対に接続した回路を複数接続した三相インバータ回路により構成されている。各スイッチング素子には、駆動信号(D uu、D ul、D vu、D vl、D wu、D wl)が入力される。そして、当該スイッチング素子のスイッチング動作により、直流電源の直流電圧が交流電圧(V、V、V)に変換され、モータ8に入力される。またモータ8が発電機として動作する場合には、インバータ6はモータ8から出力される交流電圧を直流電圧に変換しバッテリ5に出力する。これによりバッテリ5が充電される。
 電流センサ7は、U相及びV相にそれぞれ設けられ、相電流(i、i)を検出し、A/D変換器13に出力する。A/D変換器13は、相電流(i、i)をサンプリングし、サンプリングされた相電流(ius、ivs)を座標変換器10に出力する。w相の電流は、電流センサ7により検出されず、代わりに、座標変換器10は、入力された相電流(ius、ivs)に基づき、下記の式2を用いて、w相の相電流(iws)を算出する。
Figure JPOXMLDOC01-appb-M000002
 なお、w相の相電流について、w相に電流センサ7を設け、当該電流センサ7により検出してもよい。
 モータ8は、多相モータであり、インバータ6に接続される。またモータ8は発電機としても動作する。磁極位置検出器9はモータ8に設けられ、モータ8の磁極の位置を検出する検出器であり、磁極の位置に応じたA相、B相及びZ相のパルスをパルスカウンタ14に出力する。パルスカウンタ14は、磁極位置検出器9から出力されるパルスをカウントすることで、モータ8の回転子の位置情報である検出値(θ)を得て、回転数演算器11に出力する。回転数演算器11は、磁極位置検出器9の検出値(θ)からモータ8の角周波数(ω)を算出する。
 座標変換器10は、3相2相変換を行う制御部であり、相電流(ius、ivs、iws)及びパルスカウンタ14の検出値(θ)を入力として、下記の式3により、固定座標系の相電流(ius、ivs、iws)を回転座標系のdq軸電流(i、i)に変換する。
Figure JPOXMLDOC01-appb-M000003
 そして、当該dq軸電流(i、i)が電流制御器2に入力されることにより、本例のインバータ制御装置は電流制御ループによる制御を行う。
 むだ時間補償器15は、電圧指令値(V 、V 、V )が決定してから、交流電圧(V、V、V)がモータ8に印加されるまでの電圧出力遅れ、電流センサ7及びA/D変換器13における、0次サンプリングホールドによるむだ時間による遅れ、及び、ノイズカットフィルタによる遅れなどを補償し、検出値(θ)及び角周波数(ω)を入力として、位相量(θ’)を座標変換器3に出力する。
 次に、安定性補償器16の詳細な構成を、図2を用いて説明する。図2は、安定性補償器16のブロック図である。安定性補償器16は、直交座標における回転座標変換を利用してdq軸電圧指令値(V 、V )から補償後のdq軸電圧指令値(V d_c、V q_c)を演算している。具体的には、d軸電圧指令値(V )にcos(Δθ)を乗じたものから、q軸電圧指令値(V )にsin(Δθ)を乗じたものを減ずることで、補償後のd軸電圧指令値(V d_c)が演算され、q軸電圧指令値(V )にcos(Δθ)を乗じたものと、d軸電圧令値(V )にsin(Δθ)を乗じたものを加算することで、補償後のq軸電圧指令値(V q_c)が演算される。
 安定性補償器16の回転座標変換により回転する位相の進み量(Δθ)は、位相補償時間(tpm)と角周波数(ω)により算出される。位相補償時間(tpm)は、モータ8の固有の特性に基づいて決まる値であって、予め設定されている値である。本例では、外部から入力されるトルク指令値(T)、バッテリ5の検出電圧(Vdc)、モータ8の回転速度(ω)、及び、モータの温度と、位相補償時間(tpm)とを対応づけるルックアップテーブルが格納されている。そして、外部から入力されるトルク指令値(T)、バッテリ5の検出電圧(Vdc)、モータ8の回転速度(ω)、及び、モータの温度を入力とし、当該テーブルを参照することで、位相補償時間(tpm)を算出する。さらに、角周波数(ω)とテーブルの出力値である位相補償時間(tpm)との積をとることで、位相の進み量(Δθ)が算出される。
 これにより、磁極方向の電圧指令値であるd軸電圧指令値(V )及び磁極と直交方向の電圧指令値であるq軸電圧指令値(V )よりなる電圧指令値ベクトルの大きさは変えずに、位相をモータ8の回転方向に進むように、位相の進み量(Δθ)で電圧指令値を補償する。
 次に、非干渉位相補償器17の詳細な構成を、図3を用いて説明する。図3は、非干渉位相補償器17のブロック図である。非干渉位相補償器17は、回転座標変換を利用してdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)から補償後dq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)を演算している。具体的には、d軸非干渉電圧指令値(V d_dcpl)にcos(-Δθ)を乗じたものから、q軸非干渉電圧指令値(V q_dcpl)にsin(-Δθ)を乗じたものを減ずることで、補償後のd軸非干渉電圧指令値(V d_dcpl_c)が演算され、q軸非干渉電圧指令値(V q_dcpl)にcos(-Δθ)を乗じたものと、d軸非干渉電圧指令値(V d_dcpl)にsin(-Δθ)を乗じたものを加算することで、補償後の後のq軸非干渉電圧指令値(V q_dcpl_c)が演算される。これにより、非干渉位相補償器17は、回転する位相を(-Δθ)に設定することで、安定性補償器16の回転座標変換の回転方向と、逆方向に、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を回転座標変換させて、補償後dq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)を演算している。
 非干渉位相補償器17の回転座標変換により回転する位相の補償量(-Δθ)は、安定性補償器16の補償量である位相の進み量(Δθ)と同じ補償量であり、位相の進み量(Δθ)の回転方向に対して逆方向である。そのため、非干渉位相補償器17の位相の補償量は、安定性補償器16の補償量と同様に、位相補償時間(tpm)と角周波数(ω)により算出される。これにより、非干渉位相補償器17は、安定性補償器16による位相補償を相殺するように構成されている。
 ここで、位相補償時間(tpm)と、本例のインバータ制御装置の制御系における位相余裕及びゲイン余裕との関係について、図4を用いて説明する。図4は、インバータ制御装置の電流制御系における一巡伝達特性ボート線図を示しており、(a)は角周波数に対するゲイン特性を示し、(b)は角周波数に対する位相特性を示す。図4(a)及び(b)において、グラフaは本発明の特性を示し、グラフbは位相補償時間(tpm)を設定しない比較例の特性を示す。
 ゲイン曲線が0(dB)を切る周波数(ゲイン交点)における位相-180°との差分が位相余裕であり、位相曲線が-180°を切る周波数(位相交点)におけるゲイン0(dB)との差分がゲイン余裕となる。図4(a)に示すように、本例のゲイン特性をg、比較例のゲイン特性をgとし、図4(b)に示すように、本例の位相特性をφ、比較例の位相特性をφとする。
 図4(b)に示すように、比較例では位相余裕(φ)が不足しているため、不安定な制御系となっているが、本例では十分な位相余裕(φ)が得られているため、安定性な制御系になっている。また、図4(a)に示すように、本例と比較例とのゲイン余裕(g、g)は、ほぼ同じ値である。比較例のグラフに示すように、位相余裕の低下は、低周波領域で生じているが、かかる位相余裕の低下に対して、上記の特許文献1に示すように、むだ時間分の時間が経過する値に進む回転子の位置を予想して補償する方法では、低周波領域における位相余裕の低下を抑制させることができない。本例では、低周波領域における位相余裕の低下が、モータ8の固有の特性によって生じていることが確認できたため、本例は当該モータ8の特性に基づく補償係数を、位相補償時間(tpm)として設定し、当該位相補償時間(tpm)に基づいて、dq軸電流指令値の位相を補償している。これにより、本例は、高周波領域でのゲイン余裕の低下を防ぎつつ、低周波領域での位相余裕の低下を抑制することができる。
 次に、位相進み量(Δθ)を算出する際に、本例では、時間単位のパラメータである位相補償時間(tpm)と角回転数(ω)との積をとっていることについて説明する。図5(a)は位相補償時間(t)に対する位相余裕の特性を示し、図5(b)はΔθcに対する位相余裕の特性を示す。また図5のグラフaは、角周波数(ω)の特性を、グラフbは角周波数(ω)より高い角周波数である(ω)の特性である。図5(a)の特性は、本発明と同様に位相補償時間(t)を設定し、モータ8の角回転数(ω)との積を位相進み量(Δθ)とした上で、位相余裕をとった特性であり、位相補償時間(t)をパラメータとしている。一方、図5(b)の特性は、位相進み量(Δθc)自体をパラメータとして位相余裕をとった特性であるため、位相進み量(Δθc)にはモータ8の検出された角回転数(ω)の要素が含まれておらず、図5(b)は比較例として挙げている。
 図5(b)に示すように、位相進み量(Δθc)をパラメータとした場合には、角周波数が異なると位相余裕が異なる値になっている。一方、図5(a)に示すように、位相補償時間(t)をパラメータとした場合には、位相補償時間(t)をtpmに設定することで、角周波数が異なっても、位相余裕がほぼ同じ値になっている。これにより、本例は、制御系の安定性を決めるためのパラメータとして、時間単位である位相補償時間(tpm)を設定し、角周波数(ω)との積により位相進み量(Δθ)をとることで、モータ8の回転数に対して、安定して位相余裕を高く維持することができる。
 次に、非干渉位相補償器17による、干渉電圧と非干渉電圧との位相差の補償について説明する。
 上記のように、dq軸非干渉電圧を含んだ、電流制御器2の演算処理により、dq軸電流指令値(V 、V )が演算され、安定性補償器16により、当該dq軸電流指令値(V 、V )の位相が進められるよう補償されることで、モータ8の固有の特性に基づく、位相余裕の低下が抑制される。
 また、本例では、非干渉電圧を用いた、dq軸電流(i、i)のフィードバック制御によりインバータを制御しているが、応答性を安定化させるために、むだ時間補償器15及び安定性補償器16による位相補償を行っている。このうち、むだ時間補償器15は、出力電圧の遅れ、出力電圧が0次サンプリングホールドされることにより等価的な無駄時間の遅れを補償している。
 ここで、本例の非干渉制御において、電流センサ7の電流検出の平均化処理等により無駄時間などが発生した場合には、実際の干渉電圧と非干渉電圧指令値(V d_dcpl、V q_dcpl)が、安定性補償器16による位相補償の影響を受けて、実際の干渉電圧と非干渉電圧指令値(V d_dcpl、V q_dcpl)との間で位相差が生じてしまう。そのため、本例では、モータ固有の特性に基づく位相を補償しつつ、非干渉電圧と干渉電圧との間で生じる位相差を補償することで、電流応答の悪化を防いでいる。
 非干渉電圧と干渉電圧と間で生じる位相差は、安定性補償器16の位相補償により発生しており、安定性補償器16は、位相進み量(Δθ)により、dq軸電圧指令値(V 、V )を補償している。そして、このdq軸電圧指令値(V 、V )は、非干渉電圧と、干渉電圧成分を含んだフィードバックの電圧指令値(FB電圧指令値)に基づき演算された値であり、位相差は、当該非干渉電圧と、電圧指令値(FB電圧指令値)との間で発生する。そのため、本例は、非干渉位相補償器17により、非干渉電圧指令値の位相を、位相進み量(Δθ)と逆方向で、位相進み量(Δθ)と同じ大きさの補償量で補償している。言い換えると、非干渉位相補償器17は、非干渉電圧指令値の位相を、安定性補償器16で補償する位相と逆方向に補償し、非干渉位相補償器17による位相補償の絶対値(スカラ)は、安定性補償器16による位相補償の絶対値(スカラ)と同じにする。
 さらに、言い換えると、安定補償器16は、dq軸電流指令値(V 、V )のベクトルを、位相進み角(Δθ)の補償量分だけ回転させており、非干渉位相補償器は、dq軸非干渉電圧(V d_dcpl、V q_dcpl)のベクトルを、安定補償器16の回転とは逆方向で、位相進み角(Δθ)の補償量分だけ回転させている。
 本例の電流制御系における高回転時(10000rpm)のステップ状のトルクに対する応答特性を、図6~図9を用いて説明する。図6は、d軸電流の応答特性を示すグラフであり、(a)は参考例の電流特性を、(b)は本発明の電流特性を、(c)は、(b)のAで囲う部分を拡大したグラフである。なお、図6において、i はd軸電流指令値を、iはd軸電流(実際のd軸電流)を、id_ref は規範応答特性を示す。また、参考例は、図1の電流制御系のうち、非干渉位相補償器17による位相補償を行わない制御系の応答特性である。
 図6(a)に示すように、参考例では、安定化補償器16による位相補償の影響を受け、非干渉電圧と干渉電圧が合わず、d軸電流(i)がd軸電流指令値に対して、逆応答になり、さらにオーバシュートしている。ゆえに、参考例では入力トルクに対して、d軸電流の応答特性が悪化している。
 一方、図6(b)及び(c)に示すように、本例では、安定化補償器16による位相補償の影響が、非干渉位相補償器17により補償されるため、非干渉電圧と干渉電圧との間の位相差が解消され、d軸電流が規範応答と一致している。これにより、本例は、参考例のようなd軸電流の応答特性の悪化を防ぐことができる。
 図7は、q軸電流の応答特性を示すグラフであり、(a)は参考例の電流特性を、(b)は本発明の電流特性を、(c)は、(b)のAで囲う部分を拡大したグラフである。なお、図7において、i はq軸電流指令値を、iはq軸電流(実際のq軸電流)を、iq_ref は規範応答特性を示す。また、参考例は、図1の電流制御系のうち、非干渉位相補償器17による位相補償を行わない制御系の応答特性である。
 図7(a)に示すように、参考例では、安定化補償器16による位相補償の影響を受け、非干渉電圧と干渉電圧が合わず、q軸電流(i)がq軸電流指令値に対して、オーバシュートし、さらに逆応答になっている。ゆえに、参考例では入力トルクに対して、q軸電流の応答特性が悪化している。
 一方、図7(b)及び(c)に示すように、本例では、安定化補償器16による位相補償の影響が、非干渉位相補償器17により補償されるため、非干渉電圧と干渉電圧との間の位相差が解消され、q軸電流が規範応答と一致している。これにより、本例は、参考例のようなq軸電流の応答特性の悪化を防ぐことができる。
 図8は、d軸電圧の応答特性を示すグラフであり、(a)は参考例の電流特性を、(b)は本発明の電流特性を、(c)は、(b)のAで囲う部分を拡大したグラフである。なお、図8において、V d_dcplはd軸非干渉電圧を、V d_dcpl_realは実際の干渉電圧を示す。また、参考例は、図1の電流制御系のうち、非干渉位相補償器17による位相補償を行わない制御系の応答特性である。
 図8(a)に示すように、参考例では、安定化補償器16による位相補償の影響を受け、非干渉電圧と実際の干渉電圧が合わず、d軸非干渉電圧とd軸干渉電圧との間に定常誤差が発生している。
 一方、図8(b)及び(c)に示すように、本例では、安定化補償器16による位相補償の影響が、非干渉位相補償器17により補償されるため、非干渉電圧と干渉電圧との間の位相差が解消され、d軸非干渉電圧とd軸干渉電圧との間の誤差がなく、d軸干渉電圧とd軸非干渉電圧が一致する。
 図9は、q軸電圧の応答特性を示すグラフであり、(a)は参考例の電流特性を、(b)は本発明の電流特性を、(c)は、(b)のAで囲う部分を拡大したグラフである。なお、図9において、V q_dcplはq軸非干渉電圧を、V q_dcpl_realは実際の干渉電圧を示す。また、参考例は、図1の電流制御系のうち、非干渉位相補償器17による位相補償を行わない制御系の応答特性である。
 図9(a)に示すように、参考例では、安定化補償器16による位相補償の影響を受け、非干渉電圧と実際の干渉電圧が合わず、q軸非干渉電圧とq軸干渉電圧との間に定常誤差が発生している。
 一方、図9(b)及び(c)に示すように、本例では、安定化補償器16による位相補償の影響が、非干渉位相補償器17により補償されるため、非干渉電圧と干渉電圧との間の位相差が解消され、q軸非干渉電圧とq軸干渉電圧との間の誤差がなく、q軸干渉電圧とq軸非干渉電圧が一致する。
 次に、図10を用いて、本例のインバータ制御装置のフィードバック制御の制御手順を説明する。図10は本例のインバータ制御装置の制御手順を示すフローチャートである。
 ステップS1にて、電流センサ7により検出される相電流(i、i)から、A/D変換器13を介して相電流(ius、ivs)を検出し、磁極位置検出器9から出力されるパルスをパルスカウンタ14でカウントすることで検出値(θ)を検出する。ステップS2にて、回転数演算器11は、モータ8の角周波数(ω)を算出する。ステップS3にて座標変換器10にて、相電流(ius、ivs)をdq軸電流(i、i)に座標変換する。
 ステップS4にて、電流電圧マップ1に格納されているマップを参照して、外部から入力されるトルク指令値(T)、角周波数(ω)及び電圧(V dc)に対応するdq軸電流指令値(i 、i )及びdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を算出する。
 ステップS5にて、安定性補償器16は、位相補償時間(tpm)と角周波数(ω)との乗算をして、位相進み量(Δθ)を演算する。ステップS6にて、非干渉位相補償器17は、位相進み角(-Δθ)を演算する。
 ステップS7にて、非干渉位相補償器17は、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を、回転座標変換により位相進み量(Δθ)分、位相を遅らせることで(位相進み量(-Δθ)分、位相を進ませることで)、dq軸非干渉電圧指令値の位相を補償する演算を行う。
 ステップS8にて、電流制御器2は、ステップS7の補償後のdq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)をLPF12に通して電圧指令値(V d_dcpl_flt、V q_dcpl_flt)を演算し、dq軸電流指令値(i 、i )とdq軸電流(i、i)との偏差からPI制御演算を行うことで、dq軸追従電圧指令値(V d_FB、V q_FB)を演算する。そして、電流制御器2は、電圧指令値(V d_dcpl_flt、V q_dcpl_flt)とdq軸追従電圧指令値(V d_FB、V q_FB)を加算して、dq軸電圧指令値(V 、V )を算出する。
 ステップS9にて、安定性補償器16は、dq軸電圧指令値(V 、V )を、回転座標変換により位相進み量(Δθ)分、位相を進ませることで、位相余裕を補償するための演算を行う。
 ステップS10にて、ステップS9の演算結果である補償後のdq軸電圧指令値(V d_c、V q_c)をむだ時間補償器15から出力される位相量(θ’)で座標変換し、電圧指令値(V 、V 、V )を算出する。そして、ステップS11にて、PWM変換器4は電圧指令値(V 、V 、V )を駆動信号(D uu、D ul、D vu、D vl、D wu、D wl)にPWM変換し、ステップS12にて、当該駆動信号に基づきインバータ6をスイッチング制御して、モータ8を駆動させて、本例の制御を終了する。
 上記のように、本例は、安定化した所定の位相余裕を得るために設定された位相補償時間(tpm)及び角周波数(ω)に基づき位相進み量(Δθ)を算出し、当該位相進み量(Δθ)に応じて、モータ8の固有の特性に基づく位相を進ませるよう、指令値を補償し、当該位相進み量(Δθ)で補償される当該位相と逆方向に、当該位相進み量(Δθ)と同じ補償量で、dq軸非干渉電圧指令値の位相を補償する。これにより、モータ8の固有の特性による位相余裕の低下を抑制することができるため、安定した制御系のインバータ制御装置を実現することができる。また本例は、低周波領域での位相遅れを低減しつつ位相余裕を確保し、高周波領域でのゲイン低下を押させることができるため、位相余裕又はゲイン余裕の再調整を省くことができる。また、本例は、モータ8の固有の特性により低下する位相余裕の補償によって生じる、干渉電圧と非干渉電圧との位相差が解消されるため、電流の応答性を高めることができる。
 また、本例は、非干渉位相補償器17の位相補償により、電流センサ7の電流検出の無駄時間により生じる位相差を補償する。これにより、本例は、電流検出の無駄時間により生じる位相差に相当する補償量を補償するため、電流検出の無駄時間が発生した場合に、安定性補償器16の位相補償の影響を受ける、干渉電圧と非干渉電圧との位相差を補償することができる。
 また本例は、位相補償時間(tpm)と角周波数(ω)とを乗算することで位相進み量(Δθ)を算出する。これにより、位相補償時間(tpm)を固定値に設定した上で、モータ8の状態に応じて角周波数が変化しても、位相余裕の変動を抑えることができるため、安定した制御系を実現することができる。
 また本例は、安定性補償器16に、角周波数(ω)、トルク指令値(T)、モータ8の温度、または、インバータ6への入力電圧(Vdc)と位相補償時間(tpm)とを対応づけるテーブルを格納する。位相余裕は、角周波数(ω)以外に、モータ8の電流や磁束の大きさより影響を受ける、モータ8のインダクタンス、または、巻き線抵抗によって変化する。また本例のインバータ制御装置における最大効率電流条件は、同トルク下であっても、バッテリ5の電圧によって変化する。そのため、本例のように、動作点である、角周波数(ω)、トルク指令値(T)、モータ8の温度、または、インバータ6への入力電圧(Vdc)に応じて、位相補償時間(tpm)を設定することで、制御系の特性が変化しても、制御系を安定化させることができる。
 なお、本例において、安定性補償器16に格納されるテーブルは、必ずしも、角周波数(ω)、トルク指令値(T)、モータ8の温度、及び、インバータ6への入力電圧(Vdc)と位相補償時間(tpm)とを対応づけるテーブルである必要はなく、少なくとも角周波数(ω)、トルク指令値(T)、モータ8の温度、または、インバータ6への入力電圧(Vdc)のうち一つの値と位相補償時間(tpm)とを対応づければよい。また、安定性補償器16に格納されるテーブルは、モータ8の電流と位相補償時間(tpm)とを対応づけてもよい。
 また本例は、図11に示すように、電流制御器2を構成する電流制御部21及び非干渉制御部22との間に、安定性補償器16を設け、位相進み量(Δθ)に応じて、dq軸電圧指令値を進ませるよう、位相補償を行ってもよい。図11は、本例のインバータ制御装置の変形例であって、電流制御器2及び安定性補償器16のブロック図である。電流制御部21は、dq軸電流(i、i)にdq軸電流指令値(i )を追従させるように、それぞれPI制御器19によるフィードバック制御を行って、安定性補償器16に出力し、安定性補償器16による補償後の指令値を、非干渉制御部22に出力し、電圧指令値(V d_dcpl_flt、V q_dcpl_flt)及び当該補償後の指令値を入力として、制御演算を行い、dq軸電圧指令値(V 、V )を座標変換器3に出力する。
 これにより、本発明の変形例は、dq軸電流をdq軸電流指令値に追従させるdq軸追従指令値を演算し、安定性補償器16により補償されたdq軸追従電圧指令値と、非干渉位相補償器により補償された補償後のdq軸非干渉電圧指令値に基づき、dq電圧指令値を演算する。これにより、本例は、モータ8の固有の特性により低下する位相余裕の補償によって生じる、干渉電圧と非干渉電圧との位相差が解消されるため、電流の応答性を高めることができる。
 なお、本例の変形例として、安定性補償器16の回転座標変換(位相進み量(Δθ)分の補償)と、座標変換器3による回転座標変換とを合成し、座標変換器3において、θ”(θ’+Δθ)で2相3相変換処理を行ってもよい。これにより、当該変形例は、本例の応答性を保つことができる。
 なお、本例は、安定性補償器16によりdq軸電流指令値(V 、V )の位相を、位相進み量(Δθ)で補償したが、安定性補償器16を、電流制御器2と座標変換器10との間に設け、電流センサ7の検出値を補償してもよい。
 上記電流制御器2が本発明に係る「指令値算出手段」に相当し、安定性補償器16が「位相補償手段」に相当し、PWM変換器4が「インバータ制御手段」に相当し、磁極位置検出器9、パルスカウンタ14及び回転数演算器11が「モータ回転速度検出手段」に、電流電圧マップ1が「dq軸非干渉電圧指令値演算手段」に、非干渉位相補償器17及び非干渉電圧制御器18が「逆位相補償手段」に、電流センサ7が「電流検出手段」に相当する。
《第2実施形態》
 図12は、発明の他の実施形態に係るインバータ制御装置を示すブロック図である。本例では上述した第1実施形態に対して、非干渉電圧制御部18から、非干渉位相補償器17を省いた点である。これ以外の構成は上述した第1実施形態と同じであるため、その記載を適宜、援用する。
 図12に示すように、非干渉電圧制御部18は、電流電圧マップ1と、LPF12とを有している。電流電圧マップ1には、第1実施形態と同様に、トルク指令値(T)、角周波数(ω)、電圧(Vdc)を指標として、dq軸電流指令値(i 、i )及びdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を出力するためのマップが格納されているが、dq軸非干渉電圧を演算する際のマップは、位相進み角(-Δθ)による回転座標変換処理をした値を演算するよう、構成されている。
 言い換えると、電流電圧マップ1のマップ値には、第1実施形態の非干渉位相補償器による補償演算が含まれている。そのため、電流電圧マップ1は、当該マップを参照することにより、入力されたトルク指令値(T)、角周波数(ω)及び電圧(V dc)に対応する、dq軸電流指令値(i 、i )を演算し、さらに、位相進み角(Δθ)による逆回転座標変換された、補償後のdq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)を演算する。
 次に、図13を用いて、本例のインバータ制御装置のフィードバック制御の制御手順を説明する。図13は本例のインバータ制御装置の制御手順を示すフローチャートである。なお、ステップS21~S23及びステップS26~S30の制御処理は、図10のステップS1~S3及びステップS8~12の制御処理と同様であるため、説明を省略する。
 ステップS23の制御処理の後、ステップS24にて、非干渉電圧制御部18は、電流電圧マップに格納されているマップを参照して、外部から入力されるトルク指令値(T)、角周波数(ω)及び電圧(V dc)に対応するdq軸電流指令値(i 、i )及び補償後dq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)を算出する。ステップS25にて、安定性補償器16は、位相補償時間(tpm)と角周波数(ω)との乗算をして、位相進み量(Δθ)を演算する。
 ステップS26にて、電流制御器2は、ステップS24の補償後のdq軸非干渉電圧指令値(V d_dcpl_c、V q_dcpl_c)をLPF12に通して電圧指令値(V d_dcpl_flt、V q_dcpl_flt)を演算し、dq軸電流指令値(i 、i )とdq軸電流(i、i)との偏差からPI制御演算を行うことで、dq軸追従電圧指令値(V d_FB、V q_FB)を演算する。そして、電流制御器2は、電圧指令値(V d_dcpl_flt、V q_dcpl_flt)とdq軸追従電圧指令値(V d_FB、V q_FB)を加算して、dq軸電圧指令値(V 、V )を算出する。
 上記のように、本例は、マップによる演算によって、位相進み量(Δθ)を用いた安定性補償器16の位相と逆方向で、当該位相進み量(Δθ)と同じ補償量で、干渉電圧と非干渉電圧指令値の位相を補償する。これにより、本例は、モータ8の固有の特性により低下する位相余裕の補償によって生じる、干渉電圧と非干渉電圧との位相差が解消されるため、電流の応答性を高めることができる。
 上記電流電圧マップ1が本発明の「逆位相補償手段」に相当する。
《第3実施形態》
 図14は、発明の他の実施形態に係るインバータ制御装置を示すブロック図である。本例では上述した第1実施形態に対して、非干渉電圧指令演算器31を設けている点が異なる。これ以外の構成は上述した第1実施形態と同じであるため、第1実施形態及び第2の実施形態の記載を適宜、援用する。
 図14に示すように、非干渉電圧制御部18は、電流電圧マップ1と、LPF12と、非干渉電圧指令演算部31とを有している。非干渉電圧指令演算器31は、入力されたdq軸電流(i、i)及び各周波数(ω)に基づき、下記の式4を用いて、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を演算し、非干渉電圧補償器17に出力する。
Figure JPOXMLDOC01-appb-M000004
 ただし、Φは、モータ8の磁石磁束の強さを示し、L、Lはdq軸のインダクタンスをそれぞれ示す。
 次に、図15を用いて、本例のインバータ制御装置のフィードバック制御の制御手順を説明する。図15は本例のインバータ制御装置の制御手順を示すフローチャートである。なお、ステップS31~S23及びステップS36~S43の制御処理は、図10のステップS1~S3及びステップS5~12の制御処理と同様であるため、説明を省略する。
 ステップS33の制御処理の後、ステップS34にて、電流電圧マップ1に格納されているマップを参照して、外部から入力されるトルク指令値(T)、角周波数(ω)及び電圧(V dc)に対応するdq軸電流指令値(i 、i )を算出する。
 ステップS34にて、非干渉電圧指令演算器31は、dq軸電流(i、i)及び各周波数(ω)に基づき、上記の式4を用いて、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を演算し、非干渉電圧補償器17に出力する。
 これにより、本例は、非干渉電圧指令演算部31による演算によって、位相進み量(Δθ)を用いた安定性補償器16の位相と逆方向で、当該位相進み量(Δθ)と同じ補償量で、干渉電圧と非干渉電圧指令値の位相を補償する。これにより、本例は、モータ8の固有の特性により低下する位相余裕の補償によって生じる、干渉電圧と非干渉電圧との位相差が解消されるため、電流の応答性を高めることができる。
1…電流電圧マップ
2…電流制御器
 21…電流制御部
 22…非干渉制御部
3…座標変換器
4…PWM変換器
5…バッテリ
6…インバータ
7…電流センサ
8…モータ
9…磁極位置検出器
10…座標変換器
11…回転数演算器
13…A/D変換器
14…パルスカウンタ
15…むだ時間補償器
16…安定性補償器
17…非干渉位相補償器
18…非干渉電圧制御部
19…PI制御器
31…非干渉電圧指令演算器

Claims (6)

  1.  直流電源から入力される直流電力を交流電力に変換し、モータに供給するインバータと、
     前記インバータから出力される交流電圧の指令値を、交流電流の検出値に基づき算出する指令値算出手段と、
     前記指令値又は前記検出値の位相を補償する位相補償手段と、
     前記位相補償手段により補償された指令値に基づき前記インバータを制御するインバータ制御手段と、
     前記モータの回転速度を検出するモータ回転速度検出手段と、
     dq軸間で互いに干渉する干渉電圧を打ち消すdq軸非干渉電圧指令値を演算し、前記指令値算出手段に出力するdq軸非干渉電圧指令値演算手段と、
     前記位相補償手段によって補償された位相の補償量に応じて位相を補償する逆位相補償手段とを備え、
    前記位相補償手段は、
     所定の位相余裕を得るために設定された位相補償時間及び前記回転速度に基づき位相進み量を算出し、前記位相進み量で、前記モータの固有の特性に基づく位相を補償し、
    前記逆位相補償手段は、
     前記位相補償手段によって補償される位相と逆方向に、前記位相進み量と同じ補償量で、前記dq軸非干渉電圧指令値の位相を補償する
    ことを特徴とするインバータ制御装置。
  2.  前記モータの相電流を検出する電流検出手段をさらに備え、
    前記逆位相補償手段の前記補償量は、
     少なくとも前記電流検出手段の電流検出の無駄時間により生じる位相差に相当する
    ことを特徴とする請求項1記載のインバータ制御装置。
  3.  前記モータのトルク指令値及び前記回転速度に基づき、前記交流電流の指令値であるdq軸電流指令値を演算するdq軸電流指令値演算手段をさらに備え、
    前記位相補償手段は、dq軸追従電圧指令値を補償し、
    前記指令値算出手段は、
     前記交流電流の検出値であるdq軸電流を前記dq軸電流指令値に追従させる前記dq軸追従電圧指令値を演算し、
     前記位相補償手段により補償された前記dq軸追従電圧指令値及び前記逆位相補償手段により補償された前記dq軸非干渉電圧指令値に基づき、前記交流電圧の指令値を演算する
    ことを特徴とする請求項1又は2記載のインバータ制御装置。
  4. 前記位相補償手段は、
     前記位相補償時間と前記回転速度とを乗算することで前記位相進み量を算出する
    ことを特徴とする請求項1~3のいずれか一項に記載のインバータ制御装置。
  5. 前記位相補償手段は、
     前記回転速度、前記モータの電流、外部から入力されるトルク指令値、前記モータの温度、または、前記インバータへの入力電圧のうち少なくとも一つの値と、前記位相補償時間とを対応づけるマップを格納する
    ことを特徴とする請求項1~4のいずれか一項に記載のインバータ制御装置。
  6.  インバータにより直流電源から入力される直流電力を交流電力に変換し、モータに供給する工程と、
     前記インバータから出力される交流電流を検出する検出工程と、
     前記インバータから出力される交流電圧の指令値を、前記検出工程により検出される検出値に基づいて算出する指令値演算工程と、
     前記指令値又は前記検出値の位相を補償する位相補償工程と、
     前記位相補償工程により補償された指令値に基づき前記インバータを制御するインバータ制御工程と、
     前記モータの回転速度を検出する回転速度検出工程と、
     dq軸間で互いに干渉する干渉電圧を打ち消すdq軸非干渉電圧指令値を演算するdq軸非干渉電圧指令値演算工程と、
     前記位相補償工程により補償された位相の補償量に応じて位相を補償する逆位相補償工程とを含み、
    前記指令値演算工程は、
     前記dq軸非干渉電圧指令値に基づき、前記交流電圧の前記指令値を演算する工程を含み、
    前記位相補償工程は、
     所定の位相余裕を得るために設定された位相補償時間及び前記回転速度に基づき位相進み量を算出し、前記位相進み量で、前記モータの固有の特性に基づく位相を補償する工程を含み、
    前記逆位相補償工程は、
     前記位相補償手段によって補償された位相と逆方向に、前記位相進み量と同じ補償量で、前記dq軸非干渉電圧指令値の位相を補償する工程を含む
    ことを特徴とするインバータ制御方法。
PCT/JP2013/075451 2012-09-21 2013-09-20 インバータ制御装置及びインバータ制御方法 WO2014046235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380047526.9A CN104620497B (zh) 2012-09-21 2013-09-20 逆变器控制装置以及逆变器控制方法
US14/428,671 US9209722B2 (en) 2012-09-21 2013-09-20 Inverter control device and inverter control method
EP13839229.5A EP2899876B1 (en) 2012-09-21 2013-09-20 Inverter control device and inverter control method
JP2014536932A JP5930052B2 (ja) 2012-09-21 2013-09-20 インバータ制御装置及びインバータ制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012208063 2012-09-21
JP2012-208063 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014046235A1 true WO2014046235A1 (ja) 2014-03-27

Family

ID=50341536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075451 WO2014046235A1 (ja) 2012-09-21 2013-09-20 インバータ制御装置及びインバータ制御方法

Country Status (5)

Country Link
US (1) US9209722B2 (ja)
EP (1) EP2899876B1 (ja)
JP (1) JP5930052B2 (ja)
CN (1) CN104620497B (ja)
WO (1) WO2014046235A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797189A (zh) * 2014-08-29 2017-05-31 日产自动车株式会社 可变磁化机控制器
CN114285344A (zh) * 2021-09-28 2022-04-05 大连海事大学 一种基本电压矢量补偿的主动阻尼方法
JP2022082363A (ja) * 2020-11-20 2022-06-01 ダイハツ工業株式会社 同期電動機の制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016436A1 (ja) * 2016-07-20 2018-01-25 日本精工株式会社 電動パワーステアリング装置
CN108336938B (zh) * 2017-01-19 2021-10-22 德昌电机(深圳)有限公司 压力控制装置、系统及方法
JP6513161B1 (ja) * 2017-10-20 2019-05-15 三菱電機株式会社 回転電機の制御装置
CN111418146B (zh) * 2017-12-01 2023-03-28 日产自动车株式会社 电动机的控制方法以及电动机的控制装置
EP4007159A4 (en) * 2019-07-30 2022-08-24 Mitsubishi Electric Corporation CONTROL DEVICE FOR AN ELECTRICAL AC MACHINE AND ELECTRIC POWER STEERING
CN113612402A (zh) * 2021-08-09 2021-11-05 山特电子(深圳)有限公司 一种三相逆变控制系统和控制方法
EP4180261A1 (en) * 2021-11-15 2023-05-17 Volvo Car Corporation Method for controlling a drivetrain of an electric vehicle, data processing device, drivetrain and electric vehicle
CN115296583A (zh) * 2022-07-01 2022-11-04 重庆智能机器人研究院 一种伺服系统电角度补偿方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335227A (ja) 1993-05-19 1994-12-02 Matsushita Electric Ind Co Ltd ステッピングモータ
JP2005082034A (ja) * 2003-09-09 2005-03-31 Koyo Seiko Co Ltd 電動パワーステアリングシステム
JP2009136035A (ja) * 2007-11-28 2009-06-18 Jtekt Corp モータ制御装置
JP2010029027A (ja) * 2008-07-23 2010-02-04 Jtekt Corp モータ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151322A (en) * 1978-05-19 1979-11-28 Tokyo Hoso:Kk Storoboscopic effect generator for television
JP3321356B2 (ja) * 1996-05-20 2002-09-03 株式会社日立製作所 モータ制御装置及び電気車用制御装置
US5959430A (en) * 1997-03-07 1999-09-28 Kabushiki Kaisha Toshiba Power conversion system
JP4604493B2 (ja) * 2004-01-13 2011-01-05 日本精工株式会社 電動パワーステアリング装置の制御装置
US6972534B1 (en) * 2004-09-03 2005-12-06 General Motors Corporation Delay compensation for stable current regulation when using variable-delay random PWM switching
JP5250979B2 (ja) * 2007-02-07 2013-07-31 日本精工株式会社 電動パワーステアリング装置の制御装置
CN101350586B (zh) * 2007-07-20 2011-11-16 奇瑞汽车股份有限公司 全数字交流电机控制中时间延迟补偿方法及其控制装置
JP2010246260A (ja) * 2009-04-06 2010-10-28 Toyota Industries Corp モータ制御装置およびモータ制御方法
US8330405B2 (en) * 2009-06-18 2012-12-11 Rockwell Automation Technologies, Inc. Method and apparatus for increased current stability in a PWM drive
JP5493536B2 (ja) * 2009-07-24 2014-05-14 日産自動車株式会社 電動機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335227A (ja) 1993-05-19 1994-12-02 Matsushita Electric Ind Co Ltd ステッピングモータ
JP2005082034A (ja) * 2003-09-09 2005-03-31 Koyo Seiko Co Ltd 電動パワーステアリングシステム
JP2009136035A (ja) * 2007-11-28 2009-06-18 Jtekt Corp モータ制御装置
JP2010029027A (ja) * 2008-07-23 2010-02-04 Jtekt Corp モータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899876A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797189A (zh) * 2014-08-29 2017-05-31 日产自动车株式会社 可变磁化机控制器
JP2022082363A (ja) * 2020-11-20 2022-06-01 ダイハツ工業株式会社 同期電動機の制御装置
CN114285344A (zh) * 2021-09-28 2022-04-05 大连海事大学 一种基本电压矢量补偿的主动阻尼方法
CN114285344B (zh) * 2021-09-28 2023-06-02 大连海事大学 一种基本电压矢量补偿的主动阻尼方法

Also Published As

Publication number Publication date
EP2899876A1 (en) 2015-07-29
JP5930052B2 (ja) 2016-06-08
EP2899876A4 (en) 2015-12-09
JPWO2014046235A1 (ja) 2016-08-18
US9209722B2 (en) 2015-12-08
US20150214867A1 (en) 2015-07-30
CN104620497B (zh) 2016-08-31
EP2899876B1 (en) 2017-03-08
CN104620497A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5930052B2 (ja) インバータ制御装置及びインバータ制御方法
JP5824918B2 (ja) インバータ制御装置及びインバータ制御方法
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
US9331620B2 (en) Electric motor control device and electric motor control method
US9252689B2 (en) Motor control device and motor control method
JP5412820B2 (ja) 交流電動機の制御装置及び制御方法
JP2009124871A (ja) 同期電動機のV/f制御装置
JP6115392B2 (ja) モータ制御装置
JP5948266B2 (ja) インバータ装置、建設機械、電動機制御方法
US20100164429A1 (en) Inverter control apparatus
JP2010273400A (ja) 誘導電動機制御装置
JP2009089524A (ja) モータ制御システム
JP2010029027A (ja) モータ制御装置
JP2011042240A (ja) 電動パワーステアリング装置の電流制御装置
EP3474438A1 (en) Motor control device and control method
JP2008178159A (ja) 電圧型インバータの制御装置
WO2015005016A1 (ja) インバータの制御装置及びインバータの制御方法
JP2013188074A (ja) 誘導モータの制御装置および制御方法
JP6680104B2 (ja) モータの制御装置、及び、制御方法
JP2009268183A (ja) 三相交流モータの駆動装置
JP2012235556A (ja) モータ制御装置
JP5034888B2 (ja) 同期電動機のV/f制御装置
JP7225561B2 (ja) モータ制御方法、及び、モータ制御装置
JP2023117874A (ja) 巻線界磁型回転電機の制御方法、及び、巻線界磁型回転電機の制御装置
WO2015019905A1 (ja) 誘導モータの制御装置および誘導モータの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013839229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013839229

Country of ref document: EP