WO2014045785A1 - 電動車両の制御装置 - Google Patents

電動車両の制御装置 Download PDF

Info

Publication number
WO2014045785A1
WO2014045785A1 PCT/JP2013/072215 JP2013072215W WO2014045785A1 WO 2014045785 A1 WO2014045785 A1 WO 2014045785A1 JP 2013072215 W JP2013072215 W JP 2013072215W WO 2014045785 A1 WO2014045785 A1 WO 2014045785A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcomputer
electric vehicle
voltage
vehicle
energization
Prior art date
Application number
PCT/JP2013/072215
Other languages
English (en)
French (fr)
Inventor
英満 中河原
久浩 鍋島
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201380048379.7A priority Critical patent/CN104641354B/zh
Priority to KR1020167006412A priority patent/KR20160035092A/ko
Priority to EP13838526.5A priority patent/EP2899637B1/en
Priority to KR1020157005757A priority patent/KR20150033742A/ko
Priority to US14/419,662 priority patent/US9216651B2/en
Priority to JP2014536699A priority patent/JP5817935B2/ja
Publication of WO2014045785A1 publication Critical patent/WO2014045785A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/24Resetting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0736Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in functional embedded systems, i.e. in a data processing system designed as a combination of hardware and software dedicated to performing a certain function
    • G06F11/0739Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in functional embedded systems, i.e. in a data processing system designed as a combination of hardware and software dedicated to performing a certain function in a data processing system embedded in automotive or aircraft systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0793Remedial or corrective actions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0796Safety measures, i.e. ensuring safe condition in the event of error, e.g. for controlling element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention includes two microcomputers (hereinafter abbreviated as “microcomputers”) that monitor each other, and performs a reset process (initialization process) when a malfunction of the microcomputer is determined. About.
  • the reset process is performed.
  • the switch contact of the high-voltage relay provided in the on-vehicle high-voltage system may be welded, and the high-voltage relay may not be turned off during reset processing due to a microcomputer abnormality. There was a problem that there was.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a control device for an electric vehicle that prevents welding of a high-voltage relay when resetting based on a microcomputer operation abnormality determination due to a cause other than a microcomputer abnormality. To do.
  • a control device for an electric vehicle is provided with a shared power supply, has a separate control function, and can independently rewrite each control program and a second microcomputer.
  • the microcomputer monitors the microcomputer operations of the first microcomputer and the second microcomputer, and if it is determined that the microcomputer operation is abnormal, the reset is performed to turn off the high-voltage relay of the on-vehicle high-voltage system. And a processing means.
  • the reset processing means when the reset processing means resets based on a microcomputer operation abnormality determination due to a cause other than a microcomputer abnormality, the energization of the in-vehicle high-voltage system is stopped, and the high-voltage relay is turned off in a state where the energization is stopped. It has an electricity supply stop reset process part which performs the reset process which turns off.
  • the energization stop reset processing unit stops the energization of the onboard high-voltage system, and the reset process to turn off the high-voltage relay in the state where the energization is stopped To be implemented.
  • the high-voltage system is turned off in advance. A process is added and the high-power relay is turned off in a power-off state.
  • FIG. 1 is an overall system diagram illustrating a control device for an electric vehicle according to a first embodiment.
  • 6 is a flowchart illustrating a flow of an energization stop reset process executed by the first microcomputer and the second microcomputer when the control program of the second microcomputer is rewritten in the control apparatus for the electric vehicle according to the first embodiment.
  • FIG. 3 is a mode transition diagram illustrating a mode transition scene between a normal mode and a wake-up mode in which an energization stop reset process is executed in the control apparatus for an electric vehicle according to the first embodiment. It is a sequence diagram which shows the electricity supply stop reset process operation in the reprogram scene which rewrites the control program of a 2nd microcomputer in the control apparatus of the electric vehicle of Example 1.
  • FIG. 1 is an overall system diagram illustrating a control device for an electric vehicle according to a first embodiment.
  • 6 is a flowchart illustrating a flow of an energization stop reset process executed by the first microcomputer and the second microcomputer when the
  • the configuration of the control device of the electric vehicle (an example of an electric vehicle) in the first embodiment will be described by dividing it into “entire system configuration” and “detailed configuration of energization stop reset processing”.
  • FIG. 1 is an overall system diagram illustrating a control apparatus for an electric vehicle according to a first embodiment. The overall system configuration will be described below with reference to FIG.
  • an electric vehicle (EV) to which the control device of Embodiment 1 is applied includes an electronic control unit 1 (ECU), a fail-safe relay 2, a battery pack 3, and a DC / DC junction box 4. And a drive motor inverter 5, a drive motor 6, a speed reducer 7, and a 12V battery 8.
  • ECU electronice control unit 1
  • fail-safe relay 2 a fail-safe relay 2
  • battery pack 3 a battery pack 3
  • a drive motor inverter 5 a drive motor 6, a speed reducer 7, and a 12V battery 8.
  • the electronic control unit 1 is disposed inside an instrument panel or the like, and includes a first microcomputer 11, a second microcomputer 12, a power supply IC circuit 13, and a fail safe circuit 14.
  • the first microcomputer 11 and the second microcomputer 12 are provided by sharing the 12V battery 8 and the power supply IC circuit 13 (power supply), have different control functions, and can rewrite each control program independently. is there.
  • the first microcomputer 11 includes a program storage area 11a, a monitoring unit 11b for the microcomputer function 2, and an inter-CPU communication diagnosis unit 11c.
  • the second microcomputer 12 includes a program storage area 12a, a monitoring unit 12b for the microcomputer function 1, and an inter-CPU communication diagnostic unit 12c.
  • the microcomputer function 2 monitoring unit 11b and the microcomputer function 1 monitoring unit 12b monitor each other's microcomputer operation, and if it is determined that the microcomputer operation is abnormal, the high-voltage relays 31 and 32 included in the in-vehicle high-voltage system are provided. A reset process for turning off is performed (reset processing means).
  • the vehicle state is determined based on the input signals, and various controls in the EV system are comprehensively performed.
  • the VCM main microcomputer to be used is used.
  • the second microcomputer 12 for example, a VCM sub + PBW microcomputer in which a PBW microcomputer is added to a VCM sub microcomputer having the same function as the VCM main microcomputer is used.
  • the PBW microcomputer is a controller that outputs a drive command to a parking actuator 71 that controls locking / unlocking of the parking mechanism in the speed reducer 7 based on a signal from a P range switch (not shown).
  • VCM is an abbreviation for vehicle control module
  • PBW is an abbreviation for park lock by wire.
  • the fail safe circuit 14 is configured by an OR circuit that outputs an OFF command to the fail safe relay 2 when an F / S relay cut signal from at least one of the first microcomputer 11 and the second microcomputer 12 is input.
  • the first microcomputer 11 and the second microcomputer 12 include a serial communication line 15, a WDT signal line 16 for outputting a WDT signal from the second microcomputer 12 to the first microcomputer 11, and an RST from the first microcomputer 11 to the second microcomputer 12. They are connected by an RST signal line 17 that outputs a signal.
  • the first microcomputer 11 and the power supply IC circuit 13 are connected by a WDT signal line 18 that outputs a WDT signal from the first microcomputer 11 to the power supply IC circuit 13.
  • the first microcomputer 11, the second microcomputer 12, and the power supply IC circuit 13 are connected by an RST signal line 19 that outputs an RST signal from the power supply IC circuit 13 to the first microcomputer 11 and the second microcomputer 12.
  • the first microcomputer 11 and the fail safe circuit 14 are connected by a first F / S relay cut signal line 20, and the second microcomputer 12 and the fail safe circuit 14 are connected by a second F / S relay cut signal line 21.
  • the WDT signal is a watch dock timer signal that inverts the level every predetermined time in order to monitor abnormality of the microcomputer operation.
  • the RST signal refers to a reset signal that requests reset processing.
  • the fail-safe relay 2 supplies power for relay operation to the first high-voltage relay 31 and the second high-voltage relay 32 in the battery pack 3, and when an off command is output from the fail-safe circuit 14, the relay operation is performed.
  • the power supply (12V battery 8) is cut off, and the first high-voltage relay 31 and the second high-voltage relay 32 are turned off.
  • the battery pack 3 is disposed, for example, at a position below the floor in the center of the wheel base, and includes a module laminate 30, a first high-voltage relay 31, and a second high-voltage relay 32.
  • the module laminate 30 is configured by further laminating a plurality of modules in which a plurality of laminate-type cells are combined into one. For example, in the case of a 48-module lithium ion battery, the rated voltage is a direct current. 360V is output.
  • the first high-voltage relay 21 and the second high-voltage relay 22 are built in the battery pack 3 and connect / disconnect the +/ ⁇ side of the module stack 30 and the DC / DC junction box 4. Note that the on-vehicle high-voltage system includes a battery pack 3, a DC / DC junction box 4, a drive motor inverter 5, and a drive motor 6.
  • the DC / DC junction box 4 incorporates a DC / DC converter, distributes the high-voltage power from the battery pack 3, supplies power to the 12V power system, and charges the 12V battery 8. Further, the DC / DC junction box 4 has a normal charging relay and a quick charging relay so that the charging circuit can be switched in accordance with the charging mode.
  • the drive motor inverter 5 converts the DC power from the DC / DC junction box 4 into AC power based on the drive torque signal sent from the VCM via the CAN communication line, and supplies the AC motor to the drive motor 6 using three-phase AC. Supply AC power.
  • the drive motor inverter 5 includes a motor controller, a driver, a smoothing capacitor, a current sensor, and a power module.
  • the drive motor 6 is arranged in a motor room as a travel drive source, and is configured by an embedded magnet type synchronous motor. When a positive torque command is issued, the drive motor 6 performs a drive operation for generating a drive torque using the discharge power from the battery pack 3 (power running). On the other hand, when a negative torque command is issued, a power generation operation is performed to convert rotational energy from the left and right drive wheels into electric energy, and the generated power is used as charging power for the battery pack 3 (regeneration).
  • the reduction gear 7 has a parking mechanism including a parking actuator 71, the reduction gear input side is connected to the drive motor 6, and the differential gear portion on the reduction gear output side is connected to the left and right drive wheels.
  • the 12V battery 8 is a power source for the electronic control unit 1 and a power source for various on-vehicle electrical components such as a relay operating power source for the first high-voltage relay 21 and the second high-voltage relay 22.
  • the 12V battery 8 monitors the 12V battery voltage when the ignition switch is on, and is automatically charged using the power of the battery pack 3 when the 12V battery voltage drops.
  • FIG. 2 shows the flow of the energization stop reset process executed by the first microcomputer and the second microcomputer when the control program of the second microcomputer is rewritten
  • FIG. 3 shows the normal mode in which the energization stop reset process is executed and the wakeup The mode transition scene between modes is shown.
  • the detailed configuration of the energization stop reset process will be described with reference to FIGS.
  • the microcomputer function 2 monitoring unit 11b and the microcomputer function 1 monitoring unit 12b monitor each other's microcomputer operations, and if the microcomputer operation is determined to be abnormal, Basically, a reset process for turning off the relays 31 and 32 is performed.
  • a reset process for turning off the relays 31 and 32 is performed.
  • the reset process when resetting based on the microcomputer operation abnormality determination due to a cause other than the microcomputer abnormality, the reset process for stopping the on-vehicle high-voltage system and turning off the high-voltage relays 31 and 32 in the state where the power supply is stopped is performed. Implement (energization stop reset process).
  • the scenes in which the energization stop reset process is performed are mainly the following three scenes.
  • the reprogram scene (1) will be described with reference to FIG. First, when the control program of the second microcomputer 12 is rewritten, the first microcomputer 11 is in a ready state in which the ignition switch is on, and the second microcomputer 12 is in a reprogram instruction state in the diagnosis mode.
  • the reprogramming of the second microcomputer 12 is performed by connecting a personal computer to the CAN communication line and newly rewriting the control program in the program storage area 12a.
  • the microcomputer function 1 stops the charging / discharging energization in step S111. Specifically, if a charge command or a discharge command is issued to the drive motor 6, a zero torque command is set. If plug-in charging is in progress, the normal charging relay or the quick charging relay built in the DC / DC junction box 4 is turned off. That is, the energization in the discharge direction and the energization in the charge direction flowing through the high-voltage harness of the on-vehicle high-voltage system are made zero.
  • the microcomputer function 1 confirms that the energization of charging / discharging has been completed, in the next step S112, the microcomputer function 1 notifies the microcomputer function 2 that the charging / discharging has been stopped by communication, and ends. Proceed to
  • step S121 an instruction to stop charging / discharging is sent to the microcomputer function 1 by communication before starting the reprogram execution operation. .
  • step S122 the microcomputer function 2 starts the reprogram execution operation.
  • step S123 it is determined whether a reprogram completion condition and a charge / discharge stop completion condition are satisfied.
  • the reprogram completion condition is determined by the microcomputer function 2, and the charge / discharge stop completion condition is determined based on notification information by communication from the microcomputer function 1.
  • the low voltage scene (2) will be described with reference to FIG. First, in order for the first microcomputer 11 and the second microcomputer 12 to operate normally without malfunction, it is assumed that the power supply voltage (12 V) of the electronic control unit 1 is secured. Therefore, the 12V battery 8 shown in FIG. 1 monitors the 12V battery voltage when the ignition switch is turned on by the automatic charging control, so that the monitor data of the 12V battery voltage is input through the CAN communication line. If the power supply voltages of the 11 and the second microcomputer 12 are lower than the voltage threshold that can ensure normal operation, it is determined as a low voltage scene. If it is determined that the scene is a low-voltage scene, a process for stopping energization of the high-voltage system is added in advance. Perform the reset process.
  • the in-vehicle electronic control system has a normal mode in which the in-vehicle power switch (ignition switch) is on, and a wake-up mode in which the in-vehicle power switch is off but ensures a necessary operation in the in-vehicle controller.
  • IGN mode In-vehicle power switch
  • WakeUp mode When shifting from the normal mode (IGN mode) to the wake-up mode (WakeUp mode), when IGN-OFF & ReadyToSleep and GoToSleep are received from the master in the IGN mode, the mode transits to the OFF mode. When the IGN-OFF & WakeUp-ON is received in the OFF mode, the mode transits to the WakeUp mode.
  • the operation in the control apparatus for the electric vehicle according to the first embodiment includes “reset processing operation due to microcomputer abnormality”, “reset processing operation in reprogram scene”, “reset processing operation in low voltage scene”, “mode transition scene” The description will be divided into “reset processing operation”.
  • the second microcomputer 12 that has received the RST signal outputs the second F / S relay cut signal to the fail safe circuit 14 via the second F / S relay cut signal line 21. Therefore, the fail-safe relay 2 that has received the off signal from the fail-safe circuit 14 cuts off the relay operating power source of the high-power relays 31 and 32 included in the in-vehicle high-power system, and the high-power relays 31 and 32 are turned off.
  • the WDT signal output from the second microcomputer 12 to the first microcomputer 11 via the WDT signal line 16 is stopped.
  • the monitoring unit 11b of the microcomputer function 2 determines that the microcomputer operation is abnormal, and the first microcomputer 11 outputs the RST signal to the second microcomputer 12 via the RST signal line 17. .
  • the second microcomputer 12 Upon receiving the RST signal, the second microcomputer 12 outputs the second F / S relay cut signal to the fail safe circuit 14 via the second F / S relay cut signal line 21.
  • the fail-safe relay 2 that has received the off signal from the fail-safe circuit 14 cuts off the relay operating power source of the high-power relays 31 and 32 included in the in-vehicle high-power system, and the high-power relays 31 and 32 are turned off.
  • step S 111 In the reprogram scene of the second microcomputer 12, as a process by the microcomputer function 1 by the first microcomputer 11, when a charge / discharge stop command is received from the second microcomputer 12 to the microcomputer function 1 by communication, charging is performed in step S 111. ⁇ Discharge energization is stopped. When the charging / discharging interruption is completed, the microcomputer function 1 notifies the microcomputer function 2 by communication that charging / discharging has been stopped in the next step S112. In the microcomputer function 1, if the charge / discharge stop cannot be completed, the microcomputer function 2 may be notified that the stop cannot be performed.
  • the energization stop reset processing operation in the reprogram scene of the second microcomputer 12 will be described with reference to the sequence shown in FIG.
  • a reprogram is instructed by using a consulting professional instruction as a trigger
  • the execution of the high power stop is notified in advance from the microcomputer function 2 to the microcomputer function 1, and the reprogram execution operation in the microcomputer function 2 is started.
  • two execution operations, reprogram execution by the microcomputer function 2 and high-power stop execution by the microcomputer function 1 are performed simultaneously.
  • the completion of the high power stop is confirmed by communication from the microcomputer function 1 and the reprogramming of the second microcomputer 12 is completed, the reset process of the microcomputer function 2 is executed.
  • the reprogram when executing the reprogram to rewrite the control program of the second microcomputer 12, the reprogram is started when instructed to stop energization of the in-vehicle high voltage system in advance by communication with the first microcomputer 11. And after confirming the energization stop by communication from the 1st microcomputer 11 to the 2nd microcomputer 12, and the completion of reprogramming, the structure which implements the reset process which turns off the high power relays 31 and 32 was employ
  • when reprogramming is performed when the reprogramming of the second microcomputer 12 is started after waiting for the completion of the strong power stop, the start timing of the reset process for turning off the high power relays 31 and 32 is the high power stop. It will be delayed by waiting for completion.
  • the reprogram execution in the microcomputer function 2 and the high-power stop execution in the microcomputer function 1 are performed simultaneously, so that the reset processing start timing for turning off the high-power relays 31 and 32 is performed. Becomes early.
  • the welding of the high-power relays 31 and 32 is reliably prevented by performing the reset process after confirming the completion of the high-power stop in the on-vehicle high power system.
  • the power supply voltage of the first microcomputer 11 and the second microcomputer 12 is lower than a voltage threshold value that can ensure normal operation.
  • the low voltage scene is determined. If it is determined that the scene is a low voltage scene, a process for stopping the energization of the high-voltage system is added in advance, the energization by charging / discharging in the on-vehicle high-voltage system is stopped, and the high-voltage relays 31 and 32 are stopped in the energization state. Perform a reset process to turn off.
  • the microcomputer operation of the first microcomputer 11 and the second microcomputer 12 is monitored, and if it is determined that the microcomputer operation is abnormal, a reset process is performed to turn off the high-voltage relays 31 and 32 included in the on-vehicle high voltage system.
  • Reset processing means to In a control device for an electric vehicle (electric vehicle) provided with The reset processing means, when resetting based on a microcomputer operation abnormality determination due to a cause other than the microcomputer abnormality, stops the energization of the in-vehicle high-voltage system, and resets the high-voltage relays 31, 32 in a state where the energization is stopped. There is an energization stop reset processing unit for carrying out (FIG. 1). For this reason, when resetting based on the microcomputer operation abnormality determination by causes other than microcomputer abnormality, welding of the high voltage relays 31 and 32 can be prevented.
  • the energization stop reset processing unit rewrites one of the control programs of the first microcomputer 11 and the second microcomputer 12 when resetting based on the microcomputer operation abnormality determination due to a cause other than the microcomputer abnormality.
  • a reprogram scene is assumed (FIG. 2). For this reason, in addition to the effect of (1), when resetting in a reprogram scene in which one of the control programs of the first microcomputer 11 and the second microcomputer 12 is rewritten among the causes other than the abnormality of the microcomputer, the high voltage system By adding a process for stopping the energization of the high-power relays 31, the welding of the high-power relays 31 and 32 can be prevented.
  • the energization stop reset processing unit when executing a reprogram that rewrites one of the first microcomputer 11 and the second microcomputer 12, rewrites the control program from one microcomputer to the other microcomputer.
  • reprogram When instructed to stop energization of the in-vehicle high power system in advance by communication, reprogram is started, and after confirming the deenergization by communication from the other microcomputer to one microcomputer and confirming completion of reprogramming, the high power relay 31, A reset process for turning off 32 is performed (FIG. 4).
  • the high-power relays 31 and 32 is surely prevented, and the reset process for turning off the high-power relays 31 and 32 is started. It can be accelerated.
  • the in-vehicle electronic control system has a normal mode in which the in-vehicle power switch (ignition switch) is on, and a wake-up mode in which the in-vehicle power switch is off but ensures the necessary operation in the in-vehicle controller.
  • the energization stop reset processing unit when resetting based on a microcomputer operation abnormality determination due to a cause other than a microcomputer abnormality, when shifting from the normal mode to the wakeup mode, and from the wakeup mode to the normal mode.
  • a mode transition scene for transition is assumed (FIG. 3).
  • the first microcomputer 11 and the second microcomputer 12 are included in one electronic control unit 1 that controls the in-vehicle high voltage system (FIG. 1). For this reason, in addition to the effects (1) to (5), two microcomputers 11 and 12 having different control functions and independently rewriting each control program are provided in one electronic control unit 1.
  • the electric vehicle (electric vehicle) provided in an integrated manner is reset based on the microcomputer operation abnormality determination due to a cause other than the microcomputer abnormality, the welding of the high voltage relays 31 and 32 can be prevented.
  • Example 1 As mentioned above, although the control apparatus of the electric vehicle of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, The invention which concerns on each claim of a claim Design changes and additions are allowed without departing from the gist.
  • the first microcomputer and the second microcomputer are not limited to the first embodiment as long as they are two controllers used in combination among a plurality of on-vehicle controllers.
  • the first microcomputer may be an integrated controller and the second microcomputer may be a motor controller.
  • two microcomputers may be used as long as they share a power source, have different control functions, and can independently rewrite each control program.
  • the first microcomputer 11 and the second microcomputer 12 are integrated in one electronic control unit 1 that controls the on-vehicle high-voltage system.
  • substrate may be sufficient, and the example which a 1st microcomputer and a 2nd microcomputer have separately may be sufficient.
  • a reprogram scene, a low voltage scene, and a mode transition scene are shown as scenes where the energization stop reset process is performed.
  • the scene where the power supply stop reset process is performed may be an example in which a scene where the power supply stop reset process is necessary is added in addition to these three scenes.
  • the scene where the energization stop reset process is performed may be an example limited to one selected scene or two scenes among the three scenes.
  • Example 1 shows an example in which the control device of the present invention is applied to an electric vehicle.
  • the control device of the present invention can also be applied to other electric vehicles such as hybrid vehicles and fuel cell vehicles.
  • the present invention can be applied as long as it has an in-vehicle high-power system and turns off a high-power relay in the in-vehicle high-power system during the reset process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Debugging And Monitoring (AREA)

Abstract

 マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、強電リレーの溶着を防止すること。 電源を共有して設けられ、別々の制御機能を有し、それぞれの制御プログラムを独立して書き換え可能な第1マイコン(11)及び第2マイコン(12)と、互いのマイコン動作を監視し、マイコン動作が異常であると判定されると、車載強電系に有する強電リレー(31),(32)をオフにするリセット処理を実施するリセット処理手段と、を備える。この電気自動車の制御装置において、リセット処理手段は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、車載強電系の通電を停止し、通電を停止した状態で強電リレー(31),(32)をオフにするリセット処理を実施する通電停止リセット処理部を有する。

Description

電動車両の制御装置
 本発明は、互いを監視する2つのマイクロコンピュータ(以下、「マイコン」と略称する。)を備え、マイコン動作の異常が判定されるとリセット処理(初期化処理)を実施する電動車両の制御装置に関する。
 従来、電源を共通化した2つのマイコンを備え、両マイコンの少なくとも何れか一方が書き込み処理を行っている間、システム監視動作を阻止することでリセット処理が実施されないようにする電子制御装置が知られている(例えば、特許文献1参照)。
特開平10-177504号公報
 しかしながら、従来の電子制御装置にあっては、例えば、制御プログラムの書き換えを原因として監視信号が停止し、異常と判定されると、リセット処理が実施される。このため、電動車両に従来の電子制御装置を適用した場合、車載強電系に設けられた強電リレーのスイッチ接点が溶着し、マイコン異常によるリセット処理のときに強電リレーを切ることができなくなるおそれがある、という問題があった。
 すなわち、電動車両の場合、マイコンのリセット処理が実施されると、フェイルセーフ機能として、バッテリ充電やバッテリ放電により車載強電系が通電状態であるか否かにかかわらず、車載強電系に有する強電リレーが強制的にオフにされる。
 本発明は、上記問題に着目してなされたもので、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、強電リレーの溶着を防止する電動車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の電動車両の制御装置は、電源を共有して設けられ、別々の制御機能を有し、それぞれの制御プログラムを独立して書き換え可能な第1マイコン及び第2マイコンと、前記第1マイコンと前記第2マイコンの互いのマイコン動作を監視し、マイコン動作が異常であると判定されると、車載強電系に有する強電リレーをオフにするリセット処理を実施するリセット処理手段と、を備えることを前提とする。
 この電動車両の制御装置において、前記リセット処理手段は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、前記車載強電系の通電を停止し、通電を停止した状態で前記強電リレーをオフにするリセット処理を実施する通電停止リセット処理部を有する。
 よって、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、通電停止リセット処理部において、車載強電系の通電が停止され、通電が停止された状態で強電リレーをオフにするリセット処理が実施される。
 例えば、第1マイコンと第2マイコンのうち一方の制御プログラムの書き換えを実施するリプログラムシーンのように、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、予め強電系の通電を止める処理を追加し、通電停止状態で強電リレーがオフにされる。
 このように、強電の通電停止状態で強電リレーをオフにすることで、スイッチ接点にてスパークが発生せず、強電リレーのスイッチ部がオン溶着することはない。
 この結果、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、強電リレーの溶着を防止することができる。
実施例1の電気自動車の制御装置を示す全体システム図である。 実施例1の電気自動車の制御装置において第2マイコンの制御プログラム書き換え時に第1マイコンと第2マイコンにて実行される通電停止リセット処理の流れを示すフローチャートである。 実施例1の電気自動車の制御装置において通電停止リセット処理が実行される通常モードとウェイクアップモードの間でのモード移行シーンを示すモード遷移図である。 実施例1の電気自動車の制御装置において第2マイコンの制御プログラムの書き換えるリプログラムシーンでの通電停止リセット処理動作を示すシーケンス図である。
 以下、本発明の電動車両の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
 実施例1における電気自動車(電動車両の一例)の制御装置の構成を、「全体システム構成」、「通電停止リセット処理の詳細構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の電気自動車の制御装置を示す全体システム図である。以下、図1に基づき、全体システム構成を説明する。
 実施例1の制御装置が適用された電気自動車(EV)は、図1に示すように、電子制御ユニット1(ECU)と、フェイルセーフリレー2と、バッテリパック3と、DC/DCジャンクションボックス4と、駆動モータインバータ5と、駆動モータ6と、減速機7と、12Vバッテリ8と、を備えている。
 前記電子制御ユニット1は、インストルメントパネルの内部等に配置され、第1マイコン11と、第2マイコン12と、電源IC回路13と、フェイルセーフ回路14と、を有して構成される。
 前記第1マイコン11及び前記第2マイコン12は、12Vバッテリ8及び電源IC回路13(電源)を共有して設けられ、別々の制御機能を有し、それぞれの制御プログラムを独立して書き換え可能である。第1マイコン11は、プログラム記憶領域11aと、マイコン機能2の監視部11bと、CPU間通信診断部11cと、を有する。第2マイコン12は、プログラム記憶領域12aと、マイコン機能1の監視部12bと、CPU間通信診断部12cと、を有する。そして、マイコン機能2の監視部11bとマイコン機能1の監視部12bにより、互いのマイコン動作を監視し、マイコン動作が異常であると判定されると、車載強電系に有する強電リレー31,32をオフにするリセット処理を実施する(リセット処理手段)。
 前記第1マイコン11としては、例えば、様々なセンサやコントローラからの信号を、CAN通信線を介して入力し、入力した信号に基づき車両状態を判断し、EVシステムにおける様々な制御を総合的に行うVCMメインマイコンが用いられる。
 前記第2マイコン12としては、例えば、VCMメインマイコンと同じ機能を有するVCMサブマイコンに、PBWマイコンを追加したVCMサブ+PBWマイコンが用いられる。このPBWマイコンは、図外のPレンジスイッチからの信号に基づき、減速機7内のパーキング機構のロック/アンロックを制御するパーキングアクチュエータ71へ駆動指令を出力するコントローラである。なお、「VCM」は、ビークル・コントロール・モジュールの略であり、「PBW」は、パークロック・バイ・ワイヤの略である。
 前記フェイルセーフ回路14は、第1マイコン11と第2マイコン12の少なくとも一方からのF/Sリレーカット信号を入力すると、フェイルセーフリレー2にオフ指令を出力するOR回路により構成される。
 前記第1マイコン11と第2マイコン12は、シリアル通信線15と、第2マイコン12から第1マイコン11へWDT信号を出力するWDT信号線16と、第1マイコン11から第2マイコン12へRST信号を出力するRST信号線17により接続されている。第1マイコン11と電源IC回路13は、第1マイコン11から電源IC回路13へWDT信号を出力するWDT信号線18により接続されている。第1マイコン11と第2マイコン12と電源IC回路13は、電源IC回路13から第1マイコン11と第2マイコン12へRST信号を出力するRST信号線19により接続されている。第1マイコン11とフェイルセーフ回路14は、第1F/Sリレーカット信号線20により接続され、第2マイコン12とフェイルセーフ回路14は、第2F/Sリレーカット信号線21により接続されている。ここで、WDT信号とは、マイコン動作の異常を監視するために所定時間毎にレベルを反転させるウォッチ・ドック・タイマ信号である。RST信号とは、リセット処理を要求するリセット信号のことをいう。
 前記フェイルセーフリレー2は、バッテリパック3内の第1強電リレー31と第2強電リレー32に対しリレー作動用電源を供給するもので、フェイルセーフ回路14からオフ指令が出力された場合、リレー作動用電源(12Vバッテリ8)を遮断して第1強電リレー31と第2強電リレー32をオフにする。
 前記バッテリパック3は、例えば、ホイールベース中央部の床下位置等に配置され、モジュール積層体30と、第1強電リレー31と、第2強電リレー32と、を有して構成される。
 前記モジュール積層体30は、複数枚のラミネート型セルを一つにまとめたモジュールをさらに複数個積層することで構成したものであり、例えば、48モジュールのリチウムイオン電池の場合、定格電圧として、直流の360Vを出力する。
 前記第1強電リレー21及び第2強電リレー22は、バッテリパック3に内蔵されていて、モジュール積層体30の+側及び-側とDC/DCジャンクションボックス4の接続/遮断を行う。なお、車載強電系は、バッテリパック3とDC/DCジャンクションボックス4と駆動モータインバータ5と駆動モータ6により構成される。
 前記DC/DCジャンクションボックス4は、DC/DCコンバータを内蔵し、バッテリパック3からの高電圧電源を分配すると共に、12V電源系システムへの電力供給及び12Vバッテリ8への充電を行う。また、このDC/DCジャンクションボックス4は、普通充電リレー及び急速充電リレーを有しており、充電モードに合わせて充電回路の切り替えができるようにしている。
 前記駆動モータインバータ5は、VCMからCAN通信線にて送られてくる駆動トルク信号に基づいて、DC/DCジャンクションボックス4からの直流電力を交流電力に変換し、三相交流による駆動モータ6へ交流電力を供給する。この駆動モータインバータ5は、モータコントローラと、ドライバと、平滑コンデンサと、電流センサと、パワーモジュールと、を有して構成される。
 前記駆動モータ6は、走行用駆動源として、モータルームに配置されていて、埋め込み磁石型同期モータによる構成である。この駆動モータ6は、正のトルク指令時には、バッテリパック3からの放電電力を使って駆動トルクを発生する駆動動作をする(力行)。一方、負のトルク指令時には、左右駆動輪からの回転エネルギーを電気エネルギーに変換する発電動作をし、発電した電力をバッテリパック3への充電電力とする(回生)。
 前記減速機7は、パーキングアクチュエータ71を備えたパーキング機構を有し、減速機入力側が駆動モータ6に連結され、減速機出力側のデファレンシャルギヤ部が左右の駆動輪に連結される。
 前記12Vバッテリ8は、電子制御ユニット1の電源であると共に、第1強電リレー21及び第2強電リレー22のリレー作動用電源等のように、他の様々な車載電装品の電源とされる。この12Vバッテリ8は、イグニッションスイッチがオンの時、12Vバッテリ電圧をモニタし、12Vバッテリ電圧が低下した場合、バッテリパック3の電力を用いて自動充電制御される。
 [通電停止リセット処理の詳細構成]
 図2は、第2マイコンの制御プログラム書き換え時に第1マイコンと第2マイコンにて実行される通電停止リセット処理の流れを示し、図3は、通電停止リセット処理が実行される通常モードとウェイクアップモードの間でのモード移行シーンを示す。以下、図1~図3に基づき、通電停止リセット処理の詳細構成を説明する。
 まず、上記のように、マイコン機能2の監視部11bとマイコン機能1の監視部12bにより、互いのマイコン動作を監視し、マイコン動作が異常であると判定されると、車載強電系に有する強電リレー31,32をオフにするリセット処理を実施することを基本とする。しかし、このリセット処理において、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、車載強電系の通電を停止し、通電を停止した状態で強電リレー31,32をオフにするリセット処理を実施する(通電停止リセット処理)。
 この通電停止リセット処理が行われるシーンは、主に下記の3つのシーンである。
(1) 第1マイコン11と第2マイコン12のうち、第2マイコン12の制御プログラムの書き換えを実施するリプログラムシーン。
(2) 第1マイコン11及び第2マイコン12の電源電圧が正常な動作を確保できる電圧閾値よりも低いと判定された低電圧シーン。
(3) 通常モードからウェイクアップモードへと移行する際、及び、ウェイクアップモードから通常モードへと移行するモード移行シーン。
である。
 上記(1)のリプログラムシーンについて、図2に基づき説明する。
まず、第2マイコン12の制御プログラムの書き換えを実施するとき、第1マイコン11は、イグニッションスイッチがオンのレディ状態であり、第2マイコン12は、診断モードでのリプログラム指示状態である。なお、第2マイコン12のリプログラムは、CAN通信線にパソコンを接続し、プログラム記憶領域12aの制御プログラムを新しく書き換えることで行われる。
 第1マイコン11によるマイコン機能1による処理は、第2マイコン12から充放電中止の指令を通信により受け取ると、ステップS111において、マイコン機能1は、充電・放電の通電を中止する。具体的には、駆動モータ6に対し充電指令や放電指令が出されているとゼロのトルク指令とする。また、プラグイン充電中であれば、DC/DCジャンクションボックス4に内蔵されている普通充電リレー又は急速充電リレーをオフにする。すなわち、車載強電系の強電ハーネスに流れる放電方向の通電や充電方向の通電をゼロにする。そして、充電・放電の通電を中止が完了したことをマイコン機能1にて確認すると、次のステップS112において、マイコン機能1は充放電を中止したことをマイコン機能2に対し通信により通知し、エンドへ進む。
 第2マイコン12によるマイコン機能2による処理は、リプログラム指示があると、ステップS121において、リプログラムの実施動作を開始する前に予めマイコン機能1に対して充放電中止の指令を通信により通知する。そして、充放電中止指令を通知した後、ステップS122において、マイコン機能2はリプログラムの実施動作を開始する。そして、ステップS123において、リプログラム完了条件と充放電停止完了条件が成立しているか否かを判断する。ここで、リプログラム完了条件の判断は、マイコン機能2にて行い、充放電停止完了条件の判断は、マイコン機能1からの通信による通知情報に基づいて行う。ステップS123においてNOとの判断中は、ステップS123の条件判断を繰り返し、ステップS123においてYESと判断されると、ステップS124へ進み、WDT処理を停止し、強制的にハードリセット処理(=強電リレー31,32のオフ処理)を行い、エンドへ進む。
 上記(2)の低電圧シーンについて、図1に基づき説明する。
まず、第1マイコン11と第2マイコン12を誤動作無く正常に作動させるには、電子制御ユニット1の電源電圧(12V)が確保されていることを前提とする。
そこで、図1に示す12Vバッテリ8は、自動充電制御によってイグニッションスイッチがオンの時、12Vバッテリ電圧をモニタしていることで、12Vバッテリ電圧のモニタデータをCAN通信線により入力し、第1マイコン11及び第2マイコン12の電源電圧が正常な動作を確保できる電圧閾値よりも低いと、低電圧シーンと判定する。低電圧シーンであると判定されると、予め強電系の通電を止める処理を追加し、車載強電系での充電・放電による通電を停止し、通電を停止した状態で強電リレー31,32をオフにするリセット処理を実施する。
 上記(3)のモード移行シーンについて、図3に基づき説明する。
まず、車載電子制御系は、車載電源スイッチ(イグニッションスイッチ)がオンである通常モードと、車載電源スイッチはオフであるが車載コントローラでの必要動作を確保するウェイクアップモードと、を有する。
そして、通常モード(IGNモード)からウェイクアップモード(WakeUpモード)へと移行する際には、IGNモードにおいて、IGN-OFF&ReadyToSleepと、マスタからGoToSleepを受信すると、OFFモードへ遷移する。そして、OFFモードにおいて、IGN-OFF&WakeUp-ONを受信するとWakeUpモードへ遷移する。
一方、ウェイクアップモード(WakeUpモード)から通常モード(IGNモード)へと移行する際には、WakeUpモードにおいて、IGN-ON&WakeUp-OFFを受信すると、OFFモードへ遷移する。そして、OFFモードにおいて、IGN-ONを受信するとIGNモードへ遷移する。
このように、モード移行シーンでは、一度、OFFモードへ遷移することで、OFFモードへ入るとき、予め強電系の通電を止める処理を追加し、車載強電系での充電・放電による通電を停止し、通電を停止した状態で強電リレー31,32をオフにするリセット処理を実施する。
 次に、作用を説明する。
 実施例1の電気自動車の制御装置における作用を、「マイコン異常によるリセット処理作用」、「リプログラムシーンでのリセット処理作用」、「低電圧シーンでのリセット処理作用」、「モード移行シーンでのリセット処理作用」に分けて説明する。
 [マイコン異常によるリセット処理作用]
 第1マイコン11が異常であるときには、第1マイコン11から電源IC回路13へとWDT信号線18を介して出力されるWDT信号が停止する。このWDT信号の停止によりマイコン動作異常であると判定され、電源IC回路13からRST信号線19を介して第1マイコン11と第2マイコン12へ同時にRST信号が出力される。RST信号を受けた第1マイコン11は、第1F/Sリレーカット信号線20を介して第1F/Sリレーカット信号をフェイルセーフ回路14へ出力する。同時に、RST信号を受けた第2マイコン12は、第2F/Sリレーカット信号線21を介して第2F/Sリレーカット信号をフェイルセーフ回路14へ出力する。したがって、フェイルセーフ回路14からのオフ信号を受けたフェイルセーフリレー2が、車載強電系に有する強電リレー31,32のリレー作動用電源を遮断し、強電リレー31,32がオフにされる。
 第2マイコン12が異常であるときには、第2マイコン12から第1マイコン11へとWDT信号線16を介して出力されるWDT信号が停止する。このWDT信号が停止したことにより、マイコン機能2の監視部11bにおいて、マイコン動作異常であると判定され、第1マイコン11からRST信号線17を介して第2マイコン12へRST信号が出力される。RST信号を受けた第2マイコン12は、第2F/Sリレーカット信号線21を介して第2F/Sリレーカット信号をフェイルセーフ回路14へ出力する。したがって、フェイルセーフ回路14からのオフ信号を受けたフェイルセーフリレー2が、車載強電系に有する強電リレー31,32のリレー作動用電源を遮断し、強電リレー31,32がオフにされる。
 上記のように、第1マイコン11あるいは第2マイコン12にマイコン異常が発生したときには、WDT信号の監視によりマイコン動作異常であると判定されると、直ちに強電リレー31,32がオフにされることになり、リセット処理におけるフェイルセーフ機能が発揮される。
 [リプログラムシーンでのリセット処理作用]
 第2マイコン12のリプログラムシーンでのリセット処理作用を、図2に基づき説明する。第2マイコン12の制御プログラムを書き換えるリプログラムを開始すると、ステップS121において、リプログラムの実施動作を開始する前に予めマイコン機能1に対して充放電中止の指令を通信により通知する。充放電中止指令を通知した後、次のステップS122において、マイコン機能2はリプログラムの実施動作が開始される。次のステップS123において、リセット処理許可条件が判断され、リプログラム完了条件と充放電停止完了条件が成立していることを確認すると、ステップS124へ進み、WDT処理が停止され、強制的にハードリセット処理(=強電リレー31,32のオフ処理)が行われる。
 この第2マイコン12のリプログラムシーンでは、第1マイコン11によるマイコン機能1による処理として、第2マイコン12からマイコン機能1に対して充放電中止の指令を通信により受け取ると、ステップS111において、充電・放電の通電が中止される。そして、充電・放電の通電中止が完了すると、次のステップS112において、マイコン機能1は充放電を中止したことをマイコン機能2に対し通信により通知する。なお、マイコン機能1において、充放電の中止を完了できない場合には、中止できない旨をマイコン機能2へ通知する場合がある。
 この第2マイコン12のリプログラムシーンでの通電停止リセット処理動作を、図4に示すシーケンスにより説明する。コンサルトリプロ指示をトリガーとしてリプログラムが指示されると、予め強電停止の実施をマイコン機能2からマイコン機能1へ通信により通知し、マイコン機能2でのリプログラムの実施動作を開始する。そして、マイコン機能2でのリプログラム実施と、マイコン機能1での強電停止実施と、の2つの実施動作が同時進行にて行われる。そして、マイコン機能1からの通信により強電停止の完了を確認し、且つ、第2マイコン12のリプログラムが完了すると、マイコン機能2のリセット処理が実行される。
 上記のように、実施例1では、第2マイコン12の制御プログラムの書き換えを実施するリプログラムシーンのとき、予め車載強電系の通電を止める処理を追加し、車載強電系を通電停止状態として強電リレー31,32をオフにする構成を採用した。
 このように、通電停止状態で強電リレー31,32をオフにすることで、高電圧の通電状態でリレーオフにするときのように、スイッチ接点にてスパークが発生せず、強電リレー31,32のスイッチ部がオン溶着することはない。
 したがって、マイコン異常以外の原因のうち、第2マイコン12のリプログラムシーンでリセットするとき、予め強電系の通電を止める処理を追加したことで、強電リレー31,32の溶着が防止される。
 実施例1では、第2マイコン12の制御プログラムを書き換えるリプログラムを実施する際、第1マイコン11への通信により予め前記車載強電系の通電停止を指示するとリプログラムを開始する。そして、第1マイコン11から第2マイコン12への通信による通電停止の確認と、リプログラムの完了を確認した後、強電リレー31,32をオフにするリセット処理を実施する構成を採用した。
 例えば、リプログラムを実施する際、強電停止が完了するのを待って、第2マイコン12のリプログラムを開始する場合、強電リレー31,32をオフにするリセット処理の開始タイミングが、強電停止の完了を待つ分だけ遅れてしまう。
 これに対し、マイコン機能2でのリプログラム実施と、マイコン機能1での強電停止実施と、を同時進行にて行なうようにしたことで、強電リレー31,32をオフにするリセット処理の開始タイミングが早期になる。加えて、車載強電系での強電停止完了を確認した上でリセット処理することで、強電リレー31,32の溶着も確実に防止される。
 [低電圧シーンでのリセット処理作用]
 電子制御ユニット1の電源電圧が低く、第1マイコン11と第2マイコン12が、この低電圧を原因として誤動作し、WDT信号が停止すると、リセット処理が行われる。
 そこで、12Vバッテリ8の自動充電制御系から12Vバッテリ電圧のモニタデータをCAN通信線により入力し、第1マイコン11及び第2マイコン12の電源電圧が正常な動作を確保できる電圧閾値よりも低いと、低電圧シーンと判定する。そして、低電圧シーンであると判定されると、予め強電系の通電を止める処理を追加し、車載強電系での充電・放電による通電を停止し、通電を停止した状態で強電リレー31,32をオフにするリセット処理を実施する。
 したがって、マイコン異常以外の原因のうち、第1マイコン11及び第2マイコン12の電源電圧が低電圧シーンでリセットするとき、予め強電系の通電を止める処理を追加したことで、強電リレー31,32の溶着が防止される。
 [モード移行シーンでのリセット処理作用]
 通常モード(IGNモード)からウェイクアップモード(WakeUpモード)へと移行する際は、IGNモード→OFFモード→WakeUpモードへと遷移する。また、ウェイクアップモード(WakeUpモード)から通常モード(IGNモード)へと移行する際は、WakeUpモード→OFFモード→IGNモードへと遷移する。このように、モード移行シーンでは、一度、OFFモードへ遷移することで、OFFモードにてWDT信号が停止すると、リセット処理が行われる。
 そこで、モード移行シーンにおいて、OFFモードへ入るとき、予め強電系の通電を止める処理を追加し、車載強電系での充電・放電による通電を停止し、通電を停止した状態で強電リレー31,32をオフにするリセット処理を実施する。
 したがって、マイコン異常以外の原因のうち、通常モードとウェイクアップモードの間でのモード移行シーンでリセットするとき、予め強電系の通電を止める処理を追加したことで、強電リレー31,32の溶着が防止される。
 次に、効果を説明する。
 実施例1の電気自動車の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) 電源(12Vバッテリ8及び電源IC回路13)を共有して設けられ、別々の制御機能を有し、それぞれの制御プログラムを独立して書き換え可能な第1マイコン11及び第2マイコン12と、
 前記第1マイコン11と前記第2マイコン12の互いのマイコン動作を監視し、マイコン動作が異常であると判定されると、車載強電系に有する強電リレー31,32をオフにするリセット処理を実施するリセット処理手段と、
 を備えた電動車両(電気自動車)の制御装置において、
 前記リセット処理手段は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、前記車載強電系の通電を停止し、通電を停止した状態で前記強電リレー31,32をオフにするリセット処理を実施する通電停止リセット処理部を有する(図1)。
 このため、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、強電リレー31,32の溶着を防止することができる。
 (2) 前記通電停止リセット処理部は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするときを、前記第1マイコン11と前記第2マイコン12のうち一方の制御プログラムの書き換えを実施するリプログラムシーンとする(図2)。
 このため、(1)の効果に加え、マイコン異常以外の原因のうち、第1マイコン11と第2マイコン12のうち一方の制御プログラムの書き換えを実施するリプログラムシーンでリセットするとき、予め強電系の通電を止める処理を追加したことで、強電リレー31,32の溶着を防止することができる。
 (3) 前記通電停止リセット処理部は、前記第1マイコン11と前記第2マイコン12のうち一方の制御プログラムを書き換えるリプログラムを実施する際、制御プログラムを書き換える一方のマイコンから他方のマイコンへの通信により予め前記車載強電系の通電停止を指示するとリプログラムを開始し、他方のマイコンから一方のマイコンへの通信による通電停止の確認と、リプログラムの完了を確認した後、前記強電リレー31,32をオフにするリセット処理を実施する(図4)。
 このため、(2)の効果に加え、リプログラムシーンでリセットするとき、強電リレー31,32の溶着を確実に防止した上で、強電リレー31,32をオフにするリセット処理を開始するタイミングの早期化を図ることができる。
 (4) 前記通電停止リセット処理部は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするときを、前記第1マイコン11及び第2マイコン12の電源電圧(12Vバッテリ電圧)が正常な動作を確保できる電圧閾値よりも低いと判定された低電圧シーンとする(図1)。
 このため、(1)~(3)の効果に加え、マイコン異常以外の原因のうち、第1マイコン11及び第2マイコン12の電源電圧が低電圧シーンでリセットするとき、予め強電系の通電を止める処理を追加したことで、強電リレー31,32の溶着を防止することができる。
 (5) 車載電子制御系は、車載電源スイッチ(イグニッションスイッチ)がオンである通常モードと、前記車載電源スイッチはオフであるが車載コントローラでの必要動作を確保するウェイクアップモードと、を有し、
 前記通電停止リセット処理部は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするときを、前記通常モードから前記ウェイクアップモードへと移行する際、及び、前記ウェイクアップモードから通常モードへと移行するモード移行シーンとする(図3)。
 このため、(1)~(3)の効果に加え、マイコン異常以外の原因のうち、通常モードとウェイクアップモードの間でのモード移行シーンでリセットするとき、予め強電系の通電を止める処理を追加したことで、強電リレー31,32の溶着を防止することができる。
 (6) 前記第1マイコン11及び前記第2マイコン12は、前記車載強電系を制御する1つの電子制御ユニット1内に有する(図1)。
 このため、(1)~(5)の効果に加え、別々の制御機能を有し、それぞれの制御プログラムを独立して書き換え可能な2つのマイコン11,12が、1つの電子制御ユニット1内に一体化して設けられる電動車両(電気自動車)において、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、強電リレー31,32の溶着を防止することができる。
 以上、本発明の電動車両の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、第1マイコン11として、VCMメインマイコンを用い、第2マイコン12として、VCMサブ+PBWマイコンを用いる例を示した。しかし、第1マイコン及び第2マイコンとしては、車載される複数のコントローラのうち、組み合わせて用いられるような2つのコントローラであれば実施例1に限られない。例えば、ハイブリッド車の場合、第1マイコンを統合コントローラとし、第2マイコンをモータコントローラとするような例としても良い。要するに、電源を共有して設けられ、別々の制御機能を有し、それぞれの制御プログラムを独立して書き換え可能な2つのマイコンであれば良い。
 実施例1では、第1マイコン11及び第2マイコン12が、車載強電系を制御する1つの電子制御ユニット1内に一体化して有する例を示した。しかし、第1マイコン及び第2マイコンが、同じベースプレートに基板にて有する例であっても良いし、また、第1マイコンと第2マイコンが、別体に離れて有する例であっても良い。
 実施例1では、通電停止リセット処理が行われるシーンとして、リプログラムシーンと低電圧シーンとモード移行シーンを示した。しかし、通電停止リセット処理が行われるシーンとしては、これら3つのシーン以外に通電停止リセット処理必要シーンを加える例であっても良い。また、通電停止リセット処理が行われるシーンとしては、3つのシーンのうち、選択される1つのシーン又は2つのシーンに限定する例であっても良い。
 実施例1では、本発明の制御装置を電気自動車に適用する例を示した。しかし、本発明の制御装置は、ハイブリッド車や燃料電池車等の他の電動車両に対しても適用することができる。要するに、車載強電系を備え、リセット処理時に車載強電系に有する強電リレーをオフにするものであれば適用できる。
関連出願の相互参照
 本出願は、2012年9月24日に日本国特許庁に出願された特願2012-209821に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (6)

  1.  電源を共有して設けられ、別々の制御機能を有し、それぞれの制御プログラムを独立して書き換え可能な第1マイコン及び第2マイコンと、
     前記第1マイコンと前記第2マイコンの互いのマイコン動作を監視し、マイコン動作が異常であると判定されると、車載強電系に有する強電リレーをオフにするリセット処理を実施するリセット処理手段と、
     を備えた電動車両の制御装置において、
     前記リセット処理手段は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするとき、前記車載強電系の通電を停止し、通電を停止した状態で前記強電リレーをオフにするリセット処理を実施する通電停止リセット処理部を有する
     ことを特徴とする電動車両の制御装置。
  2.  請求項1に記載された電動車両の制御装置において、
     前記通電停止リセット処理部は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするときを、前記第1マイコンと前記第2マイコンのうち一方の制御プログラムの書き換えを実施するリプログラムシーンとする
     ことを特徴とする電動車両の制御装置。
  3.  請求項2に記載された電動車両の制御装置において、
     前記通電停止リセット処理部は、前記第1マイコンと前記第2マイコンのうち一方の制御プログラムを書き換えるリプログラムを実施する際、制御プログラムを書き換える一方のマイコンから他方のマイコンへの通信により予め前記車載強電系の通電停止を指示するとリプログラムを開始し、他方のマイコンから一方のマイコンへの通信による通電停止の確認と、リプログラムの完了を確認した後、前記強電リレーをオフにするリセット処理を実施する
     ことを特徴とする電動車両の制御装置。
  4.  請求項1から3までの何れか1項に記載された電動車両の制御装置において、
     前記通電停止リセット処理部は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするときを、前記第1マイコン及び第2マイコンの電源電圧が正常な動作を確保できる電圧閾値よりも低いと判定された低電圧シーンとする
     ことを特徴とする電動車両の制御装置。
  5.  請求項1から4までの何れか1項に記載された電動車両の制御装置において、
     車載電子制御系は、車載電源スイッチがオンである通常モードと、前記車載電源スイッチはオフであるが車載コントローラでの必要動作を確保するウェイクアップモードと、を有し、
     前記通電停止リセット処理部は、マイコン異常以外の原因によるマイコン動作異常判定に基づきリセットするときを、前記通常モードから前記ウェイクアップモードへと移行する際、及び、前記ウェイクアップモードから通常モードへと移行するモード移行シーンとする
     ことを特徴とする電動車両の制御装置。
  6.  請求項1から5までの何れか1項に記載された電動車両の制御装置において、
     前記第1マイコン及び前記第2マイコンは、前記車載強電系を制御する1つの電子制御ユニット内に有する
     ことを特徴とする電動車両の制御装置。
PCT/JP2013/072215 2012-09-24 2013-08-20 電動車両の制御装置 WO2014045785A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380048379.7A CN104641354B (zh) 2012-09-24 2013-08-20 电动车辆的控制装置
KR1020167006412A KR20160035092A (ko) 2012-09-24 2013-08-20 전동 차량의 제어 장치
EP13838526.5A EP2899637B1 (en) 2012-09-24 2013-08-20 Electric vehicle control device
KR1020157005757A KR20150033742A (ko) 2012-09-24 2013-08-20 전동 차량의 제어 장치
US14/419,662 US9216651B2 (en) 2012-09-24 2013-08-20 Electric vehicle control device
JP2014536699A JP5817935B2 (ja) 2012-09-24 2013-08-20 電動車両の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-209821 2012-09-24
JP2012209821 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014045785A1 true WO2014045785A1 (ja) 2014-03-27

Family

ID=50341109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072215 WO2014045785A1 (ja) 2012-09-24 2013-08-20 電動車両の制御装置

Country Status (6)

Country Link
US (1) US9216651B2 (ja)
EP (1) EP2899637B1 (ja)
JP (1) JP5817935B2 (ja)
KR (2) KR20150033742A (ja)
CN (1) CN104641354B (ja)
WO (1) WO2014045785A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627154A (zh) * 2016-10-21 2017-05-10 深圳市沃特玛电池有限公司 电动汽车及其主机
WO2019092961A1 (ja) * 2017-11-13 2019-05-16 株式会社デンソー 自動運転制御装置、車両の自動運転制御方法
JP2019154228A (ja) * 2018-03-05 2019-09-12 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft 一体型電源ボックス
CN110828916A (zh) * 2019-11-01 2020-02-21 天津市捷威动力工业有限公司 一种电池系统高压继电器控制装置及控制方法
CN111356961A (zh) * 2017-11-16 2020-06-30 罗伯特·博世有限公司 用于控制车辆功能的设备、用于车辆的车辆系统、用于复位用于控制车辆功能的设备的电路的方法
JPWO2019159598A1 (ja) * 2018-02-15 2020-12-03 日立オートモティブシステムズ株式会社 電池制御装置
JP2021158727A (ja) * 2020-03-25 2021-10-07 河村電器産業株式会社 Bms監視システム
JPWO2021240190A1 (ja) * 2020-05-28 2021-12-02

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033236A (ja) * 2015-07-31 2017-02-09 日立オートモティブシステムズ株式会社 車両制御装置
JP6742192B2 (ja) * 2016-08-09 2020-08-19 日立オートモティブシステムズ株式会社 電子制御装置
CN107856538A (zh) * 2017-11-14 2018-03-30 华晨汽车集团控股有限公司 一种电动汽车电驱动系统工作模式切换控制方法
CN110262297B (zh) 2018-09-21 2020-10-02 宁德时代新能源科技股份有限公司 继电器控制装置及供电系统
KR102269546B1 (ko) * 2020-02-26 2021-06-28 슈어소프트테크주식회사 결함 주입 장치
FR3109256A1 (fr) * 2020-04-08 2021-10-15 Psa Automobiles Sa Procédé, dispositif et système de détermination d’un état de fonctionnement d’un calculateur de véhicule
FR3115373B1 (fr) * 2020-10-20 2023-06-02 Psa Automobiles Sa Gestion de la supervision d’un composant électronique d’un véhicule terrestre à moteur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158742A (ja) * 1991-12-09 1993-06-25 Sumitomo Electric Ind Ltd 複数のマイクロコンピュータの暴走監視回路
JPH10177504A (ja) 1996-12-18 1998-06-30 Denso Corp 電子制御装置
JP2006155915A (ja) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd 電流供給装置
JP2008223692A (ja) * 2007-03-14 2008-09-25 Denso Corp 電子制御装置
JP2009268286A (ja) * 2008-04-28 2009-11-12 Nissan Motor Co Ltd 電動車両の制御装置及び制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457889B2 (ja) 1998-08-28 2003-10-20 株式会社東芝 洗濯機
JP2002332909A (ja) * 2001-05-08 2002-11-22 Kokusan Denki Co Ltd 車両駆動装置の制御装置
JP4239949B2 (ja) 2004-10-26 2009-03-18 トヨタ自動車株式会社 ハイブリッド制御システム
KR100921098B1 (ko) 2008-04-10 2009-10-08 현대자동차주식회사 하이브리드 자동차용 고전압 릴레이 제어 방법
JP5240260B2 (ja) * 2010-09-13 2013-07-17 株式会社デンソー 車両用電子制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158742A (ja) * 1991-12-09 1993-06-25 Sumitomo Electric Ind Ltd 複数のマイクロコンピュータの暴走監視回路
JPH10177504A (ja) 1996-12-18 1998-06-30 Denso Corp 電子制御装置
JP2006155915A (ja) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd 電流供給装置
JP2008223692A (ja) * 2007-03-14 2008-09-25 Denso Corp 電子制御装置
JP2009268286A (ja) * 2008-04-28 2009-11-12 Nissan Motor Co Ltd 電動車両の制御装置及び制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899637A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627154A (zh) * 2016-10-21 2017-05-10 深圳市沃特玛电池有限公司 电动汽车及其主机
WO2019092961A1 (ja) * 2017-11-13 2019-05-16 株式会社デンソー 自動運転制御装置、車両の自動運転制御方法
JP2019089382A (ja) * 2017-11-13 2019-06-13 株式会社デンソー 自動運転制御装置、車両の自動運転制御方法
CN111356961A (zh) * 2017-11-16 2020-06-30 罗伯特·博世有限公司 用于控制车辆功能的设备、用于车辆的车辆系统、用于复位用于控制车辆功能的设备的电路的方法
JP2021503655A (ja) * 2017-11-16 2021-02-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 車両用の機能を制御するための装置、車両用の車両システム、および車両用の機能を制御するための装置の電気回路をリセットするための方法
JPWO2019159598A1 (ja) * 2018-02-15 2020-12-03 日立オートモティブシステムズ株式会社 電池制御装置
JP2019154228A (ja) * 2018-03-05 2019-09-12 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft 一体型電源ボックス
CN110828916A (zh) * 2019-11-01 2020-02-21 天津市捷威动力工业有限公司 一种电池系统高压继电器控制装置及控制方法
JP2021158727A (ja) * 2020-03-25 2021-10-07 河村電器産業株式会社 Bms監視システム
JPWO2021240190A1 (ja) * 2020-05-28 2021-12-02
WO2021240190A1 (ja) * 2020-05-28 2021-12-02 日産自動車株式会社 電源システム及び電源システムの制御方法
JP7490768B2 (ja) 2020-05-28 2024-05-27 日産自動車株式会社 電源システム及び電源システムの制御方法

Also Published As

Publication number Publication date
EP2899637A4 (en) 2015-12-16
CN104641354B (zh) 2016-06-29
JPWO2014045785A1 (ja) 2016-08-18
US20150210166A1 (en) 2015-07-30
EP2899637A1 (en) 2015-07-29
KR20150033742A (ko) 2015-04-01
JP5817935B2 (ja) 2015-11-18
EP2899637B1 (en) 2017-04-26
US9216651B2 (en) 2015-12-22
KR20160035092A (ko) 2016-03-30
CN104641354A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5817935B2 (ja) 電動車両の制御装置
CN106740567B (zh) 车辆用电池的过放电防止装置及其方法
JP4341712B2 (ja) 蓄電機構の充電制御装置および充電制御方法
JP5621845B2 (ja) 車両用制御装置および車両用制御方法
JP5292186B2 (ja) 電動車両の電源システム
EP2957016B1 (en) Hybrid vehicle running control apparatus
JP5446283B2 (ja) 車両用充電制御装置
US20120274277A1 (en) Vehicle
JP6496356B2 (ja) 車両
JP2012085481A (ja) 電動車両
WO2012117550A1 (ja) 車両のシフトロック装置
JP2019031259A (ja) 車両用制御装置
CN110893822A (zh) 一种用于机动车辆的车载电网
JP2016510706A (ja) ハイブリッド電気自動車の動作方法及び配置
JP6776989B2 (ja) 走行制御装置
JP2017070045A (ja) 電動車両の電源システム
JP2013240191A (ja) 車両および車両の制御方法
JP2019006263A (ja) 車両用制御装置
US11498433B2 (en) Motor system control apparatus for vehicles and motor system control method thereof
WO2011158088A2 (en) Electric power supply apparatus for vehicle, and control method thereof
JP2020078150A (ja) 充電装置
JP6109043B2 (ja) 車両の給電制御装置
JP7047784B2 (ja) 制御システム
JP2016082691A (ja) 車両
JP2013028186A (ja) 電動車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419662

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157005757

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013838526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013838526

Country of ref document: EP