WO2014044222A1 - 一种断路器弹簧操动机构的齿轮传动系统的离合装置 - Google Patents

一种断路器弹簧操动机构的齿轮传动系统的离合装置 Download PDF

Info

Publication number
WO2014044222A1
WO2014044222A1 PCT/CN2013/083971 CN2013083971W WO2014044222A1 WO 2014044222 A1 WO2014044222 A1 WO 2014044222A1 CN 2013083971 W CN2013083971 W CN 2013083971W WO 2014044222 A1 WO2014044222 A1 WO 2014044222A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
gear
large gear
pinion
special
Prior art date
Application number
PCT/CN2013/083971
Other languages
English (en)
French (fr)
Inventor
邓洪祥
苏菊芳
张强
马曾锐
Original Assignee
中国西电电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国西电电气股份有限公司 filed Critical 中国西电电气股份有限公司
Priority to US14/383,343 priority Critical patent/US9431186B2/en
Priority to IN1744MUN2014 priority patent/IN2014MN01744A/en
Priority to RU2014138189A priority patent/RU2638180C2/ru
Publication of WO2014044222A1 publication Critical patent/WO2014044222A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/54Mechanisms for coupling or uncoupling operating parts, driving mechanisms, or contacts
    • H01H3/58Mechanisms for coupling or uncoupling operating parts, driving mechanisms, or contacts using friction, toothed, or other mechanical clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H33/00Gearings based on repeated accumulation and delivery of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H3/3005Charging means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H3/3031Means for locking the spring in a charged state
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/40Driving mechanisms, i.e. for transmitting driving force to the contacts using friction, toothed, or screw-and-nut gearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/42Driving mechanisms, i.e. for transmitting driving force to the contacts using cam or eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/002Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having teeth movable out of mesh
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H2003/3063Decoupling charging handle or motor at end of charging cycle or during charged condition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H2003/3084Kinetic energy of moving parts recuperated by transformation into potential energy in closing or opening spring to be used in next operation

Definitions

  • the invention relates to a clutch transmission of a gear transmission system of a circuit breaker spring operating mechanism.
  • the application is filed on September 24, 2012, the Chinese Patent Office, the application number is 201210359126.9, and the invention name is "a gear transmission of a circuit breaker spring operating mechanism"
  • the priority of the Chinese Patent Application for the Clutch of the System is incorporated herein by reference.
  • the present invention relates to the field of circuit breaker technology, and more particularly to a clutch device for a gear transmission system of a circuit breaker spring operating mechanism.
  • the energy storage drive system of the spring action mechanism of the circuit breaker must include a clutch device, which can automatically disengage the transmission system and the energy storage shaft when the energy storage shaft is stopped, and the quick translation of the closing spring can be performed.
  • a clutch device which can automatically disengage the transmission system and the energy storage shaft when the energy storage shaft is stopped, and the quick translation of the closing spring can be performed.
  • the first type is a controllable one-way transmission component in the transmission system, such as a ratchet with a pawl or other intermittent transmission, a full-turn rotating drive pawl with a drive wheel, a controllable clutch, a one-way clutch, and an end clutch.
  • One-way clutch, etc. in addition to the reduction drive gear, this type of transmission system needs to add other one-way transmission parts, and also need to add additional control components outside the main drive chain space.
  • the transmission structure is more complicated and the cost is higher. High, the size of the mechanism is also large. Intermittent transmissions such as ratchets also have the problem of greatly reduced transmission efficiency.
  • Type 2 transmission systems are pure gears (some include sprocket or worm gear).
  • the required clutch is placed inside a pair of intermeshing gears of the main drive chain, without external drive and clutch control components.
  • the structure is simple, the size of the mechanism is small, and there is no disadvantage of the Type 1 transmission system.
  • FIG. 8 and FIG. 9 show a clutch device in which a retractable tooth is provided in the edentulous region of the large gear opposite to the pinion in the closing holding position. Due to the inertia of the pinion after the drive motor is de-energized The turning position is random. When the fast-acting closing gear rotates and re-engages, if the pinion stops just at the tooth tip contact position of the two gears, if it meshes with the normal gear of the large gear, it will be stuck, and the closing cannot be completed.
  • Figure 8 shows the teeth of the pinion gear of the clutch device.
  • the teeth on the front and rear of the large gear edentulous area and the retractable tooth end are normal tooth shapes.
  • the clutch device of Fig. 10 converts the original single retractable tooth into a oscillating tooth composed of two normal toothed toothed bodies with one tooth in the middle, and the oscillating tooth can be swung inwardly to achieve re-engagement. Since the clutch device of Fig.
  • FIG. 10 is a clutch device composed of a one-way clutch such as an end face clutch member of the first type of transmission system, has high reliability, but the complexity of the structure The increase is greatly increased, the volume of the mechanism is also increased, and the cost of the clutch unit is also high.
  • the clutch device of Fig. 8, Fig. 9, and Fig. 10 is in some positions where the pinion gear is stopped.
  • the large gear When the fast action is closed and the meshing is re-engaged, the large gear should be idling at a large angle (close to one tooth pitch or even more than one pitch), and can be expanded and contracted.
  • the tooth or the oscillating tooth is in contact with the stationary pinion.
  • the power of the closing spring with a large force is relatively large, and the impact force of the retractable tooth or the oscillating tooth in contact with the pinion is also large.
  • the object of the present invention is to solve the above problems, and to provide a clutch device for a gear transmission system which is particularly suitable for large or extra large operating work (also suitable for medium and small operating work) circuit breaker spring operating mechanism, Located inside the large and small gears, the clutch device can reliably push the large gears to the energy storage holding position by the pinion gear at the end of the energy storage of the closing spring, and realize the automatic disengagement between the pinion gear and the large gear, and the closing spring can release the energy quickly.
  • the brake drives the large gear to rotate, a reliable and smooth re-engagement between the large gear and the small gear is realized. No matter whether the pinion gear is randomly stopped at any position after the drive motor is powered off, there is no possibility that the large and small gears can not be closed.
  • the moving part of the clutch in the transmission can only be impacted by the small idle angle of the large gear, the impact force is small, the impact strength is low, the size of the clutch cam is small, the cost is low, and the tooth tip of each tooth of the cooperation segment is small.
  • a clutch device for a gear transmission system of a spring operating mechanism of a circuit breaker comprising: an energy storage shaft fixedly connected with a closing drive cam on a shaft, a large gear fixedly connected on the energy storage shaft, and meshing with the large gear and being driven by the motor a pinion gear driven by the reduction gear; the large gear is provided with a missing tooth and a special tooth region at a position opposite to the pinion gear in the energy storage holding position, and a cavity is provided in the cavity inside the large gear of the region and the rear portion
  • the return spring drives the reset clutch cam, and the large gear has a first special tooth, a second special tooth, and a neutral gear between the first special tooth and the second special tooth in the region; the pinion pushes the first special when the energy storage ends
  • the teeth push the large gear and the energy storage shaft to the energy storage holding position away from the friction dead zone, and then the pinion and the large gear are automatically disengaged.
  • a further improvement of the invention consists in: the rotation of the missing gear and the special tooth region of the large gear
  • the front end of the direction is the first special tooth of the large gear
  • the first special tooth is that the normal tooth is removed from the rear side portion, and only a part of the front side thereof is formed
  • the outer tip end of the converging portion is merged by the circular arc surface connection.
  • a further improvement of the present invention is: after the first special tooth of the large gear is a neutral gear lacking only one tooth, and the front end of the clutch cam disposed in the large gear cavity protrudes in the neutral position; Resetting the limit position, the front end of the clutch cam is located between the missing tooth and the first special tooth; the front end of the clutch cam is driven by the tooth of the pinion into the internal cavity of the large gear when the pinion rotates, and the pinion rotates When the neutral stop is not blocked, the front end of the clutch cam is reset to the limit position by the clutch cam return spring.
  • a further improvement of the present invention is that the aperture of the clutch cam and the pivot pin fixed to the large gear is an oblong hole.
  • a further improvement of the present invention resides in that the clutch cam also includes an extension portion that is biased to one side in a direction closer to the axis of the large gear.
  • a further improvement of the present invention resides in that the second special tooth is located away from the normal tooth missing therefrom, closer to the neutral position.
  • a further improvement of the present invention is: the second special tooth of the large gear has a tooth top circle coaxial with the normal gear tooth top circle of the large gear, but the radius is smaller than the tooth tip circle radius of the large gear normal tooth, the second special tooth The tooth height is smaller than the tooth height of the normal gear of the large gear, the tooth width of the second special tooth is smaller than the tooth width of the normal tooth of the large gear, and the intersection of the tooth surface of the second special tooth and the addendum circle is a circular arc surface transition. connection.
  • a further improvement of the invention consists in that the missing teeth and the special tooth area of the bull gear removes three normal teeth for the large gear.
  • a further improvement of the present invention is: the pinion meshing with the large gear has the same shape of the tooth tips of all the teeth; the tooth tip of the pinion has a clip with a symmetrical center line of each tooth on the front side in the rotational direction.
  • the bevel is an acute angle, and the bevel intersects with the involute tooth surface on both sides of the tooth with a circular arc transition.
  • a further improvement of the invention consists in that the number of teeth of the pinion is greater than or equal to eight.
  • the two sides of the front end of the clutch cam are circular arc surfaces, and the distance between the two arc surfaces of the front end portion is smaller than the tooth width of the normal teeth of the large gear, and the outer side of the front end of the clutch cam has a slope, and the slope is rearward. Forward, tilt toward the inside of the large gear, and the slope intersects the arc surface on both sides The transition is made by a circular arc surface.
  • a further improvement of the invention resides in that the return spring of the clutch cam is a helical compression spring, which may or may not have a guide rod.
  • a further improvement of the invention is that the return spring of the clutch cam can also be a torsion spring or a leaf spring.
  • the clutch cam is rotatable about a shaft pin mounted on the bull gear in the cavity region.
  • a large pin is also mounted on the large gear to define a reset position in which the clutch cam swings outward in the radial direction.
  • the clutch device of the present invention can be applied to a spring operating mechanism having a different structure for the rest of the mechanism.
  • the closing and opening spring of the mechanism can be any type of spring, such as a coil spring, a coil spring, a disc spring, a torsion bar spring, or the like.
  • the large gear has a missing tooth in the middle of the missing tooth and the special tooth region, and there is a special tooth before and after the missing tooth. It is the first special tooth before the tooth is missing in the direction of rotation.
  • the first special tooth is removed from the normal tooth of the large gear located at the same position, and only a small part of the front side is retained, and the outer end of the retaining portion is transitioned by the circular arc surface, and the shape and size of the retaining portion are combined with the pinion gear.
  • the maximum outer circle size should be ensured that when the motor is energized and rotated, the geared system will force the large gear and the energy storage shaft to pass the dead point and then exceed the energy storage position of the closing spring.
  • a proper small angle of friction dead zone causes the large gear to rotate a small angle to the energy storage holding position under the torque generated by the closing spring.
  • the connecting spring or the chain connected to other components fixedly connected to the energy storage shaft may be driven by the hanging spring pin, and then the closing spring is deformed. Realize energy storage.
  • an energy storage holding roller mounted on the large gear or other component fixedly connected to the energy storage shaft is blocked by the energy storage holding tweezers additionally mounted on the mechanism bracket, Realize the energy storage of the closing spring.
  • the energy storage holding tweezers can be freely rotated, and the position of the energy storage and holding roller cannot be limited, and the closing spring will release the energy, and the energy storage shaft and the large gear rotate.
  • the quick action of closing is generated, and the action of the circuit breaker is completed to complete the closing.
  • the rear side of the missing tooth in the direction of rotation is the second special tooth of the large gear, and the second special tooth is located at the large gear of the large gear (none) The position of the appropriate angle.
  • the tooth surface on both sides of the second special tooth is a circular arc surface which is very close to the normal tooth involute of the large gear, and the tooth width is smaller than that of the normal tooth, and the tooth top circle is the tooth of the normal tooth.
  • the top circle is coaxial but the diameter is much smaller than the tooth tip of the normal tooth, that is, the tooth height is much smaller than the normal tooth.
  • the intersection of the tooth surface on both sides of the second special tooth and the tooth top arc surface is connected by a small radius arc surface. .
  • a clutch cam disposed in the missing tooth and the special tooth region of the large gear and the cavity adjacent thereto and a shaft pin mounted on the rear side of the large gear cavity in the rotating direction are rotatably connected, and the energy storage is in place
  • the clutch cam can swing and retreat to the inner side of the cavity, does not hinder the rotation of the pinion, and is mounted on the large gear when the tooth of the pinion rotates away from the clutch cam
  • the clutch cam Under the action of the return spring on the inner side of the cavity, the clutch cam can be swung and reset to the outside of the cavity.
  • the reset position of the clutch cam reset swing is defined by a limit pin mounted on the front side of the large gear cavity.
  • the clutch cam is in the reset position, and the front end of the clutch gear is located at a proper angle of the missing tooth of the large gear in the rotation direction, and the arcuate surface of the front end of the clutch cam is a larger radius, and the distance between the two arc surfaces of the front end portion (width) Compared with the tooth width of the normal gear of the large gear, the outer side of the front end of the clutch cam has a slope, which is inclined from the rear to the inner side of the large gear, and the intersection of the inclined surface and the arc surface on both sides is connected by a small radius arc surface.
  • the front end of the clutch cam is located inside the crown circle of the large gear at the time of resetting, and has a large distance from the addendum circle.
  • the hole in which the clutch cam is movably connected to the pin of the large gear is not a conventional circular hole, but an oblong hole composed of two adjacent semicircles, and the connection of the two semicircle centers of the oblong hole is backward and forward. When it is tilted to the outside of the large gear.
  • the clutch cam also particularly increases the portion of the relatively large volume that protrudes toward the inside of the large gear.
  • the pinion gear meshing with the large gear has the same shape of the tooth tips of all the teeth: the tooth tip has a beveled surface with an acute angle with respect to the symmetrical center line of each tooth on the front side in the rotation direction, and the inclined surface
  • the intersection of the involute tooth surfaces on both sides of the tooth is connected by a small radius arc surface, and the maximum distance of the tooth tip from the pinion axis is slightly smaller than the normal tooth tip circle radius.
  • the large and small gears in the clutch device should use a larger modulus, a larger gear ratio, and a smaller number of teeth (especially a small gear tooth number). Less), both gears use the positive displacement gear and the displacement coefficient is appropriately large.
  • the purpose is that the gear can transmit large or extra large torque and the gear diameter is not too large.
  • the present invention has the following advantages:
  • the weaker moving parts may be affected by the energy of the closing spring when the large gear is idling, and the maximum idle angle of the large gear that causes the impact is very small, and both appear in the initial stage of the release of energy.
  • the impact force that the clutch cam can withstand is very small. Its low strength requirements, no special high-strength materials and special methods, its small size (thinner), low cost.
  • Figure 1 is a schematic illustration of the clutch device of the present invention in a stored energy holding position.
  • FIG. 2 is a schematic view showing the stop position of the large gear when the clutch device of the present invention is in the closing state of the closing spring of the closing spring and the motor is not energized again.
  • Figure 3a is an enlarged schematic view showing the structural features of the main components of the clutch device of the present invention (storage holding position);
  • Figure 3b is a partial enlarged view of the pinion.
  • Figure 4a is a schematic diagram of the stop position where the probability of the pinion gear is the most likely to stop and the possible stop range of the clutch cam after the inertia rotation of the pinion, and the initial action of the fast-acting closing and re-engagement.
  • Fig. 4b and Fig. 4c are schematic diagrams showing the re-engagement process of the fast acting closing gear and the pinion of Fig. 4a.
  • Fig. 5a is a schematic view showing the contact of the pinion inertial rotation stop in the forward direction of the clutch cam in the storage holding position, and the gear contact between the closing fast acting large gear and the pinion reengaging initial gear.
  • Fig. 5b and Fig. 5c are schematic views of several positions (examples) of the pinion inertial rotation stop at the pinion pushing and contacting the rear side of the clutch cam front end.
  • Figure 5d shows that when the pinion inertial rotation stops, the small-radius arc surface of the pinion tip contacts the outermost small radius arc surface of the front end of the clutch cam and may stably maintain the position, and when the closing fast action re-engages, A schematic diagram of the maximum range of rotation of the pinion by the clutch cam due to friction.
  • Figure 6a Figure 6b is the pinion inertia rotation stop after reaching or exceeding the forward position of the range of Figure 5d, the clutch cam retreats and swings outward under the action of its return spring, pushing the small tooth to rotate until it finally stops at 5E, Schematic diagram of the process of continuously changing positions of 5E2, 6E, and 6bE positions.
  • Figure 7a shows that after the inertia rotation of the pinion stops within the range of Figure 5d, the quick-release re-engagement of the pinion is initiated.
  • the clutch cam Under the action of the pin 8 (8E-8F-8E1), the clutch cam first swings inward and then rotates forward. Schematic diagram of the process of swinging outward to contact the pinion.
  • Fig. 7b shows that the inertial rotation of the pinion stops within the range of Fig. 5d. It is assumed that the fast closing action can cause the re-engagement process smoothly when the clutch cam can still rotate the pinion due to an accidental cause.
  • Fig. 8 is a schematic structural view of a conventional clutch device.
  • Fig. 9 is a schematic structural view of another conventional clutch device.
  • Fig. 10 is a schematic structural view of another conventional clutch device.
  • E and F are added after the above main mark number to indicate two different positions of the same part. If there is a position in a part of the same figure, plus a number or the letter Z, Z means that the part of a part is in the position between the E and F positions.
  • the 5E, 5F position of the pinion 5 is followed by a number (for example, 5E2, 5F1), and the number is the sequence number of a specific tooth in the figure.
  • the clutch device of the gear transmission system of the circuit breaker spring operating mechanism of the present invention comprises: an energy storage shaft 1 to which a closing drive cam 2 is fixedly coupled to the shaft, and a large fixed connection on the energy storage shaft 1
  • the gear 4, the pinion 5 meshed with the large gear 4 and driven by the motor via the reduction gear (the motor and the reduction gear are not shown), and the clutch cam 6 driven by the return spring 3 are reset.
  • the large gear 4 is provided with a missing tooth and a special tooth area (the area occupies the space of the three normal teeth of the large gear 4) at a position opposite to the pinion 5 at the energy storage holding position.
  • the missing teeth of the large gear 4 and the three normal teeth that are not present in the special tooth region are indicated by broken lines in FIG.
  • the first special tooth 4a of the large gear 4 is removed by the first normal tooth of the region.
  • Most of the rear side is formed by retaining only a small portion of its front side, and the outer tip of the converging portion is converged at the outer tip end, and is connected by a circular arc surface transition.
  • Behind the first special tooth 4a of the large gear is a neutral gear 4b formed by missing one tooth.
  • the neutral gear 4b is followed by the second special tooth 4c of the large gear, and the second special tooth 4c is immediately adjacent to the first normal tooth 4d which is adjacent to the large gear missing tooth and the special tooth region.
  • the second special tooth 4c of the large gear is located at a position where the normal tooth (which is no longer present) after the neutral gear 4b is shifted forward.
  • the tooth surface on both sides of the second special tooth 4c is a circular arc surface which is very similar to the involute tooth surface of the normal tooth of the large gear, and the tooth width is smaller than the tooth width of the normal tooth, and the tooth top circle and the normal tooth
  • the tooth tip circle is coaxial but its diameter is smaller than the diameter of the normal tooth tip circle, and its tooth height is much smaller than that of the normal tooth (in this embodiment, the tooth height is 49% of the normal tooth height).
  • the intersection of the two sides of the second special tooth and the arc surface of the tooth tip is connected by a small radius arc surface.
  • a clutch cam 6 is provided in an internal cavity indicated by a broken line of the large gear 4, and the clutch cam 6 has an oblong hole 6a composed of two adjacent semicircles.
  • the line connecting the two semicircle centers of the oblong hole 6a is inclined from the rear to the front and appropriately to the outer side of the large gear 4.
  • the clutch cam 6 is movably connected to the shaft pin 8 mounted on the large gear 4 by the oblong hole 6a, and the clutch cam 6 is swingable about the shaft pin 8, and can be translated in series along the two semicircle center lines of the oblong hole 6a.
  • the distance (width) between the two arcuate faces of the front end portion is much smaller than the tooth width of the normal gear of the large gear, and the outer side of the front end 6b of the clutch cam has a slope, which is from the back to the front. Tilting to the inside of the large gear, the intersection of the inclined surface and the arc surface on both sides is connected by a small radius arc surface.
  • the clutch cam 6 is in the reset position, and its front end 6b is located inside the crown circle of the large gear, and has a large distance from the crown circle.
  • the clutch cam 6 is particularly biased toward the inner side of the inner cavity of the large gear, and a relatively large portion is additionally added, and the inertia of this portion is utilized to provide the clutch device with better clutching performance.
  • the pinion 5 meshing with the large gear 4 in the clutch device is located at the opposite side of the missing tooth of the large gear and the special tooth region when the pinch gear 5 is in the energy storage holding position.
  • the tooth tips of all the teeth of the pinion 5 have the same shape (see the enlarged view of Fig. 3b).
  • the angle between the center line is an oblique angle of the acute angle.
  • the intersection of the inclined surface and the involute tooth surface on both sides of the tooth is connected by a small radius arc surface.
  • the maximum distance of the outermost edge of the tooth tip from the axis of the pinion 5 is slightly smaller than normal.
  • a one-way clutch generally provided by the spring operating mechanism should be installed to ensure that the large and small gears of the clutch device are turned to one direction as indicated by the arrow in the figure. Turn.
  • the clutch device of the present invention is a clutch device for a gear transmission system for energy storage of a closing spring for a spring operating mechanism of a circuit breaker. See Figure 1 and Figure 2.
  • the reduction gear (not shown) drives the pinion 5 to rotate counterclockwise as indicated by the arrow in the figure, and drives the large gear 4 to rotate clockwise as indicated by the arrow in the figure.
  • the stall position after the brake spring release and quick-action closing starts to move to the energy storage holding position shown in FIG.
  • the hanging spring pin 9 fixed to the large gear 4 drives the closing spring of the mechanism through the chain or the connecting rod (not shown), and the hanging spring pin 9 rotates to the dead point position 9S in FIG.
  • the deformation and stored energy of the closing spring are the maximum.
  • the teeth of the pinion 5 will force the first special tooth 4a of the large gear 4 to exceed a proper small angle of the friction dead zone (the small angle and ⁇ should be correctly selected to ensure the following reliable action).
  • the hanging spring pin 9 reaches the position of the dashed line of FIG. 1. At this position, the torque generated by the closing spring must drive the large gear 4 to rotate, and under the action of the closing spring, rotate a small angle ⁇ to reach the ⁇ The energy storage position shown by the dotted line.
  • the energy storage holding roller 10 mounted on the large gear 4 is blocked by the energy storage holding tweezers (not shown) mounted on the mechanism bracket, and cannot be rotated, thereby realizing the energy storage of the closing spring.
  • the closing spring has already driven the large gear to rotate, and the pinion 5 forcibly pushes the first special tooth 4a beyond the dead zone by a suitable small The angle is to ensure the reliability of the operation and the necessary margin.
  • the device can ensure that the angle ⁇ of the energy storage holding position exceeds the dead point position is small (the angle ⁇ of the embodiment is 5°) under the premise of ensuring reliable operation, so that the energy storage holding roller 10 caused by the spring release energy
  • the energy storage keeps the impact of the rafter small, and the available spring energy of the energy storage retention position is large, avoiding some of the first type or the second type of clutch device described above due to its structural characteristics.
  • only a large over-dead angle ⁇ can be used, so that the spring translation can have a large impact and the shortage of the spring energy can be utilized.
  • the positions 5E and 5E1 are the positions where the pinion 5 stops moving after the motor is powered off, and the pinion 5 of the pinion of the 5E1 and the stored energy retaining position and the reset clutch are at this time.
  • the cam front end 6b (6bE position) is in contact.
  • 5E, 5E1 and 5F, 5F1 are positions on both sides of a range of the pinion stop position at which the pinion 5 is first rotated by the front end 6b of the clutch cam 6 when reengaging.
  • the large and small gears start from the same 4CF and 5F2 positions as those of FIG. 4a, and the second special tooth 4C of the large gear pushes the No. 2 tooth of the pinion 5 to rotate, passing through the intermediate 4CEZ, 5E2Z position. Then, it is rotated to the position of 4CE, 5E2.
  • the first normal tooth 4d of the large gear 4 after the missing tooth and the special tooth area has been rotated to the 4dE position, and is in contact with the pinion No. 3 tooth which is simultaneously rotated to the 5E3 position.
  • the second special tooth 4C of the large gear is separated from the No. 2 tooth of the pinion, and is converted into the rotation of the No. 3 tooth of the pinion driven by the 4d normal tooth of the large gear 4, and then becomes the one shown in FIG. 4C. Normal tooth drive for large and small gears.
  • Fig. 5a shows the position of the 5E1, 5E2, 6bE which is not in contact with the front end of the clutch cam front end 6b when the inertial rotation of the pinion 5 is stopped at the front side boundary beyond the range shown in Fig. 4a, and the large gear is engaged when the fast acting is closed and re-engaged. 4 idling an angle, the second special tooth 4C reaches the 4CF position from the 4CE position, and contacts the No. 2 tooth of the pinion 5 located at 5E2, and the clutch cam front end 6b reaches the 6bF position. However, the front end 6b does not touch the No. 1 tooth of the pinion 5 that is not activated by 5E1. Thereafter, the second special tooth 4C of the large gear pushes the pinion 2 tooth to rotate, and then through the similar process of FIG. 4b to FIG. 4C, it is converted into a normal gear transmission of the large and small gears.
  • Fig. 5b and Fig. 5C show the position where the pinion inertial rotation stops at the rear side of the clutch cam front end 6b.
  • the figure shows three examples of positions, in which the 5E2 position of Figure 5b, the pinion 2 tooth is in contact with the rear side of the front end 6b of the reset position (6bE), and the 5F2 and 6bF positions of Figure 5b and 5E2 of Figure 5C
  • the clutch cam front end 6b has been pressed by the pinion gear, leaves the limit pin 7, and swings inward to a certain angle.
  • Fig. 5d shows that when the pinion inertia rotates and stops, the small radius arc surface of the pinion 5 tooth tip and the outermost small radius arc surface of the clutch cam front end 6b are in contact with each other and can be stably maintained, and the quick action is combined.
  • the brake is re-engaged, the maximum range of rotation of the small teeth may be driven by the clutch cam by friction. If the pinion gear does not reach the 5E2 position when it stops (in contact with the clutch cam front end 6b at the 6bE position), even if the friction coefficient reaches the maximum value of the unlubricated dry friction, the clutch cam cannot drive the pinion to rotate, and the meshing process is as shown in Fig. 5b. Fig.
  • Fig. 6a and Fig. 6b show the subsequent changes of the pinion position after the inertial rotation of the pinion 5 reaches or exceeds the rotation of the front side boundary in the direction indicated by 5d.
  • the inertia energy of the part rotating together with the pinion is completely consumed.
  • the clutch cam will press according to the spring force of the clutch cam return spring 3 and the reaction force of the pinion 5 tooth tip.
  • the cam in Fig. 6a is retracted in the direction indicated by the inner arrow and swings outwardly under the action of the return spring 3.
  • the oblong hole 6a will move from the 6aF position shown in the lower view of Fig.
  • 6b is substantially the same as the position of 5E, 5E1 and 6E, 6bE shown in Fig. 4a. Due to the inertia of the pinion, etc., a small gap may occur between the teeth of the pinion and the front end 6b of the clutch cam. If the returning gear 3 pushes the shift before the return spring 3 pushes the shift, the pinion coasting is stopped at the position where the tooth tip is in contact with the outer inclined surface of the clutch cam front end 6b as shown in Fig. 6a, or the tooth of the pinion gear as shown in Fig. 6b is stopped. The rear side is in contact with the front side of the clutch cam front end 6b with a small circular arc surface.
  • the clutch device of the present invention has the following clutch characteristics and advantages:
  • the angle ⁇ of the pinion stop range in which the clutch cam front end 6b may be subjected to impact is very small (this embodiment only has 5.5% of the angle between the adjacent two teeth), corresponding to the impact.
  • the maximum idling angle of the large gear is also small (this embodiment is 8.9% of the angle between the adjacent teeth of the large gear). Because it is at the starting position of the large gear closing rotation, the unit angle closing spring is released.
  • the energy of the clutch is much lower than the translation value of the position behind the closing, so that the clutch cam 6 and its front end 6b may have little impact energy and impact force, and the clutch cam can be thinner and thinner, and it is not necessary to use a material with a particularly high strength.
  • the special processing method the manufacturing cost is 4 ⁇ .
  • the clutch device overcomes the problem that some clutch devices are subjected to a large impact on the movable member whose strength is weak, which is a key to the clutch, but is received by the fixed teeth of the large and large gears having a large thickness and a high strength.
  • the large gear is the second special tooth, and its tooth height is small, the tooth width is large, and the strength is high.
  • the pinion tooth width is much larger than the second special tooth of the large gear, and the impact strength is also high.
  • the clutch device can control the large gear idling angle causing the impact to a small range (the maximum idling angle of the large gear that causes the impact in this embodiment is about 90% of the angle occupied by one tooth, compared with some clutch devices.
  • the large-gear angle of the impact of the moving parts that are critical to the clutch is much smaller.
  • the device of the invention can be used for gear transmission systems with large gear ratio, large modulus and tooth width, small number of teeth and small gears (in this embodiment, the pinion is 8 teeth), and the outer diameter is small but the torque is large. It provides superior preconditions for the development of spring operating mechanisms that design large and extra large operating functions.
  • the prior art type 2 clutch device shown in Figures 8, 9, and 10 is used in such a gear transmission system, and it will encounter insurmountable difficulties, and the spring operating mechanism due to large and extra large operating work cannot be used. There is a technical type 2 clutch device, and some are returned to the first type of clutch device, which greatly increases the complexity and cost of the mechanism.
  • the device of the invention has the advantages of simple structure, few parts, low cost, no additional space, and the structure of the spring operating mechanism can be simplified, the size can be reduced, and the cost can be reduced.
  • Other embodiments
  • the hanging spring pin 9 and the energy storage holding roller 10 are fixed or rotatably connected to the large gear
  • the number of teeth of the pinion gear is 8 teeth, but the present invention may also have a larger number of teeth of the pinion.
  • the clutch cam return spring 3 is a helical compression spring having a guide rod, but there may be no guide rod, and other types of springs such as a torsion spring, a leaf spring, etc. may be used.
  • the specific shape of the clutch cam 6 in the embodiment is as shown in FIG. 1 and FIG. 3, but the specific shape may be different from the figure, especially the larger portion protruding inward, which may be various other differences.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

一种断路器弹簧操动机构的齿轮传动系统的离合装置,包括:储能轴(1)、大齿轮(4)和小齿轮(5);大齿轮在储能保持位置与小齿轮相对处设置有一个缺齿及特殊齿区域,该区域及延后部分的大齿轮内部的空腔中设置有一个由复位弹簧(3)驱动复位的离合凸轮(6),大齿轮在所述区域有第1特殊齿(4a)、第2特殊齿(4c)和位于两者之间的空挡(4b);储能结束时小齿轮推动第1特殊齿将大齿轮和储能轴推送到脱离摩擦死区的储能保持位置,然后小齿轮与大齿轮自动脱离啮合。储能到达储能保持位置后,小齿轮惯性转动随机停止在任何可能的位置,合闸快动作大齿轮转动时,都可以实现大齿轮与小齿轮间可靠、平稳的再啮合,任何情况下都不可能出现大、小齿轮相互卡住不动,不能合闸的现象。

Description

一种断路器弹簧操动机构的齿轮传动系统的离合装置 本申请要求于 2012 年 9 月 24 日提交中国专利局、 申请号为 201210359126.9、 发明名称为"一种断路器弹簧操动机构的齿轮传动系统的 离合装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域
本发明涉及断路器技术领域, 特别涉及一种断路器弹簧操动机构的齿 轮传动系统的离合装置。
背景技术
断路器弹簧操动机构的储能传动系统中必须包含一种离合装置, 可在 储能完毕, 储能轴停转时使传动系统与储能轴自动脱开, 在合闸弹簧译能 快动作合闸并带动储能轴转动过程中或合闸结束后再次储能时又使储能轴 与传动系统自动连接顺利储能。
现有弹簧操动机构实现上述离合功能的装置有两种类型。 第 1类是传 动系统中设置有可控制的单向传动部件,如棘轮配棘爪或其他间歇传动件、 整圈转动的驱动爪配驱动轮、 可控制离合的单向离合器、 端面离合部件加 单向离合器等, 这一类传动系统除减速传动齿轮外, 还需另外增加其他单 向传动件, 而且还需在主传动链空间之外另外增设控制离合的部件, 传动 结构较复杂, 成本较高, 机构尺寸也较大。 棘轮等间歇传动还存在传动效 率大大降低的问题, 必须大幅增加驱动电机的功率, 才能在规定的操作允 许时间内完成储能。 第 2类传动系统是纯齿轮 (有的包含有链轮或蜗轮 ) 减速传动,所需离合装置设置在主传动链的一对互相啮合的大小齿轮内部, 没有外部的传动件和离合控制部件, 结构很简单, 机构尺寸较小, 不存在 第 1类传动系统的缺点。
现有技术设置在一对大、 小齿轮内部的离合装置的例子见图 8、 图 9、 图 10。 图 8、 图 9为在合闸保持位置与小齿轮相对的大齿轮的缺齿区域设 置一个可伸缩齿的离合装置。 由于小齿轮在驱动电机断电后惯性转动的停 转位置具有随机性, 快动作合闸大齿轮转动再啮合时, 如果小齿轮停转正 好在两齿轮的齿尖接触位置, 如与大齿轮正常齿啮合将被卡住, 不能完成 合闸, 离合装置设置可伸缩齿后, 与小齿轮齿尖首先接触的是可伸缩的齿 尖, 大齿轮转动时可伸缩齿会内缩退让, 顺利实现再啮合。 图 8所示离合 装置的小齿轮的齿,大齿轮缺齿区域前后的齿及可伸缩齿端都是正常齿形, 据分析, 在小齿轮惯性转动停转如处于其齿尖再啮合时与大齿轮齿尖接触 的某种特殊位置, 虽然首先接触的大齿轮可伸缩齿可内缩退让, 但两齿尖 的摩擦力可带动小齿轮一起转动, 有可能出现后面的大小齿轮正常齿齿尖 接触被卡住的现象。 图 9的离合装置正是针对这种出现机率不大, 但可能 出现的卡住现象釆取了若干克服存在问题的措施, 其中的一项重要的与图 8 离合装置明显区别的措施是, 小齿轮的齿尖、 伸缩齿的齿尖以及伸缩齿 后的附加空挡 (缺齿)后第一固定齿的齿尖, 都改为与齿两侧渐开线齿形 面相交的斜面,解决了卡住问题。较晚出现的图 10的发明目的主要也应当 是解决图 8离合装置的卡住问题。 图 10的离合装置将原有单个可伸缩齿, 改为由中间空缺一齿的两个正常齿形的齿连体构成的摆动齿, 摆动齿可向 内摆动退让实现再啮合。 由于图 10的离合装置继续釆用正常齿形,仍有不 令人满意或不够完善之处, 主要是摆动齿所受冲击力大, 必须釆用特殊材 料及特殊的加工工艺方法而使其造价太高等问题,后续又出现了替代图 10 的离合装置, 该装置为所述的第 1类传动系统的端面离合部件加单向离合 器等组成的离合装置, 可靠性较高, 但结构的复杂程度大大增加, 机构增 加的体积也较大, 离合装置部分的成本也^ ί艮高。 图 8、 图 9、 图 10的离合 装置在小齿轮停转的某些位置, 快动作合闸再啮合时大齿轮都要空转较大 角度(接近一个齿距甚至大于一个齿距),可伸缩齿或摆动齿才与静止的小 齿轮接触, 这一过程中力量很大的合闸弹簧译放的能量较大, 可伸缩齿或 摆动齿与小齿轮接触的冲击力也大。 这几种离合装置齿尖各表面间均无小 圓弧面过渡, 尖端接触应力很大, 都使得两种活动齿必须具有很高抗冲击 强度。 操作功大幅增加的大的或超大操作功弹簧操动机构, 如釆用上述几 种离合装置, 由于快动作合闸再啮合大齿轮空转时合闸弹簧译放能量大幅 增加, 活动齿承受的冲击力及抗冲击强度要求也将大幅提高, 可能达到难 以满足要求的程度。 要满足大齿轮承受大幅增加的转矩, 又不过度增加大 齿轮直径及减少大小齿轮的传动比, 齿轮应选取较大的模数和齿宽, 大小 齿轮的齿数也要大幅减小, 这又会进一步增加快动作合闸再啮合时大齿轮 的空转角度及冲击力。 另外, 作图分析显示, 小齿轮齿数艮少时, 釆用图 8、 图 10两种离合装置, 都无法消除可能(小几率) 出现的卡住不能合闸 现象。 发明内容
本发明的目的就是为了解决上述问题, 提供一种特别适用于大的或特 大操作功的 (同时也适用于中等及较小操作功 ) 断路器弹簧操动机构的齿 轮传动系统的离合装置, 其位于大小齿轮内部, 该离合装置能实现合闸弹 簧储能结束时由小齿轮将大齿轮可靠地推送到储能保持位置并实现小齿轮 与大齿轮自动脱离啮合, 合闸弹簧释能快动作合闸带动大齿轮转动时, 实 现大齿轮与小齿轮间可靠、 平稳的再啮合。 无论小齿轮在驱动电机断电后 的惯性转动随机停转在任何位置, 都不会出现大小齿轮卡住不能合闸的现 象。传动装置中的活动件离合凸轮只可能受到大齿轮极小空转角度的冲击, 冲击力很小, 抗冲击强度要求低, 离合凸轮尺寸较小, 造价低, 离合作用 段大小齿轮各齿的齿尖, 活动件的尖角处都有小圓弧面过渡, 不会有尖角 接触过大应力造成的损伤。
为达到上述目的, 本发明釆取了以下的技术方案予以实现:
一种断路器弹簧操动机构的齿轮传动系统的离合装置, 包括: 轴上固 定连接有合闸驱动凸轮的储能轴、 储能轴上固定连接的大齿轮和与大齿轮 啮合且由电机经减速齿轮带动的小齿轮; 所述的大齿轮在储能保持位置与 小齿轮相对处设置有一个缺齿及特殊齿区域, 该区域及延后部分的大齿轮 内部的空腔中设置有一个由复位弹簧驱动复位的离合凸轮, 大齿轮在所述 区域有第 1特殊齿、 第 2特殊齿和位于第 1特殊齿和第 2特殊齿之间的空 挡; 储能结束时小齿轮推动第 1特殊齿将大齿轮和储能轴推送到脱离摩擦 死区的储能保持位置, 然后小齿轮与大齿轮自动脱离啮合。
本发明进一步的改进在于: 在所述大齿轮的缺齿及特殊齿区域的转动 方向的前端是大齿轮的第 1特殊齿; 第 1特殊齿是将该处正常齿去掉后侧 部分, 只保留其前侧的一部分形成; 保留部分两侧汇聚的外侧尖端处由圓 弧面过渡连接。
本发明进一步的改进在于: 在所述的大齿轮的第 1特殊齿后是一个仅 缺一齿的空挡, 设置在大齿轮空腔的离合凸轮的前端凸伸于该空挡中; 在 离合凸轮的复位限位位置,离合凸轮的前端位于缺失齿与第 1特殊齿之间; 离合凸轮的前端在小齿轮转动时被小齿轮的齿带动退入所述大齿轮的内部 空腔内, 小齿轮转动中及停转没有阻挡时, 离合凸轮的前端在离合凸轮复 位弹簧作用下, 复位到限位位置。
本发明进一步的改进在于: 离合凸轮与固定于大齿轮的轴销活动连接 的孔是一个长圓孔。
本发明进一步的改进在于: 离合凸轮在距大齿轮轴心较近的方向, 还 包含有一个偏向一侧的扩展部分。
本发明进一步的改进在于: 第 2特殊齿位于偏离该处缺失的正常齿向 前, 更靠近空挡的位置。
本发明进一步的改进在于: 所述大齿轮的第 2特殊齿, 其齿顶圓与大 齿轮正常齿齿顶圓同轴, 但半径比大齿轮正常齿的齿顶圓半径小, 第 2特 殊齿的齿高比大齿轮正常齿的齿高小, 第 2特殊齿的齿宽比大齿轮正常齿 的齿宽小, 第 2特殊齿两侧齿形面与齿顶圓相交处用圓弧面过渡连接。
本发明进一步的改进在于: 大齿轮的缺齿及特殊齿区域为大齿轮去掉 三个正常齿形成。
本发明进一步的改进在于: 所述与大齿轮啮合的小齿轮, 其所有齿的 齿尖具有相同的形状; 小齿轮的齿尖在转动方向前侧有一个与每一齿的对 称中心线的夹角为锐角的斜面, 此斜面与齿两侧的渐开线齿面相交处用圓 弧面过渡连接。
本发明进一步的改进在于: 小齿轮的齿数大于或等于 8。
本发明进一步的改进在于: 离合凸轮前端的两侧为圓弧面, 前端部分 两圓弧面间的距离比大齿轮正常齿的齿宽小, 离合凸轮前端的外侧有一个 斜面, 该斜面由后向前, 向大齿轮内侧方向倾斜, 斜面与两侧圓弧面相交 处由圓弧面过渡连接。
本发明进一步的改进在于: 离合凸轮的复位弹簧为螺旋压簧, 可为有 导向杆或者没有导向杆。
本发明进一步的改进在于: 离合凸轮的复位弹簧还可为扭转弹簧或片 状弹簧。
离合凸轮可绕在空腔区域内装于大齿轮上的一个轴销旋转摆动。 大齿 轮上还装有一个限位销,可限定离合凸轮沿半径向外方向摆动的复位位置。
本发明离合装置可以适用于机构的其余部分为不同结构的弹簧操动机 构, 机构的合、 分闸弹簧可以是任何类型的弹簧, 如螺旋弹簧、 盘簧、 碟 簧、 扭杆弹簧等。
大齿轮在所述缺齿及特殊齿区域的中间部位有缺失一齿的空档, 缺失 齿前后各有一个特殊齿。 按旋转方向缺失齿之前, 是第 1特殊齿。 第 1特 殊齿由位于该处的大齿轮正常齿去掉后侧大部分, 只保留其前侧的一小部 分形成, 保留部分外侧尖端处用圓弧面过渡, 保留部分的形状和尺寸与小 齿轮的最大外圓尺寸的配合应保证, 当电机通电转动, 经过齿轮传动系统 给合闸弹簧储能临近到达储能保持位置时, 由小齿轮强制推动大齿轮和储 能轴越过死点, 再超出摩擦死区一个恰当的小角度, 使大齿轮必定在合闸 弹簧产生的力矩作用下再转动一个小角度到达储能保持位置。 齿轮传动系 统转动时, 由装设于大齿轮上也可以是装设于固定连接在储能轴上的其它 部件上的掛簧销带动与其相连的连杆或链条, 再带动合闸弹簧变形, 实现 储能。 当储能转动到达储能保持位置时, 大齿轮上或固定连接于储能轴上 的其他部件上装设的一个储能保持滚子被另外装设于机构支架上的储能保 持挚子挡住, 实现合闸弹簧的储能保持。 当合闸脱扣电磁铁通电动作后, 所述储能保持挚子可以自由转动, 不能限定所述储能保持滚子的位置, 合 闸弹簧将释能, 带动储能轴及大齿轮转动, 产生合闸快动作, 带动断路器 动作完成合闸。 在大齿轮所述缺齿及特殊齿区域中, 缺失齿的沿转方向的 后侧, 是大齿轮的第 2特殊齿, 第 2特殊齿位于该处大齿轮正常齿(已不 存在) 向前适当角度的位置。 第 2特殊齿两侧的齿形面为与大齿轮正常齿 渐开线非常接近的圓弧面, 其齿宽比正常齿小, 其齿顶圓为与正常齿的齿 顶圓同轴但直径比正常齿的齿顶圓小许多, 即其齿高比正常齿小很多, 第 2特殊齿两侧齿面与齿顶圓弧面相交处由小半径圓弧面过渡连接。
在所述大齿轮的缺齿及特殊齿区域及其近旁的空腔内装设的一个离合 凸轮与大齿轮空腔处沿转动方向后侧装设的一个轴销可转动连接, 在临近 储能到位及储能保持位置, 在转动的小齿轮的齿推压作用下, 离合凸轮可 向空腔内侧摆动退让, 不妨碍小齿轮转动, 在小齿轮的齿转动离开离合凸 轮时, 在装于大齿轮空腔靠前部位内侧的复位弹簧作用下, 离合凸轮可向 空腔外侧摆动复位。 离合凸轮复位摆动的复位位置由装于大齿轮空腔靠前 靠外的一个限位销限定。 离合凸轮在复位位置, 其前端位于大齿轮的缺失 齿沿转动方向向前恰当角度的位置, 离合凸轮前端两侧为较大半径的圓弧 面, 前端部分两圓弧面间的距离 (宽度) 比大齿轮正常齿的齿宽小得多, 离合凸轮前端的外侧有一个斜面, 由后向前向大齿轮内侧方向倾斜, 斜面 与两侧圓弧面相交处由小半径圓弧面过渡连接。 离合凸轮前端在复位时位 于大齿轮齿顶圓内侧, 与所述齿顶圓有较大距离。 离合凸轮与所述大齿轮 的轴销活动连接的孔不是常规的圓孔, 而是一个含有两个靠近的半圓构成 的长圓孔, 长圓孔的两个半圓圓心的连线由后向前时, 向大齿轮外侧适当 倾斜。 离合凸轮还特别增加了向大齿轮内侧方向凸出的体积相对较大的部 分。
所述与大齿轮啮合的小齿轮, 其所有齿的齿尖具有相同的形状: 齿尖 在转动方向的前侧有一个与每一齿的对称中心线的夹角为锐角的斜面, 此 斜面与齿两侧的渐开线齿面相交处用小半径圓弧面过渡连接, 齿尖离小齿 轮轴心的最大距离略小于正常齿顶圓半径。
另外, 本发明使用于大的或特大操作功弹簧操动机构时, 离合装置中 的大小齿轮应釆用较大的模数, 较大的传动比, 较少的齿数(尤其是小齿 轮齿数特别少), 两齿轮都釆用正变位齿轮且变位系数适当偏大, 目的是齿 轮可以传动大的或特大转矩而齿轮直径不至过大。
相对于现有技术, 本发明具有以下优点:
1 ) 合闸弹簧储能到达临近储能保持位置时, 小齿轮与大齿轮自动脱 离啮合, 保证驱动电机断电 (甚至因意外故障未能断电)惯性转动时, 合 闸保持部件及所有其他零件都不会承受因转动惯性附加的冲击力。
2 ) 合闸弹簧储能到达临近储能保持位置时, 小齿轮必定强制推动大 齿轮和储能轴到达十分恰当的位置, 必定会再由合闸弹簧产生的转矩带动 大齿轮和储能轴转动一个非常恰当的小角度到达储能保持位置, 即可保证 储能到位的可靠性及稳定性, 也不会出现有的离合装置为保证储能可靠到 位, 因结构特征限制只好釆用由合闸弹簧带动转动较大转角到位而引起的 较大冲击力。
3 ) 储能到达储能保持位置后, 小齿轮惯性转动随机停止在任何可能 的位置, 合闸快动作大齿轮转动时, 都可以实现大齿轮与小齿轮间可靠、 平稳的再啮合, 任何情况下都不可能出现大、 小齿轮相互卡住不动, 不能 合闸的现象。
4 ) 储能到达储能保持位置后, 小齿轮惯性转动随机停转可能的位置 中, 只有其中非常小的一个角度范围, 大小齿轮再啮合时, 所述离合凸轮
(强度较薄弱的活动件 )可能受到大齿轮空转时合闸弹簧译放能量引起的 冲击, 引起冲击的大齿轮可能的最大的空转角度非常小, 且都出现在释能 启动的最初段, 因而离合凸轮可能承受到的冲击力非常小。其强度要求低, 不需特殊高强度材料及特殊方法加工, 其尺寸较小 (较薄), 造价很低。
附图说明
图 1 是本发明的离合装置处于储能保持位置的示意图。
图 2 是本发明的离合装置处于合闸弹簧释能快动作合闸后且电机未 再通电储能时, 大齿轮停转位置示意图。
图 3a 是本发明的离合装置主要部件结构特征的放大示意图(储能保 持位置);
图 3b 为小齿轮的局部放大图。
图 4a 是小齿轮惯性转动停转后, 出现几率最大的停止位置及离合凸 轮可能受到冲击的停转范围,以及快动作合闸再啮合初始段动作的示意图。
图 4b、 图 4c 是接续图 4a 的快动作合闸大齿轮与小齿轮再啮合过程 示意图。 图 5a 是小齿轮惯性转动停转在位于图 4a向前, 与储能保持位置的 离合凸轮不接触, 以及合闸快动作大齿轮转动与小齿轮再啮合初始段大小 齿轮的齿刚接触示意图。
图 5b、图 5c 是小齿轮惯性转动停转在小齿轮推压并与离合凸轮前端 的后侧接触的几种位置 (示例) 的示意图。
图 5d 是小齿轮惯性转动停转时, 小齿轮齿尖小半径圓弧面与离合凸 轮前端最外侧的小半径圓弧面相接触并可能稳定保持该位置, 且在合闸快 动作再啮合时, 可能因摩擦力由离合凸轮带动小齿轮转动的最大范围示意 图。
图 6a、 图 6b 是小齿轮惯性转动停转在到达或超出图 5d范围向前的 边界位置后, 离合凸轮在其复位弹簧作用下后退并向外摆动, 推动小齿转 动直到最终停止在 5E、 5E2、 6E、 6bE位置的连续变换位置的过程示意图。
图 7a 是小齿轮惯性转动停止在图 5d的范围内以后, 合闸快动作再 啮合初始, 在轴销 8 ( 8E-8F-8E1 )作用下, 离合凸轮先向内摆动, 再向前 转动并向外摆动与小齿轮接触的过程示意图。
图 7b 是小齿轮惯性转动停止在图 5d的范围内, 假定合闸快动作由 于意外的原因离合凸轮仍可带动小齿轮转动时, 顺利实现再啮合过程的示 意图。
图 8是现有一种离合装置的结构示意图。
图 9是现有另一种离合装置的结构示意图。
图 10是现有另一种离合装置的结构示意图。
注: 图 4a 〜图 7b各图下方, 绘出了与各图中大齿轮、 离合凸轮的不 同位置——对应的大齿轮上的轴销 8和离合凸轮的长圓孔 6a间的相对位置 示意图。
附图标记说明:
1. 储能轴; 2. 合闸驱动凸轮; 3. 离合凸轮复位弹簧; 4. 大齿轮; 4a. 第 1特殊齿; 4b. 空档; 4c. 第 2特殊齿; 4d. 第 1正常齿; 5. 小齿轮; 6. 离合凸轮; 6a. 长圓孔; 6b. 离合凸轮的前端; 7. 限位销; 8. 轴销; 9. 挂 簧销; 10. 储能保持滚子。 图 1、 图 2中,标记号 9后加 D、 S字母,表示挂簧销的两个特殊位置。 9D为合闸弹簧变形最小储能最少时挂簧销的位置。 9S为合闸弹簧变形最 大, 储能最多时挂簧销的位置, 即死点位置。
图 4a 〜图 7b中, 在上述主要标记号后附加 E、 F, 表示同一部分的 两个不同位置。如同一图中某一部分有三个位置,再加数字或字母 Z表示, Z表示某一部分的局部处于 E、 F位置之间的位置。 小齿轮 5的 5E、 5F位 置后再加数字 (例如 5E2、 5F1 ), 数字是表示在图中的某一具体齿的顺序 编号。
具体实施方式
下面结合附图及具体实施例对本发明的具体实施方式等做进一步的详 细说明。
如图 1所示, 本发明一种断路器弹簧操动机构的齿轮传动系统的离合 装置包括: 轴上固定连接有合闸驱动凸轮 2的储能轴 1 , 储能轴 1上固定 连接的大齿轮 4, 与大齿轮 4啮合且由电机经减速齿轮带动的小齿轮 5 (图 中未绘出电机和减速齿轮), 以及由复位弹簧 3驱动复位的离合凸轮 6。
如图 1、 图 3a所示, 大齿轮 4在储能保持位置与小齿轮 5相对处设置 有一个缺齿及特殊齿区域(该区域占据大齿轮 4的三个正常齿的空间),在 大齿轮 4该区域及图中箭头所示转动方向后侧相邻部分的大齿轮 4的内部, 有图中虚线所示的内部空腔, 在所述的内部空腔范围, 大齿轮 4上装设有 限位销 7和轴销 8。 所述的大齿轮 4的缺齿和特殊齿区域已不存在的三个 正常齿,在图 3中用虚线表示, 大齿轮 4的第 1特殊齿 4a由该区域最前面 的一个正常齿去掉其后侧的大部分, 只保留其前侧的小部分形成, 保留部 分两侧汇聚的外侧尖端处, 改由圓弧面过渡连接。 大齿轮第 1 特殊齿 4a 后面, 是缺失一个齿形成的空挡 4b。 空挡 4b后面是大齿轮的第 2特殊齿 4c,第 2特殊齿 4c后面紧接相邻的是大齿轮缺齿及特殊齿区域后的第一个 正常齿 4d。 大齿轮的第 2特殊齿 4c位于空挡 4b后的正常齿(已不存在) 向前偏移的位置。第 2特殊齿 4c两侧的齿形面为与大齿轮正常齿的渐开线 齿形面非常近似的圓弧面, 其齿宽小于正常齿的齿宽, 其齿顶圓与正常齿 的齿顶圓同轴但其直径比正常齿齿顶圓直径小, 其齿高比正常齿的齿高小 很多 (本实施例中, 其齿高为正常齿高的 49 % )。 第 2特殊齿两侧面与其 齿顶圓弧面相交处由小半径圓弧面过渡连接。
如图 1、 图 3a所示, 在所述大齿轮 4的虚线所示的内部空腔, 设置有 离合凸轮 6, 离合凸轮 6有一个包含两个靠近的半圓构成的长圓孔 6a, 在 离合凸轮 6的复位位置, 长圓孔 6a两个半圓圓心的连线由后向前, 向大齿 轮 4的外侧适当倾斜。 离合凸轮 6用长圓孔 6a与大齿轮 4上装设的轴销 8 活动连接, 离合凸轮 6可绕轴销 8摆动, 并可沿长圓孔 6a的两个半圓圓心 连线方向平移串动。 在小齿轮 5按图中箭头所示方向转动时, 小齿轮的齿 推压离合凸轮的前端 6b向所述内部空腔的内侧摆动,小齿轮 5的齿转动离 开离合凸轮的前端 6b时,在复位弹簧 3推动下, 离合凸轮 6向外侧摆动复 位, 大齿轮 4上装设的限位销 7限定了离合凸轮 6的复位位置。 在离合凸 轮 6位于复位位置时, 离合凸轮的前端 6b位于图 3a所示大齿轮的空档 4b 处虚线所示的第 2缺失齿与第 1特殊齿 4a之间, 离合凸轮前端 6b的两侧 为较大半径的圓弧面, 前端部分两圓弧面间的距离 (宽度) 比大齿轮正常 齿的齿宽小得多, 离合凸轮前端 6b的外侧有一个斜面, 该斜面由后向前, 向大齿轮内侧方向倾斜, 斜面与两侧圓弧面相交处由小半径圓弧面过渡连 接。 离合凸轮 6在复位位置, 其前端 6b位于大齿轮齿顶圓内侧, 与所述齿 顶圓有较大的距离。 另外, 离合凸轮 6在偏向大齿轮内部空腔的内侧方向, 还特别增加了体积相对较大的一部分, 利用这一部分的惯性作用使离合装 置具备更好的离合性能。
如图 1、 图 3a所示, 离合装置中与大齿轮 4啮合的小齿轮 5位于储能 保持位置时大齿轮的缺齿及特殊齿区域对面。 小齿轮 5的所有齿的齿尖都 具有相同的形状(参见图 3b的放大图), 在小齿轮 5按图中箭头所示的转 动方向的前侧, 齿尖处有一个与每一齿对称中心线的夹角为锐角的斜面, 此斜面与齿两侧的渐开线齿面相交处用小半径圓弧面过渡连接, 齿尖最外 侧离小齿轮 5的轴心的最大距离略小于正常齿顶圓半径。
使用本发明离合装置的齿轮传动系统中, 应装设弹簧操动机构通常都 有的单向离合器, 保证离合装置的大、 小齿轮都按图中箭头所示转向单向 转动。
下面说明本发明离合装置的动作原理和离合性能。
本发明离合装置是用于断路器弹簧操动机构的给合闸弹簧储能的齿轮 传动系统的离合装置。参见图 1、图 2。电机通电转动时,经过减速齿轮(图 中未绘出 ) 带动小齿轮 5按图中箭头所示转向逆时针旋转, 带动大齿轮 4 按图中箭头所示顺时针转动, 由图 2所示合闸弹簧释能快动作合闸后的停 转位置开始一直运动到图 1所示的储能保持位置。 转动过程中, 固定于大 齿轮 4上的挂簧销 9通过链条或连杆 (图中未给出) 带动机构的合闸弹簧 储能, 挂簧销 9转动到图 1中的死点位置 9S (在 S点划线上)时, 合闸弹 簧的变形及储存能量为最大值。 转动超过死点后, 小齿轮 5的齿将强制推 动大齿轮 4的第 1特殊齿 4a超出摩擦死区一个适当的小角度(应正确选择 此小角度及 β , 保证实现下述可靠动作), 挂簧销 9到达图 1的 Β点划线 的位置, 在此位置, 合闸弹簧产生的转矩必定能带动大齿轮 4转动, 在合 闸弹簧作用下,再转动一个小角度 β ,到达 Α点划线所示的储能保持位置。 此时,装设于大齿轮 4上的储能保持滚子 10被装于机构支架上的储能保持 掣子 (未绘出)挡住, 不能转动, 实现合闸弹簧的储能保持。 事实上, 只 要转动到刚好超出摩擦死区的边界(未达到图 1中 B线之前)合闸弹簧就 已经带动大齿轮转动,小齿轮 5强制推动第 1特殊齿 4a超出死区一个适当 的小角度, 是为了保证动作可靠性及必要的裕度。 本装置在保证动作可靠 的前提下可做到储能保持位置超过死点位置的角度 α较小 (本实施例的角 度 α为 5° ), 因而弹簧释能引起的储能保持滚子 10对储能保持掣子的冲 击较小, 储能保持位置保留的可利用的弹簧能量较大, 避免了前面所述第 1类或第 2类离合装置中, 有一些装置因其结构特征的限制, 为了保证储 能到位动作的可靠性, 只能釆用较大的过死点角度 α , 从而所述弹簧译能 冲击较大及可利用弹簧能量较小的不足。
储能运动临近到达图 1所示储能保持位置前, 行程开关已切换, 使电 机断电, 但因惯性, 小齿轮 5还会继续转动。 到达储能保持位置时, 如图 1所示, 小齿轮 5已经与大齿轮 4脱离啮合, 小齿轮惯性转动时只会推压 离合凸轮前端 6b使其内缩退让, 小齿轮 5不能与大齿轮接触,储能保持滚 子 10及储能保持掣子以及其他相关零件都不会受到转动的电机、减速齿轮 及小齿轮的惯性弓 1起的附加的冲击力。
电机断电后, 小齿轮 5惯性转动的停转位置具有随机性, 小齿轮 5停 止位置不同, 合闸弹簧译能快动作合闸时, 大齿轮 4与小齿轮 5的重新再 啮合过程有区别。 不论小齿轮 5随机停转在任何位置, 本离合装置都可顺 利实现可靠、 平稳的再啮合。 图 4a ~ 图 7b显示了小齿轮 5可能出现的 停止装置, 其中有的图还绘出了小齿轮 5停止在某处后, 快动作合闸时, 大 d、齿轮再啮合的动作过程。
如图 4a所示, 位置 5E、 5E1是电机断电后, 小齿轮 5停止运动出现 机率最大的位置, 此时, 位于 5E1的小齿轮的 1号齿与储能保持位置的且 已复位的离合凸轮前端 6b(6bE位置)接触。 图中 5E、 5E1与 5F、 5F1位 置是再啮合时首先由离合凸轮 6的前端 6b推动小齿轮 5转动的小齿轮停转 位置的一个范围的两侧边界。 只要小齿轮在此范围内停转, 快动作合闸大 小齿轮再啮合时, 首先由离合凸轮前端 6b在空转一个小角度后(其最大值 为图示 Θ角, 最小值为 0° ), 推动小齿轮的 1号齿转动, 直到小齿轮的 1 号齿转动到 5F1位置且离合凸轮前端 6bF位置, 此时大齿轮的第 2特殊齿 到达 4CF位置与处于 5F2位置的小齿轮 2号齿接触。 此后继续转动时, 离 合凸轮前端 6b将与小齿轮的 1号齿分离,转换为大齿轮第 2特殊齿推动小 齿轮的 2号齿转动。接下来,如图 4b所示,大小齿轮由与图 4a相同的 4CF、 5F2位置开始, 由大齿轮的第 2特殊齿 4C推动小齿轮 5的 2号齿转动, 经 过中间的 4CEZ、 5E2Z位置, 再转动到 4CE、 5E2位置, 此时大齿轮 4在 缺齿及特殊齿区域后的第一个正常齿 4d已转动到 4dE位置, 与同时转动 到 5E3位置的小齿轮 3号齿接触。 继续转动时, 大齿轮的第 2特殊齿 4C 与小齿轮的 2号齿分离, 转换为由大齿轮 4的 4d正常齿推动小齿轮的 3 号齿转动, 再往后就成为图 4C所示由大、 小齿轮的正常齿传动。
图 5a为小齿轮 5惯性转动停转在超出图 4a所示范围的前侧边界, 与 离合凸轮前端 6b两侧都不接触的 5E1、 5E2、 6bE位置, 快动作合闸再啮 合时, 大齿轮 4空转一个角度, 其第 2特殊齿 4C由 4CE位置到达 4CF位 置, 与位于 5E2的小齿轮 5的 2号齿接触, 离合凸轮前端 6b到达 6bF位 置, 但前端 6b接触不到位于 5E1还未启动的小齿轮 5的 1号齿。 此后, 大齿轮第 2特殊齿 4C推动小齿轮 2号齿转动, 再经过图 4b至图 4C类似 的过程, 转换为大小齿轮正常齿传动。
图 5b、图 5C为小齿轮惯性转动停转在与离合凸轮前端 6b的后侧接触 的位置。 图中列举了三种位置的例子, 其中图 5b的 5E2位置, 小齿轮 2 号齿是与复位位置 ( 6bE ) 的前端 6b后侧接触, 而图 5b的 5F2与 6bF位 置及图 5C的 5E2与 6bE位置的两例接触,离合凸轮前端 6b已受小齿轮推 压, 离开限位销 7, 向内侧摆动了一定的角度。 处于类似这几种位置, 快 动作合闸大齿轮 4转动时, 大齿轮 4都要空转与小齿轮 5停转位置对应的 大小不等的角度, 其第 2特殊齿 4C再与小齿轮 2号齿接触, 推动小齿轮 转动, 再后经图 4b、 4C类似的过程转换为正常齿传动。
图 5d所示为, 小齿轮惯性转动停转时, 小齿轮 5齿尖的小半径圓弧面 与离合凸轮前端 6b最外侧的小半径圓弧面相互接触并可以稳定保持,且在 快动作合闸再啮合时, 可能由离合凸轮通过摩擦力带动小齿转动的最大范 围。 如小齿轮停转时未到达 5E2位置 (与 6bE位置的离合凸轮前端 6b接 触), 即使摩擦系数达到无润滑干摩擦的最大值, 离合凸轮也不能带动小齿 轮转动, 再啮合过程与图 5b, 图 5C相同, 但再啮合时大齿轮空转角度较 大。 如小齿轮停转时超过了 5F2位置(与 6bF位置的前端 6b接触), 则小 齿轮不能稳定地停留在该位置, 而会有下面所述的后续变化。 由于离合凸 轮的连接孔釆用了特殊的长圓孔,可以缩小图 5d所示的范围,使所述的范 围也即范围两侧边界位置间的夹角 γ非常小。
图 6a、 图 6b所示为小齿轮 5惯性转动到达或超过 5d所示转动方向前 侧边界停转后, 小齿轮位置的后续变化。 与小齿轮一起转动的零件的惯性 能量全部消耗完毕, 小齿轮停转在所述位置后, 在离合凸轮复位弹簧 3的 弹簧力及小齿轮 5齿尖支持反力的作用下,离合凸轮将按图 6a的凸轮内部 箭头所示方向后退平移, 并在复位弹簧 3作用下向外摆动。 离合凸轮后退 平移时,其长圓孔 6a将由图 6a下方小图所示的 6aF位置向 6aE位置移动, 直至如 6aE、 8E位置所示长圓孔 6a与轴销 8间左侧间隙完全消除为止, 同时离合凸轮前端 6b由 6bF位置移至 6bE位置。 此后, 如图 6b所示, 离 合凸轮 6及其前端 6b向外侧摆动, 离合凸轮前端 6b摆动时推动小齿轮 5 按箭头所示逆时针转动, 经过举例的 5F2、 6bF 中间位置, 最终停止在离 合凸轮 6被限位销 7挡住后停下来的 5E2、 6bE位置。 图 6b中小齿轮及离 合凸轮的 5E2、 6bE位置与图 4a所示 5E、 5E1及 6E、 6bE位置实质上是 相同的位置。 由于小齿轮的惯性等原因, 小齿轮的齿与离合凸轮前端 6b 之间也可能出现一个很小的间隙。 如果在复位弹簧 3推动移位前, 小齿轮 惯性转动停转在如图 6a所示其齿尖与离合凸轮前端 6b的外侧斜面接触的 位置, 或停转在如图 6b所示小齿轮的齿后侧与离合凸轮前端 6b的前侧小 圓弧面接触的位置, 接下来在复位弹簧 3的作用下, 离合凸轮也将如上面 所述向外侧摆动, 推动小齿轮 5转动直至最终停止在图 6b也即图 4a的如 上所述位置。 由于有这种后续变化, 所述的最终停止位置(图 4a的 5E1、 6bE也即图 6b的 5E2、 6bE位置) 出现机率非常大。 快动作合闸时, 将按 前面所述图 4a -图 4b -图 4c的过程实现大小齿轮再啮合。
当小齿轮惯性转动稳定地停留在图 5d所示范围内时,快动作合闸再啮 合初始段的动作参见图 7a。 快动作合闸大齿轮 4转动时, 大齿轮上的轴销 8将在离合凸轮长圓孔 6a内按图 7a下方的小图所示由 8E位置向 8F位置 移动, 由于离合凸轮的长圓孔 6a向外侧倾斜, 轴销 8移动时将带动离合凸 轮 6绕其前端 6b与小齿轮齿尖的接触点向内侧逆时针摆动,当轴销 8转动 到与未向前转动的离合凸轮长圓孔 6a的前侧接触时,不大的撞击力将使总 质量很小的离合凸轮向前串动, 由于离合凸轮向内侧的凸出部分的体积、 质量和惯性相对较大因而加速较慢, 所述串动的同时离合凸轮将绕轴销 8 向内侧顺时针摆动并与小齿轮齿尖脱离接触, 所述较早的轴销 8转动过程 中离合凸轮向内侧的摆动将强化离合凸轮串动时的顺时针摆动。 然后, 在 复位弹簧 3的作用下, 离合凸轮前端向外摆动, 与小齿轮齿尖恢复接触时, 轴销 8及离合凸轮已向前移动了一小段距离, 离合凸轮前端 6b由 6bE位 置经 6bF位置到达 6bEl位置。 前端 6b与小齿轮齿尖撞击反弹又使两者间 出现一次或多次离开-接触的过程, 两者最终稳定贴紧时, 离合凸轮已不 能通过与小齿轮齿尖的摩擦力带动小齿轮转动。 在此过程中, 加速转动的 轴销 8会追上串动后减速的离合凸轮,与长圓孔 6a前侧发生再次或多次撞 击,使离合凸轮前段与小齿轮齿尖最终紧贴时离合凸轮处于更向前的位置, 更不易出现由摩擦力带动小齿轮旋转。 经过上述再啮合初始阶段后, 大齿 轮 4空转一定的角度后, 其第 2特殊齿 4C与小齿轮 5的 2号齿后侧接触, 推动小齿轮转动直至图 4C所示大、 小齿轮正常啮合传动。
当小齿轮惯性转动稳定地停留在图 5d所示可能因摩擦力带动小齿轮 转动的范围内, 经过前一段中所述快动作合闸再啮合初始段动作后, 可以 转换为不会因摩擦力带动小齿轮转动的状态。 假定由于某种意外原因, 例 如摩擦力意外超大, 或两个小圓弧接触处有意外的轻微损伤变形等, 出现 了小齿轮的齿尖紧贴离合凸轮前端 6b的小圓弧面随同后者一起转动,这种 意外的非正常情况下的再啮合过程如图 7b 所示。 由所述稳定停留位置开 始,快动作合闸大齿轮 4转动时, 离合凸轮前端 6b通过与其接触的小齿轮 5的 2号齿齿尖带动小齿轮转动, 当各部分由停留位置 6bE、 5E2、 5E3、 4CE转动到 6bF、 5F2、 5F3、 4CF时, 小齿轮 5的 3号齿的齿尖与位于 4CF 位置的大齿轮第 2特殊齿 4C接触, 小齿轮被阻挡不能再转动, 此后大齿 轮 4空转直至其第 2特殊齿 4C到达 4CE1位置,与暂停在 5F2位置的小齿 轮 2号齿接触,同时离合凸轮的前端 6b随大齿轮顺时针转动并在复位弹簧 3的作用下向外摆动, 先与小齿轮的 2号齿分开再到达 6bEl位置, 然后由 大齿轮的第 2特殊齿 4C推动小齿轮 5转动。接下来与前面所述大齿轮第 2 特殊齿与小齿轮的齿接触后的运动及转换过程类似, 由大齿轮直接带动小 齿轮, 最后进入图 4C所示大小齿轮的正常齿啮合传动的过程。 上述过程 说明, 即便所述的再啮合初始段釆取的使离合凸轮串动及摆动消除由摩擦 力带动小齿轮的措施失效, 仍能顺利、 可靠的再啮合。
上面叙述了小齿轮惯性转动停止在所有可能的位置后, 快动作合闸大 齿轮转动带动小齿轮的再啮合过程, 综合起来, 本发明离合装置具有以下 的离合特性及优点:
1 ) 储能动作临近储能保持位置时, 由小齿轮的齿强制推送大齿轮到 达与储能保持位置非常临近的恰当位置, 储能到位可靠。 设计适当时, 在 保证动作可靠的前提下, 储能保持位置超过死点位置的角度 α及必须由合 闸弹簧释能推送到达储能保持位置的角度 β可以取一个非常恰当的最小的 数值(参见图 1 )。 因合闸弹簧释能到位产生冲击的能量可以是恰当的最小 值。
2 ) 电机断电及储能到位后, 小齿轮惯性转动随机停转在任何位置, 其后合闸弹簧释能快动作合闸大齿轮转动时, 都可以顺利实现大小齿轮的 平稳再啮合, 停转在任何位置都不可能出现卡住或其他不正常以及不能合 闸的现象, 本离合装置可靠性很高。
3 ) 因所述小齿轮惯性转动到达或超过图 5d所示转动方向前侧边界 后, 复位弹簧 3的作用都可以使小齿轮、 离合凸轮的位置产生后续变化, 再转动到图 4a的 5E1、 6bE位置, 这一停止位置出现的几率 4艮大, 本实施 例可以经过后续变化到达这一停止位置的小齿轮惯性转动的停转角度范围 达到其总转角的 18% 。 在这一停止位置快动作合闸再啮合时, 整个过程, 所有部位都不会有大齿轮空转引起的合闸弹簧译能产生的冲击。
4 ) 小齿轮惯性转动只有停转在图 4a所示范围内, 快动作合闸再啮合 时离合凸轮 6才可能有大齿轮空转引起的合闸弹簧释能产生的冲击。 小齿 轮停转在其他绝大多数位置,再啮合时离合凸轮前端 6b都不会与小齿轮接 触受到冲击, 小齿轮只有稳定停留在图 5d所示范围, 再啮合时前端 6b才 可能与小齿轮接触, 但其后如前面所述按图 7a或图 7b所示过程再啮合, 离合凸轮前端所受冲击力也小到可以忽略不计的程度。如图 4a所示, 离合 凸轮前端 6b可能受到冲击的小齿轮停转范围的夹角 δ非常小(本实施例只 有其相邻两齿间夹角的 5.5% ), 相对应的可引起冲击的大齿轮最大空转角 度 Θ也 ^艮小 (本实施例为大齿轮相邻两齿间夹角的 8.9% ), 因为正处于大 齿轮合闸转动的起始位置, 其单位转角合闸弹簧译放的能量大大低于合闸 靠后位置的译放值,因而离合凸轮 6及其前端 6b可能承受的冲击能量和冲 击力很小, 离合凸轮可以较薄较小, 不需使用强度特别高的材料及特殊的 加工工艺方法, 其制造成本 4艮低。
5 ) 无论釆用何种类型及结构的离合装置, 快动作合闸时都无法完全 避免大齿轮或棘轮等空转一定角度时合闸弹簧释能引起的冲击。 本离合装 置克服了有的离合装置由强度薄弱的对离合起关键作用的活动件承受较大 的所述冲击的问题, 而是由厚度大, 强度高很多的大小齿轮的固定齿承受, 大齿轮为第 2特殊齿承受, 其齿高小而齿宽较大, 强度高。 小齿轮齿宽比 大齿轮第 2特殊齿大得多, 抗冲击强度也很高。 本离合装置可以将引起这 种冲击的大齿轮空转角度控制到较小范围 (本实施例引起这种冲击的大齿 轮最大空转角度为一个齿所占角度的约 90%, 比有的离合装置由强度薄弱 的对离合起关键作用的活动件承受冲击的大齿轮空转角度还要小许多)。
6 ) 本发明装置可以使用于大小齿轮变比大, 模数及齿宽大, 大小齿 轮齿数少(本实施例, 小齿轮为 8齿), 外径较小但传递转矩很大的齿轮传 动系统, 为开发设计大的及特大操作功的弹簧操动机构提供了优越的前提 条件。 图 8、 图 9、 图 10所示现有技术第 2类离合装置用于这种齿轮传动 系统, 将遇到难以克服的困难, 由于大的及特大操作功的弹簧操动机构不 能釆用现有技术第 2类离合装置,有的又退回到釆用所述第 1类离合装置, 大大增加机构的复杂程度及造价。
7 ) 本发明装置结构简单, 零件少, 造价低, 不另外占用空间, 可使 弹簧操动机构结构简化, 缩小尺寸, 降低成本。 其他实施方式
以上按具体实施例说明了本发明离合装置的具体实施方式, 但本发明 并不限定于这种实施方式, 还可以是包含本离合装置所述特征的其他实施 方式, 例如:
1 ) 实施例中,挂簧销 9及储能保持滚子 10固定或转动连接于大齿轮
4上(参见图 1 ), 但这两种零件也可以固定或转动连接于与储能轴固定连 接的其他部件上, 例如连接于
与储能轴固定连接的拐臂或凸轮等零件上。
2 ) 实施例中, 小齿轮的齿数为 8齿, 但本发明也可以是小齿轮有较 多的齿数。
3 ) 实施例中, 离合凸轮复位弹簧 3为螺旋压簧, 有导向杆, 但也可 以没有导向杆, 也可以使用其他类型的弹簧, 如扭转弹簧, 片状弹簧等。
4 ) 实施例中离合凸轮 6具体形状如图 1、 图 3 , 但也可以是具体形状 与图中有所区别, 尤其是向内凸出的体积较大部分, 可以为各种其他不同
Figure imgf000020_0001

Claims

权 利 要 求
1. 一种断路器弹簧操动机构的齿轮传动系统的离合装置, 包括: 轴上 固定连接有合闸驱动凸轮的储能轴、 储能轴上固定连接的大齿轮和与大齿 轮啮合且由电机经减速齿轮带动的小齿轮; 其特征在于, 所述的大齿轮在 储能保持位置与小齿轮相对处设置有一个缺齿及特殊齿区域, 该区域及延 后部分的大齿轮内部的空腔中设置有一个由复位弹簧驱动复位的离合凸 轮, 大齿轮在所述区域有第 1特殊齿、 第 2特殊齿和位于第 1特殊齿和第 2特殊齿之间的空挡; 储能结束时小齿轮推动第 1特殊齿将大齿轮和储能 轴推送到脱离摩擦死区的储能保持位置, 然后小齿轮与大齿轮自动脱离啮 合。
2. 如权利要求 1所述的离合装置, 其特征在于, 在所述大齿轮的缺齿 及特殊齿区域的转动方向的前端是大齿轮的第 1特殊齿; 第 1特殊齿是将 该处正常齿去掉后侧部分, 只保留其前侧的一部分形成; 保留部分两侧汇 聚的外侧尖端处由圓弧面过渡连接。
3. 如权利要求 1所述的离合装置, 其特征在于, 在所述的大齿轮的第
1 特殊齿后是一个仅缺一齿的空挡, 设置在大齿轮空腔的离合凸轮的前端 凸伸于该空挡中; 在离合凸轮的复位限位位置, 离合凸轮的前端位于缺失 齿与第 1特殊齿之间; 离合凸轮的前端在小齿轮转动时被小齿轮的齿带动 退入所述大齿轮的内部空腔内, 小齿轮转动中及停转没有阻挡时, 离合凸 轮的前端在离合凸轮复位弹簧作用下, 复位到限位位置。
4. 如权利要求 1所述的离合装置, 其特征在于, 离合凸轮与固定于大 齿轮的轴销活动连接的孔是一个长圓孔。
5. 如权利要求 3所述的离合装置, 其特征在于, 离合凸轮在距大齿轮 轴心较近的方向, 还包含有一个偏向一侧的扩展部分。
6. 如权利要求 1所述的离合装置, 其特征在于, 第 2特殊齿位于偏离 该处缺失的正常齿向前, 更靠近空挡的位置。
7. 如权利要求 6所述的离合装置, 其特征在于, 所述大齿轮的第 2特 殊齿, 其齿顶圓与大齿轮正常齿齿顶圓同轴, 但半径比大齿轮正常齿的齿 顶圓半径小, 第 2特殊齿的齿高比大齿轮正常齿的齿高小, 第 2特殊齿的 齿宽比大齿轮正常齿的齿宽小, 第 2特殊齿两侧齿形面与齿顶圓相交处用 圓弧面过渡连接。
8. 如权利要求 1所述的离合装置, 其特征在于, 大齿轮的缺齿及特殊 齿区域为大齿轮去掉三个正常齿形成。
9. 如权利要求 1至 8中任一项所述的离合装置,其特征在于, 所述与 大齿轮啮合的小齿轮, 其所有齿的齿尖具有相同的形状; 小齿轮的齿尖在 转动方向前侧有一个与每一齿的对称中心线的夹角为锐角的斜面, 此斜面 与齿两侧的渐开线齿面相交处用圓弧面过渡连接。
PCT/CN2013/083971 2012-09-24 2013-09-23 一种断路器弹簧操动机构的齿轮传动系统的离合装置 WO2014044222A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/383,343 US9431186B2 (en) 2012-09-24 2013-09-23 Clutch device of gear transmission system of circuit breaker spring operating mechanism
IN1744MUN2014 IN2014MN01744A (zh) 2012-09-24 2013-09-23
RU2014138189A RU2638180C2 (ru) 2012-09-24 2013-09-23 Муфта сцепления системы зубчатой передачи для приводимого в действие пружиной приспособления размыкателя цепи

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210359126.9A CN102867663B (zh) 2012-09-24 2012-09-24 一种断路器弹簧操动机构的齿轮传动系统的离合装置
CN201210359126.9 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014044222A1 true WO2014044222A1 (zh) 2014-03-27

Family

ID=47446459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083971 WO2014044222A1 (zh) 2012-09-24 2013-09-23 一种断路器弹簧操动机构的齿轮传动系统的离合装置

Country Status (5)

Country Link
US (1) US9431186B2 (zh)
CN (1) CN102867663B (zh)
IN (1) IN2014MN01744A (zh)
RU (1) RU2638180C2 (zh)
WO (1) WO2014044222A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867663B (zh) 2012-09-24 2014-12-24 中国西电电气股份有限公司 一种断路器弹簧操动机构的齿轮传动系统的离合装置
CN103996565A (zh) * 2013-02-20 2014-08-20 张亚宇 一种高压断路器的弹簧操作机构
CN104134568B (zh) * 2013-05-03 2017-05-24 西门子公司 一种用于储能装置的离合机构及其气体绝缘断路器
CN104599874B (zh) 2013-10-31 2017-05-03 西门子公司 一种用于储能装置的离合机构及其气体绝缘断路器
CN104036984A (zh) * 2014-07-04 2014-09-10 特变电工中发上海高压开关有限公司 一种电动操动机构的制动装置
CN105448554B (zh) * 2014-08-25 2017-12-19 李程程 一种大角度输出电动机操动机构
CN107230562B (zh) * 2017-07-27 2018-12-04 中国西电电气股份有限公司 一种单电机驱动的断路器隔离开关一体化操动机构
CN107946129B (zh) * 2017-11-30 2023-09-15 广州白云电器设备股份有限公司 一种高压开关设备三工位隔离开关的操作机构
EP3553804B1 (de) * 2018-04-10 2021-03-24 Rail Power Systems GmbH Hochspannungs - oder mittelspannungsanlage
CN110690083B (zh) * 2018-07-04 2022-06-03 天津平高智能电气有限公司 弹簧操动机构及其弹簧操动机构储能装置
CN109920689B (zh) * 2019-04-03 2020-08-21 齐士杰 一种齿轮储能的弹簧操动机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1012863B (zh) * 1987-05-13 1991-06-12 三菱电机株式会社 断路器的操作机构
US5595287A (en) * 1993-11-03 1997-01-21 Gec Alsthom T & D Ag Spring drive for a switching apparatus
CN1074851C (zh) * 1995-10-12 2001-11-14 三菱电机株式会社 断路器的操作机构
CN1159740C (zh) * 1997-05-26 2004-07-28 Gec阿尔斯托姆T&D公司 用于转换器特别是断路器的弹簧驱动机构
CN101627452A (zh) * 2007-03-27 2010-01-13 三菱电机株式会社 开关装置和蓄能机构
CN102867663A (zh) * 2012-09-24 2013-01-09 中国西电电气股份有限公司 一种断路器弹簧操动机构的齿轮传动系统的离合装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115609A (en) 1991-07-03 1992-05-26 Peter Sing Method of converting logs and resultant product
FI96111C (fi) 1994-09-07 1996-05-10 Cultor Oy Kasvien satotuloksen parantaminen
FR2770929B1 (fr) 1997-11-13 2000-01-28 Alsthom Gec Mecanisme d'entrainement a ressort pour un appareil de commutation, en particulier un disjoncteur
RU2178926C2 (ru) * 1999-12-28 2002-01-27 Всероссийский научно-исследовательский институт автоматики Переключающее устройство с управляемой блокировкой включения
GB2371460B (en) * 2001-01-19 2004-12-22 Pixelfusion Ltd Computer graphics
DE102006059466A1 (de) * 2006-12-14 2008-06-19 Krütten, Viktor Elektrischer Schalter mit verdrehbar gelagertem Kontaktelement
US7319203B1 (en) * 2007-01-10 2008-01-15 Eaton Corporation Circuit interrupter and operating mechanism therefor
CN201144799Y (zh) * 2007-10-31 2008-11-05 宁波华液电液控制工程股份有限公司 一种内啮合齿轮泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1012863B (zh) * 1987-05-13 1991-06-12 三菱电机株式会社 断路器的操作机构
US5595287A (en) * 1993-11-03 1997-01-21 Gec Alsthom T & D Ag Spring drive for a switching apparatus
CN1074851C (zh) * 1995-10-12 2001-11-14 三菱电机株式会社 断路器的操作机构
CN1159740C (zh) * 1997-05-26 2004-07-28 Gec阿尔斯托姆T&D公司 用于转换器特别是断路器的弹簧驱动机构
CN101627452A (zh) * 2007-03-27 2010-01-13 三菱电机株式会社 开关装置和蓄能机构
CN102867663A (zh) * 2012-09-24 2013-01-09 中国西电电气股份有限公司 一种断路器弹簧操动机构的齿轮传动系统的离合装置

Also Published As

Publication number Publication date
US20150187520A1 (en) 2015-07-02
CN102867663A (zh) 2013-01-09
US9431186B2 (en) 2016-08-30
CN102867663B (zh) 2014-12-24
RU2014138189A (ru) 2016-04-10
RU2638180C2 (ru) 2017-12-12
IN2014MN01744A (zh) 2015-07-03

Similar Documents

Publication Publication Date Title
WO2014044222A1 (zh) 一种断路器弹簧操动机构的齿轮传动系统的离合装置
JP4767344B2 (ja) 開閉装置の蓄勢機構
US8469115B2 (en) Electrical power tool
JP4660382B2 (ja) 開閉装置の操作機構
JP4667125B2 (ja) 小型エンジンの始動装置
JP3271490B2 (ja) 遮断器の操作機構
US20200072351A1 (en) Gearbox and parking mechanism therof
JP4707759B2 (ja) 開閉装置の蓄勢機構
JP3683073B2 (ja) 開閉装置の蓄勢機構
JPH07211176A (ja) スイッチ装置用のばね駆動装置及びこれに使用する歯車の製造方法
WO2024060691A1 (zh) 汽车的驻车装置、驻车系统和汽车
CN107340673A (zh) 适于驱动镜单元的驱动设备和摄像设备
CN217926133U (zh) 一种起动机中的转动啮合机构
CN201498391U (zh) 高压断路器弹簧操动机构
CN1017659B (zh) 照相机快门的上紧机构
JP5833910B2 (ja) リコイルスタータ機構
CN115234421A (zh) 一种转动啮合式起动机
JP2529309B2 (ja) 遮断器の操作機構
JP2012144110A (ja) パークロック構造
JP3268164B2 (ja) 開閉器操作機構
JP6479196B2 (ja) 走行玩具
CN220415099U (zh) 一种撑杆组件
CN218325071U (zh) 一种起动机中的控制机构
CN217328417U (zh) 一种电子驻车机构
JP5789577B2 (ja) 遮断器の操作機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14383343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014138189

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839933

Country of ref document: EP

Kind code of ref document: A1