US20090249922A1 - Process for the production of steel using a locally produced hydrogen as the reducing agent - Google Patents

Process for the production of steel using a locally produced hydrogen as the reducing agent Download PDF

Info

Publication number
US20090249922A1
US20090249922A1 US12/012,834 US1283408A US2009249922A1 US 20090249922 A1 US20090249922 A1 US 20090249922A1 US 1283408 A US1283408 A US 1283408A US 2009249922 A1 US2009249922 A1 US 2009249922A1
Authority
US
United States
Prior art keywords
reducing agent
steel
hydrogen
pat
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/012,834
Inventor
Tadeusz Adrian Soyland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristlecone International LLC
Original Assignee
Bristlecone International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristlecone International LLC filed Critical Bristlecone International LLC
Priority to US12/012,834 priority Critical patent/US20090249922A1/en
Publication of US20090249922A1 publication Critical patent/US20090249922A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/08Making spongy iron or liquid steel, by direct processes in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • This invention relates to a new process for producing steel from iron ore using a locally produced hydrogen, produced by electrolysing water using electricity from a wind power generator on the mine site, as the reducing agent.
  • the herein presented process involves the reduction of iron ore concentrate, in a rotary oven, using heated hydrogen as the reducing agent, said hydrogen being produced either at the mine site or some other advantageous location and being produced through the electrolysis of water, using power generated by a wind power generator.
  • the process first involves the mining and benification of the iron ore to a concentrate grade of from 69 to 73% iron (Fe).
  • the iron ore concentrate is first stored in water proof silos and later fed to a rotary oven as needed.
  • Wind power generators are then used to produce the electric energy needed to electrolyze the water into oxygen and hydrogen.
  • the hydrogen is first cooled and condensed into liquid hydrogen before it is placed into storage tanks.
  • the hydrogen is bled from the storage tanks, heated to about 1300 degrees C. and then fed into the rotary oven to reduce the iron ore concentrate.
  • the finished steel product in the form of sponge iron is first cooled and then placed in water tight storage facilities for storage.
  • FIG. 1 A first figure.
  • the Bristlecone process presents a new and very economic process for producing high quality steel from iron ore concentrate using hydrogen as the reducing agent, said hydrogen being produced on or near the mine site by using electric power produced from a wind power generator, to electrolyze water to hydrogen and oxygen.
  • Iron ore (magnetite or hematite or any other typical iron ore) is first mined ( 1 , 1 ) and then transported to the concentrator ( 1 , 2 ) where it is cleaned and concentrated to a grade of approximately 73% Fe (using magnetite). The concentrate is then fed into a rotary oven ( 1 , 3 ) or other applicable oven type, where it is reduced.
  • Wind power ( 1 , 4 ) is used to electrolyze water in an electrolysis unit ( 1 , 5 ) after which the hydrogen is moved to a cooling and condensing unit ( 1 , 6 ) where it is cooled and condensed for storage, after which it is moved to a storage tank ( 1 , 7 ).
  • Hydrogen is taken from the storage tank ( 1 , 7 ) as needed and moved to the heating unit ( 1 , 8 ) where it is heated to about 1300 degrees C., after which it is moved to the rotary oven ( 1 , 3 ) to be used as the reducing agent to produce high grade steel in a sponge iron (sponge steel) form.
  • the finished product is then cooled in the cooling unit ( 1 , 9 ) and then placed in a water proof storage unit ( 1 , 10 ) for storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)

Abstract

A manufacturing plant and process for producing steel from iron ore, at the iron ore mine, using a locally produced hydrogen as the reducing agent, where the hydrogen is produced through the electrolysis of water, using electricity generated by a wind power generator, thereby producing the cheapest possible reducing agent, on the mine site and producing steel with only oxygen and water vapor as the effluents from the process.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a new process for producing steel from iron ore using a locally produced hydrogen, produced by electrolysing water using electricity from a wind power generator on the mine site, as the reducing agent.
  • 2. Brief Description of the Prior Art
  • The production of iron and steel, using carbon in the form of coal or coke as the reducing agent, has been known for some 2000 years. The invention of fluidized bed reactors and rotary ovens in the twentieth century it became possible to utilize natural gas and eventually hydrogen as the reducing agent. The use of hydrogen was always limited to locations where a source of inexpensive hydrogen all ready existed.
  • The steel making industries developed over time at places near the sources of reducing agent, or in other words, at or near the coal mines.
  • The production of steel using hydrogen produced from the electrolysis of water utilizing power from a wind power generator has not been known.
  • SPECIFICATION The Bristlecone Process for Producing Steel
  • The herein presented process involves the reduction of iron ore concentrate, in a rotary oven, using heated hydrogen as the reducing agent, said hydrogen being produced either at the mine site or some other advantageous location and being produced through the electrolysis of water, using power generated by a wind power generator.
  • Depending on the location of the site and the availability of sufficient water and wind energy, this process could possibly produce the cheapest reducing agent and the cheapest steel product in the world. Most of the transportation used prior to end product would be eliminated.
  • The process first involves the mining and benification of the iron ore to a concentrate grade of from 69 to 73% iron (Fe). The iron ore concentrate is first stored in water proof silos and later fed to a rotary oven as needed.
  • Wind power generators are then used to produce the electric energy needed to electrolyze the water into oxygen and hydrogen. The hydrogen is first cooled and condensed into liquid hydrogen before it is placed into storage tanks.
  • The condensing of the hydrogen and storing it in tanks is a necessary step needed to give an even, constant and continuous process. Due to the inconsistency of wind energy, the steel making process would be uneven and inconsistent and hard to control due to the lack of a consistent supply of hydrogen. Another option would be the use of commercially available power during periods of low wind but this would undoubtedly be more expensive. Commercial power would however be kept available for emergencies.
  • The hydrogen is bled from the storage tanks, heated to about 1300 degrees C. and then fed into the rotary oven to reduce the iron ore concentrate.
  • After a processing time of about 2 hours the finished steel product, in the form of sponge iron is first cooled and then placed in water tight storage facilities for storage.
  • The effluents from the process, oxygen and water vapor, are released into the atmosphere after filtration to remove dust particles.
  • The application presents:
      • A process for producing steel in which hydrogen, produced through the electrolysis of water utilizing electric poser produced by a wind power generator, as the reducing agent.
      • A process in which the reducing agent (hydrogen) may be produced at the mine site.
      • A process in which the effluents from the steel making process are oxygen and water vapor.
      • A process in which the reducing agent (hydrogen) is cooled and condensed so that it may be stored, thereby giving a potential for continuos operation in spite of inconsistent winds.
      • A process in which the desired quality of the steel may be acquired using additives during the smelting and forming stages.
    FIG. 1 Illustration of the Bristlecone Steel Making Process
  • The Bristlecone process presents a new and very economic process for producing high quality steel from iron ore concentrate using hydrogen as the reducing agent, said hydrogen being produced on or near the mine site by using electric power produced from a wind power generator, to electrolyze water to hydrogen and oxygen.
  • Iron ore (magnetite or hematite or any other typical iron ore) is first mined (1,1) and then transported to the concentrator (1,2) where it is cleaned and concentrated to a grade of approximately 73% Fe (using magnetite). The concentrate is then fed into a rotary oven (1,3) or other applicable oven type, where it is reduced.
  • Wind power (1,4) is used to electrolyze water in an electrolysis unit (1,5) after which the hydrogen is moved to a cooling and condensing unit (1,6) where it is cooled and condensed for storage, after which it is moved to a storage tank (1,7).
  • Hydrogen is taken from the storage tank (1,7) as needed and moved to the heating unit (1,8) where it is heated to about 1300 degrees C., after which it is moved to the rotary oven (1,3) to be used as the reducing agent to produce high grade steel in a sponge iron (sponge steel) form.
  • The finished product is then cooled in the cooling unit (1,9) and then placed in a water proof storage unit (1,10) for storage.
  • PRIMARY ADVANTAGES
  • The primary advantages of the Bristlecone Steel Process are:
    • 1. It uses very inexpensive wind power to produce a very inexpensive reducing agent.
    • 2. The reducing agent may be produced at the mine site, drastically reducing transportation costs.
    • 3. The only effluents from the process are oxygen and water vapor.
    REFERENCES U.S. Patents
    • U.S. Pat. No. 2,389,133 Brassert, et. al. Nov. 20, 1945
    • U.S. Pat. No. 2,479,435 Vesterdal Aug. 16, 1949
    • U.S. Pat. No. 2,481,217 Hemminger Sep. 6, 1949
    • U.S. Pat. No. 2,671,765 McGrath, et. al. Mar. 9, 1954
    • U.S. Pat. No. 2,790,710 Cavanaugh Apr. 30, 1957
    • U.S. Pat. No. 2,900,246 Keith, et. al. Aug. 18, 1959
    • U.S. Pat. No. 960,441 Thomson June, 1910
    • U.S. Pat. No. 1,711,738 Madorsky May, 1929
    • U.S. Pat. No. 1,768,622 Madorsky July, 1930
    • U.S. Pat. No. 3,554,733 Columbo, et. al. January, 1971
    • U.S. Pat. No. 3,773,913 Downs November, 1973
    • U.S. Pat. No. 3,935,094 Bergeron, et. al. January, 1976
    • U.S. Pat. No. 3,295,956 Whaley
    • U.S. Pat. No. 3,346,365 Mayer, et. al.
    • U.S. Pat. No. 2,752,234 Shipley
    • U.S. Pat. No. 3,031,293 Meissner
    • U.S. Pat. No. 3,591,363 Campbell, et. al.
    • U.S. Pat. No. 3,649,245 Columbo, et. al.
    • U.S. Pat. No. 3,758,193 Viviani, et. al.
    • U.S. Pat. No. 3,167,429 Whitman, et. al.
    • U.S. Pat. No. 2,893,839 Schytil, et. al.
    • U.S. Pat. No. 3,347,087 Gray
    • U.S. Pat. No. 3,347,659 Volk
    • U.S. Pat. No. 3,148,572 Peras
    • U.S. Pat. No. 3,984,229 Gorling
    • U.S. Pat. No. 2,894,831 Old, et. al.
    • U.S. Pat. No. 3,761,244 Hoffert
    • U.S. Pat. No. 3,896,560 Knepper
    • U.S. Pat. No. 3,928,021 Matsuhara, et. al.
    • U.S. Pat. No. 4,082,545 Malgarini, et. al.
    • U.S. Pat. No. 3,864,465 Hoffert
    • U.S. Pat. No. 4,509,103 Prymak
    Norwegian Patents
    • 304,699 Soyland Jan. 2, 1999
    • 178,505 Soyland Oct. 4, 1996

Claims (5)

1. A process for producing steel in which hydrogen, produced through the electrolysis of water using electric power produced by a wind power generator, as the reducing agent.
2. A process according to claim 1 in which the reducing agent (hydrogen) may be produced at the mine site.
3. A process according to claim 1 in which the only effluents from the steel making process are oxygen and water vapor.
4. A process according to claim 1 in which the reducing agent (hydrogen) is cooled and condensed so that it can be stored, thereby giving a potential for continuous operation in spite of inconsistent winds.
5. A process according to claim 1 in which the desired quality of the steel may be acquired using additives during the smelting and forming stages. The primary product from the Bristlecone Steel Process being what is typically called a stainless melting base.
US12/012,834 2008-04-02 2008-04-02 Process for the production of steel using a locally produced hydrogen as the reducing agent Abandoned US20090249922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/012,834 US20090249922A1 (en) 2008-04-02 2008-04-02 Process for the production of steel using a locally produced hydrogen as the reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/012,834 US20090249922A1 (en) 2008-04-02 2008-04-02 Process for the production of steel using a locally produced hydrogen as the reducing agent

Publications (1)

Publication Number Publication Date
US20090249922A1 true US20090249922A1 (en) 2009-10-08

Family

ID=41132052

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/012,834 Abandoned US20090249922A1 (en) 2008-04-02 2008-04-02 Process for the production of steel using a locally produced hydrogen as the reducing agent

Country Status (1)

Country Link
US (1) US20090249922A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011116141A2 (en) * 2010-03-18 2011-09-22 Sun Hydrogen, Inc. Clean steel production process using carbon-free renewable energy source
GB2507246A (en) * 2012-07-31 2014-04-30 David Andrew Johnston Direct reduction of iron using a carbon monoxide-hydrogen mixture derived from carbon dioxide and water
WO2014040989A3 (en) * 2012-09-14 2014-06-12 Voestalpine Stahl Gmbh Method for producing steel using renewabel energy
US20160304978A1 (en) * 2013-12-12 2016-10-20 Thyssenkrupp Ag Combined system for producing steel and method for operating the combined system
US20160348195A1 (en) * 2013-12-12 2016-12-01 Thyssenkrupp Ag Plant combination for producing steel and method for operating the plant combination
WO2023276739A1 (en) * 2021-06-30 2023-01-05 Jfe条鋼株式会社 Method for producing steel product, steel product, and information processing method
WO2023151242A1 (en) * 2022-02-11 2023-08-17 中钢设备有限公司 Metal smelting device and steelmaking production line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011116141A3 (en) * 2010-03-18 2012-01-12 Sun Hydrogen, Inc. Clean steel production process using carbon-free renewable energy source
WO2011116141A2 (en) * 2010-03-18 2011-09-22 Sun Hydrogen, Inc. Clean steel production process using carbon-free renewable energy source
GB2507246A (en) * 2012-07-31 2014-04-30 David Andrew Johnston Direct reduction of iron using a carbon monoxide-hydrogen mixture derived from carbon dioxide and water
EP2895631B1 (en) 2012-09-14 2018-07-18 Voestalpine Stahl GmbH Method for producing steel with regenerative energy
WO2014040989A3 (en) * 2012-09-14 2014-06-12 Voestalpine Stahl Gmbh Method for producing steel using renewabel energy
WO2014040990A3 (en) * 2012-09-14 2014-06-12 Voestalpine Stahl Gmbh Method for storing discontinuously obtained energy during the reduction of iron ore
CN104662177A (en) * 2012-09-14 2015-05-27 沃斯特阿尔派因钢铁有限责任公司 Method for storing discontinuously obtained energy
JP2015529751A (en) * 2012-09-14 2015-10-08 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh Steel manufacturing method
JP2015534604A (en) * 2012-09-14 2015-12-03 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh Discontinuous energy storage method
EP2895630B1 (en) 2012-09-14 2023-06-07 Voestalpine Stahl GmbH Method for storing discontinuously obtained energy in reduction process of iron ore
US20160304978A1 (en) * 2013-12-12 2016-10-20 Thyssenkrupp Ag Combined system for producing steel and method for operating the combined system
US10604816B2 (en) * 2013-12-12 2020-03-31 Thyssenkrupp Ag Combined system for producing steel and method for operating the combined system
US10697030B2 (en) * 2013-12-12 2020-06-30 Thyssenkrupp Ag Plant combination for producing steel and method for operating the plant combination
US20160348195A1 (en) * 2013-12-12 2016-12-01 Thyssenkrupp Ag Plant combination for producing steel and method for operating the plant combination
WO2023276739A1 (en) * 2021-06-30 2023-01-05 Jfe条鋼株式会社 Method for producing steel product, steel product, and information processing method
WO2023151242A1 (en) * 2022-02-11 2023-08-17 中钢设备有限公司 Metal smelting device and steelmaking production line

Similar Documents

Publication Publication Date Title
US20090249922A1 (en) Process for the production of steel using a locally produced hydrogen as the reducing agent
EP3425070B1 (en) Method for operating an iron-or steelmaking-plant
TWI659925B (en) Plant complex for steel production and method for operating the plant complex
EP3980566A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
CN103608469B (en) The carbon dioxide reduction of steel mill
TW201546331A (en) Method for reducing CO2 emissions in the operation of a metallurgical plant
MXPA05012242A (en) Method and apparatus for improved use of primary energy sources in integrated steel plants.
JP2015529751A (en) Steel manufacturing method
AU2013383015B2 (en) Process and plant for producing titanium slag from ilmenite
Steinfeld High-temperature solar thermochemistry for CO2 mitigation in the extractive metallurgical industry
AU2024202999A1 (en) Apparatus and method for generating oxygen and energy conversion or storage
US20170298461A1 (en) Method for producing steel
EP3395758A1 (en) Method for decomposing and recycling carbon dioxide using hot stove
JP5593883B2 (en) How to reduce carbon dioxide emissions
JP2023527415A (en) Recycling carbon treatment method
KR20100078327A (en) A apparatus for treatmenting exhaust gas and apparatus for manufacturing molten irons used thereof and method for producing hydrogen using exhaust gas
US1824960A (en) Metallurgical process and apparatus
JP2023550359A (en) Process of producing carburized sponge iron
Steinfeld et al. CH4-utilization and CO2-mitigation in the metallurgical industry via solar thermochemistry
Kurunov European perspectives on the extractive metallurgy of iron
Kularatne et al. CO2 storage and H2 production from olivine bearing mine tailings
CN106413855A (en) Sequestration of carbon dioxide by binding it as alkali carbonate
CN107010610B (en) High-efficiency energy-saving high-purity manganese nitride production system
CN115505658A (en) Blast furnace low-carbon smelting system and method
CN205352098U (en) Metal smelting waste residue high temperature waste heat power generation facility

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION