WO2014040989A2 - Verfahren zum erzeugen von stahl - Google Patents

Verfahren zum erzeugen von stahl Download PDF

Info

Publication number
WO2014040989A2
WO2014040989A2 PCT/EP2013/068726 EP2013068726W WO2014040989A2 WO 2014040989 A2 WO2014040989 A2 WO 2014040989A2 EP 2013068726 W EP2013068726 W EP 2013068726W WO 2014040989 A2 WO2014040989 A2 WO 2014040989A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
carbon
energy
gas
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2013/068726
Other languages
English (en)
French (fr)
Other versions
WO2014040989A3 (de
Inventor
Peter Schwab
Wolfgang Eder
Thomas BÜRGLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50277660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014040989(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE201210109284 external-priority patent/DE102012109284A1/de
Priority claimed from DE102013104002.0A external-priority patent/DE102013104002A1/de
Priority to EP13765312.7A priority Critical patent/EP2895631B1/de
Priority to JP2015531540A priority patent/JP2015529751A/ja
Priority to US14/428,206 priority patent/US20150259760A1/en
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Priority to CN201380047304.7A priority patent/CN104662176A/zh
Priority to ES13765312.7T priority patent/ES2689779T3/es
Priority to KR1020157009624A priority patent/KR20150063075A/ko
Publication of WO2014040989A2 publication Critical patent/WO2014040989A2/de
Publication of WO2014040989A3 publication Critical patent/WO2014040989A3/de
Anticipated expiration legal-status Critical
Priority to US15/635,892 priority patent/US20170298461A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/004Making spongy iron or liquid steel, by direct processes in a continuous way by reduction from ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to a method for producing steel according to the preamble of claim 1 and a and method for storing discontinuous energy.
  • smelting reduction processes in which the melting process, the reduction gas production and the direct reduction are combined with one another, for example processes of the brands COREX, FINEX, HiSmelt or HiSarna.
  • Iron sponge in the form of HDRI, CDRI or HBI are usually further processed in electric furnace, which is extremely energy-intensive.
  • the direct reduction is carried out by means of hydrogen and carbon monoxide from methane and possibly Synthe ⁇ se gas.
  • methane is first reacted according to the following reaction: CH 4 + C0 2 2C0 + 2H and the iron oxide reacts with the reducing gas beispielswei ⁇ se for:
  • This process thus also emits CO 2 .
  • WO 2011/018124 discloses methods and systems for providing storable and transportable carbon-based energy carriers using carbon dioxide and using regenerative electrical energy and fossil fuels.
  • a proportion of regeneratively produced methanol and a proportion of methanol provided by means of non-regenerative electrical energy and / or is produced by direct reduction and / or partial oxidation and / or reforming.
  • the object of the invention is to provide a method by which pig iron, in particular steel, can be produced C02-neutral on an industrial scale.
  • the steel production is at least partially, preferably completely operated with regenerative energy, where ⁇ on the one hand a direct reduction process is operated and on the other hand, the intermediate product obtained in the direct reduction process in the example electric arc furnace further processed accordingly.
  • ⁇ on the one hand a direct reduction process is operated and on the other hand, the intermediate product obtained in the direct reduction process in the example electric arc furnace further processed accordingly.
  • use in the LD process and / or blast furnace would also be possible.
  • a particular advantage is that the intermediate product generated by means of regenerative energy can be stored until it is further processed, which means that storage of regenerative energy is possible with the method according to the invention. Exactly this storage of regenerative energy has been a very big problem so far, since in particular electrical energy, which is obtained from wind or sun, depends on climatic conditions, which are not always the same. Hydropower generated electrical energy is not always available.
  • the inventive method provides to use these generated from wind, water or solar energy electric energy for generating hydrogen from water by way of electrolysis.
  • a direct reduction plant is operated in the - be reduced stor ⁇ -refined ores - also preferable with such generated electric energy.
  • the thus obtained intermediate ⁇ product is an ideal memory of this renewable energy is and can be stored until its further processing and any form of transport accessible to a further processing device, in particular when it is needed there.
  • this intermediate can then be produced at the place of its formation in large quantities which exceed the current demand, if the corresponding electrical energy is sufficiently available. If this energy is not available, sufficient quantities of the intermediate and thus of the energy are available to meet the demand.
  • the intermediate product can also be used in the blast furnace or LD process.
  • the hydrogen from the regenerative processes with carbon or hydrogen-containing gas streams such as CH4, COG, syngas, etc.
  • carbon or hydrogen-containing gas streams such as CH4, COG, syngas, etc.
  • the ratio Zvi ⁇ rule hydrogen from the regenerative processes substance- to carbon- and hydrogen-containing gas streams can be continuously varied depending on availability. For example, when there is a great deal of hydrogen, almost 100% of this is used for direct reduction. The remainder is the minimum necessary carbon or hydrogen-containing gas stream for adjusting the carbon content. But .In case of need can also pure carbon- and hydrogen-containing gas streams ⁇ (such as natural gas, biogas and gas from pyrolysis for ⁇ renewable resources) to be changed.
  • the method is operated so that by means of regenerative energy in their presence as much hydrogen is generated, as it allows the existing energy and to use this hydrogen for the direct reduction.
  • a carbon- and hydrogen-containing gas streams and gas streams from the biogas production and pyrolysis of renewable resources come even ⁇ course in question.
  • This buffering of the hydrogen can be used, for example, in a gasometer, and the adjustment of the contents of carbon- or hydrogen-containing gas streams can take place via a forecasting control.
  • This prediction control can measure the predicted attack / generation amount of hydrogen and regenerative energy, further but also, for example, weather forecasts for the generation ⁇ amount of regenerative energy to be able to estimate.
  • forecast forecasts from other external consumers can be included in this forecasting control so that the generated data can be used electrical energy used from renewable sources efficiently in the host ⁇ economically sensible.
  • the prevailing temperatures of the gas stream are set by heating by means of, for example, reformer, heater or partial oxidation to 450 ° C to 1200 ° C, preferably 600 ° C to 1200 ° C in particular 700 ° C to 900 ° C and then introduced into the direct reduction process, to perform a chemical reaction there.
  • the gas stream which leaves the direct reduction process can also be recycled into the process as a gas stream containing carbon or hydrogen.
  • the resulting possible intermediates according to the invention are HBI, HDRI or CDRI.
  • overpressures of 0 bar to 15 bar are set.
  • overpressures of about 1.5 bar are preferred in the MIDREX process and about 9 bar in Energiron.
  • the carbon content can ideally be adjusted to 0.0005% to 6.3%, preferably 1% to 3% and directly as C or Fe 3 C im Intermediate be incorporated.
  • Such Zvi is ⁇ rule product ideally set in the carbon content and are particularly suitable for further processing as it contributes to not ⁇ agile carbon content for the metallurgical process.
  • FIG. 1 shows the inventive method in a beispielhaf ⁇ th embodiment (electric arc furnace) at a glance;
  • FIG. 2 shows an overview of the method according to the invention in a second exemplary embodiment (LD method);
  • the reduction of predominantly oxidi ⁇ rule iron carrier via hydrogen and optionally carbon ⁇ fabric handles either CO2 from industrial processes, which can not avoid a CC> 2 emissions, or methane, in particular from regenerative processes such as the production of biogas.
  • the iron ore reduction may be known to take place in three possible answer ⁇ th:
  • Iron ore reduction (hematite, iron (I I)) oxide is carried out by:
  • the intermediate product obtained in the direct reduction process can be so-called DRI (direct reduced iron) or HBI (hot briquetted iron), which according to FIG Electric arc furnace can be smelted to steel if necessary with the addition of scrap.
  • DRI direct reduced iron
  • HBI hot briquetted iron
  • FIG. 1 furthermore shows that HDRI or CDRI can also be fed directly into the electric furnace without the "detour" of HBI production.
  • HBI may also be used in other metallurgical processes other than the electric arc furnace such as e.g. in the blast furnace process or as a scrap set in the LD process.
  • CDRI or HDRI can also be fed directly to the blast furnace process or LD process.
  • these can be stored in the form of hydrogen, if it is present in excess. This storage can be done for example in a gasometer. Such a memory is then used in the event of fluctuations. Short term Swan ⁇ effects can be predicted, for example, occur in solar systems at night or unpredictable such as wind strength fluctuations in wind turbines.
  • Another advantage of the invention lies in the spatial decoupling of the places of production of regenerative energy and the use of this energy. For example, solar plants tend to be built in sun-warmed, warmer areas with a lot of space, whereas steelworks are often found near rivers or seas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Furnace Details (AREA)

Description

Verfahren zum Erzeugen von Stahl
Die Erfindung betrifft ein Verfahren zum Erzeugen von Stahl nach dem Oberbegriff des Anspruchs 1 und ein und Verfahren zum Speichern diskontinuierlich anfallender Energie.
Die Stahlerzeugung wird zur Zeit auf unterschiedliche Arten vorgenommen. Die klassische Stahlerzeugung erfolgt über die Erzeugung von Roheisen im Hochofenprozess aus vorwiegend oxi¬ dischen Eisenträgern. Bei diesem Verfahren werden ca. 450 bis 600 kg Reduktionsmittel, zumeist Koks, pro Tonne Roheisen ver¬ braucht, wobei dieses Verfahren sowohl bei der Erzeugung von Koks aus Kohle als auch bei der Erzeugung des Roheisens ganz erhebliche Mengen CO2 freisetzt. Zudem sind sogenannte "Direkt- reduktionsverfahren" bekannt (Verfahren entsprechend der Marken, MIDREX, FINMET, ENERGIRON/HYL , etc . ) , bei denen aus vorwiegend oxidischen Eisenträgern der Eisenschwamm in der Form von HDRI (Hot Direct Reduced Iron) , CDRI (Cold Direct Reduced Iron) bzw. sogenanntes HBI (hot briquetted iron) erzeugt wird.
Zudem gibt es noch sogenannte Schmelzreduktionsverfahren, bei denen der Schmelzprozess, die Reduktionsgaserzeugung und die Direktreduktion miteinander kombiniert werden, beispielsweise Verfahren der Marken COREX, FINEX, HiSmelt oder HiSarna.
Eisenschwamm in der Form von HDRI , CDRI bzw. HBI werden üblicherweise in Elektroofen weiter verarbeitet, was außerordentlich energieintensiv ist. Die Direktreduktion wird mittels Wasserstoff und Kohlenstoffmonoxid aus Methan und ggf. Synthe¬ segas vorgenommen. Beispielsweise wird beim sogenannten MIDREX-Verfahren zunächst Methan entsprechend der folgenden Reaktion umgesetzt: CH4 + C02 2C0 + 2H und das Eisenoxid reagiert mit dem Reduktionsgas beispielswei¬ se nach:
Fe203 + 6CO(H2) 2Fe + 3C02 (H20) + 3 CO(H2).
Auch dieses Verfahren stößt somit CO2 aus.
Aus der DE 198 53 747 Cl ist ein kombinierter Prozess zur Direktreduktion von Feinerzen bekannt, wobei die Reduktion mit Wasserstoff oder einem anderen Reduktionsgas in einer liegenden Wirbelschicht erfolgen soll.
Aus der DE 197 14 512 AI ist eine Kraftwerksanlage mit Solar¬ gewinnung, Elektrolyseeinrichtung und einem industriellen Me- tallurgieprozess bekannt, wobei dieser industrielle Prozess entweder die stromintensive Metallherstellung von Aluminium aus Bauxit betrifft oder ein Metallurgieprozess mit Wasser¬ stoff als Reduktionsmittel bei der Herstellung von nichtheißen Metallen wie Wolfram, Molybdän, Nickel oder dergleichen oder ein Metallurgieprozess mit Wasserstoff als Reduktionsmittel unter Anwendung des Direktreduktionsverfahren bei der Herstellung von Eisenmetallen sein soll. Dies wird in dieser Schrift jedoch nicht weiter ausgeführt.
Aus der WO 2011/018124 sind Verfahren und Anlagen zum Bereitstellen speicherbaren und transportablen kohlenstoffbasierter Energieträger unter Einsatz von Kohlendioxid und unter Einsatz von regenerativer elektrischer Energie und von fossilen Brennstoffen bekannt. Hierbei werden ein Anteil von regenerativ erzeugtem Methanol und ein Anteil von Methanol bereitgestellt, der mittels nicht regenerativer elektrischer Energie und/oder mittels Direktreduktion und/oder über partielle Oxidation und/oder Reformierung erzeugt wird.
Bei allen bislang bekannten Verfahren zur Stahlherstellung ist von Nachteil, dass ein nachhaltiges, und umfassendes Herstel¬ lungskonzept auf Basis regenerativer Ressourcen für die Stahlherstellung im industriellen Maßstab fehlt.
Aufgabe der Erfindung ist es ein Verfahren zu schaffen, mit dem Roheisen insbesondere Stahl C02-neutral im industriellen Maßstab hergestellt werden kann.
Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unter¬ ansprüchen gekennzeichnet.
Erfindungsgemäß wird die Stahlherstellung zumindest teilweise, bevorzugt vollständig mit regenerativer Energie betrieben, wo¬ bei hierbei einerseits ein Direktreduktionsverfahren betrieben wird und andererseits das im Direktreduktionsverfahren gewonnene Zwischenprodukt im beispielsweise Elektrolichtbogenofen entsprechend weiter verarbeitet wird. Jedoch wäre auch ein Einsatz im LD-Verfahren und/oder Hochofen möglich. Ein besonderer Vorteil ist, dass das mittels regenerativer Energie er¬ zeugte Zwischenprodukt bis zu seiner Weiterverarbeitung lagerbar ist, was bedeutet, dass mit dem erfindungsgemäßen Verfahren eine Speicherung regenerativer Energie möglich ist. Genau diese Speicherung regenerativer Energie stellt bislang ein sehr großes Problem dar, da insbesondere elektrische Energie, welche aus Wind oder Sonne gewonnen wird, von klimatischen Bedingungen abhängig ist, die nicht immer gleich sind. Auch aus Wasserkraft gewonnene elektrische Energie steht nicht immer zur Verfügung. Oftmals liegen die Verbraucher nicht an denselben Orten der Erzeugung von regenerativer Energie. Dieses Problem der Speicherung und des Transports der gespeicherten Energie wird mittels der Erfindung gelöst, da das erfindungs¬ gemäß erzeugte Zwischenprodukt in kleinen Einheiten in belie¬ biger Menge beispielsweise durch Schiffstransport effizient an beliebige Orte transportiert werden kann.
Das erfindungsgemäße Verfahren sieht vor, diese aus Wind-, Wasser- oder Sonnenenergie erzeugte elektrische Energie dafür zu nutzen, Wasserstoff aus Wasser im Wege der Elektrolyse zu erzeugen. Vorzugsweise am Ort der Erzeugung des Wasserstoffs wird eine Direktreduktionsanlage betrieben, in der - ebenfalls bevorzugt mit derart erzeugter elektrischer Energie - aufbe¬ reitete Eisenerze reduziert werden. Das so gewonnene Zwischen¬ produktstellt einen idealen Speicher dieser regenerativen Energie dar und kann bis zu seiner Weiterverarbeitung gelagert werden und ist jeder Form des Transports zu einer weiterverarbeitenden Einrichtung zugänglich, insbesondere wenn es dort benötigt wird. Insbesondere kann dieses Zwischenprodukt am Ort seiner Entstehung dann in großen Mengen, die den momentanen Bedarf übersteigen, hergestellt werden, wenn die entsprechende elektrische Energie ausreichend zur Verfügung steht. Steht diese Energie nicht zur Verfügung, sind ausreichende Mengen des Zwischenprodukts und damit auch der Energie vorhanden, um den Bedarf erfüllen zu können.
Durch das Betreiben eines entsprechenden Elektrolichtbogens , ebenfalls vorzugsweise insbesondere vollständig mit Energie aus Wind-, Wasser- oder Solarenergie, gelingt es, eine CO2- freie Stahlerzeugung zu verwirklichen und zudem regenerative Energie zu speichern. Alternativ kann das Zwischenprodukt auch im Hochofen bzw. LD-Verfahren eingesetzt werden.
Erfindungsgemäß kann der Wasserstoff aus den regenerativen Prozessen mit kohlenstoff- bzw. Wasserstoffhältigen Gasströmen wie beispielsweise CH4, COG, Synthesegas usw., , in einer Di- rektreduktionsanlage eingesetzt werden. Das Verhältnis zwi¬ schen Wasserstoff aus den regenerativen Prozessen zu kohlen- stoff- bzw. Wasserstoffhältigen Gasströmen kann je nach Verfügbarkeit kontinuierlich variiert werden. Beispielsweise wird bei Vorliegen von sehr viel Wasserstoff dieses zu fast 100 % für die Direktreduktion verwendet. Den Rest bildet der minimal notwendige kohlenstoff- bzw. Wasserstoffhältigen Gasstrom für die Einstellung des Kohlenstoffanteils . .Im Bedarfsfall kann aber auch auf reine kohlenstoff- bzw. Wasserstoffhältige Gas¬ ströme (beispielsweise Erdgas, Biogas, Gas aus Pyrolyse nach¬ wachsender Rohstoffe) umgestellt werden.
Bevorzugt wird jedoch das Verfahren so betrieben, dass mittels regenerativer Energie bei deren Vorhandensein so viel Wasserstoff erzeugt wird, wie es die vorhandene Energie zulässt und diesen Wasserstoff für die Direktreduktion zu verwenden. Als kohlenstoff- bzw. Wasserstoffhältige Gasströme kommen selbst¬ verständlich auch Gasströme aus der Biogaserzeugung und der Pyrolyse nachwachsender Rohstoffe in Frage.
Überschüssiger Wasserstoff, welche nicht unmittelbar verbraucht werden kann, kann zwischengespeichert werden.
Diese Zwischenspeicherung des Wasserstoffs kann beispielsweise in einem Gasometer verwendet werden und die Einstellung der Gehalte an kohlenstoff- bzw. Wasserstoffhältigen Gasströmen kann über eine Prognosesteuerung erfolgen. Diese Prognosesteuerung kann den prognostizierten Anfall/Erzeugungsmenge von Wasserstoff bzw. regenerativer Energie messen, des Weiteren aber auch beispielsweise Wettervorhersagen um die Erzeugungs¬ menge an regenerativer Energie abschätzen zu können. Darüber hinaus kann in diese Prognosesteuerung auch Bedarfsvorhersagen anderer externer Verbraucher einfließen, damit die erzeugte elektrische Energie aus regenerativen Quellen optimal am wirt¬ schaftlich sinnvollsten eingesetzt wird.
Die hierbei herrschenden Temperaturen des Gasstromes werden durch Erwärmung mittels beispielsweise Reformer, Heater oder partielle Oxidation auf 450°C bis 1200°C, bevorzugt 600°C bis 1200°C insbesondere 700°C bis 900°C eingestellt und dann in den Direktreduktionsprozess eingeführt, um dort eine chemische Reaktion durchzuführen. Auch der Gasstrom, welcher den Direktreduktionsprozess verlässt, kann in den Prozess als kohlen- stoff- bzw. Wasserstoffhältiger Gasstromrückgeführt werden.
Die sich hieraus ergebenden möglichen erfindungsgemäßen Zwischenprodukte sind HBI, HDRI oder CDRI .
Hierbei werden Überdrücke von 0 bar bis 15 bar eingestellt.. Beispielsweise sind Überdrücke von ca. 1,5 bar beim MIDREX Verfahren und etwa 9 bar bei Energiron bevorzugt.
Bei der Vermischung des regenerativ erzeugten Wasserstoffs mit kohlenstoff- bzw. Wasserstoffhältigen Gasströmen, kann der Kohlenstoffgehalt idealerweise eingestellt werden, und zwar auf 0,0005 % bis 6,3 %, bevorzugt 1 % bis 3 % und direkt als C oder Fe3C im Zwischenprodukt eingebaut sein. Ein solches Zwi¬ schenprodukt ist im Kohlenstoffgehalt ideal eingestellt und besonders gut zur Weiterverarbeitung geeignet da es den not¬ wendigen Kohlenstoffgehalt für den metallurgischen Prozess beisteuert .
Die Erfindung wird beispielhaft anhand einer Zeichnung erläu¬ tert. Es zeigen hierbei:
Figur 1 das erfindungsgemäße Verfahren in einer beispielhaf¬ ten Ausführungsform (Elektrolichtbogenofen) im Überblick; Figur 2 das erfindungsgemäße Verfahren in einer zweiten beispielhaften Ausführungsform (LD-Verfahren) im Überblick;
Figur 3 die Stoff- und Energieströme schematisch.
Erfindungsgemäß erfolgt die Reduktion der vorwiegend oxidi¬ schen Eisenträger über Wasserstoff und gegebenenfalls Kohlen¬ stoffträger entweder CO2 aus industriellen Prozessen, die einen CC>2-Ausstoß nicht vermeiden können, oder Methan, insbesondere aus regenerativen Prozessen wie der Biogaserzeugung.
Die Eisenerzreduktion kann bekannterweise in drei Möglichkei¬ ten erfolgen:
„klassischer" Hochofen Prozess - Erzeugung Roheisen aus Eisenträgern und Reduktionsmittel, vor allem Koks
Direktreduktion - beispielsweise MIDREX - Eisenschwamm (HDRI, CDRI und HBI -,
Schmelzreduktion - Kombination von Schmelzprozess, Reduktionsgaserzeugung und Direktreduktion beispielsweise COREX oder FINEX.
Eisenerzreduktion (Hämatit, Eisen ( I I I ) -Oxid erfolgt durch:
Kohlenmonoxid: Fe203 + 6C0 -> 2Fe + 3C0 + 3C02
Wasserstoff: Fe203 + 6H2 -> 2Fe + 3H2 + 3H20
Das im Direktreduktionsverfahren gewonnene Zwischenprodukt kann hierbei sogenanntes DRI (direct reduced iron) oder HBI (hot briquetted iron) sein, welches entsprechend Figur 1 im Elektrolichtbogenofen ggf. unter Zugabe von Schrott zu Stahl verhüttet werden kann.
Figur 1 zeigt des Weiteren, dass HDRI bzw. CDRI auch ohne den „Umweg" der HBI-Herstellung direkt in den Elektroofen geführt werden können.
Erfindungsgemäß kann HBI auch in anderen metallurgischen Prozessen außer dem Elektrolichtbogenofen wie z.B. im Hochofen- prozess oder als Schrottersatz im LD-Verfahren eingesetzt werden .
Eine solche Ausführungsform wird in Figur 2 dargestellt. Hierbei kann noch erwähnt werden, dass CDRI bzw. HDRI auch direkt dem Hochofenprozess bzw. LD-Verfahren zugeführt werden können.
In einer bevorzugten Ausführungsform kann zum Ausgleich von kurzfristigen Schwankungen bei der Erzeugung der erneuerbaren Energie diese in Form von Wasserstoff gespeichert werden, wenn diese im Überschuss vorhanden ist.. Diese Speicherung kann beispielsweise in einem Gasometer erfolgen. Ein solcher Speicher wird dann bei Schwankungen genützt. Kurzfristige Schwan¬ kungen können vorhersehbar z.B. bei Solaranlagen in der Nacht oder unvorhersehbar wie z.B. Windstärkenschwankungen bei Windkraftanlagen auftreten.
Längerfristige Schwankungen welche unter anderem durch die unterschiedlichen Jahreszeiten sich ergeben können, können bevorzugt in die Energiespeicherung in Form von HBI erfolgen.
Auch kann im Bedarfsfall auf den Einsatz von kohlenstoff- bzw. Wasserstoffhältigen Gasen wie beispielsweise Erdgas zurückge¬ griffen werden und ein Einsatz von Wasserstoff optimalerweise nur bei bei ausreichend erneuerbarem Strom erfolgen. Vorteilhafterweise ergeben sich daraus die optimalen Einsatzmöglichkeiten der regenerativen Energie, da diese kontinuierlich je nach Verfügbarkeit der entsprechenden Energieform eingesetzt werden kann und die fehlende Restenergie durch andere Energieträger im Bedarfsfall ergänzt werden kann. Dadurch kann die Emission von C02 jederzeit auf das in diesem Moment mögli¬ che Minimum durch die Nutzung regenerativer Energiequellen reduziert werden.
Ein weiterer Vorteil der Erfindung liegt in der räumlichen Entkopplung der Orte der Herstellung der regenerativen Energie und der Nutzung dieser Energie. Beispielsweise werden Solaranlagen eher in sonnenbegünstigten, wärmeren Gegenden mit viel Platz errichtet, wohingegen Stahlwerke oftmals in der Nähe von Flüssen oder Meeren zu finden sind.
Da die produzierte Energie beispielsweise in HBI gespeichert vorliegt ist diese leicht und effizient zu transportieren.

Claims

Patentansprüche
Verfahren zum Erzeugen von Stahl, wobei Eisenerz mit Wasserstoff reduziert wird und das so gewonnene Zwischenpro¬ dukt aus reduziertem Eisenerz und gegebenenfalls Begleit¬ stoffen metallurgisch weiterverarbeitet wird, dadurch gekennzeichnet, dass der Wasserstoff durch Elektrolyse von Wasser erzeugt ist, wobei die zur Elektrolyse notwendige elektrische Energie regenerative Energie ist, welche aus Wasserkraft und/oder Windkraft und/oder Fotovoltaik oder anderen regenerativen Energieformen stammt und wobei der Wasserstoff und/oder das Zwischenprodukt unab¬ hängig von der momentanen Nachfrage immer dann erzeugt wird, wenn ausreichend regenerativ erzeugte elektrische Energie vorhanden ist, wobei
nicht nachgefragtes Zwischenprodukt bis zur Nachfra¬ ge/Verwendung gelagert wird, so dass auch die rege¬ nerative Energie, die darin gespeichert ist, gela¬ gert wird.
Verfahren zum Erzeugen von Stahl nach Anspruch 1, dadurch gekennzeichnet, dass bei der Reduktion des Eisenerzes zum Zwischenprodukt, dem Wasserstoff ein kohlenstoff- bzw. Wasserstoffhältiges Gas zugesetzt wird, um Kohlenstoff im Zwischenprodukt einzubauen.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das kohlenstoff- bzw. Was¬ serstoffhältige GasMethan oder andere Kohlenstoffträgergase aus industriellen Prozessen oder der Biogaserzeugung oder Pyrolyse oder Synthesegas aus Biomasse sind.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Wasserstoff zur Redukti¬ on mindestens so viel kohlenstoff- bzw. Wasserstoffhälti- ges Gaszugesetzt wird, dass der Kohlenstoffgehalt im Zwi¬ schenprodukt 0,0005 Masse-% bis 6,3 Masse-% bis vorzugs¬ weise 1 Masse-% bis 3 Masse-% beträgt.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass das Reduktionsgas aus Was¬ serstoff und gegebenenfalls Kohlenstoffträgergas mit 450°C bis 1200°C, bevorzugt 600°C bis 1200°C insbesondere 700°C bis 900°C in den Reduktionsprozess eingeführt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Überdruck bei der Reduktion zwischen 0 bar und 15 bar beträgt.
7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass das Verhältnis zwischen Was¬ serstoff aus regenerativer Herstellung und kohlenstoff- bzw. Wasserstoffhältigen Gasströmen nach Verfügbarkeit kontinuierlich variiert wird, wobei bei ausreichenden regenerativen Energie Wasserstoff aus der Erzeugung mit re¬ generativer Energie eingesetzt wird und beim Ausbleiben von regenerativer Energie auf rein kohlenstoff- bzw. Was¬ serstoffhältige Gasströme umgestellt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Einstellung der Gehalte an Wasserstoff und/oder kohlenstoff- bzw. Wasserstoffhäl¬ tigen Gasströmenim Gesamtgasstrom über eine Prognosesteuerung erfolgt, wobei mit der Prognosesteuerung der prognostizierte Anfall/Erzeugungsmenge von Wasserstoff und/oder regenerativer Energie und/oder kohlenstoff- bzw. Wasserstoffhältigen Gasströmenaus der Biogaserzeugung o- der der Pyrloyse von nachwachsenden Rohstoffen gemessen wird und/oder Wettervorhersagen in die Abschätzung regenerativer Energie einfließen, wobei auch Bedarfsvorhersa¬ gen anderer externer Verbraucher einfließen wodurch die elektrische Energie aus regenerativen Quellen optimal und am wirtschaftlichsten verteilt werden kann.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Gasstrom, der von der Direktreduktionsanlage als Abgas emittiert wird in den Prozess als kohlenstoff- bzw. Wasserstoffhältiger
Gasstrom geführt wird.
PCT/EP2013/068726 2012-09-14 2013-09-10 Verfahren zum erzeugen von stahl Ceased WO2014040989A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157009624A KR20150063075A (ko) 2012-09-14 2013-09-10 제강 방법
ES13765312.7T ES2689779T3 (es) 2012-09-14 2013-09-10 Procedimiento para producir acero con energía renovable
CN201380047304.7A CN104662176A (zh) 2012-09-14 2013-09-10 使用可再生能量用于生产钢铁的方法
JP2015531540A JP2015529751A (ja) 2012-09-14 2013-09-10 スチール製造方法
US14/428,206 US20150259760A1 (en) 2012-09-14 2013-09-10 Method for producing steel
EP13765312.7A EP2895631B1 (de) 2012-09-14 2013-09-10 Verfahren zum erzeugen von stahl mit regenerativer energie
US15/635,892 US20170298461A1 (en) 2012-09-14 2017-06-28 Method for producing steel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102012108631.1 2012-09-14
DE102012108631 2012-09-14
DE201210109284 DE102012109284A1 (de) 2012-09-14 2012-09-28 Verfahren zum Erzeugen von Stahl und Verfahren zum Speichern diskontinuierlich anfallender Energie
DE102012109284.2 2012-09-28
DE102013104002.0A DE102013104002A1 (de) 2013-04-19 2013-04-19 Verfahren zum Aufheizen von Prozessgasen für Direktreduktionsanlagen
DE102013104002.0 2013-04-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/428,206 A-371-Of-International US20150259760A1 (en) 2012-09-14 2013-09-10 Method for producing steel
US15/635,892 Continuation-In-Part US20170298461A1 (en) 2012-09-14 2017-06-28 Method for producing steel

Publications (2)

Publication Number Publication Date
WO2014040989A2 true WO2014040989A2 (de) 2014-03-20
WO2014040989A3 WO2014040989A3 (de) 2014-06-12

Family

ID=50277660

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2013/068727 Ceased WO2014040990A2 (de) 2012-09-14 2013-09-10 Verfahren zum speichern diskontinuierlich anfallender energie
PCT/EP2013/068743 Ceased WO2014040997A1 (de) 2012-09-14 2013-09-10 Verfahren zum aufheizen von prozessgasen für direktreduktionsanlagen
PCT/EP2013/068726 Ceased WO2014040989A2 (de) 2012-09-14 2013-09-10 Verfahren zum erzeugen von stahl

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP2013/068727 Ceased WO2014040990A2 (de) 2012-09-14 2013-09-10 Verfahren zum speichern diskontinuierlich anfallender energie
PCT/EP2013/068743 Ceased WO2014040997A1 (de) 2012-09-14 2013-09-10 Verfahren zum aufheizen von prozessgasen für direktreduktionsanlagen

Country Status (8)

Country Link
US (3) US20150259760A1 (de)
EP (3) EP2895629A1 (de)
JP (3) JP2015529751A (de)
KR (3) KR20150053809A (de)
CN (3) CN104662175A (de)
ES (2) ES2689779T3 (de)
FI (1) FI2895630T3 (de)
WO (3) WO2014040990A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3581663A1 (de) 2018-06-12 2019-12-18 Primetals Technologies Austria GmbH Herstellung von karburiertem eisenschwamm mittels wasserstoffbasierter direktreduktion
DE102020116425A1 (de) 2020-06-22 2021-12-23 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
DE102021128987A1 (de) 2021-11-08 2023-05-11 Rhm Rohstoff-Handelsgesellschaft Mbh Verfahren zum Umschmelzen von Eisenschwamm und/oder von heißgepresstem Eisenschwamm sowie von Schrott zu Rohstahl in einem Konverter
US12180074B2 (en) 2022-11-07 2024-12-31 Charm Industrial, Inc. Systems and methods for producing syngas from bio-oil
US12252753B2 (en) 2023-01-11 2025-03-18 Charm Industrial, Inc. Systems and methods for self-reduction of iron ore
US12398034B2 (en) 2022-11-07 2025-08-26 Charm Industrial, Inc. Systems and methods for producing syngas from bio-oil

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529751A (ja) 2012-09-14 2015-10-08 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh スチール製造方法
CN107058749A (zh) * 2016-12-27 2017-08-18 武汉钢铁有限公司 利用竖炉脱除瓦斯泥中锌与铅的装置及其方法
DE102018211104A1 (de) * 2018-07-05 2020-01-09 Thyssenkrupp Ag Verfahren und Einrichtung zum Betrieb einer Produktionsanlage
EP3670676A1 (de) * 2018-12-17 2020-06-24 Primetals Technologies Austria GmbH Verfahren und vorrichtung zur direktreduktion mit elektrisch aufgeheiztem reduktionsgas
CN111910036B (zh) * 2019-05-10 2022-05-03 中冶长天国际工程有限责任公司 一种利用生物质还原钒钛磁铁矿联产高品质合成气的方法
IT201900008019A1 (it) * 2019-06-04 2020-12-04 Tenova Spa Metodo e sistema per la produzione di acciaio o di materiali fusi contenenti ferro a emissioni ridotte
MY210257A (en) 2019-06-06 2025-09-05 Midrex Technologies Inc Direct reduction process utilizing hydrogen
US11952638B2 (en) * 2019-09-27 2024-04-09 Midrex Technologies, Inc. Direct reduction process utilizing hydrogen
SE2030072A1 (en) * 2020-03-10 2021-09-11 Hybrit Development Ab Methanol as hydrogen carier in H-DRI process
CA3179019A1 (en) * 2020-04-27 2021-11-04 Jfe Steel Corporation Steelmaking line and method of producing reduced iron
SE546651C2 (en) * 2020-05-04 2025-01-07 Hybrit Development Ab Process for the production of carburized sponge iron
CN116034209A (zh) 2020-05-20 2023-04-28 洛萨瓦拉-基鲁纳瓦拉公司 用于开采矿床的天井崩落方法以及开采基础设施、监测系统、机械、控制系统和用于其的数据介质
IT202000015472A1 (it) * 2020-06-26 2021-12-26 Danieli Off Mecc Impianto di riduzione diretta e relativo processo
EP3954786A1 (de) * 2020-08-12 2022-02-16 ThyssenKrupp Steel Europe AG Verfahren zur herstellung von rohstahl und aggregat zu dessen herstellung
SE546026C2 (en) 2020-10-22 2024-04-16 Luossavaara Kiirunavaara Ab Detonator support device and method of charging a blasthole
SE546002C2 (en) 2020-10-22 2024-04-09 Luossavaara Kiirunavaara Ab A blasting system and a method of explosive material charging
SE545336C2 (en) 2020-10-22 2023-07-04 Luossavaara Kiirunavaara Ab A charging device and a method of preparing the charging device with explosive material, an autonomous or semi-automatic vehicle for charging the charging device, and a data medium for storing a program for controlling charging of the charging device
CN114525518B (zh) * 2020-11-09 2023-01-31 中国石油大学(北京) 一种利用可再生能源电的方法
SE545311C2 (en) * 2020-11-25 2023-06-27 Hybrit Development Ab Process for the production of carburized sponge iron
SE546387C2 (en) * 2021-01-22 2024-10-22 Hybrit Development Ab Arrangement and process for charging iron ore to, and/or discharging sponge iron from, a direct reduction shaft
SE2150180A1 (en) * 2021-02-19 2022-08-20 Luossavaara Kiirunavaara Ab Metal oxide material reduction means
JP7533321B2 (ja) * 2021-03-31 2024-08-14 Jfeスチール株式会社 還元鉄の製造方法および還元鉄の製造装置
BR112023023873A2 (pt) * 2021-05-18 2024-01-30 Arcelormittal Método para fabricar ferro reduzido direto
KR20240007226A (ko) * 2021-05-18 2024-01-16 아르셀러미탈 직접 환원 철(dri)의 제조 방법 및 dri 제조 설비
JP2024522269A (ja) * 2021-05-18 2024-06-13 アルセロールミタル 直接還元鉄を製造するための方法及びdri製造設備
WO2022248915A1 (en) * 2021-05-26 2022-12-01 Arcelormittal A method for manufacturing direct reduced iron
SE545624C2 (en) * 2021-06-11 2023-11-14 Hybrit Development Ab Process for the production of carburized sponge iron
JP7428266B2 (ja) * 2021-06-14 2024-02-06 Jfeスチール株式会社 還元鉄の製造方法
SE545625C2 (en) 2021-07-07 2023-11-14 Hybrit Development Ab Iron briquettes
DE102021125784A1 (de) * 2021-10-05 2022-04-21 Thyssenkrupp Steel Europe Ag Verfahren zum Betreiben eines Stahlwerks
EP4163402B1 (de) * 2021-10-07 2025-08-27 ArcelorMittal Texas HBI LLC Induktionsheizung von dri
EP4194569B1 (de) * 2021-12-08 2024-07-31 Doosan Lentjes GmbH Verfahren zur handhabung von teilchenförmigem metall
WO2023111653A1 (en) * 2021-12-16 2023-06-22 Arcelormittal Steelmaking method and associated network of plants
DE102022201918A1 (de) 2022-02-24 2023-08-24 Sms Group Gmbh Hüttentechnische Produktionsanlage und Verfahren zu deren Betrieb
SE2250421A1 (en) 2022-04-01 2023-10-02 Luossavaara Kiirunavaara Ab Method for producing steel and sponge iron manufacturing process
EP4345175A1 (de) 2022-09-30 2024-04-03 HYBRIT Development AB Direktreduzierte eisenpellets und verwendung davon
EP4373209A1 (de) 2022-11-15 2024-05-22 Primetals Technologies Austria GmbH Elektrische aufheizung von gas
DE102023102815A1 (de) 2023-02-06 2024-08-08 Thyssenkrupp Steel Europe Ag Verfahren zur Direktreduktion von Eisenerz
EP4443352A1 (de) 2023-04-05 2024-10-09 Primetals Technologies Germany GmbH Kosteneffizienter betrieb einer dri-anlage und weiterer teilsysteme eines gesamtsystems
CN118240988A (zh) * 2024-04-19 2024-06-25 北京科技大学 一种耦合直接还原炼铁和熔融还原炼铁的低碳炼铁工艺
WO2025239594A1 (ko) * 2024-05-14 2025-11-20 주식회사 포스코 환원철 제조 설비 및 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714512A1 (de) 1997-04-08 1998-10-15 Tassilo Dipl Ing Pflanz Maritime Kraftwerksanlage mit Herstellungsprozeß zur Gewinnung, Speicherung und zum Verbrauch von regenerativer Energie
DE19853747C1 (de) 1998-11-21 2000-03-30 Ferrostaal Ag Kombinierter Prozeß zur Direktreduktion von Feinerzen
WO2011018124A1 (de) 2009-08-13 2011-02-17 Silicon Fire Ag Verfahren und anlage zum bereitstellen eines kohlenwasserstoff-basierten energieträgers unter einsatz eines anteils von regenerativ erzeugtem methanol und eines anteils von methanol, der mittels direktoxidation oder über partielle oxidation oder über reformierung erzeugt wird

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1167016A (en) 1913-12-24 1916-01-04 Emil Bruce Pratt Process of reducing iron ores and other metallic oxids to the metallic state.
GB657824A (en) * 1948-08-06 1951-09-26 Alfred Gordon Evans Robiette Improvements in and relating to the direct reduction of iron ores
US2609288A (en) * 1949-03-08 1952-09-02 Isobel E Stuart Process for the reduction of metal oxides by gases
GB846284A (en) * 1956-01-07 1960-08-31 Norsk Hydro Elektrisk Improvements in and relating to the production of sponge iron
US4054444A (en) * 1975-09-22 1977-10-18 Midrex Corporation Method for controlling the carbon content of directly reduced iron
US4046556A (en) * 1976-01-02 1977-09-06 Fierro Esponja, S.A. Direct gaseous reduction of oxidic metal ores with dual temperature cooling of the reduced product
DE2733785A1 (de) 1977-07-27 1979-02-08 Didier Eng Verfahren zur weiterverarbeitung von koksofengas
JPS5811484B2 (ja) * 1980-12-04 1983-03-03 三菱重工業株式会社 還元鉄の製造方法
DE3317701C2 (de) * 1983-05-16 1986-08-07 Hylsa S.A., Monterrey, N.L. Verfahren zum Betreiben eines Bewegtbett-Reduktionsreaktors mit vertikalem Schacht zum Reduzieren von Eisenerz zu Schwammeisen
DE3432090C2 (de) * 1984-08-28 1986-11-27 Korf Engineering GmbH, 4000 Düsseldorf Verfahren und Vorrichtung zur Direktreduktion von schwefelhaltigen Eisenerzen
JPS6220889A (ja) * 1985-07-18 1987-01-29 Terukazu Suzuki 自然力利用発電電解法による補助燃料製造とその利用法
US4834792A (en) * 1986-08-21 1989-05-30 Hylsa S.A. De C.V. Method for producing hot sponge iron by introducing hydrocarbon for carburizing into reduction zone
US4880459A (en) * 1988-06-27 1989-11-14 T.C., Inc. Method of and apparatus for reducing iron oxide to metallic iron
DE4037977A1 (de) * 1990-11-29 1992-06-11 Voest Alpine Ind Anlagen Verfahren zur herstellung von roheisen bzw. eisenschwamm
US5618032A (en) 1994-05-04 1997-04-08 Midrex International B.V. Rotterdam, Zurich Branch Shaft furnace for production of iron carbide
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
JP2727436B2 (ja) * 1995-05-31 1998-03-11 川崎重工業株式会社 鉄カーバイドの製造方法及び製造装置
AT403696B (de) * 1996-06-20 1998-04-27 Voest Alpine Ind Anlagen Einschmelzvergaser und anlage für die herstellung einer metallschmelze
AT404256B (de) * 1996-11-06 1998-10-27 Voest Alpine Ind Anlagen Verfahren zum herstellen von eisenschwamm
AUPP136398A0 (en) 1998-01-16 1998-02-05 Noonan, Gregory Joseph Sustainable steelmaking by efficient direct reduction of iron oxide and solid waste minimisation
DE19838368C1 (de) * 1998-08-24 1999-08-12 Ferrostaal Ag Verfahren und Vorrichtung zum Betreiben eines Reaktors zur Reduktion von Eisenerzen
IT1302811B1 (it) 1998-12-11 2000-09-29 Danieli & C Ohg Sp Procedimento e relativo apparato per la riduzione direttadi ossidi di ferro
IT1310535B1 (it) * 1999-02-18 2002-02-18 Danieli Off Mecc Procedimento di riduzione diretta di materiale metallicoe relativo impianto
EP1160337A1 (de) * 2000-05-31 2001-12-05 DANIELI & C. OFFICINE MECCANICHE S.p.A. Verfahren zur Vorwärmung und Aufkohlung von direkt-reduziertem Eisen (DRI) vor dessen Beschickung in einen Elektroofen
US6858953B2 (en) 2002-12-20 2005-02-22 Hawaiian Electric Company, Inc. Power control interface between a wind farm and a power transmission system
EP1606216A2 (de) 2003-02-06 2005-12-21 Ztek Corporation Mit erneuerbarer energie betriebenes wasserstoffreformierungssystem
US20040265158A1 (en) 2003-06-30 2004-12-30 Boyapati Krishna Rao Co-producing hydrogen and power by biomass gasification
DE102005060094A1 (de) 2005-12-15 2007-06-21 Linde Ag Stoffliche Nutzung von Biogas
DE102006048600B4 (de) * 2006-10-13 2012-03-29 Siemens Vai Metals Technologies Gmbh Verfahren und Vorrichtung zur Herstellung von geschmolzenem Material
DE102007014288A1 (de) 2007-03-19 2008-10-16 Sölch, Roland Verfahren zur CO2-neutralen Erzeugung von Ersatzenergie für den allgemeinen Energiebedarf
WO2009019159A2 (de) * 2007-08-09 2009-02-12 Werner Leonhard Unterstuetzung einer nachhaltigen energieversorgung mit einem kohlenstoff-kreislauf unter einsatz von regenerativ erzeugtem wasserstoff
DE102007045888B4 (de) * 2007-09-25 2010-04-15 Ea Energiearchitektur Gmbh Verfahren zur Umwandlung und Speicherung von regenerativer Energie
US20090249922A1 (en) * 2008-04-02 2009-10-08 Bristlecone International, Llc Process for the production of steel using a locally produced hydrogen as the reducing agent
JP5413821B2 (ja) * 2008-05-19 2014-02-12 公益財団法人若狭湾エネルギー研究センター 高速製錬可能な低温製鉄法
DE102008031437A1 (de) 2008-07-04 2010-01-07 Siemens Aktiengesellschaft Mobiler Energieträger und Energiespeicher
CN104032059B (zh) * 2008-09-23 2015-11-18 樊显理 氢冶金法
JP5311334B2 (ja) * 2008-11-21 2013-10-09 公益財団法人若狭湾エネルギー研究センター 海綿鉄を利用した水素製造方法
WO2010069685A1 (de) 2008-12-18 2010-06-24 Silicon Fire Ag Silizium oder elementare metalle als energieträger
US8915981B2 (en) * 2009-04-07 2014-12-23 Gas Technology Institute Method for producing methane from biomass
CN101638702B (zh) * 2009-08-14 2011-07-20 中冶赛迪工程技术股份有限公司 一种煤气作还原气的直接还原工艺出口煤气的回用方法
AU2010320483A1 (en) 2009-11-20 2012-07-12 Cri Ehf Storage of intermittent renewable energy as fuel using carbon containing feedstock
WO2011116141A2 (en) * 2010-03-18 2011-09-22 Sun Hydrogen, Inc. Clean steel production process using carbon-free renewable energy source
US8600572B2 (en) 2010-05-27 2013-12-03 International Business Machines Corporation Smarter-grid: method to forecast electric energy production and utilization subject to uncertain environmental variables
JP5593883B2 (ja) * 2010-07-02 2014-09-24 Jfeスチール株式会社 炭酸ガス排出量の削減方法
JP5510199B2 (ja) * 2010-08-31 2014-06-04 Jfeスチール株式会社 水素および酸素の製造・使用方法
EP2426236B1 (de) 2010-09-03 2013-01-02 Carbon-Clean Technologies AG Verfahren und Energieträger-Erzeugungsanlage zum kohlendioxidneutralen Ausgleich von Erzeugungsspitzen und Erzeugungstälern bei der Erzeugung von elektrischer Energie und/oder zur Erzeugung eines kohlenwasserstoffhaltigen Energieträgers
JP5594013B2 (ja) * 2010-09-21 2014-09-24 Jfeスチール株式会社 還元鉄製造方法
CN101975141B (zh) * 2010-10-20 2013-09-04 中电普瑞科技有限公司 一种海上风电功率/频率控制方法
CN102229429A (zh) 2011-03-28 2011-11-02 蚌埠鑫源石英材料有限公司 一种可再生能源单质硅储能循环系统
DE102011112093A1 (de) 2011-06-03 2012-12-06 Carbon-Clean Technologies Ag Verfahren und Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien, Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden
CN102424873B (zh) 2011-12-03 2013-01-30 石家庄市新华工业炉有限公司 一种太阳能还原炼铁的装置
JP2015529751A (ja) 2012-09-14 2015-10-08 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh スチール製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714512A1 (de) 1997-04-08 1998-10-15 Tassilo Dipl Ing Pflanz Maritime Kraftwerksanlage mit Herstellungsprozeß zur Gewinnung, Speicherung und zum Verbrauch von regenerativer Energie
DE19853747C1 (de) 1998-11-21 2000-03-30 Ferrostaal Ag Kombinierter Prozeß zur Direktreduktion von Feinerzen
WO2011018124A1 (de) 2009-08-13 2011-02-17 Silicon Fire Ag Verfahren und anlage zum bereitstellen eines kohlenwasserstoff-basierten energieträgers unter einsatz eines anteils von regenerativ erzeugtem methanol und eines anteils von methanol, der mittels direktoxidation oder über partielle oxidation oder über reformierung erzeugt wird

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3581663A1 (de) 2018-06-12 2019-12-18 Primetals Technologies Austria GmbH Herstellung von karburiertem eisenschwamm mittels wasserstoffbasierter direktreduktion
WO2019238720A1 (de) 2018-06-12 2019-12-19 Primetals Technologies Austria GmbH Herstellung von karburiertem eisenschwamm mittels wasserstoffbasierter direktreduktion
US12180554B2 (en) 2018-06-12 2024-12-31 Primetals Technologies Austria GmbH Method for carburization of HDRI produced in H2 based direct reduction process
DE102020116425A1 (de) 2020-06-22 2021-12-23 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
DE102021128987A1 (de) 2021-11-08 2023-05-11 Rhm Rohstoff-Handelsgesellschaft Mbh Verfahren zum Umschmelzen von Eisenschwamm und/oder von heißgepresstem Eisenschwamm sowie von Schrott zu Rohstahl in einem Konverter
US12180074B2 (en) 2022-11-07 2024-12-31 Charm Industrial, Inc. Systems and methods for producing syngas from bio-oil
US12398034B2 (en) 2022-11-07 2025-08-26 Charm Industrial, Inc. Systems and methods for producing syngas from bio-oil
US12252753B2 (en) 2023-01-11 2025-03-18 Charm Industrial, Inc. Systems and methods for self-reduction of iron ore

Also Published As

Publication number Publication date
CN104662176A (zh) 2015-05-27
US20150259760A1 (en) 2015-09-17
KR20150065728A (ko) 2015-06-15
EP2895630B1 (de) 2023-06-07
US20150259759A1 (en) 2015-09-17
EP2895631A2 (de) 2015-07-22
WO2014040997A1 (de) 2014-03-20
KR20150053809A (ko) 2015-05-18
KR20150063075A (ko) 2015-06-08
CN104662177A (zh) 2015-05-27
WO2014040990A2 (de) 2014-03-20
EP2895629A1 (de) 2015-07-22
FI2895630T3 (en) 2023-08-15
EP2895631B1 (de) 2018-07-18
ES2689779T3 (es) 2018-11-15
CN104662175A (zh) 2015-05-27
WO2014040990A3 (de) 2014-06-12
US20150329931A1 (en) 2015-11-19
JP2015529751A (ja) 2015-10-08
WO2014040989A3 (de) 2014-06-12
JP2015534604A (ja) 2015-12-03
ES2952386T3 (es) 2023-10-31
EP2895630A2 (de) 2015-07-22
JP2015532948A (ja) 2015-11-16

Similar Documents

Publication Publication Date Title
EP2895631B1 (de) Verfahren zum erzeugen von stahl mit regenerativer energie
DE102012109284A1 (de) Verfahren zum Erzeugen von Stahl und Verfahren zum Speichern diskontinuierlich anfallender Energie
AU2014361207B2 (en) Combined system for producing steel and method for operating the combined system
TWI660072B (zh) 用於在冶金設備之操作中減少二氧化碳排放之方法
AU2014361206B2 (en) Method for generating synthesis gas in conjunction with a smelting works
AU2014361209A1 (en) Plant combination for producing steel and method for operating the plant combination
US20160326605A1 (en) Combined system for producing steel and method for operating the combined system
DE102020116425A1 (de) Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
US20170298461A1 (en) Method for producing steel
Kumar Hydrogen-based Steel Making-The future?
Connelly Green magnetite will Be the future of steelmaking
DE102013104002A1 (de) Verfahren zum Aufheizen von Prozessgasen für Direktreduktionsanlagen
KR20240006634A (ko) 플랜트의 네트워크의 작동 방법
Salami-Jaji Life Cycle Assessment of the transition of steelmaking towards hydrogen-based operation
Suer Green Steel-Life cycle modeling of an integrated steel site: carbon footprint and energy transformation analysis of decarbonized steel production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765312

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015531540

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013765312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157009624

Country of ref document: KR

Kind code of ref document: A