WO2014045779A1 - 気相成長装置及びエピタキシャルウェーハの製造方法 - Google Patents
気相成長装置及びエピタキシャルウェーハの製造方法 Download PDFInfo
- Publication number
- WO2014045779A1 WO2014045779A1 PCT/JP2013/072170 JP2013072170W WO2014045779A1 WO 2014045779 A1 WO2014045779 A1 WO 2014045779A1 JP 2013072170 W JP2013072170 W JP 2013072170W WO 2014045779 A1 WO2014045779 A1 WO 2014045779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- vapor phase
- phase growth
- growth apparatus
- gas receiving
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45502—Flow conditions in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4585—Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
- C30B25/165—Controlling or regulating the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the present invention relates to a vapor phase growth apparatus for vapor phase growth of a semiconductor thin film such as a silicon single crystal thin film on the main surface of a semiconductor substrate such as a silicon single crystal substrate, and an epitaxial wafer manufacturing method realized using the vapor phase growth apparatus. Is.
- a silicon epitaxial wafer in which a silicon single crystal thin film (hereinafter simply abbreviated as “thin film”) is formed on the main surface of a silicon single crystal substrate (hereinafter simply abbreviated as “substrate”) by vapor phase growth is a bipolar IC.
- thin film silicon single crystal thin film
- substrate silicon single crystal substrate
- MOS-IC electronic devices
- a single-wafer type vapor phase growth apparatus is becoming mainstream instead of a method of batch processing a plurality of wafers.
- a single substrate is rotated and held horizontally in a reaction vessel, and a thin film is grown in a vapor phase while supplying a source gas substantially horizontally and in one direction from one end to the other end of the reaction vessel.
- a source gas is usually supplied from a gas inlet formed at one end of a reaction vessel via a gas supply pipe, and after the source gas flows along the substrate surface, the vessel It is structured to be discharged from the discharge port on the other end side.
- a dispersion plate having a large number of holes is provided on the downstream side of the gas introduction port, or a partition plate for partitioning the gas flow in the width direction is provided.
- Patent Document 1 in the vapor phase growth apparatus having such a structure, in order to reduce flow rate unevenness, a raw material that extends from the first end of the reaction vessel main body to the second end perpendicular to the rotation axis of the susceptor.
- the gas receiving area of the bank member is In a cross section by an arbitrary virtual plane parallel to the reference plane, the central position in the width direction has a concave outer shape line that is recessed toward the gas discharge port side from both edge positions, and is adjacent along the circumferential direction of the bank member
- Patent Document 1 is insufficient in the effect of eliminating the gas flow unevenness.
- the gas passes through the bank member, there is a region where the gas flow is difficult to flow near the wall of the gas receiving recess of the bank member, and there is a region where the gas flow easily flows at the center between the walls. Gas flow unevenness due to the shape of the member and the arrangement of the gas receiving recesses occurs.
- the film thickness distribution in the gas flow vertical direction can be uneven at the outer peripheral portion of the wafer, which deteriorates the film thickness distribution of the entire wafer. .
- the present invention has been made in view of the above circumstances, and it is possible to effectively reduce the gas flow unevenness in the bank member while using a relatively simple mechanism, and as a result, it is possible to secure a good film thickness distribution. It is an object of the present invention to provide a phase growth apparatus and an epitaxial wafer manufacturing method using the same.
- the present invention is a vapor phase growth apparatus for vapor phase growth of a semiconductor thin film on a main surface of a semiconductor substrate, wherein a gas inlet is formed on the first end side in the horizontal direction.
- the semiconductor substrate is disposed on a disk-shaped susceptor, and a bank member is disposed in a positional relationship so as to surround the susceptor and an upper surface thereof coincides with an upper surface of the susceptor.
- Outer peripheral surface The main surface of the semiconductor substrate on the susceptor is opened in an opposing manner, and the source gas from the gas introduction port hits the gas receiving region formed on the outer peripheral surface of the bank member and rides on the upper surface side.
- a vapor phase growth apparatus configured to flow along When a virtual center line along the flow direction of the source gas from the first end of the reaction vessel main body to the second end perpendicular to the rotation axis of the susceptor is a horizontal reference line,
- the gas receiving region forms a symmetric shape with respect to the horizontal reference line, and is divided and divided into 7 to 30 steps adjacent along the circumferential direction of the bank member on one side of the symmetric shape It is characterized by having.
- the gas receiving region of the bank member forms a symmetric shape with a horizontal reference line reflecting the gas flow direction as a center, and a plurality of stages adjacent along the circumferential direction of the bank member on one side of the symmetric shape Therefore, the gas flow can be uniformly distributed in the circumferential direction of the bank member (the vertical direction of the gas flow). Further, as a result of extensive studies by the present inventors, it has been found that gas flow unevenness can be effectively eliminated when the number of stages of the divided structure is 7 or more and 30 or less. As a result, the flow distribution in the vertical direction of the gas flow of the source gas flowing on the semiconductor substrate can be made uniform, and as a result, a semiconductor thin film having a very uniform film thickness distribution can be obtained.
- the top surface of the bank member is assumed to be in a positional relationship that coincides with the top surface of the susceptor, but this does not necessarily mean that the top surface of the bank member and the top surface of the susceptor are completely aligned, up to about 2 mm. The difference in position is considered to be the same.
- the divided structure is a gas receiving concave portion having a concave outer shape in which a central position in the width direction is retracted to the gas discharge port side from both edge positions in a cross section by an arbitrary virtual plane parallel to the reference plane. Is preferred.
- the gas receiving recess is formed with a vertical gas receiving surface having an outline that is perpendicular to the horizontal reference line in a cross section of an arbitrary virtual plane parallel to the reference plane. .
- the method for producing an epitaxial wafer of the present invention includes a semiconductor substrate disposed in the reaction vessel body of the vapor phase growth apparatus of the present invention, and the raw material gas is circulated in the reaction vessel body to form a semiconductor thin film on the semiconductor substrate. It is characterized in that an epitaxial wafer is obtained by vapor-phase epitaxial growth. Thereby, an epitaxial wafer having a uniform film thickness distribution in the gas flow vertical direction can be obtained.
- FIG. 2 is an enlarged view of the vicinity of a gas introduction part in FIG. 1. It is a top view of the vapor phase growth apparatus 1 which takes out and shows the principal part of FIG. It is an enlarged view of the broken line part 100 of FIG.
- FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4.
- FIG. 6 is a sectional view taken along line BB in FIG. 5.
- FIG. 1 is a side sectional view of a vapor phase growth apparatus 1 according to the present invention.
- FIG. 2 is an enlarged view of the vicinity of the gas introduction part of FIG.
- FIG. 3 is a plan view of the vapor phase growth apparatus 1 showing the main part of FIG.
- the vapor phase growth apparatus 1 has a reaction vessel in which a gas introduction port 21 is formed on the first end portion 31 side in the horizontal direction and a gas discharge port 36 is formed on the second end portion 32 side. It has a main body 2.
- a raw material gas G for forming a thin film is introduced into the reaction vessel main body 2 from the gas introduction port 21 and along the main surface of the substrate W rotated and held substantially horizontally in the internal space 5 of the reaction vessel main body 2. After flowing, the gas is discharged from the gas discharge port 36 through the discharge pipe 7.
- the source gas G is for vapor-phase growth of a silicon single crystal thin film on the substrate W, and is a silicon compound such as SiHCl 3 , SiCl 4 , SiH 2 Cl 2 , SiH 4 , or Si 2 H 6. Selected from.
- the source gas G is appropriately mixed with B 2 H 6 or PH 3 as a dopant gas, H 2 , N 2 , Ar, or the like as a diluent gas.
- a corrosive gas appropriately selected from HCl, HF, ClF 3 , NF 3, and the like.
- a pretreatment gas diluted with a diluent gas is supplied into the reaction vessel main body 2 or a high temperature heat treatment is performed in an H 2 atmosphere.
- a disc-shaped susceptor 12 that is rotationally driven by a motor 13 around a vertical rotation axis O is disposed in the internal space 5 of the reaction vessel body 2, and a shallow seat formed on the upper surface thereof.
- Only one substrate W for manufacturing a silicon epitaxial wafer is disposed in the bore 12b. That is, the vapor phase growth apparatus 1 is configured as a horizontal single-wafer type vapor phase growth apparatus.
- the substrate W has a diameter of, for example, 100 mm or more.
- infrared heating lamps 11 for heating the substrate are arranged at predetermined intervals above and below the reaction vessel main body 2 corresponding to the arrangement region of the substrate W.
- a bank member 23 is arranged so as to surround the susceptor 12 as shown in FIG.
- the bank member 23 is arranged in a positional relationship in which the upper surface 23 a of the bank member 23 substantially coincides with the upper surface 12 a of the susceptor 12 (and eventually the main surface of the substrate W).
- the gas inlet 21 is opened in a shape facing the outer peripheral surface 23 b of the bank member 23.
- the raw material gas G from the gas inlet 21 hits the gas receiving region 60 formed on the outer peripheral surface 23 b of the bank member 23 and rides on the upper surface 23 a side, and then on the susceptor 12. It flows along the main surface of the substrate W.
- a plate-shaped soaking preheating ring 22 formed in a plate shape is disposed along the inner peripheral edge of the bank member 23, and the upper surface 12 a of the susceptor 12 disposed on the inner side of the preheating ring 22 is connected to the upper surface 22 a of the preheating ring 22. It is almost the same.
- a virtual center line is defined as a horizontal reference line HSL.
- a direction perpendicular to both the horizontal reference line HSL and the rotation axis O is defined as a width direction WL.
- a virtual plane that includes the horizontal reference line HSL and is orthogonal to the rotation axis O is defined as a reference plane RP.
- the gas receiving region 60 of the bank member 23 is formed with a plurality of gas receiving recesses 70 (divided structures) that are divided and divided adjacent to each other along the circumferential direction of the bank member 23.
- FIG. 4 is an enlarged view of the broken line portion 100 of FIG. 3, and is a plan view of the gas receiving recess 70 located in the vicinity of the horizontal reference line HSL.
- FIG. 5 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view taken along the line BB of FIG. 5 is a line corresponding to an arbitrary virtual plane RPA parallel to the reference plane RP.
- the shape of the gas receiving recess 70 will be described with reference to FIGS.
- the gas receiving recess 70 has the same shape as that of Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-231641). That is, as shown in FIG. 6, each gas receiving recess 70 has a center position CQ in the width direction WL closer to the gas discharge port 36 (see FIG. 3) than both edge positions EQ and EQ in the cross section taken along the virtual plane RPA. Recessed concave outline.
- the gas receiving recess 70 is adjacent to both ends of the vertical gas receiving surface 61 in the width direction WL of the vertical gas receiving surface 61 corresponding to the bottom of the concave inner peripheral surface and extends toward the gas inlet 21 (see FIG. 1).
- the gas guide surfaces 62 and 62 are provided. Specifically, as shown in FIG.
- gas guide wall portions 63 extending toward the gas inlet 21 are formed at both ends of the vertical gas receiving surface 61 in the width direction WL, and the gas guide wall portions 63 are formed.
- the left and right side surfaces are gas guide surfaces 62.
- Adjacent gas receiving recesses 70 are separated by one gas guide wall 63.
- the gas guide surfaces 62 and 62 effectively suppress the flow of the raw material gas that tends to escape in the lateral direction along the width direction WL. As a result, the flow of the source gas distributed to the individual gas receiving recesses 70 is well preserved even after getting over the vertical gas receiving surface 61, and the flow velocity unevenness in the width direction WL is reduced.
- the vertical gas receiving surface 61 has an outline 61 s that is perpendicular to the horizontal reference line HSL in a cross section taken along the virtual plane RPA.
- the vertical gas receiving surface 61 is an inclined gas receiving surface having a downward slope toward the gas inlet 21 (see FIG. 1) in the direction along the horizontal reference line HSL.
- the inclined gas receiving surface 61 (vertical gas receiving surface) allows the source gas to smoothly run on the upper surface 23a of the bank member 23, and the gas flow can be appropriately distributed.
- the gas receiving recess 70 (gas receiving region 60) is formed symmetrically with respect to the horizontal reference line HSL.
- the gas receiving recess 70 includes one gas receiving recess 71 (hereinafter referred to as a central recess) formed in an inner region (near the horizontal reference line HSL) in the width direction WL, and a left side of the central recess 71 (see FIG. 3 on the left side in FIG. 3 and the left outer region in the width direction WL, a plurality of gas receiving recesses 72 (hereinafter referred to as left side recesses) and the right side of the center recess 71 (on the right side in the page direction of FIG.
- a central recess formed in an inner region (near the horizontal reference line HSL) in the width direction WL
- a left side of the central recess 71 see FIG. 3 on the left side in FIG. 3 and the left outer region in the width direction WL
- a plurality of gas receiving recesses 72 hereinafter referred
- the left concave portion 72 and the right concave portion 73 are formed symmetrically with respect to the horizontal reference line HSL (with respect to the central concave portion 71).
- the gas receiving recesses 70 are arranged stepwise on the left and right sides of the horizontal reference line HSL. As shown in FIG. 4, between the vertical gas receiving surfaces 61 and 61 adjoining stepwise, the connection surface part 61j extended in the direction parallel to the horizontal reference line HSL is formed. Then, when viewed from the side of the adjacent vertical gas receiving surfaces 61 and 61 close to the gas discharge port 36 (see FIG. 1), that is, the downstream side in the gas flow direction, the connecting surface portion 61j extends in the width direction WL. It also functions as a gas guide surface 62 that prevents or suppresses escape of the gas flow. In other words, by using the connecting surface portion 61j formed as a by-product by the stepwise vertical gas receiving surface 61 as the gas guide surface 62, the structure of the bank member 23 can be simplified or made compact.
- the gas receiving recesses 70 (the left recess 72 and the right recess 73) are arranged in a stepped manner so as to approach the gas discharge port 36 as the distance from the horizontal reference line HSL increases. .
- the gas receiving recesses 70 are preferably arranged along a circumferential path centering on the rotation axis O of the susceptor 12.
- the present invention is characterized by the number of steps of the left-side recess 72 and the right-side recess 73.
- the left-side recess 72 and the right-side recess 73 are formed in the same number as each other, and each is 7 to 30 steps. Is formed.
- FIG. 3 shows an example in which the left side recess 72 and the right side recess 73 are each formed in seven stages.
- the flow distribution of the source gas in the gas flow vertical direction (width direction WL) can be made uniform, and an epitaxial film having a very uniform film thickness distribution in the gas flow vertical direction can be obtained as shown in the following examples. Obtainable.
- Partition plates 34R and 34L are provided to partition at a plurality of locations (two locations in the present embodiment) in the width direction WL. These partition plates 34R and 34L are arranged so as to extend toward the gas receiving region 60 of the bank member 23 in such a manner that they are distributed to the left and right with respect to the horizontal reference line HSL in the width direction WL.
- gas inlets 21A and 21B are formed corresponding to the right partition plate 34R and the left partition plate 34L, respectively.
- the raw material gas G is guided to the internal space 5 (see FIG. 1) from the gas inlets 21A and 21B via the gas pipe 50.
- the gas pipe 50 is an outer pipe 51 that supplies gas to the outer region (left concave portion 72, right concave portion 73) as well as the inner pipe 53 that supplies gas to the inner region (central concave portion 71) in the width direction WL. And branching.
- the inner piping 53 is provided on both the left and right sides with respect to the horizontal reference line HSL.
- the inner pipes 53 and 53 open the inner gas introduction ports 21A and 21A, respectively.
- the outer piping 51 is provided on both the left and right sides with respect to the horizontal reference line HSL.
- the right outer pipe 51 opens an outer gas inlet 21 ⁇ / b> B that mainly supplies gas to the right recess 73.
- the left outer pipe 51 mainly opens an outer gas inlet 21 ⁇ / b> B that supplies gas to the left recess 72.
- Each of the pipes 51 and 53 is provided with a mass flow controller (not shown) so that the flow rate of the raw material gas flowing through each of the pipes 51 and 53 can be controlled independently by the mass flow controller.
- a gas guide member 24 having a gas guide space 24s formed therein is disposed between a gas inlet 21 and a bank member 23.
- the gas introduction is performed in such a manner that a pair of gas guide members 24R and 24L that guide the source gas toward the outer peripheral surface 23b of the bank member 23 are distributed to the left and right with respect to the horizontal reference line HSL in the width direction WL. It is arranged between the mouth 21 and the bank member 23.
- the partition plates 34R and 34L are arrange
- the opposing surfaces of the gas guide members 24R and 24L to the outer peripheral surface 23b (gas receiving region 60) of the bank member 23 are formed in a cylindrical surface shape corresponding to the outer peripheral surface 23b.
- the reaction vessel main body 2 includes a lower case 3 and an upper case 4, and the bank member 23 is disposed along the inner peripheral surface of the lower case 3.
- a gas introduction surface 23 c is formed in the bank member 23 so as to continue to the upstream side of the lower end of the vertical gas receiving surface 61.
- the gas introduction surface 23 c has a shape substantially coinciding with the extension of the inner surface of the lower end plate 24 b of the gas guide member 24, and plays a role of smoothly guiding the gas flow toward the vertical gas receiving surface 61.
- the upper case 4 includes a first surface 4a that faces the upper surface 23a of the bank member 23, a second surface 4b that faces the vertical gas receiving surface 61, and a third surface 4c that also faces the gas introduction surface 23c. Having a stepped portion.
- a gas passage 55 is formed between the first surface 4a, the second surface 4b, and the third surface 4c and the bank member 23.
- the substrate W is set on the susceptor 12, and after pretreatment such as oxide film removal is performed as necessary, the substrate is rotated by the infrared heating lamp 11. Heat to the predetermined reaction temperature.
- the raw material gas is introduced from the gas introduction ports 21A and 21B at a predetermined flow rate.
- the raw material gas is partitioned into an inner gas flow passing between the partition plates 34R and 34L and an outer gas flow passing through the outer side, and further flows toward the outer peripheral surface 23b of the bank member 23.
- the number of left-side recesses 72 and right-side recesses 73 that are not less than 7 steps and not more than 30 steps are formed on the outer peripheral surface 23b (gas receiving region 60), and therefore in the gas flow vertical direction (width direction WL).
- the unevenness of the gas flow can be effectively suppressed, and an extremely uniform epitaxial film can be obtained.
- a silicon single crystal substrate W having a diameter of 200 mm manufactured by the CZ method was placed in the vapor phase growth apparatus 1 shown in FIGS.
- a vapor phase growth apparatus 10 in which the outer peripheral surface (gas receiving region) of the bank member was divided into three on one side was prepared, and the silicon single crystal substrate W was similarly arranged.
- a gas receiving recess 700 having the same shape as the gas receiving recess 70 (see FIGS. 4 to 6) of the present invention is formed on the outer peripheral surface (gas receiving region 600) of the bank member 230 in FIG.
- the gas receiving recess 700 includes a gas receiving recess 701 (center recess) disposed near the center in the width direction WL (near the horizontal reference line HSL) and a three-stage gas receiving recess disposed on the left side of the center recess 701. 702 (left recess) and a three-stage gas receiving recess 703 (right recess) disposed on the right side in the central recess 701.
- the vapor phase growth apparatus 10 of FIG. 7 differs from the vapor phase growth apparatus 1 of FIGS. 1 to 6 only in the number of stages of the left concave portion 702 and the right concave portion 703.
- the infrared heating lamp 11 (see FIG. 1) was energized, and after the temperature of the substrate W reached 1200 ° C., the natural oxide film on the surface of the substrate W was removed. Thereafter, while keeping the temperature of the substrate W at 1130 ° C., hydrogen gas containing trichlorosilane gas as a source gas is circulated from the inner gas introduction port 21A and the outer gas introduction port 21B (see FIG. 3) to form silicon on the substrate W.
- Single crystal thin films were grown by vapor phase epitaxial growth.
- the total supply flow rate of the source gas at the inner gas inlet 21A and the outer gas inlet 21B was fixed at 50 liters / minute.
- the supply flow rate ratio between the gas inlet 21A and the outer gas inlet 21B is changed variously to grow a silicon single crystal thin film, and the one having the optimum film thickness distribution is selected.
- FIG. 8 shows the film thickness distribution profile. Specifically, the plot point “ ⁇ ” in FIG. 8 indicates the film thickness distribution profile in the vapor phase growth apparatus 1 (gas receiving recess: 7 steps on one side) in FIGS. 8 indicates the film thickness distribution profile in the vapor phase growth apparatus 10 (gas receiving recess: three stages on one side) in FIG.
- the growth rate distribution (film thickness distribution) in the gas flow vertical direction (width direction WL) is greatly waved.
- the film thickness distribution is greatly undulating in the region corresponding to the left recess 702 and the right recess 703 (see FIG. 7) (the region having a position of 40 mm or more and ⁇ 40 mm or less). From this, it can be said that when the number of the gas receiving recesses is “3”, the effect of suppressing the gas flow unevenness in the gas flow vertical direction is insufficient.
- the growth rate distribution (film thickness distribution) in the vertical direction of the gas flow repeatedly repeated small undulations.
- the silicon epitaxial wafer produced by the vapor phase growth apparatus 1 according to the present invention showed a more uniform film thickness distribution than the silicon epitaxial wafer produced by the conventional vapor phase growth apparatus 10.
- the maximum film thickness value of the silicon single crystal thin film is tmax and the minimum film thickness value is tmin
- FIG. 9 shows the results, and shows the transition of the film thickness distribution in the gas flow vertical direction with respect to the number of division stages of the gas receiving recess.
- the horizontal axis of FIG. 9 has shown the division
- the vertical axis in FIG. 9 indicates the film thickness distribution T ( ⁇ %) given by the above equation 1 as the film thickness distribution in the gas flow vertical direction.
- the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the claims.
- the vertical gas receiving surface may be formed as a vertical surface (a surface perpendicular to the horizontal surface) instead of an inclined surface.
- the bottom of the inner peripheral surface of the gas receiving recess may be formed as a curved surface instead of the vertical gas receiving surface.
- the present invention may be applied to a vapor phase growth apparatus for producing a semiconductor epitaxial wafer other than a silicon epitaxial wafer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
気相成長装置1は、半導体基板Wを回転保持するサセプタ12を取り囲むとともに、上面がサセプタ12の上面12aと一致する位置関係にて配置された堤部材23を有する。第一端部31からサセプタ12の回転軸線Oと直交して第二端部32に至る原料ガスの流れ方向に沿った仮想的な中心線を水平基準線HSLとしたとき、堤部材23の外周面23bに形成されたガス受入領域60は、水平基準線HSLを中心として対称形を形成し、該対称形の片側において堤部材23の周方向に沿って隣接する7段以上30段以下に分割され区分されたガス受入凹部70を有する。ガス受入凹部70は、幅方向WLにおける中央位置が両縁位置よりもガス排出口36側に引っ込んだ凹状の外形線を有する。 これにより、堤部材でのガス流ムラを効果的に低減することができ、ひいては良好な膜厚分布を確保できる気相成長装置を提供する。
Description
本発明は、シリコン単結晶基板等の半導体基板の主表面にシリコン単結晶薄膜等の半導体薄膜を気相成長させるための気相成長装置と、それを用いて実現されるエピタキシャルウェーハの製造方法に関するものである。
シリコン単結晶基板(以下、単に「基板」と略称する)の主表面に、気相成長法によりシリコン単結晶薄膜(以下、単に「薄膜」と略称する)を形成したシリコンエピタキシャルウェーハは、バイポーラICやMOS-IC等の電子デバイスに広く使用されている。そして、電子デバイスの微細化等に伴い、素子を作りこむエピタキシャルウェーハ主表面のフラットネスに対する要求がますます厳しくなりつつある。フラットネスに影響を及ぼす因子としては、基板の平坦度と薄膜の膜厚分布とがある。ところで、近年、たとえば直径が200mmないしそれ以上のエピタキシャルウェーハの製造においては、複数枚のウェーハをバッチ処理する方法に代えて、枚葉式気相成長装置が主流になりつつある。これは、反応容器内に1枚の基板を水平に回転保持し、反応容器の一端から他端へ原料ガスを略水平かつ一方向に供給しながら薄膜を気相成長させるものである。
上記のような枚葉式気相成長装置において、形成される薄膜の膜厚均一化を図る上で重要な因子として、反応容器内における原料ガスの流量あるいは流量分布がある。枚葉式気相成長装置においては、通常、ガス供給管を介して反応容器の一端部に形成されたガス導入口から原料ガスが供給され、基板表面に沿って原料ガスが流れた後、容器他端側の排出口から排出される構造となっている。このような構造の気相成長装置において、流量ムラを減ずるために、ガス導入口の下流側に多数の孔を形成した分散板を設けたり、あるいはガス流を幅方向に仕切る仕切板を設けたりした装置が提案されている。
また、下記特許文献1では、このような構造の気相成長装置において、流量ムラを減ずるために、反応容器本体の第一端部からサセプタの回転軸線と直交して第二端部に至る原料ガスの流れ方向に沿った仮想的な中心線を水平基準線とし、該水平基準線を含んで回転軸線と直交する仮想的な平面を基準平面としたときに、堤部材のガス受入領域が、基準平面と平行な任意の仮想平面による断面において、幅方向における中央位置が両縁位置よりもガス排出口側に引っ込んだ凹状の外形線を有する、1つ又は堤部材の周方向に沿って隣接する複数のガス受入凹部からなる装置が提案されている。これによれば、ガス受入凹部にてガス流が幅方向に大きくにげようとする傾向が和らげられ、流量ムラを解消できるとしている。
ところが、本発明者が検討を行ったところ、特許文献1の構造では、ガス流ムラの解消効果が不十分であることが分かった。すわなち、堤部材をガスが通過する際、堤部材のガス受入凹部の壁近傍でガス流が流れにくい領域が存在し、壁間の中心でガス流が流れやすい領域が存在するため、堤部材形状とガス受入凹部の配置に起因したガス流ムラが発生する。上記特許文献1に記載されている装置ではこの堤部材に起因したガス流ムラにより、ウェーハ外周部分でガス流垂直方向の膜厚分布にムラができ、ウェーハ全体の膜厚分布を悪化させている。
本発明は、上記事情に鑑みてなされたものであり、比較的単純な機構によりながら、堤部材でのガス流ムラを効果的に低減することができ、ひいては良好な膜厚分布を確保できる気相成長装置と、それを用いたエピタキシャルウェーハの製造方法を提供することを課題とする。
上記課題を解決するために、本発明は、半導体基板の主表面に半導体薄膜を気相成長させる気相成長装置であって、水平方向における第一端部側にガス導入口が形成され、同じく第二端部側にガス排出口が形成された反応容器本体を有し、半導体薄膜形成のための原料ガスが前記ガス導入口から前記反応容器本体内に導入され、該反応容器本体の内部空間にて略水平に回転保持される前記半導体基板の前記主表面に沿って前記原料ガスが流れた後、前記ガス排出口から排出されるように構成され、前記内部空間内にて回転駆動される円盤状のサセプタ上に前記半導体基板が配置される一方、前記サセプタを取り囲むとともに、上面が該サセプタの上面と一致する位置関係にて堤部材が配置され、さらに、前記ガス導入口は前記堤部材の外周面に対向する形にて開口し、該ガス導入口からの前記原料ガスが、前記堤部材の外周面に形成されたガス受入領域に当たって上面側に乗り上げた後、前記サセプタ上の前記半導体基板の主表面に沿って流れるように構成された気相成長装置において、
前記反応容器本体の前記第一端部から前記サセプタの回転軸線と直交して前記第二端部に至る前記原料ガスの流れ方向に沿った仮想的な中心線を水平基準線としたとき、
前記ガス受入領域は、前記水平基準線を中心として対称形を形成し、該対称形の片側において前記堤部材の周方向に沿って隣接する7段以上30段以下に分割され区分された分割構造を有することを特徴とする。
前記反応容器本体の前記第一端部から前記サセプタの回転軸線と直交して前記第二端部に至る前記原料ガスの流れ方向に沿った仮想的な中心線を水平基準線としたとき、
前記ガス受入領域は、前記水平基準線を中心として対称形を形成し、該対称形の片側において前記堤部材の周方向に沿って隣接する7段以上30段以下に分割され区分された分割構造を有することを特徴とする。
本発明によれば、堤部材のガス受入領域は、ガス流方向を反映した水平基準線を中心として対称形を形成し、該対称形の片側において堤部材の周方向に沿って隣接する複数段に分割され区分された分割構造となっているので、ガス流を堤部材の周方向(ガス流垂直方向)に均一に分散できる。また、本発明者が鋭意検討を重ねた結果、分割構造の段数が7段以上30段以下のときに、ガス流ムラを効果的に解消できることが分かった。これにより、半導体基板上に流れる原料ガスのガス流垂直方向の流量分布の均一化を図ることができ、ひいては極めて均一な膜厚分布の半導体薄膜が得られる。
なお、堤部材の上面は、サセプタの上面と一致する位置関係であるとしているが、これは堤部材の上面とサセプタの上面とが完全に一致することを必ずしも意味するのではなく、2mm程度までの位置の違いは一致しているとみなす。
また、本発明において、前記水平基準線と前記回転軸線との双方と直交する向きを幅方向とし、前記水平基準線を含んで前記回転軸線と直交する仮想的な平面を基準平面としたとき、
前記分割構造は、前記基準平面と平行な任意の仮想平面による断面において、前記幅方向における中央位置が両縁位置よりも前記ガス排出口側に引っ込んだ凹状の外形線を有するガス受入凹部とするのが好ましい。
前記分割構造は、前記基準平面と平行な任意の仮想平面による断面において、前記幅方向における中央位置が両縁位置よりも前記ガス排出口側に引っ込んだ凹状の外形線を有するガス受入凹部とするのが好ましい。
これによれば、ガス受入凹部において凹状をなす断面外形線の幅方向中央位置が両縁位置より引っ込んでいるので、ガス流が幅方向に大きく逃げようとする傾向を和らげることができる。
また、本発明において、前記ガス受入凹部には、前記基準平面と平行な任意の仮想平面による断面において前記水平基準線と垂直となる外形線を有する垂直ガス受面が形成されているのが好ましい。
これによれば、垂直ガス受面において、ガス流が幅方向に対して常に垂直となるように当たるので、幅方向外側にガス流が逃げる傾向を効果的に抑制できる。
本発明のエピタキシャルウェーハの製造方法は、本発明の気相成長装置の前記反応容器本体内に半導体基板を配置し、該反応容器本体内に前記原料ガスを流通させて該半導体基板上に半導体薄膜を気相エピタキシャル成長させることによりエピタキシャルウェーハを得ることを特徴とする。これにより、ガス流垂直方向における膜厚分布が均一なエピタキシャルウェーハを得ることができる。
以下、本発明の実施の形態を図面を参照しながら説明する。図1は、本発明に係る気相成長装置1の側面断面図である。図2は、図1のガス導入部付近の拡大図である。図3は、図1の要部を取り出して示す気相成長装置1の平面図である。気相成長装置1は、図1に示すように、水平方向における第一端部31側にガス導入口21が形成され、同じく第二端部32側にガス排出口36が形成された反応容器本体2を有する。薄膜形成のための原料ガスGは、ガス導入口21から反応容器本体2内に導入され、該反応容器本体2の内部空間5にて略水平に回転保持される基板Wの主表面に沿って流れた後、ガス排出口36から排出管7を経て排出されるように構成されている。
原料ガスGは、上記の基板W上にシリコン単結晶薄膜を気相成長させるためのものであり、SiHCl3、SiCl4、SiH2Cl2、SiH4、Si2H6等のシリコン化合物の中から選択される。原料ガスGには、ドーパントガスとしてのB2H6あるいはPH3や、希釈ガスとしてのH2、N2、Ar等が適宜配合される。また、薄膜の気相成長処理に先立って基板前処理(例えば自然酸化膜や付着有機物の除去処理)を行う際には、HCl、HF、ClF3、NF3等から適宜選択された腐蝕性ガスを希釈ガスにて希釈した前処理用ガスを反応容器本体2内に供給するか、又は、H2雰囲気中で高温熱処理を施す。
図1に示すように、反応容器本体2の内部空間5には、垂直な回転軸線Oの周りにモータ13により回転駆動される円盤状のサセプタ12が配置され、その上面に形成された浅い座ぐり12b内に、シリコンエピタキシャルウェーハを製造するための基板Wが1枚のみ配置される。すなわち、該気相成長装置1は水平枚葉型気相成長装置として構成されている。基板Wは、例えば直径が100mmあるいはそれ以上のものである。また、基板Wの配置領域に対応して反応容器本体2の上下には、基板加熱のための赤外線加熱ランプ11が所定間隔にて配置されている。
内部空間5内には、図3に示すようにサセプタ12を取り囲むように堤部材23が配置されている。その堤部材23は、図2に示すように、堤部材23の上面23aがサセプタ12の上面12a(ひいては基板Wの主表面)と略一致する位置関係にて配置される。図1に示すように、ガス導入口21は、堤部材23の外周面23bに対向する形にて開口している。該ガス導入口21からの原料ガスGは、図2、図3に示すように、堤部材23の外周面23bに形成されたガス受入領域60に当たって上面23a側に乗り上げた後、サセプタ12上の基板Wの主表面に沿って流れるようになっている。なお、堤部材23の内周縁に沿って、板状に形成された均熱用の予熱リング22が配置され、その内側に配置されるサセプタ12の上面12aが、該予熱リング22の上面22aと略面一となっている。
次に、図1、図3に示すように、反応容器本体2の第一端部31からサセプタ12の回転軸線Oと直交して第二端部32に至る原料ガスGの流れ方向に沿った仮想的な中心線を水平基準線HSLとして定める。また、図3に示すように、該水平基準線HSLと回転軸線Oとの双方に直交する方向を幅方向WLとして定義する。さらに、図1に示すように、該水平基準線HSLを含んで回転軸線Oと直交する仮想的な平面を基準平面RPとして定める。
図3に示すように、堤部材23のガス受入領域60には、堤部材23の周方向に沿って隣接する形で分割され区分された複数のガス受入凹部70(分割構造)が形成されている。ここで、図4は、図3の破線部100の拡大図であり、水平基準線HSL近傍に位置するガス受入凹部70の平面図である。図5は、図4のA-A断面図である。図6は、図5のB-B断面図である。なお、図5のB-B線は、基準平面RPと平行な任意の仮想平面RPAに相当する線である。それら図4~図6を参照して、ガス受入凹部70の形状について説明する。
ガス受入凹部70は、上記特許文献1(特開2002-231641号公報)と同様の形状となっている。すなわち、各ガス受入凹部70は、図6に示すように、仮想平面RPAによる断面において、幅方向WLにおける中央位置CQが両縁位置EQ、EQよりもガス排出口36(図3参照)側に引っ込んだ凹状の外形線を有する。ガス受入凹部70は、凹状の内周面底部に対応する垂直ガス受面61と、その垂直ガス受面61の幅方向WLにおける両端部に隣接しガス導入口21(図1参照)側に延出したガス案内面62、62とから構成されている。詳細には、図4に示すように、垂直ガス受面61の幅方向WLにおける両端部には、ガス導入口21側に延出したガス案内壁部63が形成され、そのガス案内壁部63の左右側面がガス案内面62となっている。隣接するガス受入凹部70、70は1つのガス案内壁部63で区切られている。ガス案内面62、62により、幅方向WLに沿って横方向に逃げようとする原料ガスの流れが有効に抑制される。その結果、個々のガス受入凹部70に分配された原料ガスの流れが、垂直ガス受面61を乗り越えた後も良好に保存され、幅方向WLにおける流速ムラが軽減される。
垂直ガス受面61は、図6に示すように、仮想平面RPAによる断面において、水平基準線HSLと垂直となる外形線61sを有する。これにより、幅方向WLに対して原料ガスが常に垂直ガス受面61に垂直に当たるので、幅方向外側にガス流が逃げる傾向を効果的に抑制できる。さらに、図5に示すように、垂直ガス受面61は、水平基準線HSLに沿う方向にてガス導入口21(図1参照)側に下り勾配の傾斜ガス受面となっている。傾斜ガス受面61(垂直ガス受面)により、原料ガスを堤部材23の上面23aにスムーズに乗り上げさせることができ、ガス流の分散を適度に図ることが可能となる。
図3に示すように、ガス受入凹部70(ガス受入領域60)は、水平基準線HSLを中心として対称形に形成されている。詳細には、ガス受入凹部70は、幅方向WLにおける内側領域(水平基準線HSL付近)に形成された1つのガス受入凹部71(以下、中央凹部という)と、その中央凹部71の左側(図3の紙面方向で左側、幅方向WLにおける左外側領域)に形成された複数のガス受入凹部72(以下、左側凹部という)と、中央凹部71の右側(図3の紙面方向に右側、幅方向WLにおける右外側領域)に形成された複数のガス受入凹部73とを有している。左側凹部72と右側凹部73とが水平基準線HSLに対して(中央凹部71に対して)対称形に形成されている。
また、ガス受入凹部70(垂直ガス受面61)は、水平基準線HSLの左右両側に階段状に配列されている。図4に示すように、階段状に隣接する垂直ガス受面61、61の間には、水平基準線HSLに平行な方向に延びた連結面部61jが形成されている。そして、それら隣接する垂直ガス受面61、61のガス排出口36(図1参照)に近い側、つまりガス流方向下流側に位置するものから見て、該連結面部61jは、幅方向WLへのガス流の逃げを阻止ないし抑制するガス案内面62としても機能する。換言すれば、階段状の垂直ガス受面61により副産物に形成される連結面部61jを、ガス案内面62として流用することで、堤部材23の構造の簡略化あるいはコンパクト化を図ることができる。
本実施形態では、図3に示すように、ガス受入凹部70(左側凹部72、右側凹部73)は、水平基準線HSLから離れるに従いガス排出口36側に近づくように階段状に配列されている。この構成によれば、堤部材23の形状が、サセプタ12の外周縁に対応した単純なものとなるので作製が容易であり、かつ、ガス受入凹部70をこれに倣う階段状に形成することで、ガス流垂直方向(幅方向WL)におけるガスの流速ムラの解消を効果的に図ることができる。この場合、ガス受入凹部70は、図3に示すように、サセプタ12の回転軸線Oを中心とする円周状経路に沿って配列しておくとなお望ましい。
本発明では、左側凹部72、右側凹部73の段数に特徴を有し、具体的には、左側凹部72、右側凹部73は、互いに同じ数だけ形成され、かつ、それぞれ、7段以上30段以下の数だけ形成されている。なお、図3では、左側凹部72、右側凹部73がそれぞれ7段形成された例を示している。左側凹部72、右側凹部73の段数を7段以上30段以下とすることで、1つ当たりの左側凹部72、右側凹部73の幅が狭くなるので、左側凹部72、右側凹部73の壁近傍領域と壁間の中心領域との間で、ガス流の流れやすさの差異を小さくできる(ガス流ムラを抑制できる)。その結果、ガス流垂直方向(幅方向WL)における原料ガスの流量分布の均一化を図ることができ、下記実施例で示すように、ガス流垂直方向における膜厚分布が極めて均一なエピタキシャル膜を得ることができる。
次に、本実施形態の気相成長装置1においては、図3に示すように、ガス導入口21(図1参照)と堤部材23の間に、基板Wに向かう原料ガスGの流れを、幅方向WLにおける複数箇所(本実施形態では2箇所)にて仕切る仕切板34R、34Lが設けられている。これら仕切板34R、34Lは、幅方向WLにおいて水平基準線HSLに対し左右に振り分けた形にて、各々堤部材23のガス受入領域60に向かって延びるように配置されている。
図3に示すように、右側の仕切板34Rと左側の仕切板34Lとのそれぞれに個別に対応してガス導入口21A、21Bが形成されている。具体的には、原料ガスGは、ガス配管50を経て各ガス導入口21A、21Bから内部空間5(図1参照)に導かれる。本実施形態では、ガス配管50は、幅方向WLにおける内側領域(中央凹部71)にガスを供給する内側配管53と同じく外側領域(左側凹部72、右側凹部73)にガスを供給する外側配管51とに分岐している。内側配管53は、水平基準線HSLに対し左右両側に設けられている。それら内側配管53、53は、それぞれ、内側ガス導入口21A、21Aを開口している。同様に、外側配管51は、水平基準線HSLに対して左右両側に設けられている。右側の外側配管51は、主に右側凹部73にガスを供給する外側ガス導入口21Bを開口している。左側の外側配管51は、主に左側凹部72にガスを供給する外側ガス導入口21Bを開口している。なお、各配管51、53にはマスフローコントローラ(図示外)が設けられており、そのマスフローコントローラにより各配管51、53に流れる原料ガスの流量を独立に制御できるようになっている。
図1~図3に示すように、気相成長装置1には、内部にガス案内空間24sが形成されたガス案内部材24がガス導入口21と堤部材23との間に配置されている。具体的には、原料ガスを堤部材23の外周面23bに向けて導く1対のガス案内部材24R、24Lが、幅方向WLにおいて水平基準線HSLに対し左右に振り分けた形にて、ガス導入口21と堤部材23との間に配置されている。そして、ガス案内部材24R、24Lの内側に形成されたガス案内空間24s、24sの各々に仕切板34R、34Lが配置されている。なお、ガス案内部材24R、24Lの、堤部材23の外周面23b(ガス受入領域60)との対向面は、外周面23bに対応した円筒面状に形成されている。
また、図1に示すように、反応容器本体2は、下部ケース3と上部ケース4とからなり、堤部材23は下部ケース3の内周面に沿って配置されている。図2に示すように、堤部材23には、垂直ガス受面61の下端上流側に続く形で、ガス導入面23cが形成されている。ガス導入面23cは、ガス案内部材24の下端板24bの内面の延長に略一致する形となっており、ガス流を垂直ガス受面61に向けてスムーズに導く役割を果たす。なお、上部ケース4は、堤部材23の上面23aに対向する第一面4aと、垂直ガス受面61に対向する第二面4bと、同じくガス導入面23cに対向する第三面4cとを有する段部を有する。それら第一面4a、第二面4b、第三面4cで堤部材23との間にガス通路55を形成している。
以下、気相成長装置1の作用について説明する。図1、図2、図3に示すように、サセプタ12上に基板Wをセットし、必要に応じて酸化膜除去等の前処理を行った後、基板Wを回転させながら赤外線加熱ランプ11により所定の反応温度に加熱する。その状態で、各ガス導入口21A、21Bから原料ガスを所定の流速にて導入する。原料ガスは、仕切板34R、34Lの間を通る内側ガス流と、同じく外側を通る外側ガス流とに仕切られて、さらに堤部材23の外周面23bに向けて流れる。外周面23bに当たった内側ガス流及び外側ガス流は、堤部材23の上面23aに乗り上げて、基板Wの主表面に沿って流れ、排出側ガス案内部材25(図1参照)を経て排出管7に集められ、排出される。上述したように、外周面23b(ガス受入領域60)には、7段以上30段以下の数の左側凹部72及び右側凹部73が形成されているので、ガス流垂直方向(幅方向WL)におけるガス流のムラを効果的に抑制でき、極めて均一なエピタキシャル膜を得ることができる。
本発明の効果を確認するために以下の試験を行った。CZ法により作製した直径200mmのシリコン単結晶基板Wを、図1~図6に示す気相成長装置1内に配置した。他方、比較例として、図7に示すように、堤部材の外周面(ガス受入領域)を、片側3分割とした気相成長装置10も用意し、シリコン単結晶基板Wを同様に配置した。図7の堤部材230の外周面(ガス受入領域600)には、本発明のガス受入凹部70(図4~図6参照)と同様の形状のガス受入凹部700が形成されている。そのガス受入凹部700は、幅方向WLの中央付近(水平基準線HSL付近)に配置されたガス受入凹部701(中央凹部)と、その中央凹部701の左側に配置された3段のガス受入凹部702(左側凹部)と、中央凹部701に右側に配置された3段のガス受入凹部703(右側凹部)とを有する。図7の気相成長装置10は、図1~図6の気相成長装置1に対して、左側凹部702及び右側凹部703の段数のみが異なっている。
そして、試験を下記の手順で行った。まず、赤外線加熱ランプ11(図1参照)に通電し、基板Wの温度が1200℃になった後に、基板W表面の自然酸化膜を除去した。その後、基板Wの温度を1130℃に保持したまま内側ガス導入口21A及び外側ガス導入口21B(図3参照)から原料ガスとしてトリクロロシランガスを含有する水素ガスを流通して、基板W上にシリコン単結晶薄膜を気相エピタキシャル成長させた。なお、内側ガス導入口21Aと外側ガス導入口21Bとの原料ガスの合計供給流量は50リットル/分に固定した。また、ガス導入口21Aと外側ガス導入口21Bとの供給流量比は種々に変えてシリコン単結晶薄膜の成長を行い、膜厚分布が最適となるものを選択するようにした。
そして、得られた薄膜付きの基板すなわちエピタキシャルウェーハのガス流垂直方向(幅方向WL)の膜厚分布プロファイルをFT-IR法により測定し、グラフにプロットした。図8は、その膜厚分布プロファイルを示した図である。詳細には、図8のプロット点「○」は、図1~図6の気相成長装置1(ガス受入凹部:片側7段)における膜厚分布プロファイルを示している。また、図8のプロット点「□」は、図7の気相成長装置10(ガス受入凹部:片側3段)における膜厚分布プロファイルを示している。なお、図8の横軸は、エピタキシャルウェーハの中心(図1の回転軸線Oとエピタキシャルウェーハの交点)を原点とし、その原点からの幅方向WLにおける距離(mm)を示している。図8の縦軸は、各ポジションでの膜厚を目標膜厚で規格化した規格化膜厚を示している。規格化膜厚が1に近いほど目標膜厚に近いことを示しており、規格化膜厚=1は目標膜厚と一致していることを示している。なお、膜厚分布プロファイルを測定するときには、シリコン単結晶基板Wは回転停止としている。
図8のプロット点「□」が示すように、従来の気相成長装置10では、ガス流垂直方向(幅方向WL)の成長速度分布(膜厚分布)が大きく波打っている。特に、左側凹部702、右側凹部703(図7参照)に対応する領域(ポジションが40mm以上、-40mm以下の領域)で、膜厚分布が大きく波打っている。このことから、ガス受入凹部の段数が「3」の場合には、ガス流垂直方向におけるガス流ムラの抑制効果が不十分であると言える。これに対し、プロット点「○」が示すように、本発明の気相成長装置1では、ガス流垂直方向の成長速度分布(膜厚分布)は小さい波打ちを繰り返す結果となった。
また、本発明にかかる気相成長装置1で作製したシリコンエピタキシャルウェーハは、従来の気相成長装置10で作製したシリコンエピタキシャルウェーハよりも均一な膜厚分布を示した。具体的には、シリコン単結晶薄膜の最大膜厚値をtmax、同じく最小膜厚値をtminとし、以下の式1で定義される値Tをシリコン単結晶薄膜の膜厚分布(±%)とする。
T=100×(tmax-tmin)/(tmax+tmin) ・・・(式1)
T=100×(tmax-tmin)/(tmax+tmin) ・・・(式1)
そして、図8のプロファイルから最大膜厚値tmax、最小膜厚値tminを読み取って、それらtmax、tminを上記式1に代入すると、本発明の気相成長装置1で作製したシリコンエピタキシャルウェーハは、T=±0.99(%)となった。これに対し、従来の気相成長装置10で作製したシリコンエピタキシャルウェーハは、T=±3.24(%)であった。
また、ガス受入凹部の分割段数を種々変更したときに、ガス流垂直方向における膜厚分布がどのように推移するかを調べた。図9はその結果であり、ガス受入凹部の分割段数に対するガス流垂直方向における膜厚分布の推移を示している。なお、図9の横軸は、ガス受入凹部の分割段数を示している。また、図9の縦軸は、ガス流垂直方向の膜厚分布として、上記式1で与えられる膜厚分布T(±%)を示している。なお、図9の●のプロット点は、本発明の実施例として、分割段数=7、12、20、30での膜厚分布を示している。図9の◆のプロット点は、比較例として、図7の気相成長装置10(分割段数=3)での膜厚分布及び分割段数2、4での膜厚分布を示している。図9に示すように、分割段数が7未満の場合には、膜厚分布(%)は大きな値(2.5%以上)を示している。これに対し、分割段数が7段以上30段以下の場合には、膜厚分布(%)は1.00近辺の小さい値を示している。この結果から、ガス受入凹部の片側の分割段数を7段以上30段以下にすると、ガス流ムラ低減の効果が顕著になり、極めて均一な膜厚分布が得られる。なお、分割段数が30段を超えると、ガス受入凹部の壁幅が加工限界(1mm)以下となり作業困難となる。
以上、本発明の気相成長装置及びエピタキシャルウェーハの製造方法の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、垂直ガス受面を傾斜面ではなく切立面(水平面に対して垂直な面)として形成しても良い。また、ガス受入凹部の内周面底部を垂直ガス受面とせず、湾曲面として形成しても良い。また、シリコンエピタキシャルウェーハ以外の半導体エピタキシャルウェーハを作製するための気相成長装置に本発明を適用しても良い。
1 気相成長装置
2 反応容器本体
5 内部空間
7 排出管
12 サセプタ
12a サセプタの上面
21 ガス導入口
23 堤部材
23a 堤部材の上面
23b 堤部材の外周面
31 第一端部側
32 第二端部側
36 ガス排出口
60 ガス受入領域
61 垂直ガス受面
62 ガス案内面
70 ガス受入凹部
W 基板
G 原料ガス
O 回転軸線
HSL 水平基準線
WL 幅方向
2 反応容器本体
5 内部空間
7 排出管
12 サセプタ
12a サセプタの上面
21 ガス導入口
23 堤部材
23a 堤部材の上面
23b 堤部材の外周面
31 第一端部側
32 第二端部側
36 ガス排出口
60 ガス受入領域
61 垂直ガス受面
62 ガス案内面
70 ガス受入凹部
W 基板
G 原料ガス
O 回転軸線
HSL 水平基準線
WL 幅方向
Claims (10)
- 半導体基板の主表面に半導体薄膜を気相成長させる気相成長装置であって、水平方向における第一端部側にガス導入口が形成され、同じく第二端部側にガス排出口が形成された反応容器本体を有し、半導体薄膜形成のための原料ガスが前記ガス導入口から前記反応容器本体内に導入され、該反応容器本体の内部空間にて略水平に回転保持される前記半導体基板の前記主表面に沿って前記原料ガスが流れた後、前記ガス排出口から排出されるように構成され、前記内部空間内にて回転駆動される円盤状のサセプタ上に前記半導体基板が配置される一方、前記サセプタを取り囲むとともに、上面が該サセプタの上面と一致する位置関係にて堤部材が配置され、さらに、前記ガス導入口は前記堤部材の外周面に対向する形にて開口し、該ガス導入口からの前記原料ガスが、前記堤部材の外周面に形成されたガス受入領域に当たって上面側に乗り上げた後、前記サセプタ上の前記半導体基板の主表面に沿って流れるように構成された気相成長装置において、
前記反応容器本体の前記第一端部から前記サセプタの回転軸線と直交して前記第二端部に至る前記原料ガスの流れ方向に沿った仮想的な中心線を水平基準線としたとき、
前記ガス受入領域は、前記水平基準線を中心として対称形を形成し、該対称形の片側において前記堤部材の周方向に沿って隣接する7段以上30段以下に分割され区分された分割構造を有することを特徴とする気相成長装置。 - 前記水平基準線と前記回転軸線との双方と直交する向きを幅方向とし、前記水平基準線を含んで前記回転軸線と直交する仮想的な平面を基準平面としたとき、
前記分割構造は、前記基準平面と平行な任意の仮想平面による断面において、前記幅方向における中央位置が両縁位置よりも前記ガス排出口側に引っ込んだ凹状の外形線を有するガス受入凹部であることを特徴とする請求項1に記載の気相成長装置。 - 前記ガス受入凹部には、前記基準平面と平行な任意の仮想平面による断面において前記水平基準線と垂直となる外形線を有する垂直ガス受面が形成されていることを特徴とする請求項2に記載の気相成長装置。
- 前記垂直ガス受面の前記幅方向における両端部に隣接して前記ガス導入口側に延出するガス案内面が形成され、
前記ガス案内面と前記垂直ガス受面とで前記ガス受入凹部を構成していることを特徴とする請求項3に記載の気相成長装置。 - 前記ガス受入凹部は、前記幅方向において前記水平基準線の左右両側に階段状に配列されていることを特徴とする請求項2ないし4のいずれか1項に記載の気相成長装置。
- 前記ガス受入凹部は、前記水平基準線から離れるに従い前記ガス排出口側に近づくよう階段状に配列されていることを特徴とする請求項5に記載の気相成長装置。
- 前記ガス受入凹部は、前記サセプタの回転軸線を中心とする円周状経路に沿って配列されていることを特徴とする請求項6に記載の気相成長装置。
- 前記ガス受入領域には、前記水平基準線に沿う方向において前記ガス導入口側に下り勾配となる傾斜ガス受面が形成されていることを特徴とする請求項3ないし7のいずれか1項に記載の気相成長装置。
- 前記垂直ガス受面が前記傾斜ガス受面として形成されていることを特徴とする請求項8に記載の気相成長装置。
- 請求項1ないし9のいずれか1項に記載の気相成長装置の前記反応容器本体内に半導体基板を配置し、該反応容器本体内に前記原料ガスを流通させて該半導体基板上に半導体薄膜を気相エピタキシャル成長させることによりエピタキシャルウェーハを得ることを特徴とするエピタキシャルウェーハの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-207566 | 2012-09-20 | ||
JP2012207566A JP6179790B2 (ja) | 2012-09-20 | 2012-09-20 | 気相成長装置及びエピタキシャルウェーハの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045779A1 true WO2014045779A1 (ja) | 2014-03-27 |
Family
ID=50341103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072170 WO2014045779A1 (ja) | 2012-09-20 | 2013-08-20 | 気相成長装置及びエピタキシャルウェーハの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6179790B2 (ja) |
TW (1) | TW201417147A (ja) |
WO (1) | WO2014045779A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111850515B (zh) * | 2020-07-02 | 2022-09-16 | 北京北方华创微电子装备有限公司 | 用于外延反应腔室的衬里装置及外延反应腔室 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231641A (ja) * | 2001-01-31 | 2002-08-16 | Shin Etsu Handotai Co Ltd | 気相成長装置及びエピタキシャルウェーハの製造方法 |
JP2005072118A (ja) * | 2003-08-21 | 2005-03-17 | Sumitomo Mitsubishi Silicon Corp | エピタキシャル成長装置 |
JP2007324286A (ja) * | 2006-05-31 | 2007-12-13 | Sumco Techxiv株式会社 | 成膜反応装置及び同方法 |
JP2010258169A (ja) * | 2009-04-23 | 2010-11-11 | Sumco Techxiv株式会社 | 成膜反応装置及び成膜基板製造方法 |
-
2012
- 2012-09-20 JP JP2012207566A patent/JP6179790B2/ja active Active
-
2013
- 2013-08-20 WO PCT/JP2013/072170 patent/WO2014045779A1/ja active Application Filing
- 2013-08-28 TW TW102130721A patent/TW201417147A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231641A (ja) * | 2001-01-31 | 2002-08-16 | Shin Etsu Handotai Co Ltd | 気相成長装置及びエピタキシャルウェーハの製造方法 |
JP2005072118A (ja) * | 2003-08-21 | 2005-03-17 | Sumitomo Mitsubishi Silicon Corp | エピタキシャル成長装置 |
JP2007324286A (ja) * | 2006-05-31 | 2007-12-13 | Sumco Techxiv株式会社 | 成膜反応装置及び同方法 |
JP2010258169A (ja) * | 2009-04-23 | 2010-11-11 | Sumco Techxiv株式会社 | 成膜反応装置及び成膜基板製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201417147A (zh) | 2014-05-01 |
JP6179790B2 (ja) | 2017-08-16 |
JP2014063855A (ja) | 2014-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI642330B (zh) | 電漿生成裝置、基板處理裝置及半導體裝置之製造方法 | |
JP4379585B2 (ja) | 気相成長装置およびエピタキシャルウェーハの製造方法 | |
TWI715572B (zh) | 用於沉積低k及低濕式蝕刻率介電薄膜的方法 | |
TWI753523B (zh) | 高溫熱原子層沉積氮化矽膜 | |
TWI512871B (zh) | 具交叉流之磊晶腔室 | |
US20150275368A1 (en) | Film Forming Apparatus Using Gas Nozzles | |
JP2009500864A (ja) | 均一バッチ膜被着工程および、それに従って生産されるフィルム | |
KR101928969B1 (ko) | 성막 장치 | |
JP4588894B2 (ja) | 気相成長装置及びエピタキシャルウェーハの製造方法 | |
JP2016192528A (ja) | 縦型熱処理装置 | |
US20190145006A1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
JP2005183511A (ja) | 気相成長装置およびエピタキシャルウェーハの製造方法 | |
KR20010033686A (ko) | 반도체 웨이퍼 및 그 제조 방법 | |
JP3801957B2 (ja) | 気相成長装置及びエピタキシャルウェーハの製造方法 | |
JP2008047785A (ja) | 半導体装置の製造方法 | |
JP6179790B2 (ja) | 気相成長装置及びエピタキシャルウェーハの製造方法 | |
JP3893615B2 (ja) | 気相成長装置およびエピタキシャルウェーハの製造方法 | |
JP6153489B2 (ja) | 結晶成長装置 | |
JP2003203866A (ja) | 気相成長装置およびエピタキシャルウェーハの製造方法 | |
WO2020158657A1 (ja) | 成膜装置及び成膜方法 | |
JP2002198316A (ja) | 気相成長装置及びエピタキシャルウェーハの製造方法 | |
JP2010040541A (ja) | エピタキシャル装置 | |
JP6924593B2 (ja) | エピタキシャルウェーハの製造方法 | |
JP2010040590A (ja) | エピタキシャルシリコンウェーハおよびその製造方法 | |
JP2011146414A (ja) | エピタキシャルウェーハの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13839602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13839602 Country of ref document: EP Kind code of ref document: A1 |