WO2014042275A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2014042275A1
WO2014042275A1 PCT/JP2013/075056 JP2013075056W WO2014042275A1 WO 2014042275 A1 WO2014042275 A1 WO 2014042275A1 JP 2013075056 W JP2013075056 W JP 2013075056W WO 2014042275 A1 WO2014042275 A1 WO 2014042275A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
control unit
tag
data
slice
Prior art date
Application number
PCT/JP2013/075056
Other languages
English (en)
French (fr)
Inventor
ジョウ,シャンジ
宮崎 美津恵
勉 星野
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Priority to EP13837210.7A priority Critical patent/EP2886052B1/en
Priority to CN201380043226.3A priority patent/CN104582567B/zh
Publication of WO2014042275A1 publication Critical patent/WO2014042275A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0044Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0263Measuring blood flow using NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56366Perfusion imaging

Definitions

  • Embodiments described herein relate generally to a magnetic resonance imaging apparatus.
  • Myocardial perfusion is a technique for evaluating blood supply to the myocardium by observing staining of the myocardium by a gadolinium (Gd (gadolinium))-based contrast agent as a time change by continuously capturing T1-weighted images at high speed.
  • Gd gadolinium
  • the problem to be solved by the present invention is to provide a magnetic resonance imaging apparatus capable of appropriately displaying an analysis result of a myocardial perfusion image obtained by non-contrast imaging.
  • the magnetic resonance imaging apparatus includes a sequence control unit and a display control unit.
  • the sequence control unit executes data collection for collecting data of a slice of a heart after a predetermined time from applying a tag pulse to the tag region for a plurality of the predetermined times having different lengths.
  • the display control unit displays the analysis results of the plurality of data collected for the plurality of predetermined times on the display unit so that the relationship between the predetermined time and the slice can be identified.
  • FIG. 1 is a high-level schematic block diagram of an MRI system according to an exemplary embodiment configured to provide analysis and visualization of non-contrast dynamic MRI myocardial perfusion.
  • FIG. 2A is a schematic diagram illustrating a first example of a tag-on, tag-off MRI data collection sequence used in the MRI system according to the present embodiment.
  • FIG. 2B is a schematic diagram illustrating a second example of a tag-on, tag-off MRI data collection sequence used in the MRI system according to the present embodiment.
  • FIG. 3 is a diagram showing a tag pulse application region in the present embodiment.
  • FIG. 1 is a high-level schematic block diagram of an MRI system according to an exemplary embodiment configured to provide analysis and visualization of non-contrast dynamic MRI myocardial perfusion.
  • FIG. 2A is a schematic diagram illustrating a first example of a tag-on, tag-off MRI data collection sequence used in the MRI system according to the present embodiment.
  • FIG. 2B is a
  • FIG. 4 is a diagram illustrating pixel-by-pixel subtraction of tag-on and tag-off images using complex number calculation to generate an intensity image of tag-on and tag-off images in the present embodiment.
  • FIG. 5A is a diagram showing an intensity image of the left ventricular myocardium before alignment between different BBTIs in the present embodiment.
  • FIG. 5B is a diagram showing an intensity image of the left ventricular myocardium after alignment between different BBTIs in the present embodiment.
  • FIG. 6A is a diagram showing segmentation added to a tag-on or tag-off image in the present embodiment.
  • FIG. 6B is a diagram showing a target portion to be combined with the difference image in the present embodiment.
  • FIG. 6C is a diagram showing a target portion to be synthesized with a clear image from which a non-myocardial signal outside the segmented volume is removed in the present embodiment.
  • FIG. 7A is a depiction of an exemplary perfusion visualization in which the pre-segmentation LV slice image is displayed together as a function of the BBTI time period in this embodiment.
  • FIG. 7B is a depiction of an exemplary perfusion visualization where segmented LV slice images are displayed together as a function of BBTI time period on a single display panel in this embodiment.
  • FIG. 7C is a depiction of an exemplary perfusion visualization that displays segmented LV slice images together as a function of the BBTI time period in this embodiment.
  • FIG. 7A is a depiction of an exemplary perfusion visualization in which the pre-segmentation LV slice image is displayed together as a function of the BBTI time period in this embodiment.
  • FIG. 7B is a depicti
  • FIG. 8A is a depiction of segmentation of the left ventricular coronary artery region in the present embodiment.
  • an American Heart Association (AHA) six-segmentation model is used to obtain a color-coded display of an exemplary coronary artery region segmented in the left ventricle.
  • FIG. 8B is a depiction of segmentation of the left ventricular coronary artery region in the present embodiment.
  • a 6-segmentation model of AHA is used to obtain a color-coded display of an exemplary left ventricular segmented coronary artery region.
  • FIG. 8C is a depiction of segmentation of the left ventricular coronary artery region in the present embodiment.
  • FIG. 8D is a depiction of segmentation of the left ventricular coronary artery region in the present embodiment.
  • a 6-segmentation model of AHA is used to obtain a color-coded display of an exemplary left ventricular segmented coronary artery region.
  • FIG. 9A is a visualization that visualizes the simultaneous one-sided display of perfusion curves for each segment of different slices as a function of BBTI value using different exemplary visualizations in this embodiment.
  • FIG. 9A is a visualization that visualizes the simultaneous one-sided display of perfusion curves for each segment of different slices as a function of BBTI value using different exemplary visualizations in this embodiment.
  • FIG. 9B is a visualization that visualizes the simultaneous one-sided display of perfusion curves for each segment of different slices as a function of BBTI value using different exemplary visualizations in this embodiment.
  • FIG. 9C is a visualization that visualizes a simultaneous one-sided display of perfusion curves for each segment of each different slice as a function of BBTI value using different exemplary visualizations in this embodiment.
  • FIG. 10A shows all or any of BBTI, signal intensity related to perfusion (SI: Signal Intensity), and LV slice numbers constituting substantially adjacent slices in the 3D image of LV in this embodiment. A new type of bullseye map to better visualize and understand the relationship between them.
  • SI Signal Intensity
  • FIG. 11 illustrates the MRI system of FIG. 1 (or another image processing apparatus) for performing the exemplary embodiment of the system for analyzing BBTI tag-on and tag-off images collected by magnetic resonance imaging in this embodiment. ) Is a schematic diagram illustrating an exemplary computer program code structure for use in a flow diagram.
  • MRI Magnetic Resonance Imaging
  • image processing apparatus an image processing apparatus according to an embodiment
  • FIG. 1 is a high-level schematic block diagram of an MRI system according to an exemplary embodiment configured to provide analysis and visualization of non-contrast dynamic MRI myocardial perfusion.
  • the MRI system shown in FIG. 1 includes a cradle 10 (shown in schematic cross section) and various associated system components 20 that are interfaced with each other. At least the gantry 10 is usually arranged in a shield room.
  • the shape of the MRI system is shown in FIG. 1, the substantially static magnetic field B 0 magnet 12, Gx, Gy, and Gz gradient coil set 14, a coaxial cylindrical arrangement of the RF (Radio Frequency) coil assembly 16 Including.
  • RF Radio Frequency
  • the subject's anatomy ie, the heart for a cardiac MRI
  • the subject bed or table 11 eg, the heart for cardiac MRI
  • ROI region of interest
  • the MRI system control unit 22 includes an input / output port connected to the display unit 24, the keyboard / mouse 26, and the printer 28.
  • the display unit 24 may be a diverse touch screen that also includes control inputs.
  • the MRI system control unit 22 interfaces with the MRI sequence control unit 30.
  • the MRI sequence control unit 30 includes the Gx, Gy, and Gz gradient coil driver 32, the RF transmission unit 34, and the transmission / reception switch 36 (same RF Control when the coil is used for both transmission and reception).
  • Gx, Gy, and Gz gradient coil driver 32 the RF transmission unit 34
  • the transmission / reception switch 36 the transmission / reception switch 36 (same RF Control when the coil is used for both transmission and reception).
  • RF coils eg, whole body coils, surface coils, birdcage coils, coil arrays, etc.
  • one or more suitable physiological transducers 8 are applied to the body of the subject, and / or all or any of an electrocardiogram (ECG) signal, a respiratory synchronization signal, and a pulse wave synchronization signal.
  • ECG electrocardiogram
  • a gate signal can be supplied to the MRI sequence controller 30.
  • the MRI sequence controller 30 also defines, for example, specific MRI data collection sequence parameters, one or more ROIs, etc., for executing MRI data collection sequences that are already available within the scope of the MRI sequence controller 30
  • a suitable program code structure 38 for generating non-contrast cardiac MRI tissue images is also accessed using system inputs and / or operators.
  • the component 20 of the MRI system includes an RF receiver 40 that provides input to the data processor 42 so that processed image data that can be transmitted to the display 24 can be created.
  • the MRI data processing unit 42 also stores an image reconstruction program code structure 44 and an MR image storage unit 46 (eg, MR image data derived from processing according to the exemplary embodiment and the image reconstruction program code structure 44). It is also configured so that it can be accessed.
  • FIG. 1 is a generalized diagram of the program / data storage unit 50 of the MRI system.
  • the program / data store 50 of the MRI system includes a program code structure (e.g., for non-contrast-enhanced cardiac MRI dynamic myocardial perfusion analysis and visualization) and a computer accessible to the various data processing components of the MRI system.
  • Related GUI Graphic User Interface
  • GUI Graphic User Interface
  • the program / data storage 50 is divided into various computers of the processing computer of the system 20 that imminently require the program code structure so stored during normal operation, And at least a part may be directly connected (that is, instead of being normally stored in the MRI system control unit 22 or directly connected).
  • FIG. 1 is a very high-level simplification of a typical MRI system with some modifications to allow implementation of the exemplary embodiments described later herein.
  • the system components can be divided into various logic collection “boxes”, usually with a large number of digital signal processors (DSPs), ultra-compact processors, special purpose processing circuits (eg, high-speed analog / Digital (A / D: Analog to Digital) conversion, fast Fourier transform, array processing, etc.).
  • DSPs digital signal processors
  • a / D Analog to Digital
  • Each of these processors typically has a clock-operated “state machine” in which a physical data processing circuit advances from one physical state to another as each clock cycle (or a predetermined number of clock cycles) occurs. It is.
  • the physical state of the processing circuit eg, CPU (Central Processing Unit), registers, buffers, computing units, etc.
  • the physical state of a data storage medium eg, the bit storage portion of a magnetic storage medium
  • an array of computer readable accessible data value storage locations may have several pre-states (eg, all uniform) “Zero” value or all “1” values) to a new state.
  • the physical state of the physical location of such an array (eg, of pixel values) varies between minimum and maximum values, and real-world physical events and situations (eg, imaging)
  • the tissue of the subject over the entire part space can be expressed.
  • an array of stored data values represents and also constitutes a physical structure. That is, when sequentially read into the instruction register and executed by one or more CPUs of the MRI system 20, a specific sequence of operating states is generated to identify computer control program code that is migrated within the MRI system.
  • the array is configured so that the structure is configured.
  • the exemplary embodiments described below provide an improved method for collecting and / or processing MRI data and / or generating and / or displaying MR images.
  • the MRI system includes an MRI sequence control unit 30 and an MRI system control unit 22.
  • the MRI sequence control unit 30 executes data collection for collecting data of a slice of the heart after a predetermined time after applying the tag pulse to the tag region for a plurality of predetermined times having different lengths.
  • the MRI sequence control unit 30 collects data of a plurality of slices from the apex to the base of the heart as the data of the heart slice.
  • the MRI sequence control unit 30 collects left ventricular short-axis image data for a plurality of slices from the apex to the base of the heart with respect to a plurality of different TIs (Time to Inversion).
  • the MRI system control unit 22 (also referred to as a display control unit) displays the analysis results of the plurality of data collected for the plurality of predetermined times so that the relationship between the predetermined time and the slice can be identified. To display.
  • the MRI system control unit 22 performs analysis itself and display control of analysis results.
  • the MRI system control unit 22 displays the analysis images, which are the analysis results of the respective data, in a matrix form with the direction of a predetermined time and the direction of the slice as axes, and displays them on one screen (see FIGS. 7A to 7C).
  • the analysis image for example, an image in which density and color are assigned in units of pixels with respect to the original image (tag-off image, tag-on image, or difference image) as shown in FIG. 7A, or a non-myocardial signal as shown in FIG. 7B.
  • For an image segmented so as to be removed there are an image in which density and color are assigned in pixel units, an image in which the inside of the myocardium is further segmented and density and color are assigned in segment units as shown in FIG. .
  • the MRI system control unit 22 displays a graph of a perfusion curve showing a change in signal intensity in a predetermined time direction, which is created by analyzing slice data for each segment, as an analysis result (FIG. 9A-9C).
  • the MRI system control unit 22 receives a selection operation from the operator for the image (original image or analysis image) displayed on the display unit 24, the MRI system control unit 22 corresponds to the image selected by the operator.
  • the perfusion curve graph can be controlled to be displayed on the display unit 24.
  • the MRI system control unit 22 analyzes the slice data for each segment as an analysis result, and assigns a different density or different color according to the signal intensity of each segment.
  • the bullseye map created as the direction is displayed (FIGS. 10A to 10B).
  • the processing described above is described as being executed by the MRI sequence control unit 30 and the MRI system control unit 22, but the embodiment is not limited to this, It may be executed by the control unit.
  • gadolinium (Gd) -based contrast agents it is known to use gadolinium (Gd) -based contrast agents, perhaps in connection with stress perfusants, but using such contrast agents may result in infarct and ischemic lesions of the myocardium Are often not acceptable MRI techniques.
  • LGE Long Gadolinium contrast enhancement
  • T1 contrast washout
  • the ASL (Arterial Spin Labeling) method has also been used for non-contrast-enhanced myocardial ischemia evaluation, but this technique does not generate perfusion curves or three-dimensional (3D) coverage. Limited to a single slice at a single point in time. The corresponding analysis method is significantly different from our new non-contrast dynamic MRI perfusion analysis and visualization.
  • the present inventors have discovered a method for avoiding the use of such a contrast agent.
  • the method uses non-contrast (ie, without chemical contrast agent injection) MRI techniques to generate myocardial perfusion curve / table data that can be used to distinguish between normal, ischemic and infarcted myocardium Is to implement.
  • non-contrast ie, without chemical contrast agent injection
  • MRI techniques to generate myocardial perfusion curve / table data that can be used to distinguish between normal, ischemic and infarcted myocardium Is to implement.
  • revascularized infarcted myocardium treated with revascularization techniques such as vascular stenting surgery, surgical bypass vascular surgery, etc.
  • myocardial identification is within any desired site of interest (eg, any operator-defined site of interest (ROI), standard AHA segment, single pixel, etc.). Can be done.
  • ROI operator-defined site of interest
  • contrast agents eg, gadolinium-based
  • subject stress exercise-induced or drug-induced
  • a set of “tag-on” (2D or 3D) MRI k-space data is “tagged” with an initial spatially selective RF pulse (eg, typically a spatially selective 180 ° inversion pulse). After that, it is collected.
  • the data collection subsequence is started after the time given for the inversion delay time (TI).
  • TI inversion delay time
  • a similar set of “tag-off” MRI data is also collected using the same TI delay interval, but without an initial spatially selective RF tagging pulse.
  • This technique is sometimes known as BBTI (Black Blood Time to Inversion) imaging in some technical fields.
  • BBTI Black Blood Time to Inversion
  • a 2D / 3D Fourier transform reconstructed spatial domain tag-on and tag-off image data set (ie, the result of the well-known 2DFT / 3DFT reconstruction process) is (eg, on a pixel-by-pixel basis).
  • a BBTI blood perfusion image that can graph or tabulate blood perfusion (MR signal intensity) as a function of time.
  • MR signal intensity blood perfusion
  • the function of time provides some dimensional differentiation between perfusion curves for “normal” myocardium, abnormal ischemic myocardium, infarcted myocardium, and revascularized (treated) ischemic myocardium. .
  • the infarcted myocardium does not show perfusion (ie there is no peak or increase in detected MRI signal intensity).
  • ischemic myocardium has not only a lower detected signal intensity when compared to normal (or revascularized) myocardium, but also a peak flow time that is time delayed from occurrence.
  • the location of the ischemic lesion can be identified based on a comparison of time and / or amplitude (or even the integrated area under the curve) and / or a comparison with a predetermined threshold or the like. .
  • a target site eg, a predetermined AHA myocardial segment, or any operator instruction
  • a target site eg, a predetermined AHA myocardial segment, or any operator instruction
  • distinctive features eg, to be displayed to the operator or to store data for later display to others
  • the perfusion curve and / or the corresponding data table associated with the ROI of a single pixel) or the corresponding data table can be used to detect normal, ischemic, infarcted, or even post-revascularized myocardium with any contrast agent (eg, gadolinium
  • any contrast agent eg, gadolinium
  • Various ROIs can be depicted to represent without injection of (contrast agent).
  • FIG. 2A is a schematic diagram illustrating a first example of a tag-on / tag-off MRI data collection sequence used in the MRI system according to the present embodiment.
  • ECG synchronization is used as shown in FIG. 2A to synchronize both the “tag off” and “tag on” subsequences.
  • the tag-off subsequence shown in the lower left of FIG. 2A uses a short initial fixed delay time TD to ensure that the data acquisition subsequence starts during the desired diastole portion of the RST ECG signal. ing.
  • a non-region-selective 180 ° RF pulse is used (to help suppress background signals from subsequent different images, since the signal from the myocardium, for example, Because it is relatively small, such as about 10%).
  • the actual data collection subsequence can be initiated with a preparation pulse (eg, fat suppression pulse) if desired.
  • a desired data acquisition subsequence F that begins with a slice selective (eg, ⁇ °, typically 45 ° or 90 °) NMR pulse, such as a sequence of slice selective 180 ° RF refocusing pulses.
  • the desired MRI data acquisition subsequence F begins and the intervening RF spin echo (SE (Spin Echo)) response is extracted during the duration of the readout gradient Gr pulse. Note that each spin echo is preceded by a phase encoding Ge gradient pulse (which is changed for different echoes to retrieve the corresponding k-space line, respectively).
  • SE Spin Echo
  • Those skilled in the art will appreciate that such known MRI data collection subsequences are of the bSSFP (balanced Steady-State Free Precession) type (preferred for now) or high speed It could be a spin echo (FSE (Fast Spin Echo)) type, or possibly other types.
  • the tag-on data collection subsequence shown in the lower right of FIG. 2A is the same as the tag-off subsequence.
  • a region selection “tagging” 180 ° RF pulse for example, an oblique angle pulse represented by a dotted simultaneous ramp pulse as shown in FIG. 2A).
  • Df frequency offset pulses As will be apparent to those skilled in the art, this will effectively reverse a given inflow volume of blood back to a non-reversed magnetization orientation. That is, the blood inflow volume is “tagged”.
  • ROI region of interest
  • FIG. 2B is a schematic diagram illustrating a second example of a tag-on / tag-off MRI data collection sequence used in the MRI system according to the present embodiment.
  • the tag-on / tag-off alternating acquisition subsequence shown in FIG. 2B is the same as that shown in FIG. 2A. However, as can be seen, there is no first non-region selection 180 ° pulse for background suppression (both tag-on subsequence and tagoff subsequence).
  • Gs, Gr, and Ge are used to achieve the desired oblique angle for the region-selected 180 ° tag-on pulse.
  • Gradient magnetic field pulses could be used concurrently.
  • the MRI system uses a technique for labeling (tagging) blood, which is a non-contrast-enhanced image group (myocardial perfusion image group) depicting the dynamics of blood supplied to myocardial tissue. Collect by technique. Then, the MRI system analyzes (analyzes) the collected image group and displays the analysis result for visualization.
  • a technique for labeling (tagging) blood which is a non-contrast-enhanced image group (myocardial perfusion image group) depicting the dynamics of blood supplied to myocardial tissue. Collect by technique. Then, the MRI system analyzes (analyzes) the collected image group and displays the analysis result for visualization.
  • the MRI system when obtaining an image depicting blood supplied to the myocardial tissue, the MRI system, for example, converts the longitudinal magnetization to 180 ° as a tag pulse for labeling blood in a region where the blood flows upstream of the myocardial tissue.
  • An inversion pulse for inversion is applied.
  • the blood subjected to the application of the inversion pulse has a signal intensity that can be distinguished from other blood and background tissues in the recovery process of longitudinal magnetization.
  • the length of time between the application timing of the inversion pulse and the acquisition timing of the MR signal (for example, the acquisition timing of the center line of the k space) is typically determined by the movement of the blood that has received the application of the inversion pulse. Proportional to distance.
  • FIG. 3 is a diagram showing a tag pulse application region in the present embodiment.
  • Blood is pumped from the left ventricle of the heart to the whole body via the aorta shown in FIG.
  • the arteries branching left and right from the aorta are the right coronary artery and the left coronary artery, and the left coronary artery is further divided into a blood vessel descending forward and a blood vessel circulating around the rear.
  • the blood supply to the myocardial tissue includes the right coronary artery (RCA (Right Coronary Artery)), the left anterior descending coronary artery (LAD (Left Anterior Descending coronary artery)), and the left coronary artery rotator (LCX (Left CircumfleX coronary artery)).
  • RCA Right Coronary Artery
  • LAD Left anterior descending coronary artery
  • LCX Left coronary artery rotator
  • tag-on image data for labeling blood not only tag-on image data for labeling blood but also tag-off image data for not labeling blood are collected, and these difference images are analyzed. This is because when the tag-on image data and the tag-off image data are subtracted, signals other than the blood to which the tag pulse is applied are subtracted, so that the blood to which the tag pulse is applied can be analyzed more accurately.
  • both the tag-on image data and the tag-off image data are collected in a series of pulse sequences with no waiting time (no operation intervention by the operator), These are referred to as “data collection subsequence”, “tag-off data collection subsequence”, and the like.
  • the difference between FIG. 2A and FIG. 2B is whether the longitudinal magnetization of the entire imaging region is once reversed by a non-region selection pulse (FIG. 2A) or not (FIG. 2B). In the former case, the background signal is low. Later, in view of generating the difference image between the tag-on image and the tag-off image, it can be said that the former method is preferable because the influence of the positional deviation between the tag-on image and the tag-off image is reduced.
  • the difference between the “tag-on data collection sub-sequence” and the “tag-off data collection sub-sequence” is the difference between the left and right diagrams in FIG. 2A or the left and right diagrams in FIG. 2B.
  • the difference is whether or not it is applied.
  • FIG. 2A when a non-region selection pulse is also applied, the non-region selection pulse and the region selection pulse are typically applied substantially simultaneously.
  • “TI” indicates from the application timing of the non-region selection pulse to the data acquisition start timing, but generally from the application timing of the region selection pulse to the data acquisition start timing. You may think that time.
  • the MRI sequence control unit 30 collects a set of tag-on image data and tag-off image data for a plurality of slices during one breath hold (for example, about 20 seconds). Cut it.
  • the MRI sequence control unit 30 collects three slices of a left ventricular (LV) slice image from the apex to the base of the heart. Thereafter, the MRI system obtains a set of tag-on image data and tag-off image data for 6 slices by interpolation processing.
  • LV left ventricular
  • the MRI sequence control unit 30 executes the above-described alternating tag on / tag off sub-sequence with respect to a plurality of TIs having different lengths.
  • the tag-on / tag-off subsequence is executed in an alternating manner.
  • the sub-sequences of different TIs may be executed in a series of pulse sequences with no waiting time (no operation intervention by the operator), or may be executed by appropriately inserting a waiting time.
  • the order of TI can also be arbitrarily changed.
  • the TI at which collection is performed or the interval can be appropriately changed.
  • These TIs may be set by receiving an input from an operator on a GUI for receiving an imaging condition, or may be set in one of the pre-sequences.
  • the examination by the MRI system includes an imaging sequence group for collecting various diagnostic images and a pre-sequence group that is performed prior to the imaging sequence group. It is executed sequentially and sequentially with the user's operations inserted between them.
  • the pre-sequence for setting the TI is, for example, obtaining each MR signal for each different TI while changing the TI, displaying the MR image in parallel on the GUI, and selecting the operator, An appropriate TI to be used later in an imaging sequence is set by obtaining a profile of a line ROI (Region Of Interest). Such a pre-sequence is sometimes called BBTI-prep or the like.
  • the pre-sequence group includes, for example, a sequence for collecting positioning images, a sequence for adjusting magnetic field non-uniformity, a sequence for collecting a coil sensitivity map, and the like.
  • the MRI sequence control unit 30 matches the cardiac phases of collected data between sub-sequences of different TIs. For example, the MRI sequence control unit 30 collects data in the cardiac phase of the diastole for any TI. In this case, the application timing of the non-region selection pulse and the region selection pulse can be obtained, for example, by calculating back TI from the data collection timing.
  • the method for collecting the tag-on image data group and the tag-off image data group has been described.
  • the embodiment is not limited to this, and the perfusion image of the myocardial tissue is not contrast-enhanced. Any technique can be used. That is, collecting the tag-off image data group is not an essential configuration.
  • the method of alternately collecting the tag-on image data group and the tag-off image data group, for example, every slice or every slice encoding has been described. It is not limited.
  • the tag-off image data group may be collected after the tag-on image data group has been collected, or vice versa.
  • the method for collecting the tag-off image data group for all the TIs has been described. However, the embodiment is not limited to this, and the tag-off image data group collected for a certain TI can be used for other TIs. May be used when calculating the difference image.
  • a method of continuously collecting image data groups having different TIs in a series of pulse sequences without a waiting time has been described.
  • the embodiment is not limited thereto. It is not something that can be done.
  • a waiting time may be inserted every time the TI is changed.
  • the method of collecting image data with the cardiac phase in the diastole in synchronization with the ECG synchronization signal has been described.
  • the embodiment is not limited to this, and the image is captured with another cardiac phase. Data may be collected.
  • the collection method of the present embodiment illustrated in FIGS. 2A, 2B, and 3 is not limited to this, and can be arbitrarily changed.
  • the method by which the MRI system collects myocardial perfusion image data groups without contrast has been described.
  • an MRI system or an image processing apparatus different from the MRI system performs an analysis on a myocardial perfusion image data group collected by the MRI sequence control unit 30.
  • the new method can process a dynamic 3D image data set with the ability to visualize blood perfusion in the left ventricle and show the perfusion curve of any segment or ROI set by the operator.
  • our method of perfusion analysis and visualization can be incorporated into the MRI system of FIG. 1, or the original tag-on and tag-off image data collected. May be implemented as part of a separate image analysis / display system (image processing device) located far from the MRI system.
  • a perfusion curve is created for each segment or ROI across all slices. 7). All 3D slices for BBTI are displayed simultaneously. 8). When selecting a segment and / or ROI, the corresponding perfusion curve is automatically displayed simultaneously. 9. Fit perfusion curves for quantification purposes.
  • the MRI system control unit 22 performs complex difference processing on a pixel basis for a set of tag-off images and tag-on images collected with the same slice and the same BBTI.
  • the tag-off image and the tag-on image are alternately collected under the breath hold and the cardiac phase is also collected. Therefore, the alignment is not necessarily essential for the difference. Though considered, the embodiment is not limited to this. Prior to the difference processing, the tag-off image and the tag-on image may be aligned.
  • FIG. 4 is a diagram illustrating subtraction in units of pixels of tag-on and tag-off images in the present embodiment. As shown in FIG.
  • the MRI system control unit 22 performs calculation for subtracting the real part of the tag-off image from the real part of the tag-on image in units of pixels. In addition, the MRI system control unit 22 performs calculation for subtracting the imaginary part of the tag-off image from the imaginary part of the tag-on image for each pixel.
  • the subtracted difference image must be in a complex number format (real part and imaginary part, R + jI). This is because the intensity of the subtracted pixels is insensitive to signal changes due to possible phase shifts between tag-on and tag-off signals. Thus, the original tag-on and tag-off images must also be in complex form. The complex data is used after subtraction to create an intensity image for perfusion analysis.
  • the magnetization vector of the nucleus is expressed by a real component (in-phase component) and an imaginary component (orthogonal phase component) on the complex plane. For this reason, in MRI, k-space data of each of a real component and an imaginary component is collected, a real image and an imaginary image are generated by Fourier transform, and then an amplitude image and a phase image that are absolute value images are generated.
  • the tag-off image and the tag-on image as to whether or not a region selection pulse is applied.
  • This difference appears as a difference in longitudinal magnetization components, but appears as a difference in phase of transverse magnetization components on the xy plane after application of the excitation pulse.
  • the phase is different when the upward magnetization vector falls to the xy plane and when the downward magnetization vector falls to the xy plane. Therefore, in the present embodiment, the MRI system control unit 22 performs difference processing using complex numbers in order to correctly consider this phase difference.
  • a plurality of left ventricular slice images are acquired for the same BBTI (note that some left ventricular slice images may be generated by interpolation processing), and the left of each position Room slice images are collected for different BBTIs. That is, since 3D images of different BBTI are acquired at different acquisition times, alignment between different BBTI images may be required. Therefore, the MRI system control unit 22 performs alignment between left ventricular slice images of the same BBTI, and also performs alignment between left ventricular slice images of different BBTI. In addition, embodiment is not restricted to this, You may abbreviate
  • FIG. 5A is a diagram illustrating an intensity image of the left ventricular myocardium before alignment between different BBTIs according to the present embodiment
  • FIG. 5B illustrates an intensity of the left ventricular myocardium after alignment between different BBTIs according to the present embodiment. It is the figure which showed the image.
  • the images of FIGS. 5A and 5B show 3D registration for an imaging slab across all BBTIs (only one slice is shown for simplicity).
  • the MRI system control unit 22 performs rigid body alignment or non-rigid body alignment. That is, the alignment is not limited to rigid body alignment.
  • the donut shape of the left ventricular slice image in one BBTI may be slightly different in another BBTI. In this case, non-rigid registration is preferably performed.
  • 5A and 5B show an example in which the alignment window is placed only in the left ventricle. If the alignment window is placed only in the left ventricle, local alignment with the left ventricle is possible.
  • the MRI system control unit 22 displays at least one left ventricular slice image in the left ventricular slice image group of different BBTIs on the display unit 24 and displays an alignment window (for example, a box type). And accepting an operation from the operator. For example, the operator moves the alignment window to a position including the left ventricular myocardium on the left ventricular slice image.
  • the MRI system control unit 22 displays the left ventricular slice image of another BBTI on the display unit 24, and displays an alignment window at the position set by the operator. If the alignment window displayed here does not include the left ventricular myocardium, for example, the operator moves the left ventricular slice image this time so that the left ventricular myocardium fits within the alignment window. To do. For example, by repeating such a process, the MRI system control unit 22 performs alignment between left ventricular slice images of different BBTIs. In FIG. 5A before the alignment, it can be seen that the myocardium located slightly below the alignment window is almost in the center of the alignment window in FIG. 5B after the alignment. This alignment process is merely an example, and the alignment may be performed by, for example, an automatic process based on image analysis. These methods may be applied between left ventricular slice images of the same BBTI.
  • the contrast between the heart chamber and the surrounding myocardium is inverted by several BBTIs.
  • both tag-on and tag-off images must be used for the alignment process.
  • images with positive contrast myocardial signal intensity SI> LV cavity blood SI
  • another alignment process can be executed by selecting a negative contrast image.
  • blood exchange is intense. Therefore, as can be seen with reference to FIG. 7A, the signal value inside the heart chamber may be high or low depending on the BBTI.
  • the signal intensity SI of the myocardium is higher than the signal intensity SI of the heart chamber blood (positive contrast) by BBTI
  • the signal intensity SI of the heart chamber blood is higher than the signal intensity SI of the heart chamber blood. It may be higher than SI (negative contrast).
  • SI negative contrast
  • an image serving as a reference when selecting a position it is desirable to select an image having an optimal contrast (positive contrast or negative contrast) according to BBTI. Note that the pixel alignment shift of each image with respect to the reference image is recorded for the composite alignment process. A visual manual shift may be necessary to achieve the best alignment.
  • the myocardial signal loss confirmation process does not necessarily have to be performed at this stage, and may be performed at any timing, for example, in parallel with other processes or before and after other processes (for example, 1: generation of difference image, 2: timing before image alignment may be used). That is, if the MRI system control unit 22 detects the presence of a myocardial signal defect, information on the fact is provided along with images and analysis results (analysis image, graph, bullseye map, etc.) to be provided to the operator later.
  • the loss of myocardial signal includes an imaging region (imaging slab) and a type in which an artifact is generated when a tag region to which a tag pulse (in this embodiment, region selection pulse) is applied, and magnetization. Some types of artifacts occur due to the difference in rate.
  • the MRI system control unit 22 sets a line ROI that crosses the left ventricular myocardium on the tag-off image, the tag-on image, or the difference image, and the signal profile on the line ROI (this signal profile is referred to as a histogram in the above description). Is called). Then, based on this signal profile, the MRI system control unit 22 determines whether or not there is a myocardial signal defect (for example, a local decrease in signal value) on the line ROI. The MRI system control unit 22 sets a line ROI (discretely as appropriate) for the entire image, and determines the presence or absence of a myocardial signal defect. For example, the MRI system control unit 22 may determine the presence or absence of a myocardial signal defect using a signal profile obtained by subtracting the signal profile on the tag-on image and the signal profile on the tag-off image.
  • a myocardial signal defect for example, a local decrease in signal value
  • the MRI system control unit 22 determines that there is a myocardial signal defect
  • the MRI system control unit 22 attaches this information to the determination target image, and later displays this image or analysis result as reference information. Display missing information.
  • the determination of the presence / absence of a defect is not limited to an automatic method, and may be performed by a manual method, for example, displaying a signal profile and allowing an operator to visually check the signal profile.
  • embodiment is not restricted to this, For example, on the image after a segmentation which is mentioned later, for example A line ROI may be set.
  • the MRI system control unit 22 displays the cine image on the display unit 24 as a moving image.
  • the operator can confirm the defect visually.
  • a method has been described in which, when it is determined that there is a myocardial signal defect, the defect information is displayed as reference information.
  • the present invention is not limited to this.
  • the MRI system control unit 22 may correct the target image when generating the above-described difference image or aligning the image using the missing information.
  • FIG. 6A is a diagram illustrating segmentation added to a tag-on or tag-off image in the present embodiment
  • FIG. 6B is a diagram illustrating a target portion to be combined with a difference image in the present embodiment
  • FIG. It is a figure which shows the object site
  • LV segmentation can be performed after alignment by aligning LVs along a continuous BBTI, as shown in FIGS. 6A, 6B, and 6C.
  • endocardial and epicardial contours can be drawn and stored for each slice (manually or semi-manually). The saved contour can then be pasted onto the difference image.
  • other signals may be removed (see, for example, the “clear” image in FIG. 6C). Note that LV contours must be carefully placed to eliminate any effects from artifacts (eg, susceptibility artifacts) and tagged slice interference.
  • the MRI system control unit 22 performs segmentation by receiving designation of the endocardial and epicardial contours manually by the operator on the tag-on image or the tag-off image.
  • the MRI system controller 22 extracts the endocardial and epicardial contours from the tag-on image or tag-off image by performing image processing on the tag-on image or tag-off image.
  • the MRI system control unit 22 fits the endocardial and epicardial contours obtained from the tag-on image or the tag-off image on the difference image. Then, as illustrated in FIG. 6C, the MRI system control unit 22 removes the non-myocardial signal from the difference image using the endocardial and epicardial contours. That is, the MRI system control unit 22 removes the region inside the endocardium and the region outside the epicardium from the difference image. At this stage, for example, when the operator finds a defect in the myocardial signal, for example, the MRI system control unit 22 adjusts the contour (for example, adjusts the contour so as to remove the defective portion).
  • the MRI system control unit 22 can easily specify (or easily extract) the contour of the tag-on image or the tag-off image. (For example, an image having a high positive contrast or a high negative contrast) can be selected as appropriate.
  • FIG. 7A is a depiction of an exemplary perfusion visualization in which the pre-segmentation LV slice image is displayed together as a function of the BBTI time period in this embodiment.
  • FIG. 7B and FIG. 7C are depictions of exemplary perfusion visualization in which the segmented LV slice image is displayed together as a function of the BBTI time period on one display panel in this embodiment.
  • Perfusion visualization can be performed as shown in FIGS. 7A-7C.
  • LV images of slices from the apex to the base of all BBTIs are displayed in a single screen. This one-sided display allows observation of blood perfusion in the left ventricle (preferably using a color map to better visualize signal intensity changes).
  • FIG. 7A represents the visualization before LV segmentation.
  • 7B and 7C represent the post-segmentation visualization.
  • the MRI system control unit 22 assigns a color corresponding to the signal value to each LV slice image before or after segmentation in units of pixels, and assigns a color map image. Generate. Then, for example, the MRI system control unit 22 displays all color map images in a matrix form with the horizontal axis direction as the BBTI direction and the vertical axis direction as the slice direction from the apex to the base of the heart. Note that the one-sided display method is not limited to this. For example, the horizontal axis and the vertical axis may be opposite. Further, for example, some rows and some columns may be appropriately omitted and displayed according to the designation from the operator.
  • the MRI system control unit 22 further segments the myocardium, assigns a color corresponding to a signal value (for example, an average value) in the segment in a segmented segment unit, Can be generated.
  • the MRI system control unit 22 can also display a color bar indicating the relationship between color assignment and signal intensity when displaying the color map images of FIGS. 7A to 7C.
  • FIGS. 8A to 8D are depictions of segmentation of the left ventricular coronary artery region in the present embodiment.
  • a 6-segmentation model of AHA is used to obtain a color-coded display of an exemplary left ventricular segmented coronary artery region.
  • the segmentation of the LV coronary artery region may be a standard AHA 6-segment model or any number of other operator-defined segments as desired.
  • the AHA6 segment shown in FIGS. 8A, 8B, 8C, and 8D automatically moves clockwise starting from the groove between LV and RV (right ventricle). That is, the groove is a mark as a starting point for identifying the coronary artery region.
  • Each sequentially numbered AHA segment can be labeled, averaged, and color mapped to identify and indicate intensity changes between all segments, as shown in FIGS. 8A-8D.
  • blood supply to the myocardial tissue is performed by three blood vessels: the right coronary artery (RCA), the left anterior descending coronary artery (LAD), and the left coronary artery circumflex branch (LCX).
  • RCA right coronary artery
  • LAD left anterior descending coronary artery
  • LCX left coronary artery circumflex branch
  • segment 1 and segment 2 are supplied with blood by the left anterior descending coronary artery
  • segment 3 and segment 4 are supplied with blood by the right coronary artery
  • segments 5 and 6 are supplied with left coronary artery.
  • Blood is supplied by the rotating branch.
  • the MRI system control unit 22 first divides the entire myocardium into six AHA segments manually or automatically on the tag-on image or tag-off image. At this time, in the case of automatic segmentation, for example, segmentation is performed starting from a landmark that exists between LV and RV. Subsequently, as shown in FIG. 8B, the MRI system control unit 22 fits the boundary of 6 segments obtained from the tag-on image or the tag-off image on the difference image, and removes the non-myocardial signal from the difference image.
  • the MRI system control unit 22 analyzes the signal value for each segment. That is, for example, the MRI system control unit 22 first analyzes the signal value for each pixel, and then calculates the analysis result for each segment by calculating the average value of the analysis results for each pixel for each segment. . The calculation of the average value is only an example. Then, as shown in FIGS. 8C and 8D, the MRI system control unit 22 assigns a color corresponding to a signal value (for example, an average value) in the segment and generates a color map image.
  • FIG. 8C is an example of a color map image displayed in gray scale (gray shades)
  • FIG. 8D is an example of a color map image to which different colors are assigned.
  • the MRI system control unit 22 may display the color map image generated in this way as shown in FIG. 7C. As shown in FIGS. 8C and 8D, the MRI system control unit 22 can appropriately display a slice number, a BBTI value, an identification number of each segment, and the like for each color map image.
  • FIGS. 9A-9C are graphical representations of visualizing a simultaneous one-plane display of perfusion curves for each segment of different slices as a function of BBTI value using different exemplary visualizations in this embodiment. Perfusion curves for each segment of each different slice along different BBTI images can be generated as shown in FIGS. 9A-9C. With the saved ROI of all segments, perfusion curves can be automatically generated for all segments in all slices.
  • FIG. 9A shows an unsmoothed raw perfusion curve from one subject.
  • a perfusion curve can also be generated from any ROI specified by the operator.
  • a conventional polynomial curve fitting method or curve smoothing method may be applied to support further quantification analysis as shown in FIG. 9C.
  • two curve fitting equations are used to best fit the perfusion curve.
  • the fitted parameters must be able to represent perfusion peak intensity, peak timing, and area under the peak.
  • any identifiable abnormal parameter eg, as elucidated by quantitative analysis of curve-fitted perfusion data
  • any site (s) corresponding to the detected anomaly should desirably be marked directly upon visualization of the corresponding AHA segment.
  • FIG. 9B is a simulated 3D visualization of the perfusion curve.
  • graphs are plotted with the x-axis as the BBTI value, the y-axis as the relative signal strength (perfusion), and the z-axis as the slice number (using the general directions of the x, y, and z coordinate axes).
  • the perfusion curves are displayed in full view in FIGS. 9A-9C, but when the operator selects a particular respective slice or segment (eg, that selected slice or segment of a particular slice in a particular BBTI By “clicking” the mouse arrow positioned on top of), one arbitrary perfusion curve for the overlaid display in FIG. 7A or 7B can be retrieved.
  • a particular respective slice or segment eg, that selected slice or segment of a particular slice in a particular BBTI
  • the MRI system control unit 22 analyzes the signal value of each LV slice image for each segment, and creates a curve indicating the change in the signal value in the BBTI direction for each segment. And the MRI system control part 22 arranges the perfusion curves for 6 slices, for example, as shown to FIG. 9A and 9C, and displays them on one screen. At this time, the MRI system control unit 22 can express the difference in perfusion curve of each segment by the difference in color and line type. For example, when the MRI system control unit 22 receives the selection of a predetermined LV slice image on the display of FIGS. 7A to 7C when displaying FIGS. 7A to 7C, the graph corresponding to the received LV slice image is displayed. May be displayed as appropriate.
  • the MRI system control unit 22 receives selection of a predetermined graph on these graphs when displaying FIGS. 9A to 9C, the LV slice image corresponding to the received graph (for example, for one line) ) May be displayed.
  • the display of the LV slice image and the graph is not limited to the above-described example, and may be arbitrarily changed such as displaying a part of the LV slice image or the graph and appropriately calling it using the mutual correspondence. Can do.
  • FIGS. 10A-10B show the relationship between BBTI, perfusion related signal strength, and / or LV slice numbers that make up substantially adjacent slices in the LV 3D image in this embodiment.
  • a new type of bullseye map for better visualization and understanding.
  • FIGS. 10A-10B illustrate visualization of a new perfusion using a variation of the well-known bullseye technique.
  • a concentric circle shows an AHA segment with a BBTI value shown along the radial direction.
  • Each segment is preferably color-coded for mean signal intensity (SI) or relative perfusion value. This visualization is easy to see and understand the trend of SI as a function of BBTI for each heart segment.
  • SI mean signal intensity
  • each segment is also preferably color coded to represent the mean SI or perfusion value.
  • this visualization makes it easy to see and understand the trend of SI as a function of slice number in a given BBTI.
  • the MRI system control unit 22 creates a bullseye map in which the radial direction of the concentric circle is the BBTI direction, and displays the created bullseye map. Further, for example, the MRI system control unit 22 creates a bullseye map with the radial direction of the concentric circles as the slice direction, and displays the created bullseye map.
  • FIG. 10A and FIG. 10B 6 segments of AHA have been described as an example. However, the segmentation may be other segmentation such as 17 segments. The same applies to the other analyzes described above.
  • the exemplary analysis method is specifically designed to use our non-contrast dynamic myocardial perfusion technique. All analysis procedures help visualize blood perfusion inside the myocardium to distinguish infarcted or ischemic sites from healthy myocardium.
  • the generated perfusion curve is important for quantitative assessment of ischemic disease or infarction.
  • the color map image, the graph of the perfusion curve, the bull's eye map, etc. have been described as the display method of the analysis result, the MRI system control unit 22 determines what is necessary according to the request from the operator, for example. What is necessary is just to display suitably.
  • FIG. 11 illustrates the MRI system of FIG. 1 (or another image processing apparatus) for performing the exemplary embodiment of the system for analyzing BBTI tag-on and tag-off images collected by magnetic resonance imaging in this embodiment.
  • Step S900 of FIG. 11 illustrates the entrance to analysis of dynamic non-contrast tag-on and tag-off BBTI image data.
  • this flow diagram represents an executable computer program code structure, such as found in a computer program subroutine that can be called by a high level application program or basic software.
  • the MRI system control unit 22 displays the initial parameters of the latest (first or last) setting as necessary (step S902), and generates an intensity image for each BBTI (step S904).
  • the MRI system control unit 22 confirms whether or not the operator accepts these initial parameters (step S908), and if not accepted (step S908, No), displays the parameter setting screen shown in S906, and further Adjustment / input by the operator can be accepted. Next, these parameters are displayed again in step S902, and acceptance or non-acceptance is determined in step S908.
  • parameters A. Whether alignment is performed with a rigid body or a non-rigid body; Check for artifacts or C.I. D. Whether segmentation is to be done AHA or user-defined.
  • step S904 parameters are set with the process in step S904 interposed therebetween, but the processes need not necessarily be performed in this order. For example, only the processing of steps S902, 908, and 906 may be performed without executing step S904.
  • the MRI system controller 22 will collect the tag on and tag off previously collected.
  • the image is subtracted using complex number calculation to generate an intensity image for each BBTI value and for each slice of the 3D image (step S904).
  • the MRI system control unit 22 performs image registration for 3D images at different BBTI values (step S910).
  • image alignment In order to perform image alignment, manual assistance by an operator may be accepted as necessary. Of course, image alignment may not be required.
  • the MRI system control unit 22 creates a histogram of tag-on and tag-off images, and displays the created histogram. Subtracted to provide data representing susceptibility errors and / or errors due to tagged pulses that affect the myocardium during image data collection. As is obvious to those skilled in the art, the MRI system control unit 22 determines whether or not there is an error exceeding a certain threshold value. If there is an error, the MRI system control unit 22 requests correction operation and operator assistance. And / or the end of the process.
  • the MRI system control unit 22 may perform myocardial segmentation as necessary (step S916). Next, the MRI system control unit 22 displays the segmented myocardial image with pixels color-coded according to the signal intensity (step S918). Further, the MRI system control unit 22 creates a perfusion curve for each segment (or ROI) for each slice of the 3D image. The MRI system control unit 22 may display both or one of the LV slice image and the perfusion curve with respect to the BBTI value (step S922). As previously mentioned, the colored slice image for the 3D image is preferably displayed as a single function as a function of the BBTI value. Similarly, perfusion curves for each segment and slice of a 3D image are preferably displayed in a single panel.
  • the operator is then given the opportunity to select a specific segment, i.e., ROI, on the display (e.g., with a mouse, touch, etc.) (step S924).
  • a specific segment i.e., ROI
  • the MRI system control unit 22 displays a perfusion curve corresponding to the specific segment (step S926).
  • the operator is given an option of whether to end the process (step S928). If the end of processing is desired, then the MRI system controller 22 ends this subroutine and control is returned to the calling high level program or basic software.
  • a computerized system for analyzing images acquired by magnetic resonance imaging includes at least one computer coupled to associated storage, display, and input / output ports.
  • Trigger signal In the embodiment described above, an example in which data collection is performed while ECG synchronization is performed using an ECG signal as a trigger signal has been described, but the embodiment is not limited thereto. Instead of the ECG signal, another biological signal such as a pulse wave signal or a respiratory signal, a clock signal of the MRI system, or the like may be used as a trigger signal.
  • ECG signal another biological signal such as a pulse wave signal or a respiratory signal, a clock signal of the MRI system, or the like may be used as a trigger signal.
  • Image processing device In the above-described embodiment, the example in which the MRI system executes all of data collection, analysis, and display of the analysis result has been described, but the embodiment is not limited thereto.
  • an image processing system including an MRI system and an image processing device may execute the various processes described above.
  • the image processing device is, for example, a workstation, an image storage device (image server) of a PACS (Picture Archiving and Communication System), a viewer, various devices of an electronic medical record system, or the like.
  • the MRI system performs data collection by the MRI sequence control unit 30.
  • the image processing apparatus includes a control unit corresponding to the MRI system control unit 22 described above, and receives MR data and k-space data acquired by the MRI system from the MRI apparatus 100 or from an image server via a network. Or by being input from an operator via a recording medium or the like and stored in the storage unit. Then, the image processing apparatus may perform the above-described various processes (for example, analysis processing and display control processing by the MRI system control unit 22) for the MR data and k-space data stored in the storage unit.
  • various processes for example, analysis processing and display control processing by the MRI system control unit 22
  • BBTI Black Blood Time to Inversion
  • MRI Magnetic Resonance Imaging
  • the image is analyzed to generate 3D images of different intensities as a function of time (BBTI value) representing blood perfusion within the region of interest (ROI).
  • ROI perfusion data with different values of normal and abnormal myocardial tissue is displayed in a single display panel for multiple slices of 3D images and for multiple BBTI values.
  • a computerized system for analyzing images collected by magnetic resonance imaging the system being coupled to associated storage, display, and input / output ports; and (a) At the target region (ROI), multi-slice non-contrast MR images of the left ventricle (LV) myocardium for each BBTI are collected, and (b) the apex for multiple slices of 3D images and for multiple BBTI values
  • a computerized system comprising at least one computer processing device configured to display an LV slice image from the heart to the base of the heart in a single display panel.
  • the at least one computer processing device is further configured to receive a manual alignment input by an operator to perform the 3D image alignment. The system described.
  • the at least one computer processing unit (a) performs segmentation of the ROI imaged left ventricular myocardial tissue, and (b) displays an LV slice image as a function of BBTI on one display panel.
  • the displayed LV slice image includes (i) an LV slice image prior to segmentation, (ii) an LV slice image after segmentation, and (iii) AHA (American Heart Association)
  • the system according to (2) including at least one of a segmented LV slice image of (1).
  • the ROI includes a left ventricular myocardium, and the at least one computer processing device (a) graphs along a concentric circle for each of different BBTI values graphed along the radial direction. A given segmentation slice of an LV myocardium with a perfusion value measured, and (b) along a concentric circle for each slice of different slices of the LV myocardium plotted along the radial direction for a given BBTI value.
  • the system of (2) further configured to display the perfusion data in at least one bullseye structure showing at least one of a graphed LV myocardial perfusion value .
  • the at least one computer processing device generates (a) a histogram, (b) subtracts the histogram of the tag-on and tag-off images, and the subtraction result is an artifact caused by magnetic susceptibility,
  • the system of (2) further configured to provide data representing both or one of artifacts due to tagged pulses that affect the myocardial image during the image data collection process.
  • the at least one computer processing unit performs (a) segmentation of a coronary artery region for the left ventricular myocardial image data of the ROI, and (b) for each segmented portion of the left ventricular myocardium. Further configured to generate an average image data value and (c) display the segmented left ventricular myocardium where segmented portions are displayed with visual differences representing different average image data values associated with each other.
  • the system according to (2) characterized in that:
  • the at least one computer processing unit generates (a) at least one blood perfusion curve as a function of BBTI for each slice of the 3D image, and (b) (a) as a function of BBTI before curve fitting. From an array of raw perfusion data, (b) an array of perfusion curves fitted to the raw perfusion data as a function of BBTI, and (c) from perfusion curves fitted to the raw perfusion data as a function of BBTI (2) further configured to simultaneously display a plurality of obtained perfusion curves on one display panel, the at least one of the obtained quantified perfusion curve data. ) System.
  • the at least one computer processing unit generates a blood perfusion curve as a function of BBTI for each portion of the plurality of segmented portions of the ROI for each slice of the 3D image, and the operator
  • the system according to (2) further configured to simultaneously display a corresponding perfusion curve when a segment of the slice is selected.
  • a magnetic resonance imaging system comprising an MRI frame including a static magnetic field magnet, a gradient magnetic field coil, and at least one RF (Radio Frequency) coil that form an image volume on which a target region (ROI) of a subject can be placed And an MRI data acquisition sequence for applying an RF pulse and a gradient magnetic field pulse for extracting the MRI signal from the subject tissue when the ROI is arranged in the mount and connected to a control component in the MRI mount.
  • RF Radio Frequency
  • the retrieved MRI signal (a) in conjunction with the use of the first spatially selective RF tag pulse in the data acquisition subsequence (tag on), and (b) the first spatially selective in the data acquisition subsequence MR image data is collected and processed without being linked to the use of RF tag pulses (tag-off).
  • the MRI control circuit is configured to: (a) the tag-on for each interval among a plurality of time-to-inversion (TI) intervals without injecting a contrast agent; Acquire multi-dimensional MR k-space data for the subject ROI using the tag-off data collection subsequence, (b) reconstruct the collected k-space data into MR image data of the tag-on and tag-off, (C) By subtracting the collected tag-on and tag-off MR image data for each of a plurality of TI intervals using complex value calculation, a difference appears between normal, ischemic, and infarcted tissues.
  • TI time-to-inversion
  • An MRI system configured to display on a single display panel.
  • the magnetic resonance imaging apparatus of at least one embodiment described above it is possible to appropriately display the analysis result of the myocardial perfusion image obtained by non-contrast imaging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Cardiology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 実施形態に係る磁気共鳴イメージング装置は、シーケンス制御部(30)と、表示制御部(22)とを備える。前記シーケンス制御部(30)は、タグ領域にタグパルスを印加してから所定時間後に心臓のスライスのデータを収集するデータ収集を、長さが異なる複数の前記所定時間に関して実行する。前記表示制御部(22)は、複数の前記所定時間に関して収集された複数の前記データの解析結果を、前記所定時間と前記スライスとの関係を識別できるように表示部に表示する。

Description

磁気共鳴イメージング装置
 本発明の実施形態は、磁気共鳴イメージング装置に関する。
 従来、磁気共鳴イメージングによる心臓の撮像法の1つに、心筋パフュージョン(Perfusion、灌流)と呼ばれる手法がある。心筋パフュージョンは、T1強調画像を高速に連続撮像することで、ガドリニウム(Gd(gadolinium))系の造影剤による心筋の染まりを時間変化として観察し、心筋への血液供給を評価する手法である。
Kim, et al., "Relationship of MRI DelayedContrast Enhancement to Irreversible Injury, Infarct Age, and ContractileFunction," Circulation Journal of the American Heart Association, pages1991-2002 (November 9, 1999)
 本発明が解決しようとする課題は、非造影で得られた心筋灌流画像の解析結果を適切に表示することができる磁気共鳴イメージング装置を提供することである。
 実施形態に係る磁気共鳴イメージング装置は、シーケンス制御部と、表示制御部とを備える。前記シーケンス制御部は、タグ領域にタグパルスを印加してから所定時間後に心臓のスライスのデータを収集するデータ収集を、長さが異なる複数の前記所定時間に関して実行する。前記表示制御部は、複数の前記所定時間に関して収集された複数の前記データの解析結果を、前記所定時間と前記スライスとの関係を識別できるように表示部に表示する。
図1は、非造影ダイナミックMRI心筋灌流の解析及び視覚化を提供するように構成された、例示的実施形態に係るMRIシステムの高水準概略ブロック図。 図2Aは、本実施形態に係るMRIシステムで用いられる、タグオン、タグオフMRIデータ収集シーケンスの第1の例示の概略描写図。 図2Bは、本実施形態に係るMRIシステムで用いられる、タグオン、タグオフMRIデータ収集シーケンスの第2の例示の概略描写図。 図3は、本実施形態におけるタグパルスの印加領域を示す図。 図4は、本実施形態において、タグオン及びタグオフの画像の強度画像を生成するように、複素数計算を用いる、タグオン及びタグオフの画像の画素単位の減算を示した図。 図5Aは、本実施形態における異なるBBTI間の位置合わせ前の左室心筋の強度画像を示した図。 図5Bは、本実施形態における異なるBBTI間の位置合わせ後の左室心筋の強度画像を示した図。 図6Aは、本実施形態における、タグオン又はタグオフの画像に加えたセグメンテーションを示す図。 図6Bは、本実施形態における、差分画像に合成される対象部位を示す図。 図6Cは、本実施形態における、セグメンテーションされたボリュームの外側の非心筋信号を除去した鮮明な画像に合成される対象部位を示す図。 図7Aは、本実施形態における、セグメンテーション前のLVスライス画像を1枚の表示パネルに一緒にBBTIの時間周期の関数として表示した例示的な灌流視覚化の描出図。 図7Bは、本実施形態における、セグメンテーション後のLVスライス画像を1枚の表示パネルに一緒にBBTIの時間周期の関数として表示した例示的な灌流視覚化の描出図。 図7Cは、本実施形態における、セグメンテーション後のLVスライス画像を1枚の表示パネルに一緒にBBTIの時間周期の関数として表示した例示的な灌流視覚化の描出図。 図8Aは、本実施形態における、左室の冠状動脈領域のセグメンテーションの描出図。本図では、米国心臓協会(AHA:American Heart Association)の6セグメンテーションモデルを用いて、左室のセグメンテーションされた例示的な冠状動脈領域の色分け表示を得る。 図8Bは、本実施形態における、左室の冠状動脈領域のセグメンテーションの描出図。本図では、AHAの6セグメンテーションモデルを用いて、左室のセグメンテーションされた例示的な冠状動脈領域の色分け表示を得る。 図8Cは、本実施形態における、左室の冠状動脈領域のセグメンテーションの描出図。本図では、AHAの6セグメンテーションモデルを用いて、左室のセグメンテーションされた例示的な冠状動脈領域の色分け表示を得る。 図8Dは、本実施形態における、左室の冠状動脈領域のセグメンテーションの描出図。本図では、AHAの6セグメンテーションモデルを用いて、左室のセグメンテーションされた例示的な冠状動脈領域の色分け表示を得る。 図9Aは、本実施形態における、異なる例示的な視覚化表現を用いて、BBTI値の関数として、異なるスライスそれぞれのセグメント毎の灌流曲線の同時一面表示を視覚化した描出図。 図9Bは、本実施形態における、異なる例示的な視覚化表現を用いて、BBTI値の関数として、異なるスライスそれぞれのセグメント毎の灌流曲線の同時一面表示を視覚化した描出図。 図9Cは、本実施形態における、異なる例示的な視覚化表現を用いて、BBTI値の関数として、異なるスライスそれぞれのセグメント毎の灌流曲線の同時一面表示を視覚化した描出図。 図10Aは、本実施形態における、BBTI、灌流に関連する信号強度(SI:Signal Intensity)、及び、LVの3D画像内で実質的に隣接するスライスを構成するLVスライス番号の全て又はいずれかの間の関係をより良く視覚化及び理解するための新しいタイプのブルズアイマップ。 図10Bは、本実施形態における、BBTI、灌流に関連する信号強度、及び、LVの3D画像内で実質的に隣接するスライスを構成するLVスライス番号の全て又はいずれかの間の関係をより良く視覚化及び理解するための新しいタイプのブルズアイマップ。 図11は、本実施形態における、磁気共鳴イメージングが収集したBBTIタグオン及びタグオフの画像を解析するシステムの例示的な実施形態を実行するために、図1のMRIシステム(又は、別の画像処理装置)で使用するための例示的なコンピュータープログラムコード構造をフロー図の形で示した概略図。
 以下、図面を参照しながら、実施形態に係る磁気共鳴イメージング装置(以下、適宜、MRI(Magnetic Resonance Imaging)システム)及び画像処理装置を説明する。なお、実施形態は、以下の実施形態に限られるものではない。本出願人が2012年8月16日に出願した米国特許出願第13/587,294号明細書に関し、参照することにより本明細書中に援用される。
 図1は、非造影ダイナミックMRI心筋灌流の解析及び視覚化を提供するように構成された、例示的実施形態に係るMRIシステムの高水準概略ブロック図である。図1に示すMRIシステムは、架台10(概略断面で示す)と、互いにインタフェース接続される、様々な関連システム構成要素20とを含む。少なくとも架台10は、通常シールドルームに配置される。図1に示すMRIシステムの形状は、実質的には静磁場B磁石12と、Gx、Gy、Gz傾斜磁場コイルセット14と、RF(Radio Frequency)コイルアセンブリ16との同軸円筒状の配置を含む。この円筒状の要素アレイの水平軸線に沿って、実質的には被検体ベッド即ちテーブル11によって支持された被検体9(例えば、心臓MRIのための心臓)の、対象の解剖学的組織(即ち、対象部位(ROI:Region Of Interest)を取り囲むように示されたイメージング領域18がある。
 MRIシステム制御部22は、表示部24、キーボード/マウス26、及び、プリンタ28に接続される入力/出力ポートを備える。自明であるが、表示部24は、制御入力もまた備えるような多様性のあるタッチスクリーンであってもよい。
 MRIシステム制御部22は、MRIシーケンス制御部30とインタフェース接続し、MRIシーケンス制御部30は、Gx、Gy、Gz傾斜磁場コイルドライバ32、並びにRF送信部34、及び送信/受信スイッチ36(同じRFコイルが、送信及び受信の両方に使用される場合)を制御する。当業者には自明であるが、多くの異なる種類のRFコイル(例えば、全身コイル、表面コイル、バードケージ型コイル、コイルアレイ等)を使用して、イメージングボリューム内のROIとの間でRF信号の送信及び受信の両方又は一方を行うことができる。自明でもあるが、1つ又は複数の好適な生理学的トランスデューサ8を被検体の身体に貼付して、心電図(ECG:Electrocardiogram)信号、呼吸同期信号、及び、脈波同期信号の全て又はいずれかのゲート信号をMRIシーケンス制御部30に供給できる。MRIシーケンス制御部30はまた、MRIシーケンス制御部30の守備範囲で既に利用できるMRIデータ収集シーケンスを実行するための、例えば、特定のMRIデータ収集シーケンスパラメータ、1つ又は複数のROI等を画定するシステム入力及び操作者の両方又は一方を使って、非造影心臓MRI組織画像を発生させるための好適なプログラムコード構造38にもアクセスする。
 MRIシステムの構成要素20は、表示部24へ送信できる処理済画像データを作成できるように、データ処理装置42へ入力を供給するRF受信部40を含む。MRIデータ処理部42はまた、画像再構成プログラムコード構造44と、MR画像記憶部46(例えば、例示的な実施形態及び画像再構成プログラムコード構造44に応じた処理に由来するMR画像データを格納するための)とへアクセスできるように構成もされている。
 また、図1は、MRIシステムのプログラム/データ格納部50を一般化した図である。MRIシステムのプログラム/データ格納部50には、(例えば、非造影心臓MRIダイナミック心筋灌流解析及び視覚化のための)プログラムコード構造、並びに、MRIシステムの様々なデータ処理構成要素にアクセス可能なコンピュータ可読格納媒体に格納された、関連するGUI(Graphical User Interface)、該GUIへの操作者入力等が格納される。当業者には自明であるが、プログラム/データ格納部50を、正常運転時にそのように格納されたプログラムコード構造を差し迫って必要とするシステム20の処理コンピュータのうちの様々なコンピュータに分割し、且つ少なくとも一部を直結してもよい(即ち、MRIシステム制御部22に普通に格納したり直結したりする代わりに)。
 実際、当業者には自明であるが、図1は、本明細書で後述する例示的な実施形態を実行できるように若干の変更を加えた一般的なMRIシステムを非常に高度に簡素化した図である。システム構成要素は、様々な論理収集の「ボックス」に分割でき、通常、多数のデジタル信号処理装置(DSP:Digital Signal Processor)、超小型演算処理装置、特殊用途向け処理回路(例えば、高速アナログ/デジタル(A/D:Analog to Digital)変換、高速フーリエ変換、アレイ処理用等)を含む。これら処理装置のそれぞれは、通常、各クロックサイクル(又は所定数のクロックサイクル)が発生すると、物理データ処理回路が、ある物理的状態から別の物理的状態へ進むクロック動作型の「ステートマシン」である。
 動作中に、処理回路(例えば、CPU(Central Processing Unit)、レジスタ、バッファ、計算ユニット等)の物理的状態が、あるクロックサイクルから別のクロックサイクルへ漸進的に変化するだけでなく、連結されているデータ格納媒体(例えば、磁気記憶媒体のビット格納部)の物理的状態も、そのようなシステムの動作中に、ある状態から別の状態へ変わる。例えば、MRイメージング再構成処理の終了時、物理的格納媒体のコンピュータ可読アクセス可能データ値格納場所のアレイ(画素値の複数桁2進数表示)は、いくつかの事前の状態(例えば、全部一律の「ゼロ」値、又は全部「1」値)から新しい状態に変わる。その新しい状態では、そのような(例えば、画素値の)アレイの物理的場所の物理的状態は、最小値と最大値の間で変動し、現実世界の物理的事象及び状況(例えば、画像化される部位空間一面の被検体の組織)を表現できる。当業者には自明であるが、格納されたデータ値のそのようなアレイは、物理的構造を表し且つ構成もする。つまり、命令レジスタの中に順次読み込まれてMRIシステム20の1つ又は複数のCPUによって実行されたとき、動作状態の特定シーケンスが発生して、MRIシステム内で移行されるコンピュータ制御プログラムコードの特定構造が構成されるように、上記アレイは構成される。
 下記の例示的な実施形態は、MRIデータの収集及び処理の両方又は一方と、MR画像の生成及び表示の両方又は一方とを行うための改良された方法を提供する。
 最初に、以下の例示的な実施形態に係るMRIシステムの概要を説明しておく。例示的な実施形態に係るMRIシステムは、MRIシーケンス制御部30と、MRIシステム制御部22とを備える。MRIシーケンス制御部30は、タグ領域にタグパルスを印加してから所定時間後に心臓のスライスのデータを収集するデータ収集を、長さが異なる複数の所定時間に関して実行する。例えば、MRIシーケンス制御部30は、心臓のスライスのデータとして、心尖部から心基底部までの間の複数のスライスのデータを収集する。例えば、MRIシーケンス制御部30は、心尖部から心基底部までの間の複数スライス分の左室短軸像のデータを、異なる複数のTI(Time to Inversion)に関して収集する。
 次に、MRIシステム制御部22(表示制御部とも称される)は、複数の所定時間に関して収集された複数のデータの解析結果を、所定時間とスライスとの関係を識別できるように表示部24に表示する。なお、例示的な実施形態においては、MRIシステム制御部22が、解析自体と、解析結果の表示制御とを行う。
 この解析結果の表示には、各種手法がある。例えば、MRIシステム制御部22は、各データの解析結果である解析画像を、所定時間の方向とスライスの方向とを各軸とするマトリックス状に並べて、一面表示する(図7A~7Cを参照)。解析画像には、図7Aのようなオリジナル画像(タグオフ画像、タグオン画像、あるいは差分画像)に対して、例えば画素単位で濃度や色を割り当てた画像や、図7Bのような、非心筋信号を取り除くようにセグメンテーションされた画像に対して、画素単位で濃度や色を割り当てた画像や、図7Cのような、心筋内を更にセグメンテーションして、セグメント単位で濃度や色を割り当てた画像等がある。
 また、例えば、MRIシステム制御部22は、解析結果として、スライスのデータをセグメント毎に解析することで作成された、所定時間の方向における信号強度の変化を示す灌流曲線のグラフを表示する(図9A~9Cを参照)。このとき、MRIシステム制御部22は、表示部24に表示された画像(オリジナル画像、若しくは解析画像)に対して操作者から選択操作を受け付けた場合に、操作者によって選択された画像に対応する灌流曲線のグラフを表示部24に表示するように制御することができる。
 また、例えば、MRIシステム制御部22は、解析結果として、スライスのデータがセグメント毎に解析され、各セグメントの信号強度に応じて異なる濃度若しくは異なる色が割り当てられ、同心円の半径方向を所定時間の方向として作成されたブルズアイマップを表示する(図10A~10B)。
 なお、以下の例示的な実施形態においては、上述した処理を、MRIシーケンス制御部30やMRIシステム制御部22が実行するものとして説明するが、実施形態はこれに限られるものではなく、他の制御部が実行してもよい。
 恐らくストレス灌流剤に関連して、ガドリニウム(Gd:Gadolinium)ベースの造影剤を使用することが知られているが、そのような造影剤を使用することは、心筋の梗塞性病変及び虚血性病変を検出する上で、許容可能なMRIの技術ではないことが多い。LGE(Late Gadolinium contrast Enhancement)は、ガドリニウム造影剤注入後に、心筋から観察されるMRI信号を通して、ガドリニウム造影剤のT1造影(ウォッシュアウト)を観察することによって、正常心筋と梗塞心筋との間の差異を測定する。ストレス下の心筋の現実的な観察を得るために、一時的なストレス状況下でより良好に血流の異常を観察できるように、被検体の身体的運動、又は(身体的運動によって引き起こされるものと類似の心拍数の上昇、心臓血管の膨張等を引き起こそうとする)注入された薬剤誘発性ストレスによって、ストレスを誘発させることができる。
 また、ASL(Arterial Spin Labeling)法は、非造影による心筋虚血評価のためにも用いられてきたが、この技術は、灌流曲線又は3次元(3D)カバレッジを発生させるものではなく、対象が、単一時点の単一スライスに限定されている。対応する解析法は、本発明者らの新しい非造影ダイナミックMRI灌流解析及び視覚化とは、著しく異なっている。
 本発明者らは、そのような造影剤の使用を避ける方法を発見した。その方法は、正常心筋、虚血性心筋、及び、梗塞性心筋の間の識別に使用できる心筋灌流曲線/表のデータを生成するための非造影(即ち、化学造影剤の注入なしで)MRI技術を実施することである。実際、(血管へのステント挿入手術、外科的バイパス血管手術等の血管再生技術で処置された)血管再生された梗塞性心筋さえ識別できる。例示的な実施形態によれば、そのような心筋識別は、所望する任意の対象部位(例えば、手術者定義の任意の対象部位(ROI)、標準的なAHAのセグメント、単一画素等)内で行うことができる。
 造影剤(例えば、ガドリニウムベースの)の注入は、避けられるが、それでも望ましくは、被検体のストレス下状態の間だけ、存在又はより顕著になる可能性がある異常をより良好に検出できるように、(運動誘発性若しくは薬物性の)被検体ストレスと組み合わせた例示的な実施形態を用いることが望ましい。
 例示的な実施形態では、一組の「タグオン」(2D又は3D)MRI k空間データは、最初の空間選択的RFパルス(例えば、一般的に空間選択的180°反転パルス)で「タグ付けられた」後、収集される。ここで、データ収集サブシーケンスは、反転遅延時間(TI)に与えられた時間の後開始される。「タグオフ」MRIデータの類似したセットもまた、同じTI遅延間隔を使って収集されるが、最初の空間選択的RFタグ付けパルスはない。この技術は、時としてある技術分野ではBBTI(Black Blood Time to Inversion)イメージングとして知られている。複数のTI時間のうちのそれぞれに対する、一連のそのようなタグオン/タグオフのデータセットは、k空間で収集される。
 各所与のTI時間に対して、2D/3Dフーリエ変換再構成された空間領域タグオン及びタグオフの画像データセット(即ち、周知の2DFT/3DFT再構成処理の結果)は、(例えば、画素単位ベースで)減算されて、時間の関数として血液灌流(MR信号強度)をグラフ化又は表化できるBBTI血液灌流画像を提供する。任意の所与の対象部位(例えば、AHAセグメント、任意の手術者定義のROI、又は単一の画素)に対して、時間軸に対してデータ値がプロットされたグラフは、時間の関数として血液灌流曲線を提供する。該時間の関数は、「正常な」心筋、異常な虚血性心筋、梗塞性心筋、及び血管再生された(処置された)虚血性心筋に対する灌流曲線の間のいくつかの次元の微分を提供する。予想されるように、梗塞性心筋は、灌流を示さない(即ち、検出されたMRI信号強度にピーク即ち増加はない)。しかし、虚血性心筋には、正常の(又は血管再生された)心筋と比べたとき、より小さい検出信号強度だけでなく、発生から時間遅延されたピークフロー時間がある。したがって、虚血性病変の位置は、時間及び振幅(又は更に曲線下の積分面積)の両方又は一方の比較と、所定の閾値等との比較との両方又は一方に基づいて、識別が可能である。
 (例えば、操作者に表示されるように、又は後に他者に表示するためにデータを格納するように)際立った特徴を含む対象部位(例えば、所定のAHA心筋セグメント、又は任意の操作者指示のROI、又は単一の画素)に関連する灌流曲線及び対応するデータ表の両方又は一方は、正常、虚血性、梗塞性、又は更に血管再生後の心筋を、一切の造影剤(例えば、ガドリニウム造影剤)の注入をすることなく表すように、ROIを様々に描出できる。
 図2Aは、本実施形態に係るMRIシステムで用いられる、タグオン、タグオフMRIデータ収集シーケンスの第1の例示の概略描写図である。図2Aに示す代表的データ収集シーケンスでは、「タグオフ」及び「タグオン」のどちらのサブシーケンスも同期させるために、図2Aに示すように、ECG同期を使用している。図2Aの左下に示すタグオフのサブシーケンスでは、短い初期の固定遅延時間TDを用いて、データ収集サブシーケンスが、必ずRST ECG信号のうちの所望の心臓拡張期部分の間に、開始するようにしている。遅延時間TDの後で、非領域選択180°RFパルスが用いられる(後続の異なる画像からの背景信号を抑制するのを助けるために。というのは、心筋からの信号が、例えばMRI信号全体の約10%といったように、比較的小さいからである)。実際のデータ収集サブシーケンスは、所望であれば、プリパレーションパルス(例えば、脂肪抑制パルス)と一緒に開始することができる。その後、スライス選択的(例えば、α°、典型的には45°又は90°)NMRパルスとともに始まる所望のデータ収集サブシーケンスFが続き、例えばスライス選択的180°RFリフォーカシングパルスのシーケンスのような所望のMRIデータ収集サブシーケンスFが始まり、介在するRFスピンエコー(SE(Spin Echo))応答を、読み出し傾斜磁場Grパルスの継続期間中に取り出す。なお、各スピンエコーの前に、位相エンコーディングGe傾斜磁場パルス(これは、それぞれ対応するk空間のラインを取り出すために、異なるエコーに対して変更される)が来る。当業者には自明であるが、かかる公知のMRIデータ収集サブシーケンスは、bSSFP(balanced Steady-State Free Precession:平衡定常状態自由歳差運動)タイプのもの(今のところ好適である)、又は高速スピンエコー(FSE(Fast Spin Echo))タイプのもの、又は、可能性として他のタイプのものとしても差し支えないであろう。
 図2Aの右下に示すタグオンデータ収集サブシーケンスは、上記タグオフサブシーケンスと同様である。但し、遅延時間TDの後で、更に、領域選択「タグ付け」180°RFパルス(例えば、場合によっては、図2Aに示されるような点線の同時進行的傾斜パルスによって表されるオブリーク角のパルス、及びDf周波数オフセットパルス)も用いられる。当業者には自明であるが、これは事実上、血液の所定の流入ボリュームを非反転磁化配向に逆戻りさせることになる。即ち、この血液の流入ボリュームに「タグを付す」ことになる。したがって、そのRFタグ付フロー血液MR核が下流の関心領域(ROI)に進入するときに、上記タグオフサブシーケンスのものとは異なるMR信号応答を発生させることになる。
 図2Bは、本実施形態に係るMRIシステムで用いられる、タグオン、タグオフMRIデータ収集シーケンスの第2の例示の概略描写図である。図2Bに示すタグオン/タグオフ交互式収集サブシーケンスは、図2Aに示すものと同じである。但し、見れば分かるように、背景抑制を目的とする最初の非領域選択180°パルスが存在しない(タグオンサブシーケンス、タグオフサブシーケンスのどちらも)。
 図2A及び図2Bの双方に点線で示しているように、領域選択180°タグオンパルスに対して所望のオブリーク角を実現するために、様々に選択された大きさのGs、Gr、及びGe傾斜磁場パルスを同時進行的に使用することができるであろう。
 例示的な実施形態におけるMRIデータの収集について上述したが、改めてこれを説明する。例示的な実施形態において、MRIシステムは、心筋組織に供給される血液の動態を描出する画像群(心筋灌流画像群)を、血液を標識化する(タグを付す)手法、即ち、非造影の手法により、収集する。そして、MRIシステムは、収集した画像群を解析(分析)し、解析結果を表示することで視覚化する。
 血液を標識化する手法を簡単に説明する。例えば、心筋組織に供給される血液が描出された画像を得る場合、MRIシステムは、例えば、心筋組織の上流で血液が流れる領域に、血液を標識化するタグパルスとして、例えば、縦磁化を180°反転させる反転パルスを印加する。反転パルスの印加を受けた血液は、縦磁化の回復過程において、他の血液や背景組織と識別可能な信号強度を有する。また、反転パルスの印加タイミングとMR信号の収集タイミング(例えば、k空間の中心ラインの収集タイミング)との間の時間の長さは、典型的には、反転パルスの印加を受けた血液の移動距離に比例する。このため、反転パルスの印加タイミングとMR信号の収集タイミングとの間の時間の長さを変えながらMR信号を収集することで、心筋組織に流入し、流れ出る血液の動態が描出された画像群を得ることができる。なお、反転パルスと略同時に、領域を選択しない非領域選択パルスを印加され、撮像領域全体の縦磁化を、180°反転させる手法もある。この場合、心筋組織上流の血液は、2回の反転パルスの印加を受けるので、やはり、他の血液や背景組織と識別可能な信号強度を有する。非選択領域パルスを印加する手法を、図2Aに示し、非領域選択パルスを印加しない手法を、図2Bに示す。なお、タグパルスは、縦磁化を180°反転させる反転パルスに限られるものではない。
 図3は、本実施形態におけるタグパルスの印加領域を示す図である。血液は、心臓の左心室から、図3に示す大動脈を経由して全身へと送り出される。また、図3においては図示を省略するが、大動脈から左右に分岐した動脈が、右冠動脈及び左冠動脈であり、左冠動脈は、更に、前側に下行する血管と後側に回り込む血管とに分かれる。心筋組織に対する血液の供給は、これら、右冠動脈(RCA(Right Coronary Artery))、左冠動脈前下行枝(LAD(Left Anterior Descending coronary artery))、及び左冠動脈回旋枝(LCX(Left CircumfleX coronary artery))の3本の血管によって行われる。本実施形態は、心筋組織に流入して流れ出る血液の動態を捉え、解析しようとするものであるので、タグパルスの印加領域は、図3に示すように、心臓上部の大動脈のあたりに設定されることが望ましい。
 また、本実施形態においては、血液を標識化するタグオン画像データのみならず、血液を標識化しないタグオフ画像データを収集し、これらの差分画像を解析対象とする。これは、タグオン画像データとタグオフ画像データとを減算すると、タグパルスが印加された血液以外の信号が差し引かれる結果、タグパルスが印加された血液の解析を、より正確に行うことができるからである。
 なお、本実施形態においては、待機時間なし(操作者による操作介入なし)の一連のパルスシーケンスにおいて、タグオン画像データ及びタグオフ画像データの両方を収集し切る手法であるので、それぞれを、「タグオンデータ収集サブシーケンス」、「タグオフデータ収集サブシーケンス」等と称する。図2Aと図2Bとの違いは、撮像領域全体の縦磁化を、非領域選択パルスで一旦反転させるか(図2A)、反転させないか(図2B)の違いである。前者の場合、背景信号が低信号になる。後に、タグオン画像とタグオフ画像とで差分画像を生成することに鑑みると、タグオン画像とタグオフ画像との間の位置ずれの影響が少なくなる前者の手法の方が望ましいと言える。
 「タグオンデータ収集サブシーケンス」と「タグオフデータ収集サブシーケンス」との違いは、図2Aの左右の図、あるいは、図2Bの左右の図を比較すると分かるように、領域選択の反転パルスを印加するかしないかの違いである。なお、図2Aに示すように、非領域選択パルスも印加する場合、非領域選択パルスと領域選択パルスとは、典型的には略同時に印加される。このため、図2Aや図2Bにおいて、「TI」は、非領域選択パルスの印加タイミングからデータの収集開始タイミングまでを示しているが、概ね、領域選択パルスの印加タイミングからデータの収集開始タイミングまでの時間と考えてもよい。
 また、本実施形態において、望ましくは、MRIシーケンス制御部30は、1回の息止め(例えば、20秒程度)の間に、タグオン画像データ及びタグオフ画像データのセットを、複数スライス分、収集し切る。例えば、MRIシーケンス制御部30は、心尖部から心基底部までの間の左室(LV:Left Ventricle)スライス画像を3スライス分収集する。その後、MRIシステムは、補間処理によって、6スライス分のタグオン画像データ及びタグオフ画像データのセットを得る。
 また、本実施形態において、MRIシーケンス制御部30は、上述した交互式のタグオン/タグオフサブシーケンスを、長さが異なる複数のTIに関して実行する。例えば、MRIシーケンス制御部30は、TI=200ms、TI=400ms、TI=600ms、TI=800ms、TI=1,000ms、TI=1,200ms、TI=1,400ms、及びTI=1,600ms、それぞれのTIについて、交互式で、タグオン/タグオフサブシーケンスを実行する。異なるTIのサブシーケンスは、待機時間なし(操作者による操作介入なし)の一連のパルスシーケンスで実行されてもよいし、適宜待機時間を挿入して実行してもよい。TIの順序も、任意に変更することができる。
 また、どのTIで収集を行うかについても、あるいは、その間隔も、適宜変更することができる。これらのTIは、撮像条件を受け付けるためのGUI上で操作者からの入力を受け付けることで設定されてもよいし、あるいは、プレシーケンスの1つにおいて設定されてもよい。通常、MRIシステムによる検査には、各種診断用の画像を収集するためのイメージングシーケンス群と、イメージングシーケンス群に先行して行われるプレシーケンス群とが含まれ、これらの一連のシーケンス群が、操作者の操作等を間に挿入しながら連続的に順次実行される。TIを設定するためのプレシーケンスは、例えば、TIを変更しながら異なるTI毎にそれぞれのMR信号を得て、MR画像をGUI上に並列表示して操作者に選択させたり、MR画像上の線ROI(Region Of Interest)のプロファイルを求めたりすることで、後にイメージングシーケンスで用いるための適切なTIを設定するものである。このようなプレシーケンスは、BBTI-prep等と呼ばれることがある。なお、プレシーケンス群には、その他、例えば、位置決め画像を収集するためのシーケンスや、磁場の不均一性を調整するためのシーケンス、コイルの感度マップを収集するためのシーケンス等が含まれる。
 なお、本実施形態において、MRIシーケンス制御部30は、異なるTIのサブシーケンス間で、収集されるデータの心時相を一致させる。例えば、MRIシーケンス制御部30は、いずれのTIに関しても、拡張期の心位相にデータを収集する。この場合、非領域選択パルスや領域選択パルスの印加タイミングは、例えば、データの収集タイミングからTI分を逆算することで、求めることができる。
 なお、本実施形態においては、タグオン画像データ群と、タグオフ画像データ群とを、それぞれ収集する手法を説明したが、実施形態はこれに限られるものではなく、心筋組織の灌流画像を非造影で得る手法であればよい。即ち、タグオフ画像データ群を収集することは必須の構成ではない。また、本実施形態においては、タグオン画像データ群と、タグオフ画像データ群とを、例えば、1スライス毎に、若しくは1スライスエンコード毎に、交互に収集する手法を説明したが、実施形態はこれに限られるものではない。例えば、タグオン画像データ群を全て収集した後に、タグオフ画像データ群を収集したり、その逆であってもよい。また、本実施形態においては、タグオフ画像データ群を全てのTIについて収集する手法を説明したが、実施形態はこれに限られるものではなく、あるTIについて収集したタグオフ画像データ群を、他のTIにおいて差分画像を算出する際に用いてもよい。
 また、本実施形態においては、TIが異なる画像データ群を、待機時間なし(操作者による操作介入なし)の一連のパルスシーケンスにおいて連続的に収集する手法を説明したが、実施形態はこれに限られるものではない。例えば、TIを変える毎に、待機時間を挿入してもよい。また、本実施形態においては、ECG同期信号と同期させて、拡張期の心位相で画像データを収集する手法を説明したが、実施形態はこれに限られるものではなく、他の心位相で画像データを収集してもよい。その他、図2A、図2B、及び図3に示した本実施形態の収集の手法は、これに限られるものではなく、任意に変更することが可能である。
 ここまで、MRIシステムが、非造影で心筋灌流画像データ群を収集する手法を説明した。以下では、MRIシステム、若しくは、MRIシステムとは異なる画像処理装置が、MRIシーケンス制御部30によって収集された心筋灌流画像データ群を対象とした解析を行う例を説明する。本発明者らは、以下に、本発明者らの非造影ダイナミック心筋灌流技術に適合する、恐らく最適であるといえる、例示的な解析法を提案する。例えば、新しい方法は、左室内の血液灌流を視覚化し、操作者が設定したあらゆるセグメント即ちROIの灌流曲線を示す能力を備えたダイナミック3D画像データセットを処理することができる。
 当業者には自明であるが、本発明者らの灌流解析及び視覚化の方法は、図1のMRIシステムに組み込むことができ、あるいは、元のタグオン及びタグオフの画像データが収集された図1のMRIシステムから遠方に位置する別々の画像解析/表示システム(画像処理装置)の一部として実行されてもよい。
 本発明者らの非造影灌流技術から得られるダイナミック3D画像のために、本発明者らは、以下の現在望ましい例示的な解析手順(以下の解析手順の全てが、常に必要である、又は望ましいわけではない)を提案する。
1.タグオン画像及びタグオフ画像間の複素数データの減算を実行する。
2.画像位置合わせ、即ち、異なるBBTIの3D画像に対する、剛体又は非剛体の位置合わせを実行する。
3.画像化されたスライスに影響を及ぼす磁化率及びタグ付きスライスの両方又は一方に起因する心筋信号の欠損に関する確認のために、タグオン画像、タグオフ画像のヒストグラムを作成する。ヒストグラムの減算によって、画像化された心筋に対する不都合な磁化率及びタグ付きスライスの影響を検出することができる。
4.心筋のセグメンテーションを使用する。
5.セグメンテーションされた心筋をカラーマップ形式で表示する。
6.全スライスにわたってセグメント即ちROI毎に灌流曲線を作成する。
7.BBTIに対する3Dスライスの全てを同時発生的に表示する。
8.セグメント及びROIの両方又は一方を選択するとき、それぞれ対応する灌流曲線を同時発生的に自動表示する。
9.定量化目的のために灌流曲線の適合を行う。
(1:差分画像の生成について)
 MRIシステム制御部22は、同一スライス且つ同一BBTIで収集された、タグオフ画像及びタグオン画像のセットを対象に、複素数による差分処理を画素単位で行う。なお、上述したように、本実施形態においては、タグオフ画像とタグオン画像とが息止め下で交互に収集され、且つ心位相も合わせて収集されるので、差分にあたり位置合わせは必ずしも必須ではないと考えるが、実施形態はこれに限られるものではない。差分処理の前に、タグオフ画像とタグオン画像との位置合わせを行ってもよい。図4は、本実施形態における、タグオン及びタグオフの画像の画素単位の減算を示した図である。図4に示すように、MRIシステム制御部22は、タグオン画像の実数部からタグオフ画像の実数部を減算する計算を、画素単位で行う。また、MRIシステム制御部22は、タグオン画像の虚数部からタグオフ画像の虚数部を減算する計算を、画素単位で行う。減算された差分画像は、複素数形式(実数部及び虚数部、R+jI)でなければならない。それは、減算された画素の強度が、タグオン及びタグオフの信号間で起こり得る位相シフトに起因する信号変化に鈍感だからである。したがって、元のタグオン及びタグオフの画像もまた、複素数の形式でなければならない。複素数のデータは、減算後、更に、灌流解析のための強度画像の作成に使用される。
 ここで、本実施形態において複素数による差分処理を行う理由を説明する。原子核の磁化ベクトルは、複素平面上の実数成分(同位相成分)及び虚数成分(直交位相成分)で表現される。このため、MRIにおいては、実数成分及び虚数成分それぞれのk空間データが収集され、フーリエ変換によって実数画像及び虚数画像が生成され、その後、絶対値画像である振幅画像や位相画像が生成される。
 ところで、例えば、タグオフ画像とタグオン画像との間には、領域選択パルスが印加されたか否かという違いがある。この違いは、縦磁化成分の差として現れるが、励起パルス印加後のxy平面上では、横磁化成分の位相の差として現れる。例えば、上向きの磁化ベクトルがxy平面に倒れた場合と下向きの磁化ベクトルがxy平面に倒れた場合とでは、その位相が異なるからである。そこで、本実施形態においては、この位相差を正しく考慮すべく、MRIシステム制御部22は、複素数による差分処理を行う。
(2:画像位置合わせについて)
 本実施形態においては、同一のBBTIについて、複数の左室スライス画像が収集され(なお、一部の左室スライス像は、補間処理によって生成されたものでもよい)、また、それぞれの位置の左室スライス画像が、異なるBBTIについて収集される。即ち、異なるBBTIの3D画像が異なる収集時間に収集されるので、異なるBBTI画像間の位置合わせが必要になる場合がある。そこで、MRIシステム制御部22は、同一のBBTIの左室スライス画像間で位置合わせを行うとともに、異なるBBTIの左室スライス画像間でも位置合わせを行う。なお、実施形態はこれに限られるものではなく、これらの位置合わせの両方若しくは一方を省略してもよい。
 図5Aは、本実施形態における異なるBBTI間の位置合わせ前の左室心筋の強度画像を示した図であり、図5Bは、本実施形態における異なるBBTI間の位置合わせ後の左室心筋の強度画像を示した図である。図5A及び5Bの画像は、全てのBBTIにわたるイメージングスラブに対する3D位置合わせを示す(説明を単純にするために、1枚のスライスのみを示す)。
 MRIシステム制御部22は、剛体位置合わせ又は非剛体位置合わせを行う。即ち、位置合わせは、剛体位置合わせに限定されない。例えば、あるBBTIにおける左室スライス画像のドーナツ形状は、別のBBTIにおいては、わずかに異なる形状である場合がある。この場合、非剛体位置合わせが、実行されることが望ましい。
 提案の方法では、左室の位置合わせが望まれる。図5A及び図5Bでは、位置合わせウィンドウが、左室のみに置かれた例を示す。位置合わせウィンドウが左室のみに置かれた場合、左室に対する局所的位置合わせが可能になる。例えば、MRIシステム制御部22は、異なるBBTIの左室スライス画像群のうち、少なくとも1枚の左室スライス画像を表示部24に表示するとともに、位置合わせウィンドウ(例えば、ボックス型)を表示部24に表示し、操作者からの操作を受け付ける。例えば、操作者は、左室スライス画像上の左室心筋を含むような位置に、位置合わせウィンドウを移動する。続いて、MRIシステム制御部22は、他のBBTIの左室スライス画像を表示部24に表示するとともに、先ほど操作者によって設定された位置に、位置合わせウィンドウを表示する。仮に、ここで表示された位置合わせウィンドウに、左室心筋が含まれていない場合、例えば、操作者は、位置合わせウィンドウ内に左室心筋が収まるように、今度は、左室スライス画像を移動する。例えば、かかる処理を繰り返すことで、MRIシステム制御部22は、異なるBBTIの左室スライス画像間での位置合わせを行う。位置合わせ前の図5Aにおいては、位置合わせウィンドウからやや下方に外れた位置にある心筋が、位置合わせ後の図5Bにおいては、ほぼ位置合わせウィンドウの中央に収まっていることがわかる。なお、この位置合わせの処理は一例に過ぎず、位置合わせは、例えば、画像解析による自動的な処理で行ってもよい。また、これらの手法を、同一のBBTIの左室スライス画像間に適用してもよい。
 ここで、非領域選択パルスが印加された場合、心腔と周囲の心筋との間の造影は、いくつかのBBTIで反転される。この場合、タグオン及びタグオフの両画像は、位置合わせ処理に利用されなければならない。例えば、ポジティブコントラスト(心筋信号強度SI>LV腔血液SI)の画像を選択して、それらに関して位置合わせを実行できる。また、ネガティブコントラストの画像を選択して、別の位置合わせ処理を実行できる。心腔においては血液の入れ替わりが激しい。このため、図7Aを参照すると分かるように、心腔内部の信号値は、BBTIによって、高い場合もあれば、低い場合もある。即ち、BBTIによって、心筋の信号強度SIの方が、心腔血液の信号強度SIよりも高い場合(ポジティブコントラスト)の場合もあれば、心腔血液の信号強度SIの方が、心筋の信号強度SIよりも高い場合(ネガティブコントラスト)の場合もある。仮に位置合わせを行う際に基準となる画像を選択する場合には、BBTIに応じて最適なコントラスト(ポジティブコントラスト若しくはネガティブコントラスト)の画像を選択することが望ましい。なお、参照画像に対する各画像の画素の位置合わせシフトは、複合位置合わせ処理のために記録されるものとする。目視による手動シフトは、最高の位置合わせを実施するのに必要となる場合がある。
(3:心筋信号の欠損の確認)
 ここで、心筋信号の欠損の確認について説明する。なお、心筋信号の欠損の確認処理は必ずしもこの段階で行われなければならないものではなく、他の処理と平行に、あるいは、他の処理の前後等、任意のタイミングで行われればよい(例えば、1:差分画像の生成や、2:画像位置合わせよりも前のタイミングでもよい)。即ち、MRIシステム制御部22は、心筋信号の欠損が存在することを検出した場合には、その事実を、後に操作者に提供する画像や解析結果(解析画像、グラフ、ブルズアイマップ等)とともに情報として出力することで、画像や解析結果を閲覧する者(例えば、医師)の注意を喚起(例えば、心筋信号の欠損を病変と混同しないように)するものである。心筋信号の欠損には、撮像領域(イメージングスラブ)と、タグパルス(本実施形態において、領域選択パルス)が印加されるタグ領域とが重なってしまった場合にアーチファクトが発生するタイプのものと、磁化率の違いに起因してアーチファクトが発生するタイプのものとがある。
 例えば、MRIシステム制御部22は、タグオフ画像、タグオン画像、あるいは差分画像上で、左室心筋を横切る線ROIを設定し、線ROI上の信号プロファイル(この信号プロファイルのことを、上述ではヒストグラムと称している)を得る。そして、MRIシステム制御部22は、この信号プロファイルに基づいて、当該線ROI上に、心筋信号の欠損(例えば、局所的な信号値の低下)が存在するか否かを判定する。MRIシステム制御部22は、画像全体に対して(適宜離散的に)線ROIを設定し、心筋信号の欠損の有無を判定する。なお、例えば、MRIシステム制御部22は、タグオン画像上の信号プロファイルと、タグオフ画像上の信号プロファイルとを差し引いた信号プロファイルを用いて、心筋信号の欠損の有無を判定してもよい。
 そして、MRIシステム制御部22は、心筋信号の欠損がある、と判定した場合には、判定対象の画像にこの情報を付帯し、後に画像や解析結果を表示するときに、参考情報として、この欠損情報を表示する等する。なお、欠損の有無の判定は、自動的な手法に限らず、例えば、信号プロファイルを表示し、操作者に目視により確認させるといった、手動的な手法で行うことも可能である。更に、ここでは、タグオフ画像、タグオン画像、あるいは差分画像上に線ROIを設定する例を説明したが、実施形態はこれに限られるものではなく、例えば、後述するようなセグメンテーション後の画像上に線ROIを設定してもよい。あるいは、一連のパルスシーケンス群の中で、他シリーズとして、例えばシネ画像が事前に収集されていた場合、例えば、MRIシステム制御部22は、このシネ画像を表示部24上に動画表示することで、操作者に、目視により欠損を確認させることができる。なお、ここでは、心筋信号の欠損があると判定した場合には、参考情報として、欠損情報を表示するといった手法を述べたが、これに限られるものではない。例えば、MRIシステム制御部22は、この欠損情報を用いて、上述した差分画像の生成や、画像位置合わせを行う際に、対象の画像に対して補正を施してもよい。
(4:心筋のセグメンテーション)
 図6Aは、本実施形態における、タグオン又はタグオフの画像に加えたセグメンテーションを示す図であり、図6Bは、本実施形態における、差分画像に合成される対象部位を示す図であり、図6Cは、本実施形態における、セグメンテーションされたボリュームの外側の非心筋信号を除去した鮮明な画像に合成される対象部位を示す図である。
 LVセグメンテーションは、図6A、6B、及び6Cに示したように、連続したBBTIに沿ってLVを並べることによって、位置合わせ後に実施できる。タグオフ画像では、心内膜及び心外膜の輪郭をスライスごとに(手動又は半手動で)描出して保存できる。次に、保存された輪郭を、差分画像の上に貼り付けることができる。LV心筋だけを視覚化するためには、他の信号を除去するとよい(例えば、図6Cの「鮮明な」画像を参照)。なお、LV輪郭は、アーチファクト(例えば、磁化率アーチファクト)及びタグ付きスライス干渉からのあらゆる影響を排除するために、慎重に置かなければならない。
 即ち、図6Aに示すように、MRIシステム制御部22は、タグオン画像若しくはタグオフ画像上で、操作者による手動で、心内膜及び心外膜の輪郭の指定を受け付けることで、セグメンテーションを行う。又は、MRIシステム制御部22は、タグオン画像若しくはタグオフ画像を画像処理することで、タグオン画像若しくはタグオフ画像から、心内膜及び心外膜の輪郭を抽出する。
 続いて、図6Bに示すように、MRIシステム制御部22は、差分画像上に、タグオン画像若しくはタグオフ画像から得られた心内膜及び心外膜の輪郭をあてはめる。そして、図6Cに示すように、MRIシステム制御部22は、心内膜及び心外膜の輪郭を用いて、差分画像から、非心筋信号を除去する。即ち、MRIシステム制御部22は、差分画像から、心内膜の内側の領域と、心外膜の外側の領域とを、除去する。なお、この段階において、例えば、操作者が、心筋信号の欠損を見つけた場合には、例えば、MRIシステム制御部22は、輪郭を調整する(例えば、欠損部分を除去するように、輪郭を調整する)操作を操作者から受け付けることで、心筋信号の欠損を解析対象から外すことができる。なお、心内膜及び心外膜の輪郭の手動による指定(若しくは自動抽出)において、MRIシステム制御部22は、タグオン画像若しくはタグオフ画像のうち、輪郭を指定し易い(あるいは、抽出し易い)画像(例えば、ポジティブコントラストやネガティブコントラストが高い画像)を適宜選ぶことができる。
(5:心筋のカラーマップ表示)
 図7Aは、本実施形態における、セグメンテーション前のLVスライス画像を1枚の表示パネルに一緒にBBTIの時間周期の関数として表示した例示的な灌流視覚化の描出図である。また、図7B及び図7Cは、本実施形態における、セグメンテーション後のLVスライス画像を1枚の表示パネルに一緒にBBTIの時間周期の関数として表示した例示的な灌流視覚化の描出図である。灌流視覚化は、図7A~7Cに示すように実施できる。ここでは、全てのBBTIにおける心尖部から心基底部までのスライスのLV画像が、一面表示されている。この一面表示では、左室の血液灌流を観察できる(信号強度変化をより良好に視覚化するために、望ましくは、カラーマップを利用する)。図7Aは、LVセグメンテーション前の視覚化を表す。図7B及び図7Cは、セグメンテーション後の視覚化を表す。
 即ち、MRIシステム制御部22は、図7Aや図7Bに示すように、セグメンテーション前若しくはセグメンテーション後のLVスライス画像それぞれに対して、その信号値に応じた色を画素単位で割り当て、カラーマップ画像を生成する。そして、MRIシステム制御部22は、例えば、横軸方向をBBTI方向として、縦軸方向を、心尖部から心基底部までのスライス方向として、マトリックス状に全てのカラーマップ画像を一面表示する。なお、一面表示の方法はこれに限られるものではない。例えば、横軸と縦軸とが反対でもよい。また、例えば、操作者からの指定に応じて、適宜、一部の行や一部の列を省略して表示することもできる。
 また、上述した例では、信号値に応じた色を画素単位で割り当てる手法を説明したが、実施形態はこれに限られるものではない。MRIシステム制御部22は、図7Cに示すように、心筋を更にセグメンテーションし、セグメンテーションされたセグメントの単位で、そのセグメント内の信号値(例えば、平均値)に応じた色を割り当て、カラーマップ画像を生成することができる。なお、MRIシステム制御部22は、図7A~7Cのカラーマップ画像を表示する際に、色の割り当てと信号強度との関係を示すカラーバーを併せて表示することができる。
 図8A~8Dは、本実施形態における、左室の冠状動脈領域のセグメンテーションの描出図である。本図では、AHAの6セグメンテーションモデルを用いて、左室のセグメンテーションされた例示的な冠状動脈領域の色分け表示を得る。例えば、LVの冠状動脈領域のセグメンテーションは、標準的なAHAの6セグメントモデルか、必要に応じて、任意の数の他の操作者定義のセグメントであってよい。図8A、8B,8C,及び8Dに示したAHA6セグメントは、LVとRV(右室)との間の溝から開始して自動的に時計回りに移動する。つまり、溝は、冠状動脈領域を識別するための開始点としての印となっている。各連続番号が付けられたAHAセグメントは、図8A~8Dに示したように、全てのセグメントの間で強度変化を識別して示すために、ラベル付け、平均値化、及びカラーマップ化できる。
 上述したように、心筋組織に対する血液の供給は、右冠動脈(RCA)、左冠動脈前下行枝(LAD)、及び左冠動脈回旋枝(LCX)の3本の血管によって行われる。また、心筋組織のうち、セグメント1及びセグメント2は、左冠動脈前下行枝によって血液の供給を受け、セグメント3及びセグメント4は、右冠動脈によって血液の供給を受け、セグメント5及び6は、左冠動脈回旋枝によって血液の供給を受ける。
 例えば、MRIシステム制御部22は、図8Aに示すように、まず、タグオン画像若しくはタグオフ画像上で、操作者による手動若しくは自動で、心筋全体を、AHAの6セグメントに分割する。このとき、自動によるセグメンテーションの場合には、例えば、LVとRVとの間に存在するランドマークを起点として、セグメンテーションが行われる。続いて、MRIシステム制御部22は、図8Bに示すように、差分画像上に、タグオン画像若しくはタグオフ画像から得られた6セグメントの境界をあてはめ、差分画像から非心筋信号を除去する。
 次に、MRIシステム制御部22は、このセグメント毎に信号値を解析する。即ち、例えば、MRIシステム制御部22は、まず画素毎に信号値の解析を行い、次に、画素毎の解析結果の平均値をセグメント毎に算出することで、セグメント毎の解析結果を算出する。なお、平均値の算出は一例に過ぎない。そして、MRIシステム制御部22は、図8Cや8Dに示すように、セグメントの単位で、そのセグメント内の信号値(例えば、平均値)に応じた色を割り当て、カラーマップ画像を生成する。図8Cは、カラーマップ画像といっても、グレースケール(グレーの濃淡)で表示した例であり、図8Dは、異なる色を割り当てたカラーマップ画像の例である。MRIシステム制御部22は、このように生成したカラーマップ画像を、上述した図7Cのように、一面表示してもよい。なお、図8Cや8Dに示すように、MRIシステム制御部22は、各カラーマップ画像に対して、スライス番号や、BBTI値、各セグメントの識別番号等を、適宜表示することができる。
(6:ROI毎の灌流曲線の作成)
 また、MRIシステム制御部22は、信号値の時間変化をセグメント毎に示すグラフを作成して、これを表示することができる。図9A~9Cは、本実施形態における、異なる例示的な視覚化表現を用いて、BBTI値の関数として、異なるスライスそれぞれのセグメント毎の灌流曲線の同時一面表示を視覚化した描出図である。異なるBBTI画像に沿った各異なるスライスの各セグメントの灌流曲線は、図9A~9Cで示すように作ることができる。全てのセグメントの保存されたROIを用いれば、全てのスライス内の全てのセグメントに対して灌流曲線を自動的に生成できる。図9Aの例は、一被検体からの非平滑化の生の灌流曲線を示す。灌流曲線はまた、操作者が指定した任意のROIからも生成できる。
 従来の多項式曲線適合法即ち曲線平滑化法を、図9Cに示すように更なる定量化解析を支援するために適用してもよい。望ましくは、2つの曲線適合方程式は、灌流曲線を最も良好に適合させるのに使用される。適合されたパラメータは、灌流ピーク強度、ピークのタイミング、及びピーク下の面積を表現できなければならない。望ましくは、あらゆる識別可能な異常なパラメータ(例えば、曲線適合された灌流データの定量解析によって解明されたように)は、適合されたパラメータ表内、及び直接、表示された灌流曲線上の両方又は一方で印が付けられなければならない。同様に、検出された異常に対応するあらゆる部位(単数又は複数)は、望ましくは、対応するAHAセグメントの視覚化の際に直接印が付けられなければならない。
 図9Bは、灌流曲線のシミュレーションされた3D視覚化の図である。該図では、(x,y,zの直角座標軸の一般的な方向を使って)、x軸をBBTI値、y軸を相対信号強度(灌流)、z軸をスライス番号としてグラフ化している。
 灌流曲線が、図9A~9Cに一面表示されているが、操作者が、特定のそれぞれ対応するスライス又はセグメントを選択したとき(例えば、特定のBBTIにおけるその選択されたスライス又は特定のスライスのセグメントの上に位置を定めたマウス矢印を「クリックすること」によって)、図7A又は図7B内の重ね合わせられた表示に対する任意の一灌流曲線を取り出すことができる。
 即ち、MRIシステム制御部22は、各LVスライス画像の信号値をセグメント毎に解析し、BBTI方向の信号値の変化を示す曲線を、セグメント毎に作成する。そして、MRIシステム制御部22は、例えば、図9Aや9Cに示すように、6スライス分の灌流曲線を並べて、一面表示する。なお、このとき、MRIシステム制御部22は、各セグメントの灌流曲線の違いを、色や、線種の違いで表現することができる。また、例えば、MRIシステム制御部22は、図7A~7Cを表示した際に、図7A~7Cの表示上で所定のLVスライス画像の選択を受け付けると、受け付けたLVスライス画像に対応するグラフを、適宜表示してもよい。あるいは反対に、MRIシステム制御部22は、図9A~9Cを表示した際に、これらのグラフ上で所定のグラフの選択を受け付けると、受け付けたグラフに対応するLVスライス画像(例えば、1行分)を表示してもよい。このように、LVスライス画像やグラフの表示は、上述した例に限られるものではなく、その一部を表示したり、相互の対応関係を用いて適宜呼び出せる仕組みにする等、任意に変更することができる。
(その他:ブルズアイマップ)
 図10A~10Bは、本実施形態における、BBTI、灌流に関連する信号強度、及び、LVの3D画像内で実質的に隣接するスライスを構成するLVスライス番号の全て又はいずれかの間の関係をより良く視覚化及び理解するための新しいタイプのブルズアイマップである。図10A~10Bは、周知のブルズアイ技術の変形を使って新しい灌流の視覚化を示した図である。ここに、図10Aでは、所与のスライス番号に対して、同心円は、AHAセグメントを、半径方向に沿って示されたBBTI値とともに示す。各セグメントは、望ましくは、平均信号強度(SI:Signal Intensity)又は相対灌流値に対して色分けされる。この視覚化では、各心臓セグメントに対するBBTIの関数としてSIの傾向を容易に見ることができて理解し易い。図10Bでは、所与のBBTI値に対して、同心円はまた、AHAセグメントも示すが、今度は、スライス番号が半径方向に沿って示される。ここでは、各セグメントはまた、望ましくは、平均SI又は灌流値を表すために色分けもされる。今度は、この視覚化では、所与のBBTIにおけるスライス番号の関数としてSIの傾向を容易に見ることができて理解し易い。
 即ち、解析結果の一例として、例えば、MRIシステム制御部22は、同心円の半径方向をBBTI方向とするブルズアイマップを作成し、作成したブルズアイマップを表示する。また、例えば、MRIシステム制御部22は、同心円の半径方向をスライス方向とするブルズアイマップを作成し、作成したブルズアイマップを表示する。なお、図10Aや図10Bでは、AHAの6セグメントを例に説明したが、セグメンテーションは、例えば、17セグメント等、他のセグメンテーションでもよい。これは、上述した他の解析においても同様である。
 例示解析方法は、特に、本発明者らの非造影ダイナミック心筋灌流技術を使うために設計されている。解析手順は全て、心筋内部の血液の灌流を視覚化して、健康な心筋から梗塞性部位又は虚血性部位を識別するのに役立つ。生成された灌流曲線は、虚血性病気又は梗塞の定量評価にとって重要である。なお、解析結果の表示手法として、カラーマップ画像や、灌流曲線のグラフ、ブルズアイマップ等を説明してきたが、MRIシステム制御部22は、必要なものを、例えば、操作者からの要望に応じて適宜表示すればよい。
(例示的なコンピュータープログラムコード構造)
 図11は、本実施形態における、磁気共鳴イメージングが収集したBBTIタグオン及びタグオフの画像を解析するシステムの例示的な実施形態を実行するために、図1のMRIシステム(又は、別の画像処理装置)で使用するための例示的なコンピュータープログラムコード構造をフロー図の形で示した概略図である。図11のステップS900は、ダイナミック非造影タグオン及びタグオフのBBTI画像データの解析への入り口を示す。当業者には自明であるが、このフロー図は、高水準のアプリケーションプログラム又は基本ソフトによって呼び出すことができるコンピュータプログラムサブルーチンに見られるような、実行可能コンピュータープログラムコード構造を表す。
 MRIシステム制御部22は、必要に応じて、最新(最初に又は最後に使われた)設定の初期パラメータを表示し(ステップS902)、BBTI毎の強度画像を生成する(ステップS904)。MRIシステム制御部22は、操作者が、これらの初期パラメータを受け入れるか否かを確認し(ステップS908)、受け入れない場合(ステップS908,No)、S906に示すパラメータ設定画面を表示し、更なる操作者による調整/入力を受け付けることができる。次に、これらのパラメータは、再びステップS902で表示され、ステップS908で受理又は不受理が決定される。なお、パラメータとしては、A.位置合わせを剛体若しくは非剛体のいずれで行うか、B.アーチファクトの確認を行うか、C.セグメンテーションを、AHA若しくはユーザ定義のいずれで行うか、D.全スライス対BBTIの一面表示を行うか、E.灌流曲線の表示を行うか、等の選択肢が準備される。また、図11の例では、ステップS904の処理を挟んでパラメータの設定が行われているが、必ずしもこの順で処理が行われる必要はない。例えば、ステップS904を実行せずに、ステップS902、908、906の処理のみが、行われてもよい。
 一旦サブルーチンの初期設定が、受理可能であると分かれば(実際、操作者は、そのような調整に対する機会を更に与えられる)、次に、MRIシステム制御部22は、予め収集したタグオン及びタグオフの画像を、複素数計算を用いて減算し、3D画像のBBTI値毎の及びスライス毎の強度画像を生成する(ステップS904)。
 その後、MRIシステム制御部22は、異なるBBTI値における3D画像のために、画像位置合わせを実行する(ステップS910)。画像位置合わせを実施するために、必要に応じて、操作者による手動支援を容認してもよい。もちろん、画像位置合わせは、必要とされない場合もある。
 アーチファクト検出が望ましいとされている場合(ステップS912,Yes)、次に、MRIシステム制御部22は、タグオン及びタグオフの画像のヒストグラムを作成し、作成したヒストグラムを表示する。磁化率の誤差と画像データ収集中に心筋に影響を及ぼすタグ付けパルスに起因する誤差との両方又は一方を表すデータを提供できるように減算される。当業者には自明であるが、MRIシステム制御部22は、ある一定の閾値を上回る誤差が存在するか否かを検出する判定を行い、誤差が存在する場合、補正動作と操作者支援の要請との両方又は一方を行う、又は恐らく処理の終了さえ行うことができる。
 MRIシステム制御部22は、必要に応じて、心筋のセグメンテーションを実行してもよい(ステップS916)。次に、MRIシステム制御部22は、セグメンテーションされた心筋の画像を、信号強度に応じてカラーマップ化された画素で表示する(ステップS918)。また、MRIシステム制御部22は、灌流曲線を、3D画像のスライス毎のセグメント(又はROI)毎に作成する。MRIシステム制御部22は、LVスライス画像及び灌流曲線の両方又は一方を、BBTI値に対して表示してもよい(ステップS922)。前に述べたように、3D画像のためのカラー化スライス画像は、望ましくは、BBTI値の関数として一面表示される。同様に、3D画像のセグメント及びスライス毎の灌流曲線は、望ましくは、単一パネルに表示される。
 LVスライス画像が、単一パネルで表示された場合、次に、操作者は、表示部で(例えば、マウスやタッチ等で)特定のセグメント即ちROIを選ぶ機会を与えられる(ステップS924)。そのような操作者選択がされた場合、次に、MRIシステム制御部22は、その特定のセグメントに対応する灌流曲線を表示する(ステップS926)。そして、操作者は、処理を終了するか否かの選択肢を与えられる(ステップS928)。処理の終了が望まれた場合、次に、MRIシステム制御部22は、このサブルーチンを終了し、制御は、発呼高水準プログラム又は基本ソフトに戻される。
 あらゆるタイプ(即ち、灌流関連の画像だけでなく、BBTI軸に沿った磁気共鳴血管撮影法(MRA:Magnetic Resonance Angiography)から等の非造影磁気共鳴のマルチスライス画像を表示することは、新しく且つ有利であると考えられる。例えば、磁気共鳴イメージングによって取得された画像を解析するためにコンピュータ化されたシステムは、関連する記憶部、表示部、及び入力/出力ポートに連結された少なくとも1台のコンピュータ処理装置を含み、(a)対象部位(ROI)において、複数のBBTI間隔のうちの間隔ごとの左室心筋のマルチスライス非造影MR画像を取得し、(b)3D画像の複数のスライスのため、及び単一表示パネル内の複数のBBTI値のためのBBTIの関数として心尖部から心基底部までのLVスライス画像を表示するように構成されるとよい。単一の表示パネル内のBBTIの関数としてMRスライスのそのような視覚化(例えば、図7A、7B、9A~9C、及び10A~10Bの全て又はいずれかに示された視覚化と同様に)は、操作者が、一連のBBTI値と、変動するBBTI値によって取得される多様なタイプのMR画像との間の重要な関係をより迅速に「見る」のに役立つ。
(他の実施形態)
 実施形態は、上述した実施形態に限られるものではない。
(具体的な数値、処理手順)
 上述した実施形態において例示した具体的な数値や処理手順は、一例に過ぎない。例えば、上述した実施形態においては、図11を用いて処理手順の一例を説明したが、実施形態は、図11に示した処理手順に限られるものではなく、運用の形態等に応じて適宜変更することができる。例えば、図11に示した処理の順序は、任意に変更することができる。
(トリガ信号)
 上述した実施形態においては、ECG信号をトリガ信号として心電同期しながらデータ収集を行う例を説明したが、実施形態はこれに限られるものではない。ECG信号の替わりに、脈波信号、呼吸信号等の他の生体信号や、MRIシステムのクロック信号等をトリガ信号として用いてもよい。
(画像処理装置)
 上述した実施形態においては、MRIシステムが、データ収集、解析、解析結果の表示の全てを実行する例を説明したが、実施形態はこれに限られるものではない。例えば、MRIシステムと画像処理装置とを含む画像処理システムが、上述した各種処理を実行してもよい。ここで、画像処理装置とは、例えば、ワークステーション、PACS(Picture Archiving and Communication System)の画像保管装置(画像サーバ)やビューワ、電子カルテシステムの各種装置等である。この場合、例えば、MRIシステムは、MRIシーケンス制御部30によるデータ収集を行う。一方、画像処理装置は、上述したMRIシステム制御部22相当の制御部を備え、MRIシステムによって取得されたMRデータやk空間データを、MRI装置100から、若しくは、画像サーバからネットワーク経由で受信することで、あるいは、記録媒体を介して操作者から入力されること等で受け付けて、記憶部に記憶する。そして、画像処理装置は、記憶部に記憶したこのMRデータやk空間データを対象として、上述した各種処理(例えば、MRIシステム制御部22による解析処理や表示制御処理)を実行すればよい。
 上述してきたように、少なくとも1つの実施形態の磁気共鳴イメージング装置及び画像処理装置によれば、磁気共鳴イメージング(MRI:Magnetic Resonance Imaging)によって収集されるBBTI(Black Blood Time to Inversion)タグオン及びタグオフの画像は、解析されて、対象部位(ROI:Region Of Interest)内の血液灌流を表す時間(BBTI値)の関数として、異なる強度の3D画像を生成する。例えば、正常及び異常な心筋組織の異なる値を有するROIの灌流データは、3D画像の複数のスライスについて、及び、複数のBBTI値について、単一の表示パネル内で表示される。
 (1)磁気共鳴イメージングによって収集された画像を解析するコンピュータ化されたシステムであって、前記システムは、関連する記憶部、表示部、及び入力/出力のポートに連結され、且つ、(a)対象部位(ROI)において、BBTI毎の左室(LV:Left Ventricle)心筋のマルチスライス非造影MR画像を収集し、(b)3D画像の複数スライスについて、及び、複数のBBTI値について、心尖部から心基底部までのLVスライス画像を、単一の表示パネル内に表示するように構成された少なくとも1台のコンピュータ処理装置を含むことを特徴とする、コンピュータ化されたシステム。
 (2)磁気共鳴イメージングによって収集されたBBTIタグオン及びタグオフの画像を解析するコンピュータ化されたシステムであって、前記システムは、関連する記憶部、表示部、及び入力/出力のポートに連結され、且つ、(a)対象部位(ROI)において、血液灌流を表す時間の関数として、異なる強度の3D画像を生成するために、複数のBBTIのうちのBBTI毎に、複素数値計算を使って、画素単位で、予め、収集したタグオフ及びタグオンの画像を減算し、(b)3D画像の複数のスライスについて、及び、複数のBBTI値について、正常及び異常の心筋組織に対する差である値を有するROIの灌流データを、単一表示パネル内に表示するように構成された少なくとも1台のコンピュータ処理装置を含むことを特徴とする、コンピュータ化されたシステム。
 (3)前記少なくとも1台のコンピュータ処理装置は、前記3D画像の間で、3D画像位置合わせを実施するように更に構成されることを特徴とする、(2)に記載のシステム。
 (4)前記少なくとも1台のコンピュータ処理装置は、剛体又は非剛体の3D画像位置合わせを実行するように更に構成されることを特徴とする、(3)に記載のシステム。
 (5)前記少なくとも1台のコンピュータ処理装置は、前記3D画像位置合わせを実施するために、操作者による手動の整列配置入力を受けるように更に構成されることを特徴とする、(4)に記載のシステム。
 (6)前記少なくとも1台のコンピュータ処理装置は、(a)前記ROIの画像化された左室心筋組織のセグメンテーションを実施し、(b)1つの表示パネルにBBTIの関数としてLVスライス画像を表示するように更に構成され、ここで、前記表示されたLVスライス画像は、(i)セグメンテーションより前のLVスライス画像と、(ii)セグメンテーション後のLVスライス画像と、(iii)AHA(American Heart Association)のセグメンテーション後のLVスライス画像とのうちの少なくとも1つを含むものであることを特徴とする、(2)に記載のシステム。
 (7)前記ROIは、左室心筋を含み、前記少なくとも1台のコンピュータ処理装置は、(a)半径方向に沿ってグラフ化された異なるBBTI値のうちの値毎の同心円に沿ってグラフ化された灌流値を有するLV心筋の所与のセグメンテーションスライスと、(b)所与のBBTI値に対する、半径方向に沿ってグラフ化されたLV心筋の異なるスライスのうちのスライス毎の同心円に沿ってグラフ化されたLV心筋灌流値と、のうちの少なくとも1つを示す、少なくとも1つのブルズアイ構造で前記灌流データを表示するように更に構成されることを特徴とする、(2)に記載のシステム。
 (8)前記少なくとも1台のコンピュータ処理装置は、(a)ヒストグラムを生成し、(b)タグオン及びタグオフの画像の前記ヒストグラムを減算して、前記減算結果が、磁化率に起因するアーチファクトと、画像データ収集処理中に心筋画像に影響を及ぼすタグ付けパルスに起因するアーチファクトとの両方又は一方を表すデータを提供するように更に構成されることを特徴とする、(2)に記載のシステム。
 (9)前記少なくとも1台のコンピュータ処理装置は、(a)前記ROIの左室心筋画像データのために冠状動脈領域のセグメンテーションを実行し、(b)前記左室心筋のセグメンテーションされた部分毎の平均画像データ値を生成し、(c)セグメンテーションされた部分が、それぞれ関連する異なる平均画像データ値を表す視覚差を伴って表示される前記セグメンテーションされた左室心筋を表示するように更に構成されることを特徴とする、(2)に記載のシステム。
 (10)前記少なくとも1台のコンピュータ処理装置は、(a)3D画像のスライス毎のBBTIの関数として少なくとも1つの血液灌流曲線を生成し、(b)(a)曲線適合前のBBTIの関数としての生の灌流データのアレイと、(b)BBTIの関数としての生の灌流データに適合させた灌流曲線のアレイと、(c)BBTIの関数としての生の灌流データに適合させた灌流曲線から得られた定量化された灌流曲線データとのうちの少なくとも1つを示す、得られた複数の灌流曲線を1つの表示パネルに同時に表示するように更に構成されることを特徴とする、(2)に記載のシステム。
 (11)前記少なくとも1台のコンピュータ処理装置は、3D画像の各スライスのための前記ROIの複数のセグメンテーションされた部分のうちの部分毎にBBTIの関数として血液灌流曲線を生成し、操作者がスライスのセグメントを選択したとき、それぞれ対応する灌流曲線を同時に表示するように更に構成されることを特徴とする、(2)に記載のシステム。
 (12)磁気共鳴イメージングシステムであって、被検体の対象部位(ROI)を配置できる画像ボリュームを形成する静磁場磁石、傾斜磁場コイル、及び少なくとも1つのRF(Radio Frequency)コイルを備えたMRI架台と、前記MRI架台内の制御構成要素に接続されて、ROIが前記架台内に配置されたとき、被検体組織からMRI信号を取り出すRFパルス及び傾斜磁場パルスを印加するMRIデータ収集シーケンスを実施し、前記取り出されたMRI信号を、(a)データ収集サブシーケンスにおいて最初の空間選択的なRFタグパルスの使用と連動して(タグオン)、且つ(b)データ収集サブシーケンスにおいて最初の空間選択的なRFタグパルスの使用とは連動せずに(タグオフ)、MR画像データを収集して処理するように構成されたMRI制御回路と、を含み、前記MRI制御回路は、(a)造影剤を注入することなく、複数の反転時間(TI:Time to Inversion)間隔のうちの間隔毎の前記タグオン及びタグオフのデータ収集サブシーケンスを使って被検体ROIのための多次元MR k空間データを取得し、(b)前記収集されたk空間データを空間領域タグオン及びタグオフのMR画像データに再構成し、(c)複素数値計算を使って複数のTI間隔のうちの間隔毎の前記収集されたタグオン及びタグオフのMR画像データを減算して、正常、虚血性、及び梗塞性の組織間で違いが出てくる、前記ROIに対する、対応する流れ時間、及び相対的なピーク血流強度の両方又は一方、あるいはそれらの不足がある前記ROIの血液灌流を表す時間の関数として異なる強度画像データを生成し、(d)3D画像の複数のスライス及び複数のBBTI値について、正常、虚血性、及び梗塞性の組織のために相違する値を有する前記ROIの灌流データを、単一表示パネルに表示するように構成されるものであることを特徴とするMRIシステム。
 以上述べた少なくとも1つの実施形態の磁気共鳴イメージング装置によれば、非造影で得られた心筋灌流画像の解析結果を適切に表示することが可能になる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (7)

  1.  タグ領域にタグパルスを印加してから所定時間後に心臓のスライスのデータを収集するデータ収集を、長さが異なる複数の前記所定時間に関して実行するシーケンス制御部と、
     複数の前記所定時間に関して収集された複数の前記データの解析結果を、前記所定時間と前記スライスとの関係を識別できるように表示部に表示する表示制御部と
     を備える、磁気共鳴イメージング装置。
  2.  前記シーケンス制御部は、前記心臓のスライスのデータとして心尖部から心基底部までの間の複数のスライスのデータを収集し、
     前記表示制御部は、各データの解析結果を表示部に一面表示する、請求項1に記載の磁気共鳴イメージング装置。
  3.  前記表示制御部は、各データの解析結果である解析画像を、前記所定時間の方向と前記スライスの方向とを各軸とするマトリックス状に並べて、一面表示する、請求項2に記載の磁気共鳴イメージング装置。
  4.  前記表示制御部は、前記解析画像として、各画素若しくは各セグメントの信号強度に応じて異なる濃度の色を割り当てた画像、又は、各画素若しくは各セグメントの信号強度に応じて異なる色を割り当てた画像を、マトリックス状に並べて一面表示する、請求項3に記載の磁気共鳴イメージング装置。
  5.  前記表示制御部は、前記データの解析結果として、スライスのデータをセグメント毎に解析することで作成された、前記所定時間の方向における信号強度の変化を示す灌流曲線のグラフを、表示部に表示する、請求項1に記載の磁気共鳴イメージング装置。
  6.  前記表示制御部は、表示部に表示された画像に対して操作者から選択操作を受け付けた場合に、前記操作者によって選択された画像に対応する前記灌流曲線のグラフを表示部に表示する、請求項5に記載の磁気共鳴イメージング装置。
  7.  前記表示制御部は、前記データの解析結果として、スライスのデータがセグメント毎に解析され、各セグメントの信号強度に応じて異なる濃度若しくは異なる色が割り当てられ、同心円の半径方向を前記所定時間の方向として作成されたブルズアイマップを表示する、請求項1に記載の磁気共鳴イメージング装置。
PCT/JP2013/075056 2012-09-14 2013-09-17 磁気共鳴イメージング装置 WO2014042275A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13837210.7A EP2886052B1 (en) 2012-09-14 2013-09-17 Magnetic resonance imaging device
CN201380043226.3A CN104582567B (zh) 2012-09-14 2013-09-17 磁共振成像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/618,001 2012-09-14
US13/618,001 US10368777B2 (en) 2012-09-14 2012-09-14 Non-contrast dynamic MRI myocardial perfusion analysis and visualization

Publications (1)

Publication Number Publication Date
WO2014042275A1 true WO2014042275A1 (ja) 2014-03-20

Family

ID=50275170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075056 WO2014042275A1 (ja) 2012-09-14 2013-09-17 磁気共鳴イメージング装置

Country Status (5)

Country Link
US (1) US10368777B2 (ja)
EP (1) EP2886052B1 (ja)
JP (1) JP6381879B2 (ja)
CN (1) CN104582567B (ja)
WO (1) WO2014042275A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091989B2 (ja) * 2013-05-10 2017-03-08 東芝メディカルシステムズ株式会社 画像処理装置及び磁気共鳴イメージング装置
KR101623834B1 (ko) * 2013-08-09 2016-05-24 삼성전자주식회사 의료 영상 촬영과 관련된 컨텐츠를 제공하기 위한 방법 및 그 장치
US9833165B2 (en) * 2014-04-29 2017-12-05 Biosense Webster (Israel) Ltd. Checking for perforation of the epicardium using magnetic resonance imaging
US9949643B2 (en) * 2014-10-18 2018-04-24 International Business Machines Corporation Automatic visualization of regional functional parameters of left ventricle from cardiac imaging
JP6953121B2 (ja) * 2016-09-23 2021-10-27 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
CN108459286A (zh) * 2017-02-20 2018-08-28 冯原 基于磁共振成像的体内软组织力学特性测试方法及装置
CN107621616B (zh) * 2017-08-01 2019-12-13 国家纳米科学中心 一种磁共振投影成像方法及装置
US11793429B2 (en) 2017-11-12 2023-10-24 Synex Medical Inc. Wearable blood analyte measurement device and method for measuring blood analyte concentration
EP3599586B1 (de) * 2018-07-24 2020-10-14 Siemens Healthcare GmbH Verfahren und vorrichtung zur analyse von magnetresonanz-aufnahmen
CN110133556B (zh) * 2019-05-29 2021-01-19 上海联影医疗科技股份有限公司 一种磁共振图像处理方法、装置、设备及存储介质
CN113285876B (zh) * 2020-02-19 2024-04-23 中兴通讯股份有限公司 路由方法、路由装置及计算机可读存储介质
US11636603B2 (en) * 2020-11-03 2023-04-25 Dyad Medical, Inc. System and methods for segmentation and assembly of cardiac MRI images

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510322A (ja) * 2001-11-26 2005-04-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 心臓サイクルに分散した複数の準備励起および読み出し
JP2005137558A (ja) * 2003-11-06 2005-06-02 Mie Tlo Co Ltd 心筋血流の定量化方法
JP2006087626A (ja) * 2004-09-22 2006-04-06 Toshiba Corp 磁気共鳴イメージング装置、磁気共鳴データ処理装置、磁気共鳴データ処理方法及び磁気共鳴データ処理プログラム
JP2009535139A (ja) * 2006-05-04 2009-10-01 シーメンス アクチエンゲゼルシヤフト ターゲットボリュームに関する少なくとも1つの情報を求めて表示する方法
JP2011083592A (ja) * 2009-09-18 2011-04-28 Toshiba Corp 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP2012105982A (ja) * 2010-11-15 2012-06-07 Toshiba Corp 磁気共鳴イメージング装置及び磁気共鳴イメージング方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377681A (en) 1989-11-13 1995-01-03 University Of Florida Method of diagnosing impaired blood flow
US5431161A (en) * 1993-04-15 1995-07-11 Adac Laboratories Method and apparatus for information acquistion, processing, and display within a medical camera system
US5647360A (en) * 1995-06-30 1997-07-15 Siemens Corporate Research, Inc. Digital subtraction angiography for 3D diagnostic imaging
US5908386A (en) * 1995-12-14 1999-06-01 Regents Of The Universotiy Of Minnesota Fast MRI for assessment of myocardial perfusion with arrythmia insensitive magnetization preparation
US5827187A (en) * 1996-04-23 1998-10-27 Mayo Foundation For Medical Education And Research Dynamic MR digital subtraction angiography with complex subtraction
US6564080B1 (en) * 1999-03-31 2003-05-13 Kabushiki Kaisha Toshiba MR imaging on ASL technique
DE10064768B4 (de) * 2000-12-22 2006-12-07 Siemens Ag Verfahren zur Untersuchung eines Lebewesens mittels eines bildgebenden Verfahrens
US7289841B2 (en) * 2002-10-25 2007-10-30 Koninklijke Philips Electronics N.V. Method and apparatus for volumetric cardiac computed tomography imaging
US7907759B2 (en) 2006-02-02 2011-03-15 Wake Forest University Health Sciences Cardiac visualization systems for displaying 3-D images of cardiac voxel intensity distributions with optional physician interactive boundary tracing tools
DE102004038670B4 (de) * 2004-08-09 2014-06-26 Siemens Aktiengesellschaft Verfahren zur Segmentierung eines medizinischen Datensatzes
DE102005002949A1 (de) 2005-01-21 2006-08-03 Siemens Ag Verfahren zur Visualisierung von Schädigungen im Myokard
US7587232B2 (en) 2006-02-28 2009-09-08 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus, magnetic resonance data processing apparatus, magnetic resonance data processing program and magnetic resonance imaging apparatus control method
US8046045B2 (en) * 2006-05-08 2011-10-25 Siemens Medical Solutions Usa, Inc. Anatomical feature condition assessment system using tissue displacement characteristics
US8532741B2 (en) * 2006-09-08 2013-09-10 Medtronic, Inc. Method and apparatus to optimize electrode placement for neurological stimulation
US8160676B2 (en) * 2006-09-08 2012-04-17 Medtronic, Inc. Method for planning a surgical procedure
US10295638B2 (en) 2007-06-28 2019-05-21 Toshiba Medical Systems Corporation Image processing apparatus, image diagnostic apparatus and image processing method
US8571288B2 (en) * 2007-12-07 2013-10-29 Kabushiki Kaisha Toshiba Image display apparatus and magnetic resonance imaging apparatus
EP2373218B1 (en) 2008-12-03 2016-07-13 Koninklijke Philips N.V. Reparametrized bull's eye plots
US8581582B2 (en) * 2009-09-18 2013-11-12 Kabushiki Kaisha Toshiba MRI non-contrast time-slip angiography using variably positioned cine sub-sequence
US8848990B2 (en) * 2010-09-28 2014-09-30 Siemens Aktiengesellschaft Automatic registration of image series with varying contrast based on synthetic images derived from intensity behavior model
US20120078085A1 (en) 2010-09-29 2012-03-29 Siemens Corporation Method of Analysis for Dynamic Magnetic Resonance Perfusion Imaging
US9566014B2 (en) * 2011-11-09 2017-02-14 Siemens Healthcare Gmbh System for cardiac MR and MR cine imaging using parallel image processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510322A (ja) * 2001-11-26 2005-04-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 心臓サイクルに分散した複数の準備励起および読み出し
JP2005137558A (ja) * 2003-11-06 2005-06-02 Mie Tlo Co Ltd 心筋血流の定量化方法
JP2006087626A (ja) * 2004-09-22 2006-04-06 Toshiba Corp 磁気共鳴イメージング装置、磁気共鳴データ処理装置、磁気共鳴データ処理方法及び磁気共鳴データ処理プログラム
JP2009535139A (ja) * 2006-05-04 2009-10-01 シーメンス アクチエンゲゼルシヤフト ターゲットボリュームに関する少なくとも1つの情報を求めて表示する方法
JP2011083592A (ja) * 2009-09-18 2011-04-28 Toshiba Corp 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP2012105982A (ja) * 2010-11-15 2012-06-07 Toshiba Corp 磁気共鳴イメージング装置及び磁気共鳴イメージング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM ET AL.: "Relationship of MRI Delayed Contrast Enhancement to Irreversible Injury, Infarct Age, and Contractile Function", CIRCULATION JOURNAL OF THE AMERICAN HEART ASSOCIATION, 9 November 1999 (1999-11-09), pages 1991 - 2002

Also Published As

Publication number Publication date
JP6381879B2 (ja) 2018-08-29
CN104582567A (zh) 2015-04-29
JP2014057862A (ja) 2014-04-03
EP2886052B1 (en) 2018-07-18
US20140081125A1 (en) 2014-03-20
CN104582567B (zh) 2020-10-16
US10368777B2 (en) 2019-08-06
EP2886052A1 (en) 2015-06-24
EP2886052A4 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6381879B2 (ja) 磁気共鳴イメージング装置
US9474455B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9591988B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5537623B2 (ja) 磁気共鳴イメージング装置
JP5575722B2 (ja) 磁気共鳴イメージング装置
US9462961B2 (en) Magnetic resonance imaging system and magnetic resonance imaging method
JP6316554B2 (ja) 磁気共鳴イメージング装置
US10169866B2 (en) Medical image processing and diagnostic image generation device for predetermined types of diagnostic information
JP6261871B2 (ja) 画像処理装置及び磁気共鳴イメージング装置
WO2012067123A1 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
JP2017140132A (ja) 画像処理装置およびmri装置
JP6991728B2 (ja) 画像処理装置、磁気共鳴イメージング装置及び画像処理方法
JP5405046B2 (ja) 画像処理装置、画像診断装置および画像処理方法
JP5984239B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
US11112477B2 (en) Magnetic resonance imaging apparatus and image processing apparatus
JP5002214B2 (ja) 磁気共鳴イメージング装置
JP7237612B2 (ja) 磁気共鳴イメージング装置及び画像処理装置
JP6423066B2 (ja) 画像処理装置及び磁気共鳴イメージング装置
JP2018110804A (ja) 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013837210

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP