WO2014041961A1 - フロントエンドモジュールの防振構造 - Google Patents

フロントエンドモジュールの防振構造 Download PDF

Info

Publication number
WO2014041961A1
WO2014041961A1 PCT/JP2013/072036 JP2013072036W WO2014041961A1 WO 2014041961 A1 WO2014041961 A1 WO 2014041961A1 JP 2013072036 W JP2013072036 W JP 2013072036W WO 2014041961 A1 WO2014041961 A1 WO 2014041961A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
heat exchanger
vibration
frequency band
end module
Prior art date
Application number
PCT/JP2013/072036
Other languages
English (en)
French (fr)
Inventor
眞一 又野
将浩 大西
実和子 高橋
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP13837220.6A priority Critical patent/EP2896529B1/en
Priority to US14/425,337 priority patent/US9150095B2/en
Priority to JP2014535467A priority patent/JP5839130B2/ja
Priority to CN201380047936.3A priority patent/CN104703830B/zh
Publication of WO2014041961A1 publication Critical patent/WO2014041961A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/082Engine compartments
    • B62D25/084Radiator supports

Definitions

  • the present invention relates to an anti-vibration structure of a front end module in which a plurality of in-vehicle components mounted on the front of a vehicle are assembled in an integrated manner with respect to a heat exchanger support frame.
  • a vehicle cooling component support device which is provided with a radiator core support which is a substantially square frame member at the front of a vehicle body and supports the radiator in a space surrounded by the radiator core support (e.g. reference).
  • a plurality of on-vehicle parts mounted on the front of the vehicle (a condenser, an electric fan, a water pump, etc. other than a radiator, etc.) in order to achieve both assembly and ease of disassembly
  • a front end module is known which is assembled together to a radiator core support.
  • the vibration isolation of the in-vehicle component vibrating in the low frequency band is lost.
  • the mounting member that elastically supports the radiator core support on the vehicle body is tuned to damp vibrations in the low frequency band, the support rigidity of the radiator core support will be low, and new vibration from external excitation from the road surface etc. There was a risk of
  • the present invention has been made focusing on the above problems, and reduces the support stiffness to the vehicle body from pulsating noise / vibration transmitted from the plurality of in-vehicle components mounted on the front of the vehicle to the vehicle interior through the vehicle body. It is an object of the present invention to provide an anti-vibration structure of a front end module which can be suppressed without causing it.
  • the present invention presupposes a front end module in which a plurality of in-vehicle components mounted on the front of a vehicle are assembled together in a heat exchanger support frame.
  • the plurality of in-vehicle components may include: a first in-vehicle component vibrating in a first frequency band; and a second in-vehicle component vibrating in a second frequency band higher than the first frequency band.
  • the first on-vehicle component is elastically supported on the heat exchanger support frame via the first mount member.
  • the second on-vehicle component is rigidly fixed to the heat exchanger support frame.
  • the heat exchanger support frame is elastically supported on the vehicle body via the second mount member.
  • the first on-vehicle component that vibrates in the first frequency band (low frequency band) is elastically supported on the vehicle body by the double vibration isolation structure via the first mount member and the second mount member.
  • the second on-vehicle component that vibrates in the second frequency band (high frequency band) is elastically supported on the vehicle body by the anti-vibration structure through the second mount member. Therefore, when the first in-vehicle component vibrates in the first frequency band (low frequency band), the vibration from the first in-vehicle component is damped by the first mount member and further dampened by the second mount member. The pulsating noise and vibration transmitted from the vehicle body to the vehicle compartment are reduced.
  • the vibration from the second in-vehicle component is damped by the second mount member together with the heat exchanger support frame and transmitted to the vehicle body, Pulsating noise and vibration transmitted from the vehicle body to the passenger compartment can be reduced.
  • the second mount member for supporting the heat exchanger support frame on the vehicle body does not have to damp the first frequency band (low frequency band) and can be made a hard member having a high spring constant, Does not reduce the support rigidity of the
  • the vibration isolation structure for damping component vibration in the first frequency band (low frequency band) and the vibration isolation structure for damping component vibration in the second frequency band (high frequency band) are made different. For this reason, it is possible to suppress the pulsating noise / vibration transmitted from the plurality of in-vehicle components mounted on the front of the vehicle to the vehicle interior through the vehicle body without reducing the supporting rigidity to the vehicle body.
  • FIG. 1 is a perspective view showing a schematic configuration of a sedan type electric vehicle on which a front end module FEM of Embodiment 1 is mounted.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole system block diagram which shows the heat-pump-type air conditioning system provided with the vehicle-mounted components of the front end module FEM of Example 1, and a high voltage components cooling system.
  • FIG. 6 is a perspective view showing the detailed configuration of the vibration isolation structure of the front end module FEM of the first embodiment as viewed from the motor room side.
  • FIG. 7 is an exploded perspective view showing the detailed configuration of the vibration isolation structure of the front end module FEM of the first embodiment.
  • FIG. 10 is a vibration isolation operation explanatory view showing a vibration transmission suppressing operation to the vehicle body by the vibration isolation structure of the front end module FEM of the first embodiment.
  • Configuration of the front end module in the anti-vibration structure according to the first embodiment will be described in "In-vehicle outline configuration of front end module", “overall system configuration provided with in-vehicle component of front end module”, and "Detailed configuration of anti-vibration structure of front end module” I will divide and explain.
  • FIG. 1 shows a schematic configuration of a sedan type electric vehicle equipped with the front end module FEM of the first embodiment.
  • FEM front end module
  • the electric vehicle 1 on which the front end module FEM of the first embodiment is mounted includes a drive motor 2, a drive motor inverter 3, a DC / DC junction box 4, a battery pack 5, and a charge port. 6, an on-vehicle charger 7, an air conditioner unit 8, and a 12-volt on-vehicle battery 9.
  • the drive motor 2 is a drive source for travel having a reduction gear, and is disposed in a motor room M provided at the front of the vehicle.
  • An output shaft (not shown) of the drive motor 2 is connected to left and right front wheels (only the left front wheel FL is shown) which are drive wheels.
  • the drive motor 2 performs a drive operation to generate a drive torque using the discharge power from the battery pack 5, and drives the left and right front wheels ( Power line).
  • a negative torque command is output to drive motor inverter 3
  • a power generation operation is performed to convert rotational energy from the left and right front wheels into electrical energy, and the generated power is used as charging power for battery pack 5 (regeneration) ).
  • the DC / DC junction box 4 incorporates a DC / DC converter, distributes high voltage discharge power from the battery pack 5, supplies power to the 12 volt power system and charges the 12 volt vehicle battery 9. Do. Further, the DC / DC junction box 4 has a normal charge relay and a quick charge relay so that the charge circuit can be switched according to the charge mode.
  • the battery pack 5 is an underfloor space Y below the floor panel F, and is disposed at a central position of the wheel base.
  • the battery pack 5 serves as a power source of the drive motor 2 and also serves as a power source of the air conditioner unit 8.
  • the charging port 6 is a part to which a charging connector from an external power source such as a charging stand or household charging equipment is connected, and is provided at the center of the front of the vehicle and is covered openably / closably by a port lid 6a.
  • the charge port 6 has a normal charge port 6 b and a quick charge port 6 c.
  • the normal charging port 6 b is a charging port used for charging by a household charging facility, a normal charging station or the like, and is connected to the DC / DC junction box 4 via the on-vehicle charger 7.
  • the quick charge port 6 c is a charge port used when charging by a quick charge stand or the like, and is directly connected to the DC / DC junction box 4.
  • the air conditioner unit 8 is disposed on the upper side of the floor panel F, that is, in the passenger compartment R and on the vehicle front side with respect to the battery pack 5. Here, it is arrange
  • the air conditioner unit 8 blows the temperature-controlled air whose temperature has been adjusted so as to obtain the set temperature, into the compartment R.
  • the front end module FEM is disposed below the charging port 6 in the vehicle, and at a front portion of the vehicle at a position immediately after the vehicle at a traveling wind inlet.
  • the detailed configuration of the front end module FEM will be described later.
  • FIG. 2 is an overall system configuration diagram showing a heat pump type air conditioning system and a high voltage parts cooling system provided with in-vehicle parts of the front end module FEM of the first embodiment.
  • a heat pump type air conditioning system and a high voltage parts cooling system provided with in-vehicle parts of the front end module FEM of the first embodiment.
  • the heat pump type air conditioning system is divided into a compartment R and a motor room M across a dash panel D, and an air conditioning unit 8 is disposed in the compartment R.
  • the electric compressor 10, the muffler 11, the outdoor heat exchanger 12, the accumulator 13, the three-way valve 14, the cooling throttle 15, the solenoid valve 16, the heating throttle 17 And are arranged.
  • the air conditioner unit 8 includes an inside / outside air switching door 21, a blower fan 22, an evaporator 23, a mode switching door 24, a condenser 25, and a PTC heater 26 in a unit case 20.
  • the blower fan 22 is rotationally driven by a fan motor 27, introduces the inside air or the outside air selected by the inside / outside air switching door 21, and blows air toward the downstream side provided with the evaporator 23 and the like.
  • the evaporator 23 (evaporator) is disposed downstream of the blower fan 22 and functions to evaporate and absorb the low temperature and low pressure liquid refrigerant when the "cooling mode" is selected.
  • the mode switching door 24 is disposed at the downstream position of the evaporator 23.
  • the air is opened to pass through the condenser 25, and when the "cooling mode” is selected, the air is discharged through the condenser 25. It is considered to be the closing side so as not to pass.
  • the condenser 25 (condenser) is disposed at a downstream position of the evaporator 23 and the mode switching door 24 and exhibits a function of condensing and radiating the high temperature / high pressure gas refrigerant when the "heating mode" is selected.
  • the PTC heater 26 is disposed downstream of the condenser 25 and is, for example, an auxiliary heat source added only in the cold region specification. That is, in the case of the heat pump type air conditioning system, since the condenser 25 is disposed in the unit case 20 and used as a heating heat source, the PTC heater 26 is not particularly required in specifications other than cold regions.
  • the electric compressor 10 is a compressor driven by a motor, and compresses low-temperature low-pressure gas refrigerant sent from the accumulator 13 via the refrigerant suction pipe 30 into high-temperature high-pressure gas refrigerant. Send to
  • the muffler 11 is a pulsation suppressing means for suppressing the pulsation of the refrigerant discharged from the electric compressor 10, and is a pressure fluctuation of the high temperature / high pressure gas refrigerant sent from the electric compressor 10 via the compressor side refrigerant discharge pipe 31. A certain pulsation is suppressed and sent to the condenser side refrigerant discharge pipe 32.
  • the outdoor heat exchanger 12 is disposed at a vehicle front position, and includes a cooling fan unit 28 at a vehicle rear position of the heat exchange surface.
  • a refrigerant is sent from the condenser 25 to the outdoor heat exchanger 12 through the refrigerant pipes 33, 34, and sent out to the accumulator 13 through the refrigerant pipes 35, 36, or through the refrigerant pipes 35, 37, 38.
  • the accumulator 13 separates the gas-liquid mixed refrigerant sent from the outdoor heat exchanger 12 or the evaporator 23 into a gas refrigerant and a liquid refrigerant, and sends the separated gas refrigerant to the electric compressor 10 through the refrigerant suction pipe 30.
  • the three-way valve 14 is a valve that switches a refrigerant path connecting the refrigerant pipe 35 and the refrigerant pipe 36 and a refrigerant path connecting the refrigerant pipe 35 and the refrigerant pipe 37.
  • the cooling throttle 15 expands the refrigerant sent from the outdoor heat exchanger 12 through the refrigerant pipes 35 and 37 to make it a low-temperature, low-pressure liquid refrigerant, and via the refrigerant pipe 38 Send to the evaporator 23.
  • the solenoid valve 16 is disposed in parallel with the heating throttle 17 between the refrigerant pipes 33 and 34, and switches between a refrigerant path (valve closing) passing through the heating throttle 17 and a refrigerant path (valve opening) for eliminating the throttling effect. It is.
  • the heating throttle 17 expands the refrigerant sent from the condenser 25 via the refrigerant pipe 33 to make it a low-temperature, low-pressure liquid refrigerant, and the outdoor heat exchanger 12 via the refrigerant pipe 34 Send to
  • the high-voltage component cooling system includes a radiator 40, an air vent tank 41, a first electric water pump 42, and a second electric water pump 43.
  • the radiator 40 is a heat exchanger which cools the cooling water of high-voltage components (the drive motor 2, the drive motor inverter 3, the DC / DC junction box 4, the on-vehicle charger 7) by heat exchange with the outside air.
  • the coolant outlet pipe 44 and the coolant inlet pipe 48 are connected to the radiator 40.
  • the air removal tank 41 is a tank for removing air bubbles contained in the cooling water sucked into the first electric water pump 42 from the radiator 40 through the cooling water outlet pipe 44.
  • the first electric water pump 42 is disposed at a lower position of the air removal tank 41, and pressure-feeds the cooling water sucked from the air removal tank 41 via the cooling water pipe 45 to the cooling water pipe 46.
  • the second electric water pump 43 is disposed at an inner position of the front fender, and pumps the cooling water sucked through the cooling water pipe 46 from the first electric water pump 42 to the cooling water pipe 47. That is, when one of the two electric water pumps 42 and 43 fails, the other pump can be accelerated to compensate for the flow rate.
  • FIG. 3 and FIG. 4 are diagrams showing the detailed configuration of the vibration isolation structure of the front end module FEM of the first embodiment. Hereinafter, based on FIG.3 and FIG.4, the anti-vibration structure detailed structure of the front end module FEM is demonstrated.
  • the front end module FEM includes a heat exchanger support frame 50, an outdoor heat exchanger 12 (first in-vehicle component), a radiator 40 (first in-vehicle component), and The electric water pump 42 (first in-vehicle component) and the cooling fan unit 28 (second in-vehicle component) are provided.
  • the front end module FEM includes a heat exchanger supporting frame 50 and a plurality of on-vehicle components (the outdoor heat exchanger 12, the radiator 40, the first electric water pump 42, the cooling fan unit 28) mounted on the front of the vehicle. It is a module assembled in an integrated manner.
  • the pre-assembled front end module FEM is supplied to the assembly line of the electric vehicle 1 and assembled to the vehicle body frame in the form of a module.
  • the heat exchanger support frame 50 is formed in a rectangular frame shape by the support upper portion 50a, the support lower portion 50b, and the support side portions 50c and 50d, and the central portion of the space surrounded by the rectangular frame is A center plate 50e is set in the vertical direction of the vehicle.
  • the outdoor heat exchanger 12 is disposed at a position near the cooling fan unit 28 (inside position of the vehicle) and the radiator 40 is disposed at a distant position (outside position of the vehicle). That is, the outdoor heat exchanger 12 and the radiator 40 are arranged with the heat exchange surfaces of the outdoor heat exchanger 12 and the radiator 40 aligned in the vehicle longitudinal direction.
  • the heat exchanger support frame 50 is disposed near the cooling fan unit 28 with the radiator 40, and the outdoor heat exchanger 12 is disposed at a distant position, so that the vehicle longitudinal direction positions are mutually exchanged. It has a possible combined frame structure.
  • the plurality of in-vehicle components are a first in-vehicle component (outdoor heat exchanger 12, radiator 40, first electric water pump 42) vibrating in a first frequency band (low frequency band), and a frequency range higher than the first frequency band And a second on-vehicle component (cooling fan unit 28) that vibrates in a second frequency band (high frequency band).
  • first frequency band and the second frequency band for example, when the vibration frequency of each of a plurality of in-vehicle components is measured, the boundary frequency is set in the frequency band between the in-vehicle components where the vibration frequency is most distant.
  • a low frequency band lower than the boundary frequency is taken as a first frequency band
  • a high frequency band higher than the boundary frequency is taken as a second frequency band.
  • the outdoor heat exchanger 12, the radiator 40, and the first electric water pump 42 which are divided as the first on-vehicle component, damp the component vibration of the first frequency band (low frequency band) with respect to the heat exchanger support frame 50. It elastically supports via the 1st mount member (low frequency mount member).
  • the frame support of the outdoor heat exchanger 12 sets an elastic projection 51 (first mount member) projecting to the motor room M side at the upper and lower positions of both side tanks, and the support side portion 50c of the heat exchanger support frame 50, It is elastically supported by pressing and fixing at 4 points to 50d.
  • the position of the outdoor heat exchanger 12 is defined by the contact with the outer radiator 40 fixed to the heat exchanger support frame 50.
  • the frame support of the radiator 40 is provided with brackets with bolt holes protruding in the vehicle width direction at the upper and lower positions of both side tanks, and inserted into the stud bolts of the support side portions 50c and 50d of the heat exchanger support frame 50 Fasten by means of At this time, an elastic ring 52 (first mount member) is interposed between the bolt hole bracket and the support side portions 50c and 50d to elastically support.
  • the frame support of the first electric water pump 42 is provided with a pump bracket with a bolt hole, inserted into a stud bolt of the support side portion 50c of the heat exchanger support frame 50, and fixed by a nut.
  • an elastic ring 53 (first mount member) is interposed between the bolt holed pump bracket and the support side portion 50c to support elastically.
  • the cooling fan unit 28 divided as the second on-vehicle component is rigidly fixed to the heat exchanger support frame 50.
  • the cooling fan unit 28 has an electric double cooling fan structure, and as shown in FIG. 3, a resin shroud 28a, a fan control module 28b, two fan motors 28c, and two cooling fans 28d and , Is configured.
  • the frame fixing of the cooling fan unit 28 is achieved by bolting the resin shroud 28 a to the support upper portion 50 a and the support lower portion 50 b of the heat exchanger support frame 50.
  • a chipping guard 54 is disposed at the outside position of the radiator 40 (the frontmost position of the vehicle) so as to cover the radiator 40 and the outdoor heat exchanger 12, and the chipping guard 54 is also a heat exchanger. It is fixed to the support frame 50. That is, the front end module FEM is configured including the chipping guard 54.
  • the heat exchanger support frame 50 When the front end module FEM is assembled to the vehicle body, the heat exchanger support frame 50 is, as shown in FIGS. 3 and 4, with respect to the front cross member upper 55 (vehicle body) and the front cross member lower 56 (vehicle body) It elastically supports via the 2nd mount member (high frequency mount member) which damps the part vibration of the 2nd frequency band (high frequency band).
  • the upper support of the heat exchanger support frame 50 is obtained by providing a member bracket with bolt holes in the front cross member upper 55, inserting it into the stud bolt of the support upper portion 50a of the heat exchanger support frame 50, and tightening and fixing it with a nut. .
  • an elastic ring 57 (second mounting member) is interposed between the bolt holed member bracket and the support upper portion 50a to elastically support it.
  • the lower support of the heat exchanger support frame 50 is provided with an elastic projection 58 (second mount member) projecting downward on the lower surface of the support lower portion 50b, and is elastically supported by pressing it against the support surface of the front cross member lower 56.
  • Heat pump type air conditioning effect The heat pump type air conditioning system can be roughly classified into the "heating mode” and the “cooling mode” as the air conditioning mode. Hereinafter, based on FIG.5 and FIG.6, the heat-pump type air-conditioning effect
  • a heat pump type air conditioning system is mounted as an air conditioner for an electric vehicle.
  • a vehicle air conditioner a cooling-only air conditioning system in which only an evaporator is disposed in a vehicle compartment and a condenser is disposed outside the vehicle is generally used.
  • a heating heat source such as a PTC heater since engine waste heat can not be used as a heating heat source.
  • battery energy consumption is large. The actual distance traveled is reduced accordingly. That is, by mounting a heat pump type air conditioning system capable of securing a heating heat source using a refrigerant as an air conditioner for an electric vehicle, it is possible to improve the actual travel distance when heating is necessary.
  • Heating mode ( Figure 5)
  • the three-way valve 14 selects a route bypassing the cooling throttle 15, and the solenoid valve 16 selects a route using the heating throttle 17 as a valve closing.
  • the mode switching door 24 is on the open side so that the air flow passes through the condenser 25.
  • the gas refrigerant sent from the accumulator 13 is compressed to be a high temperature / high pressure gas refrigerant. Then, as indicated by the arrows in FIG. 5, the gas refrigerant that has been made high temperature and high pressure by the electric compressor 10 passes through the muffler 11 and enters the condenser 25 to condense and radiate the high temperature and high pressure gas refrigerant. The heat released from the condenser 25 is blown into the compartment R to heat the air in the compartment R, thereby raising the temperature of the compartment and heating it.
  • the condensed refrigerant passes through the heating throttle 17 to be a low temperature / low pressure liquid refrigerant, and in the outdoor heat exchanger 12, the low temperature / low pressure liquid refrigerant is evaporated and absorbed.
  • the outdoor heat exchanger 12 functions as an evaporator, and is called a "heat pump” by pumping up the heat in the air.
  • heat absorption efficiency is higher when the radiator 40 is disposed outside the outdoor heat exchanger 12 than when the outdoor heat exchanger 12 is disposed outside the radiator 40.
  • the outdoor heat exchanger 12 is disposed closer to the cooling fan unit 28.
  • the radiator is disposed on the side close to the cooling fan unit, and the condenser is disposed on the far side.
  • Cooling mode ( Figure 6)
  • the three-way valve 14 selects a path passing through the cooling throttle 15, and the solenoid valve 16 selects a path not using the heating throttle 17 as the valve opening.
  • the mode switching door 24 is on the closed side so that the air does not pass through the condenser 25.
  • the gas refrigerant sent from the accumulator 13 is compressed to be a high temperature / high pressure gas refrigerant. Then, the gas refrigerant that has been made high temperature and high pressure by the electric compressor 10 passes through the muffler 11 and enters the condenser 25 as shown by the arrow in FIG. 6, but heat exchange is performed because the mode switching door 24 is closed. It does not take place and passes through the open solenoid valve 16 and enters the heat exchanger 12 outside the vehicle.
  • the high temperature / high pressure gas refrigerant is condensed and radiated (condenser function) to form a normal temperature / high pressure gas / liquid mixed refrigerant, and it is expanded in the next cooling throttle 15 to be low temperature / low pressure Let it be a liquid refrigerant. Then, in the evaporator 23 disposed in the compartment R, the low-temperature and low-pressure liquid refrigerant is evaporated and absorbed, heat is taken from the air in the compartment R, and the temperature in the compartment is lowered to cool the compartment.
  • the external heat exchanger 12 vibrates at a vibration frequency in the low frequency band due to pressure fluctuation of the refrigerant passing through the internal path.
  • the first electric water pump 42 and the second electric water pump 43 When the first electric water pump 42 and the second electric water pump 43 are operated, as shown in FIG. 7, the first electric water pump 42 ⁇ the second electric water pump 43 ⁇ the on-board charger 7 ⁇ the DC / DC junction box 4 A cooling water circulation path is formed that circulates from drive motor inverter 3 ⁇ drive motor 2 ⁇ radiator 40 ⁇ air bleed tank 41. Therefore, the cooling water pumped by the first electric water pump 42 and the second electric water pump 43 removes heat from the on-vehicle charger 7, the DC / DC junction box 4, the drive motor inverter 3, and the drive motor 2, The high voltage components are controlled so as not to become high temperatures above a predetermined temperature.
  • the cooling water that has become high temperature by taking heat from the plurality of high voltage parts enters the radiator 40, is air cooled by heat exchange with the outside air, and is again performed by the first electric water pump 42 and the second electric water pump 43 Pumped towards multiple high voltage components.
  • the radiator 40 and the first electric water pump 42 vibrate at a low frequency band vibration frequency due to the pressure fluctuation of the cooling water passing through the internal path.
  • the reason why the front end module is required to have high vibration isolation performance will be described.
  • the required prevention performance can be achieved simply by fixing the radiator and the capacitor to the radiator core support and elastically supporting the radiator core support on the vehicle body.
  • the front end module of an electric car since the sound of the drive motor which is a traveling drive source is much lower than that of the engine, the pulsating noise and vibration transmitted to the vehicle interior through the vehicle body It stands out compared to a car. Therefore, high vibration isolation performance is required of the front end module in order to ensure quietness in the vehicle interior.
  • the vibration is damped by setting the frequency sufficiently small with respect to the frequency of the vibrating one, and low frequency vibrating parts (heat exchangers etc.) are also high frequency vibrating parts ( It is a premise of damping that the frequency is lowered as well.
  • the frequency of the spring mass system of the vibrating part is sufficiently reduced to be attenuated.
  • a component that vibrates in a low frequency and a component that vibrates in a high frequency are fixed to one frame, and the frame is elastically supported on a vehicle body as a comparative example.
  • k is a spring constant determined by the rubber hardness of the mounting member
  • m is a mass.
  • the vibration of the front end module itself may be damped, but the front end module itself may vibrate due to, for example, a road surface input, etc. Will occur. Therefore, if the rubber of the mount member elastically supporting the frame to the vehicle body is softened (the spring constant is lowered), the support rigidity to the vehicle body is lowered, and conversely, the rubber of the mount member elastically supporting the frame to the vehicle body is hard If the spring constant is high, the vibration of the low frequency vibration component can not be attenuated.
  • the first on-vehicle components 12, 40, 42 vibrating in the first frequency band (low frequency band) are heated with the first mount member (elastic support A) Through the exchanger support frame 50 and the second mount member (elastic support B), it is elastically supported on the vehicle body by the double vibration isolation structure.
  • the second in-vehicle component 28 vibrating in the second frequency band (high frequency band) is rigidly fixed to the heat exchanger support frame 50, and the heat exchanger support frame 50 and the second mount member (elastic support B) are interposed.
  • a structure is adopted in which the vehicle body is elastically supported by the vibration-proof structure.
  • the vibration from the first in-vehicle component 12, 40, 42 becomes the first mount member (elastic support A: It is damped by low frequency damping, and is further dampened by the second mount member (elastic support B: high frequency damping member) and transmitted to the vehicle body, and pulsating noise and vibration transmitted from the vehicle body into the cabin R can be suppressed small.
  • the vibration from the second in-vehicle component 28 is transmitted together with the heat exchanger support frame 50 to the second mount member (elastic support B: high frequency
  • the second mount member for supporting the heat exchanger support frame 50 on the vehicle body does not have to damp the first frequency band (low frequency band) and can be a hard member having a high spring constant. There is no reduction in the support rigidity to the support.
  • the vibration isolation structure for damping component vibration in the first frequency band (low frequency band) and the vibration isolation structure for damping component vibration in the second frequency band (high frequency band) are made different. For this reason, the pulsating noise / vibration transmitted from the plurality of in-vehicle components 12, 40, 42, 28 mounted at the front of the vehicle into the compartment R via the vehicle body does not reduce the support rigidity to the vehicle body It is suppressed.
  • the first mount member is a low frequency damping member whose spring constant is tuned to a low value so as to damp component vibration of the first frequency band (low frequency band), and the second mount member is a second frequency.
  • a configuration was adopted in which a high frequency damping member was used whose spring constant was highly tuned to damp component vibration in a band (high frequency band).
  • the low frequency vibration component (the outdoor heat exchanger 12 or the like) can be damped, that is, damped by a spring having a low spring constant by the first mount member.
  • the high frequency vibration component (cooling fan unit 28) is assembled as a module together with the mass of the spring mass system (the mass of the whole frame including the heat exchanger etc.) by rigidly fixing to the heat exchanger support frame 50.
  • the radiator 40 for cooling the cooling water of the high voltage parts 2, 3, 4 and 7 as the first on-vehicle component, the outdoor heat exchanger 12 of the on-vehicle air conditioning system, and the cooling water from the radiator 40 are high.
  • a cooling fan unit 28 rigidly fixed to the heat exchanger support frame 50 is provided as a second on-vehicle component. Therefore, in the electric vehicle on which high voltage components 2, 3, 4, 7 are mounted, the vehicle components R are transmitted from the plurality of in-vehicle components 12, 40, 42, 28 mounted in the front of the vehicle into the compartment R via the vehicle body. Pulsation noise / vibration is suppressed.
  • the radiators 40 and the outdoor heat exchanger 12 are arranged at the space position surrounded by the heat exchanger support frame 50, with the heat exchange surfaces arranged in the longitudinal direction of the vehicle.
  • the heat exchanger supporting frame 50 is made into the combined frame structure which can mutually exchange the position of the vehicle 40 direction of the radiator 40 and the outdoor heat exchanger 12 mutually.
  • the heat exchanger supporting frame also corresponds to the arrangement of the two heat exchangers because the vehicle front-rear direction position of the two heat exchangers is different between the vehicle equipped with the cooling dedicated air conditioning system and the vehicle equipped with the heat pump type air conditioning system. Need to be prepared.
  • the same heat exchanger support is applied to a vehicle equipped with a dedicated cooling air conditioning system or a vehicle equipped with a heat pump type air conditioning system by using the heat exchanger support frame 50 as a multipurpose frame structure.
  • the frame 50 can be used in common.
  • a front end module FEM in which a plurality of in-vehicle components 12, 40, 42, 28 mounted on the front of the vehicle are assembled together in a heat exchanger support frame 50,
  • the plurality of in-vehicle components 12, 40, 42, 28 are vibrated in a first frequency band higher than the first frequency band, and the first in-vehicle components 12, 40, 42 vibrate in the first frequency band 2 divided into 28 parts
  • the first on-vehicle component 12, 40, 42 is elastically supported on the heat exchanger support frame 50 via the first mount members 51, 52, 53, Rigidly fixing the second on-vehicle component 28 to the heat exchanger support frame 50;
  • the heat exchanger support frame 50 is elastically supported on the vehicle body (the front cross member upper 55, the front cross member lower 56) through the second mount members 57 and 58 (FIG.
  • the pulsating noise / vibration transmitted from the plurality of in-vehicle components 12, 40, 42, 28 mounted on the front of the vehicle into the compartment R via the vehicle body can be reduced without reducing the support rigidity to the vehicle body. It can be suppressed.
  • the first mount member is a low frequency damping member whose spring constant is tuned to be low so as to damp component vibration of the first frequency band (low frequency band)
  • the second mount member is a high frequency damping member whose spring constant is tuned to be high so as to damp component vibration of the second frequency band (high frequency band) (FIG. 8). Therefore, in addition to the effect of (1), the pulsating noise / vibration transmitted from the first on-vehicle component 12, 40, 42 mounted on the front of the vehicle and the second on-vehicle component 28 into the compartment R via the vehicle body. And the securing of the supporting rigidity to the vehicle body can be achieved at the same time. In addition, high frequency vibration components included in the low frequency vibration of the first on-vehicle component 12, 40, 42 can be attenuated.
  • the vehicle is an electric car 1 on which high voltage components 2, 3, 4 and 7 are mounted, A radiator 40 for cooling the cooling water of the high voltage parts 2, 3, 4 and 7 as the first on-vehicle component, an outdoor heat exchanger 12 of an on-vehicle air conditioning system (heat pump type air conditioning system), and the radiator 40
  • An electric water pump (first electric water pump 42) for pumping cooling water to the high voltage components 2, 3, 4, 7;
  • the cooling fan unit 28 rigidly fixed to the heat exchanger support frame 50 is provided as the second on-vehicle component (FIGS. 3 and 4).
  • the heat exchange surfaces are arranged side by side in the vehicle longitudinal direction at the space position surrounded by the heat exchanger support frame 50, with the radiator 40 and the outdoor heat exchanger 12;
  • the heat exchanger support frame 50 has a dual purpose frame structure in which the positions of the radiator 40 and the outdoor heat exchanger 12 in the vehicle longitudinal direction can be mutually exchanged (FIG. 4).
  • the radiator 40, the outdoor heat exchanger 12, the first electric water pump 42, and the cooling fan unit 28 are shown as a plurality of on-vehicle components of the front end module FEM.
  • the plurality of in-vehicle components of the front end module are not limited to these in-vehicle components, and for example, other in-vehicle components such as an air-cooling intercooler, an air-cooling oil cooler, a headlamp, and a charging port may be added. Alternatively, it may be replaced.
  • the first embodiment shows an example in which the anti-vibration structure of the front end module of the present invention is applied to an electric vehicle.
  • the anti-vibration structure of the front end module of the present invention can be applied to hybrid vehicles and engine vehicles other than electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Thermal Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 車両前部に搭載される複数の車載部品から車体を介して車室内へ伝播される脈動音/振動を、車体への支持剛性を低減させることなく抑えること。 車両前部に搭載される複数の車載部品(12),(40),(42),(28)が、熱交換器支持枠(50)に対し集約して組み立てられるフロントエンドモジュール(FEM)において、複数の車載部品(12),(40),(42),(28)は、第1周波数帯で振動する第1車載部品(12),(40),(42)と、第1周波数帯より高い周波数域の第2周波数帯で振動する第2車載部品(28)と、を有する。第1車載部品(12),(40),(42)を、熱交換器支持枠(50)に対し、第1マウント部材(51),(52),(53)を介して弾性支持した。第2車載部品(28)を、熱交換器支持枠(50)に対してリジット固定した。熱交換器支持枠(50)を、車体に対し、第2マウント部材(57),(58)を介して弾性支持した。

Description

フロントエンドモジュールの防振構造
 本発明は、車両前部に搭載される複数の車載部品が、熱交換器支持枠に対し集約して組み立てられたフロントエンドモジュールの防振構造に関する。
 従来、車体前部にほぼ四角形の枠部材であるラジエータコアサポートを設け、このラジエータコアサポートによって囲まれた空間にラジエータを支持する車両用冷却部品支持装置が知られている(例えば、特許文献1参照)。
特開2009-262876号公報
 一方、部品点数の削減、軽量化、コスト低減化と共に、組み立て性と易解体性の両立を図るため、車両前部に搭載される複数の車載部品(ラジエータ以外にコンデンサ、電動ファン、ウォータポンプ等)が、ラジエータコアサポートに対し集約して組み立てられるフロントエンドモジュールが知られている。
 しかしながら、複数の車載部品をラジエータコアサポートに固定し、ラジエータコアサポートを車体に弾性支持しても、複数の車載部品のそれぞれが振動する振動周波数帯が異なるため、十分に防振することができない車載部品が残ってしまい、車室内へ脈動音や振動が伝播される、という問題があった。
 例えば、ラジエータコアサポートを車体に弾性支持するマウント部材を、高周波数帯の振動をダンピングするようにチューニングすると、低周波数帯で振動する車載部品の防振性が損なわれる。逆に、ラジエータコアサポートを車体に弾性支持するマウント部材を、低周波数帯の振動をダンピングするようにチューニングすると、ラジエータコアサポートの支持剛性が低くなり、路面等からの外部加振から新たな振動を生む恐れがあった。
 本発明は、上記問題に着目してなされたもので、車両前部に搭載される複数の車載部品から車体を介して車室内へ伝播される脈動音/振動を、車体への支持剛性を低減させることなく抑えるフロントエンドモジュールの防振構造を提供することを目的とする。
 上記目的を達成するため、本発明は、車両前部に搭載される複数の車載部品が、熱交換器支持枠に対し集約して組み立てられたフロントエンドモジュールを前提とする。
 このフロントエンドモジュールにおいて、前記複数の車載部品は、第1周波数帯で振動する第1車載部品と、前記第1周波数帯より高い周波数域の第2周波数帯で振動する第2車載部品と、を有する。
 前記第1車載部品を、前記熱交換器支持枠に対し、第1マウント部材を介して弾性支持した。
 前記第2車載部品を、前記熱交換器支持枠に対してリジット固定した。
 前記熱交換器支持枠を、車体に対し、第2マウント部材を介して弾性支持した。
 上記のように、第1周波数帯(低周波数帯)で振動する第1車載部品は、第1マウント部材と第2マウント部材を介し、二重防振構造にて車体に弾性支持される。一方、第2周波数帯(高周波数帯)で振動する第2車載部品は、第2マウント部材を介した防振構造にて車体に弾性支持される。
 したがって、第1車載部品が第1周波数帯(低周波数帯)にて部品振動すると、第1車載部品からの振動は、第1マウント部材によりダンピングされ、さらに、第2マウント部材によりダンピングされて車体に伝達され、車体から車室内へ伝播される脈動音や振動が小さく抑えられる。
 一方、第2車載部品が第2周波数帯(高周波数帯)にて部品振動すると、第2車載部品からの振動は、熱交換器支持枠とともに第2マウント部材によりダンピングされて車体に伝達され、車体から車室内へ伝播される脈動音や振動が小さく抑えられる。このとき、熱交換器支持枠を車体に支持する第2マウント部材は、第1周波数帯(低周波数帯)をダンピングする必要がなくバネ定数を高くした硬い部材にすることができるため、車体への支持剛性を低減させることない。
 このように、第1周波数帯(低周波数帯)の部品振動をダンピングする防振構造と、第2周波数帯(高周波数帯)の部品振動をダンピングする防振構造と、を異ならせた。このため、車両前部に搭載される複数の車載部品から車体を介して車室内へ伝播される脈動音/振動を、車体への支持剛性を低減させることなく抑えることができる。
実施例1のフロントエンドモジュールFEMが搭載されたセダンタイプの電気自動車の概略構成を示す斜視図である。 実施例1のフロントエンドモジュールFEMの車載部品を備えたヒートポンプ式空調システム及び高電圧部品冷却システムを示す全体システム構成図である。 実施例1のフロントエンドモジュールFEMの防振構造の詳細構成を示すモータルーム側から視た斜視図である。 実施例1のフロントエンドモジュールFEMの防振構造の詳細構成を示す分解斜視図である。 ヒートポンプ式空調システムの暖房モード選択時における動作を示す暖房モード作用説明図である。 ヒートポンプ式空調システムの冷房モード選択時における動作を示す冷房モード作用説明図である。 高電圧部品冷却システムによる高電圧部品の冷却動作を示す高電圧部品冷却作用説明図である。 実施例1のフロントエンドモジュールFEMの防振構造による車体への振動伝達抑制動作を示す防振作用説明図である。
 以下、本発明のフロントエンドモジュールの防振構造を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
 実施例1のフロントエンドモジュールの防振構造における構成を、「フロントエンドモジュールの車載概要構成」、「フロントエンドモジュールの車載部品を備える全体システム構成」、「フロントエンドモジュールの防振構造詳細構成」に分けて説明する。
 [フロントエンドモジュールの車載概要構成]
 図1は、実施例1のフロントエンドモジュールFEMが搭載されたセダンタイプの電気自動車の概略構成を示す。以下、図1に基づき、フロントエンドモジュールFEMの車載概要構成を説明する。
 実施例1のフロントエンドモジュールFEMが搭載された電気自動車1は、図1に示すように、駆動モータ2と、駆動モータインバータ3と、DC/DCジャンクションボックス4と、バッテリパック5と、充電ポート6と、車載充電器7と、エアコンユニット8と、12ボルト車載バッテリ9と、を備えている。
 前記駆動モータ2は、減速機を有する走行用駆動源であり、車両前部に設けられたモータルームMに配置される。この駆動モータ2の図外の出力軸は、駆動輪である左右前輪(左前輪FLのみを図示)に連結される。この駆動モータ2は、駆動モータインバータ3に対して正のトルク指令が出力されている時には、バッテリパック5からの放電電力を使って駆動トルクを発生する駆動動作をし、左右前輪を駆動する(力行)。一方、駆動モータインバータ3に対し負のトルク指令が出力されている時には、左右前輪からの回転エネルギーを電気エネルギーに変換する発電動作をし、発電した電力をバッテリパック5の充電電力とする(回生)。
 前記DC/DCジャンクションボックス4は、DC/DCコンバータを内蔵し、バッテリパック5からの高電圧の放電電力を分配し、12ボルト電源系システムへの電力供給及び12ボルト車載バッテリ9への充電を行う。また、このDC/DCジャンクションボックス4は、普通充電リレー及び急速充電リレーを有しており、充電モードに合わせて充電回路の切り替えができるようにしている。
 前記バッテリパック5は、フロアパネルFの下側である床下空間Yであって、ホイールベースの中央部位置に配置される。このバッテリパック5は、駆動モータ2の電力源となると共に、エアコンユニット8の電力源となる。
 前記充電ポート6は、充電スタンドや家庭用充電設備等の車外電源からの充電コネクタが接続される部位であり、車両前部中央位置に設けられると共に、ポートリッド6aによって開閉可能に覆われている。この充電ポート6は、ここでは普通充電ポート6bと、急速充電ポート6cと、を有している。前記普通充電ポート6bは、家庭用充電設備や普通充電スタンド等による充電時に用いる充電ポートであり、車載充電器7を介してDC/DCジャンクションボックス4に接続されている。前記急速充電ポート6cは、急速充電スタンド等による充電時に用いる充電ポートであり、DC/DCジャンクションボックス4に直接接続されている。
 前記エアコンユニット8は、フロアパネルFの上側、つまり車室Rであって、バッテリパック5よりも車両前方側に配置されている。ここでは、モータルームMと車室Rを区画するダッシュパネルDと、図外のインストルメントパネルとの間に配置される。このエアコンユニット8は、設定温度が得られるように温度調整した温調風を車室R内へ向かって送風する。
 前記フロントエンドモジュールFEMは、充電ポート6の車両下側であって、車両前部の走行風導入口の車両直後位置に配置される。フロントエンドモジュールFEMの詳細構成については後述する。
 [フロントエンドモジュールの車載部品を備える全体システム構成]
 図2は、実施例1のフロントエンドモジュールFEMの車載部品を備えたヒートポンプ式空調システム及び高電圧部品冷却システムを示す全体システム構成図である。以下、図2に基づき、フロントエンドモジュールFEMの車載部品を備える全体システム構成を説明する。
 前記ヒートポンプ式空調システムは、図2に示すように、ダッシュパネルDを挟んで車室RとモータルームMに分けられ、車室R内には、エアコンユニット8が配置される。一方、モータルームM内には、電動コンプレッサ10と、マフラー11と、室外熱交換器12と、アキュムレータ13と、3方向弁14と、冷房用絞り15と、電磁弁16と、暖房用絞り17と、が配置される。
 前記エアコンユニット8は、ユニットケース20内に、内外気切替ドア21と、ブロワファン22と、エバポレータ23と、モード切替ドア24と、コンデンサ25と、PTCヒータ26と、を備える。
 前記ブロワファン22は、ファンモータ27により回転駆動され、内外気切替ドア21により選択された内気あるいは外気を導入し、エバポレータ23等が設けられた下流側に向かって送風する。
 前記エバポレータ23(蒸発器)は、ブロワファン22の下流位置に配置され、「冷房モード」の選択時、低温・低圧の液状冷媒を蒸発させて吸熱する機能を発揮する。
 前記モード切替ドア24は、エバポレータ23の下流位置に配置され、「暖房モード」の選択時、送風がコンデンサ25を通るように開く側とされ、「冷房モード」の選択時、送風がコンデンサ25を通らないように閉じる側とされる。
 前記コンデンサ25(凝縮器)は、エバポレータ23及びモード切替ドア24の下流位置に配置され、「暖房モード」の選択時、高温・高圧のガス冷媒を凝縮させて放熱する機能を発揮する。
 前記PTCヒータ26は、コンデンサ25の下流位置に配置され、例えば、寒冷地仕様である場合にのみ付加される補助熱源である。つまり、ヒートポンプ式空調システムの場合、コンデンサ25をユニットケース20内に配置して暖房熱源としているため、寒冷地以外の仕様では、特にPTCヒータ26を要さない。
 前記電動コンプレッサ10は、モータ駆動による圧縮機であり、アキュムレータ13から冷媒吸入管30を介して送られる低温・低圧のガス冷媒を圧縮し、高温・高圧のガス冷媒とし、コンプレッサ側冷媒吐出管31に送り出す。
 前記マフラー11は、電動コンプレッサ10から吐出された冷媒の脈動を抑制する脈動抑制手段であり、電動コンプレッサ10からコンプレッサ側冷媒吐出管31を介して送られる高温・高圧のガス冷媒が有する圧力変動である脈動を抑え、コンデンサ側冷媒吐出管32に送り出す。
 前記室外熱交換器12は、車両前部位置に配置され、熱交換面の車両後方位置にクーリングファンユニット28を備える。この室外熱交換器12には、コンデンサ25から冷媒管33,34を介して冷媒が送られ、冷媒管35,36を介してアキュムレータ13に送り出す、あるいは、冷媒管35,37,38を介してエバポレータ23に送り出す。すなわち、室外熱交換器12は、暖房モードでエバポレータ(吸熱)になり、冷房モードでコンデンサ(放熱)になるというように、条件によってエバポレータにもコンデンサにもなる熱交換器である。
 前記アキュムレータ13は、室外熱交換器12あるいはエバポレータ23から送られる気液混合冷媒をガス冷媒と液状冷媒とに分離し、分離したガス冷媒を、冷媒吸入管30を介して電動コンプレッサ10に送る。
 前記3方向弁14は、冷媒管35と冷媒管36を連通する冷媒経路と、冷媒管35と冷媒管37を連通する冷媒経路と、を切り替える弁である。
 前記冷房用絞り15は、「冷房モード」の選択時、室外熱交換器12から冷媒管35,37を介して送られる冷媒を膨張させて低温・低圧の液状冷媒とし、冷媒管38を介してエバポレータ23へ送る。
 前記電磁弁16は、冷媒管33,34の間に暖房用絞り17と並列配置され、暖房用絞り17を通す冷媒経路(弁閉)と、絞り効果を無くす冷媒経路(弁開)を切り替える弁である。
 前記暖房用絞り17は、「暖房モード」の選択時、コンデンサ25から冷媒管33を介して送られる冷媒を膨張させて低温・低圧の液状冷媒とし、冷媒管34を介して室外熱交換器12へ送る。
 前記高電圧部品冷却システムは、図2に示すように、ラジエータ40と、エア抜きタンク41と、第1電動ウォータポンプ42と、第2電動ウォータポンプ43と、を備える。
 前記ラジエータ40は、高電圧部品(駆動モータ2、駆動モータインバータ3、DC/DCジャンクションボックス4、車載充電器7)の冷却水を外気との熱交換により空冷する熱交換器である。なお、ラジエータ40には、冷却水出口管44と冷却水入口管48が連結される。
 前記エア抜きタンク41は、ラジエータ40から冷却水出口管44を通って第1電動ウォータポンプ42に吸い込まれる冷却水に含まれる空気泡を抜くタンクである。
 前記第1電動ウォータポンプ42は、エア抜きタンク41の下部位置に配置され、エア抜きタンク41からの冷却水管45を介して吸い込んだ冷却水を、冷却水管46へ圧送する。
 前記第2電動ウォータポンプ43は、フロントフェンダーの内側位置に配置され、第1電動ウォータポンプ42からの冷却水管46を介して吸い込んだ冷却水を、冷却水管47へ圧送する。すなわち、2つの電動ウォータポンプ42,43のうち、一方のポンプが故障した場合、他方のポンプを増速させて流量を補うことができるようにしている。
 [フロントエンドモジュールの防振構造詳細構成]
 図3及び図4は、実施例1のフロントエンドモジュールFEMの防振構造の詳細構成を示す図である。以下、図3及び図4に基づき、フロントエンドモジュールFEMの防振構造詳細構成を説明する。
 前記フロントエンドモジュールFEMは、図3及び図4に示すように、熱交換器支持枠50と、室外熱交換器12(第1車載部品)と、ラジエータ40(第1車載部品)と、第1電動ウォータポンプ42(第1車載部品)と、クーリングファンユニット28(第2車載部品)と、を備えている。
 このフロントエンドモジュールFEMは、車両前部に搭載される複数の車載部品(室外熱交換器12、ラジエータ40、第1電動ウォータポンプ42、クーリングファンユニット28)を、熱交換器支持枠50をに対し集約して組み立てたモジュールである。予め組み立てられたフロントエンドモジュールFEMは、電気自動車1の組み立てラインに供給され、モジュール形態のままで車体骨格に組み付けられる。
 前記熱交換器支持枠50は、サポートアッパ部50aと、サポートロア部50bと、サポートサイド部50c,50dと、により方形枠状に構成され、方形枠に囲まれた空間の中央部には、車両上下方向にセンタープレート50eが設定されている。
 この熱交換器支持枠により囲まれる空間位置のうち、クーリングファンユニット28に近い位置(車体内側位置)に室外熱交換器12を配置し、遠い位置(車体外側位置)にラジエータ40を配置する。すなわち、室外熱交換器12及びラジエータ40を、それぞれの熱交換面を車両前後方向に並べて配置している。
 そして、熱交換器支持枠50を、クーリングファンユニット28に近い位置にラジエータ40を配置し、遠い位置に室外熱交換器12を配置することが可能なように、車両前後方向位置を相互に交換可能な兼用枠構造としている。
 前記複数の車載部品は、第1周波数帯(低周波数帯)で振動する第1車載部品(室外熱交換器12、ラジエータ40、第1電動ウォータポンプ42)と、第1周波数帯より高い周波数域の第2周波数帯(高周波数帯)で振動する第2車載部品(クーリングファンユニット28)と、を有する。
 ここで、第1周波数帯及び第2周波数帯とは、例えば、複数の車載部品のそれぞれの振動周波数を測定したとき、振動周波数が最も離れている車載部品間の周波数帯に境界周波数を設定し、境界周波数より低い低周波数帯を第1周波数帯とし、境界周波数より高い高周波数帯を第2周波数帯とする。
 前記第1車載部品として分けられた室外熱交換器12、ラジエータ40、第1電動ウォータポンプ42を、熱交換器支持枠50に対し、第1周波数帯(低周波数帯)の部品振動をダンピングする第1マウント部材(低周波マウント部材)を介して弾性支持する。
 前記室外熱交換器12の枠支持は、両サイドタンクの上下位置にモータルームM側に突出する弾性突起51(第1マウント部材)を設定し、熱交換器支持枠50のサポートサイド部50c,50dに対し4箇所にて押付け固定することで弾性支持する。なお、室外熱交換器12は、熱交換器支持枠50に固定される外側のラジエータ40との接触により位置が規定される。
 前記ラジエータ40の枠支持は、両サイドタンクの上下位置に車幅方向に突出するボルト穴付きブラケットを設け、熱交換器支持枠50のサポートサイド部50c,50dのスタッドボルトに対して差し込み、ナットにより締め付け固定する。このとき、ボルト穴付きブラケットとサポートサイド部50c,50dの間に弾性リング52(第1マウント部材)を介装することで弾性支持する。
 前記第1電動ウォータポンプ42の枠支持は、ボルト穴付きポンプブラケットを設け、熱交換器支持枠50のサポートサイド部50cのスタッドボルトに対して差し込み、ナットにより締め付け固定する。このとき、ボルト穴付きポンプブラケットとサポートサイド部50cの間に弾性リング53(第1マウント部材)を介装することで弾性支持する。
 前記第2車載部品として分けられたクーリングファンユニット28を、熱交換器支持枠50に対してリジット固定する。
 ここで、クーリングファンユニット28は、電動2連クーリングファン構造であり、図3に示すように、樹脂製シュラウド28aと、ファンコントロールモジュール28bと、2つのファンモータ28cと、2つのクーリングファン28dと、を有して構成される。
 前記クーリングファンユニット28の枠固定は、樹脂製シュラウド28aを熱交換器支持枠50のサポートアッパ部50aとサポートロア部50bにボルト固定することでなされる。
 なお、ラジエータ40の外側位置(車両最前方位置)には、図4に示すように、ラジエータ40と室外熱交換器12を覆うようにチッピングガード54が配置され、このチッピングガード54も熱交換器支持枠50に固定される。すなわち、チッピングガード54を含めてフロントエンドモジュールFEMが構成される。
 前記フロントエンドモジュールFEMを車体に組み付ける際は、熱交換器支持枠50を、図3及び図4に示すように、フロントクロスメンバアッパ55(車体)及びフロントクロスメンバロア56(車体)に対し、第2周波数帯(高周波数帯)の部品振動をダンピングする第2マウント部材(高周波マウント部材)を介して弾性支持する。
 前記熱交換器支持枠50のアッパ支持は、フロントクロスメンバアッパ55にボルト穴付きメンバブラケットを設け、熱交換器支持枠50のサポートアッパ部50aのスタッドボルトに対して差し込み、ナットにより締め付け固定する。このとき、ボルト穴付きメンバブラケットとサポートアッパ部50aの間に弾性リング57(第2マウント部材)を介装することで弾性支持する。熱交換器支持枠50のロア支持は、サポートロア部50bの下面に下方に突出する弾性突起58(第2マウント部材)を設け、フロントクロスメンバロア56の支持面に押し付けることで弾性支持する。
 次に、作用を説明する。
 実施例1のフロントエンドモジュールFEMの防振構造における作用を、「ヒートポンプ式空調作用」、「高電圧部品冷却作用」、「フロントエンドモジュールの防振作用」に分けて説明する。
 [ヒートポンプ式空調作用]
 ヒートポンプ式空調システムは、空調モードとして、「暖房モード」と「冷房モード」に大別することができる。以下、図5及び図6に基づいて、各モードでのヒートポンプ式空調作用を説明する。
 まず、電気自動車の空調装置として、ヒートポンプ式空調システムが搭載された理由を説明する。
 車両の空調装置としては、車室内にエバポレータのみが配置され、車室外にコンデンサが配置された冷房専用空調システムが一般的である。しかし、冷房専用空調システムを電気自動車に搭載すると、暖房熱源としてエンジン廃熱を利用できないため、PTCヒータ等の暖房熱源を設ける必要があり、「暖房モード」のとき、バッテリエネルギーの消費量が大きくなり、その分、実走行距離が低下する。
 すなわち、電気自動車の空調装置として、冷媒を利用して暖房熱源を確保できるヒートポンプ式空調システムを搭載することで、暖房必要時に実走行距離の向上が図られることによる。
 *暖房モード(図5)
 「暖房モード」の選択時には、3方向弁14は、冷房用絞り15を迂回する経路を選択し、電磁弁16は、弁閉として暖房用絞り17を使う経路を選択する。また、モード切替ドア24は、送風がコンデンサ25を通るように開く側とされる。
 「暖房モード」では、電動コンプレッサ10において、アキュムレータ13から送られるガス冷媒を圧縮し、高温・高圧のガス冷媒とする。そして、電動コンプレッサ10で高温・高圧とされたガス冷媒は、図5に矢印に示すように、マフラー11を経由し、コンデンサ25に入り、高温・高圧のガス冷媒を凝縮させて放熱する。このコンデンサ25からの放熱を車室R内に送風し、車室R内の空気に熱を与え、車室内温度を上昇させて暖房する。
 そして、凝縮された冷媒は、暖房用絞り17を通り、低温・低圧の液状冷媒となり、室外熱交換器12において、低温・低圧の液状冷媒を蒸発させて吸熱する。この室外熱交換器12が、エバポレータとして機能し、空気中の熱を汲み上げることで“ヒートポンプ”と呼ばれる。
 なお、室外熱交換器12において吸熱する「暖房モード」では、室外熱交換器12の外側にラジエータ40を配置した方が、ラジエータ40の外側に室外熱交換器12を配置するより吸熱効率が高いことにより、クーリングファンユニット28に近い側に室外熱交換器12を配置している。ちなみに、冷房専用空調システムでは、クーリングファンユニットに近い側にラジエータが配置され、遠い側にコンデンサが配置される。
 *冷房モード(図6)
 「冷房モード」の選択時には、3方向弁14は、冷房用絞り15を通過する経路を選択し、電磁弁16は、弁開として暖房用絞り17を使わない経路を選択する。また、モード切替ドア24は、送風がコンデンサ25を通らないように閉じる側とされる。
 「冷房モード」では、電動コンプレッサ10において、アキュムレータ13から送られるガス冷媒を圧縮し、高温・高圧のガス冷媒とする。そして、電動コンプレッサ10で高温・高圧とされたガス冷媒は、図6に矢印に示すように、マフラー11を経由し、コンデンサ25に入るが、モード切替ドア24を閉じているため、熱交換が行われず、そのまま開いた電磁弁16を通過し、車外熱交換器12に入る。車外熱交換器12においては、高温・高圧のガス冷媒を凝縮させて放熱し(コンデンサ機能)、常温・高圧の気液混合冷媒とし、次の冷房用絞り15において、膨張させて低温・低圧の液状冷媒とする。そして、車室R内に配置したエバポレータ23において、低温・低圧の液状冷媒を蒸発させて吸熱し、車室R内の空気から熱を奪い、車室内温度を低下させて冷房する。
 なお、「暖房モード」や「冷房モード」のとき、車外熱交換器12は、内部経路を通過する冷媒の圧力変動により、低周波数帯の振動周波数により振動する。
 [高電圧部品冷却作用]
 電気自動車は、高温になる高電圧部品が搭載されているため、高電圧部品を冷却するポンプ強制循環方式による高電圧部品冷却システムを搭載している。以下、図7に基づき、高電圧部品冷却作用を説明する。
 第1電動ウォータポンプ42と第2電動ウォータポンプ43を作動させると、図7に示すように、第1電動ウォータポンプ42→第2電動ウォータポンプ43→車載充電器7→DC/DCジャンクションボックス4→駆動モータインバータ3→駆動モータ2→ラジエータ40→エア抜きタンク41へと循環する冷却水循環経路が形成される。
 したがって、第1電動ウォータポンプ42及び第2電動ウォータポンプ43により圧送された冷却水により、車載充電器7、DC/DCジャンクションボックス4、駆動モータインバータ3、駆動モータ2から熱を奪い、これらの高電圧部品が所定温度以上の高温にならないように制御される。
 そして、複数の高電圧部品から熱を奪うことで高温となった冷却水は、ラジエータ40に入り、外気との熱交換により空冷され、再び第1電動ウォータポンプ42及び第2電動ウォータポンプ43により複数の高電圧部品に向かって圧送される。
 この冷却水循環時、ラジエータ40と第1電動ウォータポンプ42は、内部経路を通過する冷却水の圧力変動により、低周波数帯の振動周波数により振動する。
 [フロントエンドモジュールの防振作用]
 上記のように、車外熱交換器12とラジエータ40と第1電動ウォータポンプ42は、低周波数帯の振動周波数により振動する。一方、モータによりファンを高回転させているクーリングファンユニット28は、高周波数帯の振動周波数により振動する。よって、高い防振性能を得るには、異なる周波数帯の振動を有効に抑える工夫を要する。以下、図8に基づき、これを反映するフロントエンドモジュールFEMの防振作用を説明する。
 まず、電気自動車の場合、フロントエンドモジュールに対して高い防振性能が要求される理由を説明する。
 例えば、エンジン車のフロントエンドモジュールの場合には、ラジエータコアサポートに対しラジエータとコンデンサを固定し、ラジエータコアサポートを車体に弾性支持するだけで、要求される防止性能を達成できる。しかし、電気自動車のフロントエンドモジュールの場合には、走行駆動源である駆動モータの音がエンジンに比べて遙かに低いため、車体を介して車室内に伝播される脈動音や振動が、エンジン車に比べて目立つ。よって、車室内の静粛性を確保するためには、フロントエンドモジュールに対し高い防振性能が要求される。
 次に、バネマス系で振動を減衰させるには、振動するものの周波数に対して、十分小さい周波数にすることで減衰させるものであり、低周波数振動部品(熱交換器等)も高周波数振動部品(ファン)も周波数を低くするようにするのがダンピングの前提である。フロントエンドモジュールについても、同様に、振動する部品のバネマス系の周波数を十分小さくして減衰させるものである。ここで、低周波数振動する部品と高周波振動する部品とを1つの枠に固定し、その枠を車体に弾性支持するものを比較例とする。
 この比較例の場合、低周波数振動部品及び高周波振動部品の有効な振動減衰と、車体への支持剛性の確保と、が両立できない。
 すなわち、車載部品の共振周波数fは、
f=1/2π(√k/m)
但し、k:マウント部材のゴム硬度等で決まるバネ定数、m:質量
であらわされる。上記式から明らかなように、低周波数にするには、バネ定数kを小さく(低く)すれば良い。しかし、バネ定数kを低くするということは、剛性が低くなってしまう。フロントエンドモジュールの支持剛性を下げてしまうと、それ自体の振動は減衰できても、フロントエンドモジュール自体が、例えば、路面入力などで、振動してしまうというように、別の振動系による振動問題が発生してしまう。
 したがって、枠を車体に弾性支持するマウント部材のゴムを軟く(バネ定数を低く)すると、車体への支持剛性が低くなるし、逆に、枠を車体に弾性支持するマウント部材のゴムを硬く(バネ定数を高く)すると、低周波数振動部品の振動を減衰できない。
 これに対し、実施例1では、図8に示すように、第1周波数帯(低周波数帯)で振動する第1車載部品12,40,42を、第1マウント部材(弾性支持A)と熱交換器支持枠50と第2マウント部材(弾性支持B)を介し、二重防振構造にて車体に弾性支持する。一方、第2周波数帯(高周波数帯)で振動する第2車載部品28を、熱交換器支持枠50にリジット固定し、熱交換器支持枠50と第2マウント部材(弾性支持B)を介した防振構造にて車体に弾性支持する、という構成を採用した。
 したがって、第1車載部品12,40,42が第1周波数帯(低周波数帯)にて部品振動すると、第1車載部品12,40,42からの振動は、第1マウント部材(弾性支持A:低周波ダンピング)によりダンピングされ、さらに、第2マウント部材(弾性支持B:高周波ダンピング部材)によりダンピングされて車体に伝達され、車体から車室R内へ伝播される脈動音や振動が小さく抑えられる。
 一方、第2車載部品28が第2周波数帯(高周波数帯)にて部品振動すると、第2車載部品28からの振動は、熱交換器支持枠50とともに第2マウント部材(弾性支持B:高周波ダンピング部材)によりダンピングされて車体に伝達され、車体から車室内へ伝播される脈動音や振動が小さく抑えられる。このとき、熱交換器支持枠50を車体に支持する第2マウント部材は、第1周波数帯(低周波数帯)をダンピングする必要がなくバネ定数を高くした硬い部材にすることができるため、車体への支持剛性を低減させることがない。
 このように、第1周波数帯(低周波数帯)の部品振動をダンピングする防振構造と、第2周波数帯(高周波数帯)の部品振動をダンピングする防振構造と、を異ならせた。このため、車両前部に搭載される複数の車載部品12,40,42,28から車体を介して車室R内へ伝播される脈動音/振動が、車体への支持剛性を低減させることなく抑えられる。
 実施例1では、第1マウント部材を、第1周波数帯(低周波数帯)の部品振動をダンピングするようにバネ定数が低くチューニングされた低周波ダンピング部材とし、第2マウント部材を、第2周波数帯(高周波数帯)の部品振動をダンピングするようにバネ定数が高くチューニングされた高周波ダンピング部材とする構成を採用した。
 すなわち、低周波数振動部品(室外熱交換器12等)は、第1マウント部材によるバネ定数の低いバネでダンピング、つまり、減衰させることができる。加えて、第2マウント部材によるバネ定数の高いバネで二重防振しているので、室外熱交換器12等の低周波数振動に含まれる高周波数振動成分も減衰できる。一方、高周波振動部品(クーリングファンユニット28)は、熱交換器支持枠50にリジット固定することでバネマス系のマス上げする(熱交換器等も含めた枠全体のマス)とともに、モジュールとして組み立てられた枠全体を十分支持可能な剛性を保ちつつ、低周波用バネに比べてバネ定数の高いバネでダンピング、つまり、減衰させることができる。この結果、高/低周波振動部品からの振動を共にダンピングできる。
 したがって、車両前部に搭載される第1車載部品12,40,42と第2車載部品28から車体を介して車室R内へ伝播される脈動音/振動の抑制と、車体への支持剛性の確保と、が両立される。加えて、第1車載部品12,40,42の低周波数振動に含まれる高周波数振動成分も減衰される。
 実施例1では、第1車載部品として、高電圧部品2,3,4,7の冷却水を空冷するラジエータ40と、車載空調システムの室外熱交換器12と、ラジエータ40からの冷却水を高電圧部品2,3,4,7に圧送する第1電動ウォータポンプ42と、を有する。そして、第2車載部品として、熱交換器支持枠50に対してリジット固定されるクーリングファンユニット28を有する。
 したがって、高電圧部品2,3,4,7が搭載された電気自動車において、車両前部に搭載される複数の車載部品12,40,42,28から車体を介して車室R内へ伝播される脈動音/振動が抑えられる。
 実施例1では、ラジエータ40及び室外熱交換器12を、熱交換器支持枠50により囲まれる空間位置に、熱交換面を車両前後方向に並べて配置した。そして、熱交換器支持枠50を、ラジエータ40と室外熱交換器12の車両前後方向位置を相互に交換可能な兼用枠構造とした。
 冷房専用空調システムを搭載する車両と、ヒートポンプ式空調システムを搭載する車両とでは、2つの熱交換器の車両前後方向位置が異なるため、熱交換器支持枠も2つの熱交換器の配列に応じて用意する必要がある。
 これに対し、熱交換器支持枠50を兼用枠構造としたことで、冷房専用空調システムを搭載する車両であっても、ヒートポンプ式空調システムを搭載する車両であっても、同じ熱交換器支持枠50を共通して用いることができる。
 次に、効果を説明する。
 実施例1のフロントエンドモジュールFEMの防振構造にあっては、下記に列挙する効果を得ることができる。
 (1) 車両前部に搭載される複数の車載部品12,40,42,28が、熱交換器支持枠50に対し集約して組み立てられたフロントエンドモジュールFEMにおいて、
 前記複数の車載部品12,40,42,28を、第1周波数帯で振動する第1車載部品12,40,42と、前記第1周波数帯より高い周波数域の第2周波数帯で振動する第2車載部品28と、に分け、
 前記第1車載部品12,40,42を、前記熱交換器支持枠50に対し、第1マウント部材51,52,53を介して弾性支持し、
 前記第2車載部品28を、前記熱交換器支持枠50に対してリジット固定し、
 前記熱交換器支持枠50を、車体(フロントクロスメンバアッパ55、フロントクロスメンバロア56)に対し、第2マウント部材57,58を介して弾性支持した(図8)。
 このため、車両前部に搭載される複数の車載部品12,40,42,28から車体を介して車室R内へ伝播される脈動音/振動を、車体への支持剛性を低減させることなく抑えることができる。
 (2) 前記第1マウント部材を、前記第1周波数帯(低周波数帯)の部品振動をダンピングするようにバネ定数が低くチューニングされた低周波ダンピング部材とし、
 前記第2マウント部材を、前記第2周波数帯(高周波数帯)の部品振動をダンピングするようにバネ定数が高くチューニングされた高周波ダンピング部材とした(図8)。
 このため、(1)の効果に加え、車両前部に搭載される第1車載部品12,40,42と第2車載部品28から車体を介して車室R内へ伝播される脈動音/振動の抑制と、車体への支持剛性の確保と、を両立することができる。加えて、第1車載部品12,40,42の低周波数振動に含まれる高周波数振動成分を減衰できる。
 (3) 車両は、高電圧部品2,3,4,7が搭載された電気自動車1であり、
 前記第1車載部品として、前記高電圧部品2,3,4,7の冷却水を空冷するラジエータ40と、車載空調システム(ヒートポンプ式空調システム)の室外熱交換器12と、前記ラジエータ40からの冷却水を前記高電圧部品2,3,4,7に圧送する電動ウォータポンプ(第1電動ウォータポンプ42)と、を有し、
 前記第2車載部品として、前記熱交換器支持枠50に対してリジット固定されるクーリングファンユニット28を有する(図3、図4)。
 このため、(1)又は(2)の効果に加え、高電圧部品2,3,4,7が搭載された電気自動車において、車両前部に搭載される複数の車載部品12,40,42,28から車体を介して車室R内へ伝播される脈動音/振動を抑えることができる。
 (4) 前記ラジエータ40及び前記室外熱交換器12を、前記熱交換器支持枠50により囲まれる空間位置に、熱交換面を車両前後方向に並べて配置し、
 前記熱交換器支持枠50を、前記ラジエータ40と前記室外熱交換器12の車両前後方向位置を相互に交換可能な兼用枠構造とした(図4)。
 このため、(3)の効果に加え、冷房専用空調システムを搭載する車両とヒートポンプ式空調システムを搭載する車両のように、2つの熱交換器の車両前後方向配列が異なる車両であっても、同じ熱交換器支持枠50を共通して用いることができる。
 以上、本発明のフロントエンドモジュールの防振構造を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、フロントエンドモジュールFEMの複数の車載部品として、ラジエータ40、室外熱交換器12、第1電動ウォータポンプ42、クーリングファンユニット28とする例を示した。しかし、フロントエンドモジュールの複数の車載部品としては、これらの車載部品に限られるものではなく、例えば、空冷インタークーラや空冷オイルクーラやヘッドランプや充電ポート等のように、他の車載部品を加えたり、置き換えたりする例としても良い。
 実施例1では、本発明のフロントエンドモジュールの防振構造を電気自動車に適用する例を示した。しかし、本発明のフロントエンドモジュールの防振構造は、電気自動車以外に、ハイブリッド車やエンジン車に適用できるのは勿論である。
関連出願の相互参照
 本出願は、2012年9月14日に日本国特許庁に出願された特願2012-202473に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (4)

  1.  車両前部に搭載される複数の車載部品が、熱交換器支持枠に対し集約して組み立てられたフロントエンドモジュールにおいて、
     前記複数の車載部品は、第1周波数帯で振動する第1車載部品と、前記第1周波数帯より高い周波数域の第2周波数帯で振動する第2車載部品と、を有し、
     前記第1車載部品を、前記熱交換器支持枠に対し、第1マウント部材を介して弾性支持し、
     前記第2車載部品を、前記熱交換器支持枠に対してリジット固定し、
     前記熱交換器支持枠を、車体に対し、第2マウント部材を介して弾性支持した
     ことを特徴とするフロントエンドモジュールの防振構造。
  2.  請求項1に記載されたフロントエンドモジュールの防振構造において、
     前記第1マウント部材を、前記第1周波数帯(低周波数帯)の部品振動をダンピングするようにバネ定数が低くチューニングされた低周波ダンピング部材とし、
     前記第2マウント部材を、前記第2周波数帯(高周波数帯)の部品振動をダンピングするようにバネ定数が高くチューニングされた高周波ダンピング部材とした
     ことを特徴とするフロントエンドモジュールの防振構造。
  3.  請求項1又は2に記載されたフロントエンドモジュールの防振構造において、
     車両は、高電圧部品が搭載された電気自動車であり、
     前記第1車載部品として、前記高電圧部品の冷却水を空冷するラジエータと、車載空調システムの室外熱交換器と、前記ラジエータからの冷却水を前記高電圧部品に圧送する電動ウォータポンプと、を有し、
     前記第2車載部品として、前記熱交換器支持枠に対してリジット固定されるクーリングファンユニットを有する
     ことを特徴とするフロントエンドモジュールの防振構造。
  4.  請求項3に記載されたフロントエンドモジュールの防振構造において、
     前記ラジエータ及び前記室外熱交換器を、前記熱交換器支持枠により囲まれる空間位置に、熱交換面を車両前後方向に並べて配置し、
     前記熱交換器支持枠を、前記ラジエータと前記室外熱交換器の車両前後方向位置を相互に交換可能な兼用枠構造とした
     ことを特徴とするフロントエンドモジュールの防振構造。
PCT/JP2013/072036 2012-09-14 2013-08-16 フロントエンドモジュールの防振構造 WO2014041961A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13837220.6A EP2896529B1 (en) 2012-09-14 2013-08-16 Vibration-proof structure of front-end module
US14/425,337 US9150095B2 (en) 2012-09-14 2013-08-16 Vibration suppression structure for front-end module
JP2014535467A JP5839130B2 (ja) 2012-09-14 2013-08-16 フロントエンドモジュールの防振構造
CN201380047936.3A CN104703830B (zh) 2012-09-14 2013-08-16 前端模块的防振构造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012202473 2012-09-14
JP2012-202473 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014041961A1 true WO2014041961A1 (ja) 2014-03-20

Family

ID=50278086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072036 WO2014041961A1 (ja) 2012-09-14 2013-08-16 フロントエンドモジュールの防振構造

Country Status (5)

Country Link
US (1) US9150095B2 (ja)
EP (1) EP2896529B1 (ja)
JP (1) JP5839130B2 (ja)
CN (1) CN104703830B (ja)
WO (1) WO2014041961A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521372A (ja) * 2015-05-26 2018-08-02 グーグル エルエルシー 没入型メディアにおいてアプリケーションおよびアクティビティに入ったり出たりするための多次元グラフィック方法
JP2021030810A (ja) * 2019-08-21 2021-03-01 マツダ株式会社 電気駆動車両の冷却装置
JP2021030811A (ja) * 2019-08-21 2021-03-01 マツダ株式会社 電気駆動車両の冷却装置
CN115027568A (zh) * 2022-05-23 2022-09-09 东风柳州汽车有限公司 一种混合动力汽车机舱结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6454142B2 (ja) * 2014-11-28 2019-01-16 日立建機株式会社 建設機械
US9283837B1 (en) * 2015-01-28 2016-03-15 Atieva, Inc. Compliantly mounted motor assembly utilizing dual levels of vibration isolation
WO2016143214A1 (ja) * 2015-03-06 2016-09-15 本田技研工業株式会社 車両用高圧系機器ユニット、車両用バッテリユニット及び車両
JP6656949B2 (ja) * 2016-02-29 2020-03-04 三菱重工サーマルシステムズ株式会社 車両用空調装置
FR3048929B1 (fr) * 2016-03-15 2020-03-27 Institut Vedecom Vehicule a moteur electrique commande par un module de puissance et systeme de refroidissement d’un tel module de puissance
FR3049512B1 (fr) * 2016-04-01 2019-07-19 Peugeot Citroen Automobiles Sa Ensemble de refroidissement pour vehicule automobile avec cadre muni d’elements de decouplage vibratoire exterieurs
CN109080403B (zh) * 2018-06-22 2020-05-26 湖北泰和电气有限公司 一种车载空调
JP6688851B2 (ja) * 2018-09-12 2020-04-28 本田技研工業株式会社 車両
FR3095390B1 (fr) * 2019-04-26 2021-04-02 Valeo Systemes Thermiques Ensemble de refroidissement pour un véhicule automobile
JP7238629B2 (ja) * 2019-06-25 2023-03-14 スズキ株式会社 車両の前部構造
CN117006735A (zh) * 2019-10-22 2023-11-07 青岛海信日立空调系统有限公司 一种一体式空气源热泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199964A (ja) * 1997-09-29 1999-04-13 Aisin Seiki Co Ltd 車両フロントエンドモジュール構造
JP2003237628A (ja) * 2002-02-15 2003-08-27 Denso Corp 車両のフロントエンド構造
JP2005035436A (ja) * 2003-07-16 2005-02-10 Calsonic Kansei Corp 自動車の車体前部構造
JP2005186911A (ja) * 2003-12-26 2005-07-14 Nissan Motor Co Ltd ラジエータ冷却ファン取付構造
JP2009262876A (ja) 2008-04-28 2009-11-12 Toyoda Iron Works Co Ltd 車両用冷却部品支持装置
JP2012066702A (ja) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd 冷却水循環用電動ポンプの取付構造

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784223A (en) * 1980-11-13 1982-05-26 Nissan Motor Co Ltd Vibration absorber of vehicle
JPS616020A (ja) * 1984-06-19 1986-01-11 Nissan Motor Co Ltd 自動車の振動吸収装置
US4821828A (en) * 1987-06-08 1989-04-18 General Motors Corporation Dynamic absorber for motor vehicle
US5287940A (en) * 1990-09-14 1994-02-22 Mazda Motor Corporation Radiator support arrangement and apparatus for a vehicle
JP3006920B2 (ja) * 1990-09-14 2000-02-07 マツダ株式会社 車両のラジエータ支持装置
JPH05301527A (ja) * 1992-04-27 1993-11-16 Mazda Motor Corp エンジンの冷却ファン支持構造
GB2297066B (en) * 1995-01-17 1997-04-02 Suzuki Motor Co Vehicular vibration isolating apparatus
EP0838651B1 (en) * 1996-10-22 2002-07-03 Denso Corporation Heat exchanger for vehicle
US6298906B1 (en) * 1997-12-02 2001-10-09 Caterpillar Inc. Apparatus for securing and sealing a radiator to an engine cowling of a work machine
US6098702A (en) * 1997-12-18 2000-08-08 Alliedsignal Inc. Vibration damper for engine cooling module
DE10233626B4 (de) * 2001-07-25 2019-03-21 Denso Corporation Frontend-Aufbau für ein Fahrzeug
KR100435729B1 (ko) * 2001-08-22 2004-06-12 현대자동차주식회사 라디에이터를 이용한 차량의 진동 감쇠장치
US7451843B2 (en) * 2003-06-16 2008-11-18 Kobelco Construction Machinery Co., Ltd. Construction machine
US20070120301A1 (en) * 2005-11-30 2007-05-31 Valeo, Inc. Multi-storage isolator with conical cross section
JP4830700B2 (ja) * 2006-04-21 2011-12-07 株式会社デンソー クーリングモジュール
US8215432B2 (en) * 2008-05-09 2012-07-10 GM Global Technology Operations LLC Battery thermal system for vehicle
JP2013133031A (ja) * 2011-12-27 2013-07-08 Honda Motor Co Ltd 車体前部構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199964A (ja) * 1997-09-29 1999-04-13 Aisin Seiki Co Ltd 車両フロントエンドモジュール構造
JP2003237628A (ja) * 2002-02-15 2003-08-27 Denso Corp 車両のフロントエンド構造
JP2005035436A (ja) * 2003-07-16 2005-02-10 Calsonic Kansei Corp 自動車の車体前部構造
JP2005186911A (ja) * 2003-12-26 2005-07-14 Nissan Motor Co Ltd ラジエータ冷却ファン取付構造
JP2009262876A (ja) 2008-04-28 2009-11-12 Toyoda Iron Works Co Ltd 車両用冷却部品支持装置
JP2012066702A (ja) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd 冷却水循環用電動ポンプの取付構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2896529A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521372A (ja) * 2015-05-26 2018-08-02 グーグル エルエルシー 没入型メディアにおいてアプリケーションおよびアクティビティに入ったり出たりするための多次元グラフィック方法
JP2021030810A (ja) * 2019-08-21 2021-03-01 マツダ株式会社 電気駆動車両の冷却装置
JP2021030811A (ja) * 2019-08-21 2021-03-01 マツダ株式会社 電気駆動車両の冷却装置
JP7379928B2 (ja) 2019-08-21 2023-11-15 マツダ株式会社 電気駆動車両の冷却装置
JP7415370B2 (ja) 2019-08-21 2024-01-17 マツダ株式会社 電気駆動車両の冷却装置
CN115027568A (zh) * 2022-05-23 2022-09-09 东风柳州汽车有限公司 一种混合动力汽车机舱结构
CN115027568B (zh) * 2022-05-23 2023-12-15 东风柳州汽车有限公司 一种混合动力汽车机舱结构

Also Published As

Publication number Publication date
EP2896529A4 (en) 2015-09-23
EP2896529B1 (en) 2016-05-11
CN104703830A (zh) 2015-06-10
US9150095B2 (en) 2015-10-06
JP5839130B2 (ja) 2016-01-06
EP2896529A1 (en) 2015-07-22
CN104703830B (zh) 2017-05-03
JPWO2014041961A1 (ja) 2016-08-18
US20150224869A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP5839130B2 (ja) フロントエンドモジュールの防振構造
CN110171282B (zh) 车辆的冷却装置
JP6728599B2 (ja) 防振装置
JP5891971B2 (ja) 圧縮機の取付け構造
JP2006002631A (ja) 熱交換装置およびこれを搭載するハイブリッド車。
JP2005324771A (ja) バッテリ冷却システム
JP4323307B2 (ja) 車両用熱交換器システム
JP2012156010A (ja) 電池冷却構造
KR101680825B1 (ko) 자동차용 프론트 엔드 모듈
JP6104256B2 (ja) ヒートポンプ式空調装置
KR200477303Y1 (ko) 차량용 무시동 에어컨
EP2072299B1 (en) Transport refrigeration apparatus
KR101858692B1 (ko) 전기자동차
JP5773081B2 (ja) 車両用空調装置
JP5724571B2 (ja) 車体構造
JP3684742B2 (ja) 車両用空気調和装置
JP5173679B2 (ja) アンダーマウント式輸送用冷凍ユニット
JP2005297684A (ja) 蒸発圧縮式冷凍機
JP3357207B2 (ja) 自動車用空気調和装置の防振構造
JP2012091660A (ja) 車両用空調システム
JP6413856B2 (ja) 電気自動車
JP5535455B2 (ja) サブエンジン式輸送用冷凍装置
JP2014113976A (ja) 冷却風導入構造
JP2002316529A (ja) 自動車用空調装置
JP2017032220A (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535467

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14425337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013837220

Country of ref document: EP