CN104662175A - 用于直接还原系统的工艺气体的加热方法 - Google Patents

用于直接还原系统的工艺气体的加热方法 Download PDF

Info

Publication number
CN104662175A
CN104662175A CN201380046926.8A CN201380046926A CN104662175A CN 104662175 A CN104662175 A CN 104662175A CN 201380046926 A CN201380046926 A CN 201380046926A CN 104662175 A CN104662175 A CN 104662175A
Authority
CN
China
Prior art keywords
gas
reduction
unit
rich
aforementioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380046926.8A
Other languages
English (en)
Inventor
赫尔曼·沃夫迈尔
托马斯·比格勒
彼得·施瓦布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50277660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN104662175(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE201210109284 external-priority patent/DE102012109284A1/de
Priority claimed from DE102013104002.0A external-priority patent/DE102013104002A1/de
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of CN104662175A publication Critical patent/CN104662175A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/004Making spongy iron or liquid steel, by direct processes in a continuous way by reduction from ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Furnace Details (AREA)

Abstract

本发明涉及用于在直接还原法中还原铁矿的方法,其中所述要被还原的铁矿通过还原单元如还原竖炉被传送并与还原气接触;所述还原气被送至还原单元并流过所述单元;流过所述单元后,将其从所述单元取出;离开所述单元后,制备所述气体并可能富含新的气体成分并再次返回;和所产生的气体在进入还原单元前被加热,其特征在于,在进入所述单元前的所述还原气的加热以电的方式进行。

Description

用于直接还原系统的工艺气体的加热方法
技术领域
本发明涉及一种用于直接还原系统的工艺气体的加热方法。
背景技术
目前,钢铁生产以各种方法进行。经典的钢铁生产是通过在热炉工艺中,主要从铁氧化物载体中生产生铁进行。在该方法中,每公吨生铁消耗约450-600kg还原剂,通常为焦炭;该方法在由煤生产焦炭和生产生铁中均释放非常显著量的CO2。另外,已知所谓“直接还原法”(根据MIDREX、FINMET、ENERGIRON/HYL等类型的方法),其中海绵铁主要是以HDRI(热直接还原铁)、CDRI(冷直接还原铁)和所谓HBI(热压块铁)的形式从铁氧化物载体中生产。
也有所谓的熔炼还原法,其中熔化过程,还原气生产和直接还原彼此结合,例如COREX、FINEX、HiSmelt或HiSarna类型的方法。
HDRI、CDRI和HBI形式的海绵铁通常在电炉中经受进一步的处理,这是非常耗能的。通过使用来自天然气(甲烷)及可能的合成气以及焦炉煤气的氢气和一氧化碳进行直接还原。例如,在所谓的MIDREX法中,首先甲烷根据以下反应转化:
CH4+CO2=2CO+2H2
并且氧化铁与还原气反应,例如根据下式:
Fe2O3+6CO(H2)=2Fe+3CO2(H2O)+3CO(H2)。
该方法也释放CO2
DE 198 53 747 C1已公开一种粉矿直接还原的联合工艺,其中在水平湍流层中使用氢气或其他还原气进行还原。
DE 197 14 512 A1已公开一种具有太阳能发电,电解单元和工业冶金工艺的发电站;该工业工艺或者涉及从铝土矿中耗电量大的铝金属生产,或者旨在为在有色金属如钨、钼、镍等生产中将氢气作为还原剂的冶金工艺,或者旨在为在铁类金属生产中使用氢气作为还原剂的直接还原法的冶金工艺。然而引用文件没有详细解释。
WO 2011/018124已公开使用二氧化碳和使用可再生电能和化石燃料用于生产可存储和运输的碳基能源的方法和系统。在这种情况下,制备一定百分比的再生生产的甲醇以及以非可再生电能和/或以直接还原和/或以部分氧化和/或重整生产的一定百分比的甲醇。
在直接还原法中,出现在还原竖炉下游的气体-在净化后且水已被分离后和在HYL法中额外的CO2分离或可选的在HYL MIDREX法中额外的CO2分离后-大部分作为回收气体返回至工艺。一般来说,该气体变得富含天然气以提供新鲜还原气。在HYL法中,由于进行气体净化而冷却的气体,从约105℃被再次加热至约700-1100℃且随后与氧气进行部分氧化。
在MIDREX法中,在加热的重整炉中,CO2和水与天然气在约700-1100℃温度下一同转化为H2和CO。两种方法共存的事实是,已净化并离开还原竖炉的气体的部分流被引入并富含天然气。
还原工艺可由下式表示:
(1)Fe2O3+6CO(H2)=2Fe+3CO2(H2O)+3CO(H2)
在MIDREX法中,在重整炉中发生以下反应:
(2)CH4+CO2→2CO+2H2
(3)CH4+H2O→CO+3H2
在HYL法中,发生以下反应:
(4)CH4+1/2O2→CO+2H2
在两种方法中,额外使用的化石燃料,即天然气,用于加热工艺气体和加热重整炉。
发明内容
本发明的目的之一是设计一种用于直接还原系统的工艺气体的加热方法,其能够更好地加热工艺气体,并对于适于能量需求和可用能量的整个工艺能够更灵活地适应和优化。
本发明的另一目的是减少CO2的排放。
该目的是通过具有权利要求1的特征的方法达到的。
在从属权利要求中公开了有利的变型。
为了使加热工艺更灵活,根据本发明,还原气和重整炉的加热改为电加热。
优选地,可由可再生资源生产电能,从而取代化石燃料。
这有利地提高了所述工艺关于所用能源的灵活性;这通过以可变使用的化石燃料和电能进行联合加热实现。
在这方面,本发明具有这样的优点:电流可被认为是100%有效能,因此它能够完全转化为高温热量。电能至热的直接转化允许增加高度灵活性,特别还关于市场上廉价可用的电流峰值的使用。
由可再生能源如水电、风能或太阳能而来的电流在生产时不产生任何CO2的释放,这一点也是有利的。
本发明将结合附图以举例的方式进行说明。
附图说明
图中:
图1示出了根据现有技术的HYL Energiron法的实例,以天然气为动力的工艺气体加热;
图2根据本发明的HYL Energiron法,以电为动力的工艺气体加热;
图3是MIDREX法的非常示意性的描述;
图4是根据现有技术,一种昂贵和复杂的CO2优化MIDREX法的非常示意性的描述,具有CO2去除单元(例如VPSA-真空变压吸附)。
具体实施方式
基于每年容量为200万公吨直接还原铁(DRI),HYL以举例的方式示于图2中,包括电弧炉(EAF)。来自还原铁矿的竖炉中的工艺气体首先通过水分离随后再通过CO2分离传送。这种情况中的循环气体体积流量约为每小时500,000m3。将每小时约72,000m3的天然气加入该气体流中,56,000m3的天然气用于还原且约16,000m3的天然气转用于将工艺气体从105℃加热至970℃。其次,向加热的工艺气体中加入氧气并接着返回还原竖炉中。
根据本发明的方法中(图2),还原气同样来自竖炉且通过水分离和CO2分离传送。由于工艺气体加热的电加热,只需要每小时加入约56,000m3量的天然气,按照上述公式,其与氧气分离得到CO和氢气。图2中的表格示出,这使得每吨还原铁减少了21%的CO2。另外,由于电加热,该工艺能够用在相当可控和灵活的方式。
图3示出了MIDREX法,其中尾气同样在还原竖炉中离开并分为工艺气体流和加热气体流。所述工艺气体流通过工艺气体压缩机传送,直到向其中加入天然气-特别是在同样设计为每年200万公吨还原铁的系统中-每小时约63,000m3量的天然气。该工艺气体通过热交换器,在其中它由来自重整炉的尾气预加热至600℃并接着通过重整炉且这样被加热至980℃,并且作为工艺气体返回至竖炉,其富含额外的天然气和氧气。所述加热气体同样来自竖炉,富含天然气,并与预加热的燃烧空气一起传送至重整炉中。所需的天然气总量约为每小时68,200m3;通过电加热重整炉,能够使用52兆瓦电能每小时补偿约5,100m3尾气。这样做的结果是,一方面能够使得每公吨还原铁减少了7.5%的CO2。另外,由于电加热,也可以更灵活、精确的方式控制该工艺。
本发明的优点在于实现简单和快速可行的选择以用来自可再生能源的电能替代化石燃料。也减少了来自直接还原系统的CO2排放。本发明也使以有效和灵活的方式成功操作直接还原系统成为可能。特别地,在适于可用再生能源和电能预热工艺气体的钢铁生产中,特别是基于可再生能源加热的生产中,可能实现改进和相互适应。
这样的系统能够廉价地使用可用的电流峰值,也是有利的。

Claims (7)

1.用于在直接还原法中还原铁矿的方法,其中所述要被还原的铁矿通过还原单元如还原竖炉被传送并与还原气接触;所述还原气被送至还原单元并流过所述单元;流过所述单元后,将其从所述单元取出;离开所述单元后,制备所述气体并可能富含新的气体成分并再次返回;和所产生的气体混合物或来自所产生的气体混合物的还原气体产物在进入还原单元前被加热至700-1100,优选850-1000℃,其特征在于,所述加热主要-尤其是完全以电的方式进行。
2.根据权利要求1所述的方法,其特征在于,来自可再生能源的电能用于电加热。
3.根据前述权利要求之一所述的方法,其特征在于,离开所述单元后,所述气体富含天然气、焦炉煤气或来自生物质或煤的合成气。
4.根据前述权利要求之一所述的方法,其特征在于,所述气体混合物富含氧气。
5.根据前述权利要求之一所述的方法,其特征在于,从还原竖炉取出的气体富含天然气、焦炉煤气或来自生物质或煤的合成气并接着被加热。
6.根据前述权利要求之一所述的方法,其特征在于,从还原竖炉取出的气体富含天然气、焦炉煤气或来自生物质或煤的合成气并接着在重整炉中转化。
7.根据前述权利要求之一所述的方法,其特征在于,通过持续评估气价和电价确保能源的成本优化使用。
CN201380046926.8A 2012-09-14 2013-09-10 用于直接还原系统的工艺气体的加热方法 Pending CN104662175A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102012108631.1 2012-09-14
DE102012108631 2012-09-14
DE102012109284.2 2012-09-28
DE201210109284 DE102012109284A1 (de) 2012-09-14 2012-09-28 Verfahren zum Erzeugen von Stahl und Verfahren zum Speichern diskontinuierlich anfallender Energie
DE102013104002.0A DE102013104002A1 (de) 2013-04-19 2013-04-19 Verfahren zum Aufheizen von Prozessgasen für Direktreduktionsanlagen
DE102013104002.0 2013-04-19
PCT/EP2013/068743 WO2014040997A1 (de) 2012-09-14 2013-09-10 Verfahren zum aufheizen von prozessgasen für direktreduktionsanlagen

Publications (1)

Publication Number Publication Date
CN104662175A true CN104662175A (zh) 2015-05-27

Family

ID=50277660

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201380047304.7A Pending CN104662176A (zh) 2012-09-14 2013-09-10 使用可再生能量用于生产钢铁的方法
CN201380046926.8A Pending CN104662175A (zh) 2012-09-14 2013-09-10 用于直接还原系统的工艺气体的加热方法
CN201380047309.XA Pending CN104662177A (zh) 2012-09-14 2013-09-10 用于在铁矿石还原过程中储存不连续产生的能量的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201380047304.7A Pending CN104662176A (zh) 2012-09-14 2013-09-10 使用可再生能量用于生产钢铁的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201380047309.XA Pending CN104662177A (zh) 2012-09-14 2013-09-10 用于在铁矿石还原过程中储存不连续产生的能量的方法

Country Status (8)

Country Link
US (3) US20150259760A1 (zh)
EP (3) EP2895631B1 (zh)
JP (3) JP2015534604A (zh)
KR (3) KR20150063075A (zh)
CN (3) CN104662176A (zh)
ES (2) ES2952386T3 (zh)
FI (1) FI2895630T3 (zh)
WO (3) WO2014040997A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058749A (zh) * 2016-12-27 2017-08-18 武汉钢铁有限公司 利用竖炉脱除瓦斯泥中锌与铅的装置及其方法
CN115427588A (zh) * 2020-04-27 2022-12-02 杰富意钢铁株式会社 炼钢设备和还原铁的制造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150259760A1 (en) 2012-09-14 2015-09-17 Voestalpine Stahl Gmbh Method for producing steel
EP3581663A1 (de) 2018-06-12 2019-12-18 Primetals Technologies Austria GmbH Herstellung von karburiertem eisenschwamm mittels wasserstoffbasierter direktreduktion
DE102018211104A1 (de) * 2018-07-05 2020-01-09 Thyssenkrupp Ag Verfahren und Einrichtung zum Betrieb einer Produktionsanlage
EP3670676A1 (de) * 2018-12-17 2020-06-24 Primetals Technologies Austria GmbH Verfahren und vorrichtung zur direktreduktion mit elektrisch aufgeheiztem reduktionsgas
CN111910036B (zh) * 2019-05-10 2022-05-03 中冶长天国际工程有限责任公司 一种利用生物质还原钒钛磁铁矿联产高品质合成气的方法
CN113874486B (zh) 2019-06-06 2023-02-24 米德雷克斯技术公司 利用氢气的直接还原工艺
US11952638B2 (en) * 2019-09-27 2024-04-09 Midrex Technologies, Inc. Direct reduction process utilizing hydrogen
SE2030072A1 (en) * 2020-03-10 2021-09-11 Hybrit Dev Ab Methanol as hydrogen carier in H-DRI process
SE2050508A1 (en) * 2020-05-04 2021-11-05 Hybrit Dev Ab Process for the production of carburized sponge iron
DE102020116425A1 (de) 2020-06-22 2021-12-23 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
CN114525518B (zh) * 2020-11-09 2023-01-31 中国石油大学(北京) 一种利用可再生能源电的方法
SE545311C2 (en) 2020-11-25 2023-06-27 Hybrit Dev Ab Process for the production of carburized sponge iron
SE2150068A1 (en) * 2021-01-22 2022-07-23 Hybrit Dev Ab Arrangement and process for charging iron ore to, and/or discharging sponge iron from, a direct reduction shaft
SE2150180A1 (en) * 2021-02-19 2022-08-20 Luossavaara Kiirunavaara Ab Metal oxide material reduction means
BR112023023873A2 (pt) * 2021-05-18 2024-01-30 Arcelormittal Método para fabricar ferro reduzido direto
SE545624C2 (en) * 2021-06-11 2023-11-14 Hybrit Dev Ab Process for the production of carburized sponge iron
KR20240011169A (ko) * 2021-06-14 2024-01-25 제이에프이 스틸 가부시키가이샤 환원철의 제조 방법
SE545625C2 (en) 2021-07-07 2023-11-14 Hybrit Dev Ab Iron briquettes
EP4163402A1 (en) * 2021-10-07 2023-04-12 voestalpine Texas LLC Induction heating of dri
DE102021128987A1 (de) 2021-11-08 2023-05-11 Rhm Rohstoff-Handelsgesellschaft Mbh Verfahren zum Umschmelzen von Eisenschwamm und/oder von heißgepresstem Eisenschwamm sowie von Schrott zu Rohstahl in einem Konverter
EP4194569A1 (en) * 2021-12-08 2023-06-14 Doosan Lentjes GmbH Method for handling particulate metal
DE102022201918A1 (de) 2022-02-24 2023-08-24 Sms Group Gmbh Hüttentechnische Produktionsanlage und Verfahren zu deren Betrieb
SE2250421A1 (en) 2022-04-01 2023-10-02 Luossavaara Kiirunavaara Ab Method for producing steel and sponge iron manufacturing process
EP4373209A1 (de) 2022-11-15 2024-05-22 Primetals Technologies Austria GmbH Elektrische aufheizung von gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB657824A (en) * 1948-08-06 1951-09-26 Alfred Gordon Evans Robiette Improvements in and relating to the direct reduction of iron ores
US4376648A (en) * 1980-12-04 1983-03-15 Mitsubishi Jukogyo Kabushiki Kaisha Process for producing reduced iron
CN101636510A (zh) * 2006-10-13 2010-01-27 西门子Vai金属科技有限责任公司 熔融材料生产方法与装置
CN101638702B (zh) * 2009-08-14 2011-07-20 中冶赛迪工程技术股份有限公司 一种煤气作还原气的直接还原工艺出口煤气的回用方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1167016A (en) * 1913-12-24 1916-01-04 Emil Bruce Pratt Process of reducing iron ores and other metallic oxids to the metallic state.
US2609288A (en) * 1949-03-08 1952-09-02 Isobel E Stuart Process for the reduction of metal oxides by gases
GB846284A (en) * 1956-01-07 1960-08-31 Norsk Hydro Elektrisk Improvements in and relating to the production of sponge iron
US4054444A (en) * 1975-09-22 1977-10-18 Midrex Corporation Method for controlling the carbon content of directly reduced iron
US4046556A (en) 1976-01-02 1977-09-06 Fierro Esponja, S.A. Direct gaseous reduction of oxidic metal ores with dual temperature cooling of the reduced product
DE2733785A1 (de) 1977-07-27 1979-02-08 Didier Eng Verfahren zur weiterverarbeitung von koksofengas
DE3317701C2 (de) 1983-05-16 1986-08-07 Hylsa S.A., Monterrey, N.L. Verfahren zum Betreiben eines Bewegtbett-Reduktionsreaktors mit vertikalem Schacht zum Reduzieren von Eisenerz zu Schwammeisen
DE3432090C2 (de) * 1984-08-28 1986-11-27 Korf Engineering GmbH, 4000 Düsseldorf Verfahren und Vorrichtung zur Direktreduktion von schwefelhaltigen Eisenerzen
JPS6220889A (ja) * 1985-07-18 1987-01-29 Terukazu Suzuki 自然力利用発電電解法による補助燃料製造とその利用法
US4834792A (en) 1986-08-21 1989-05-30 Hylsa S.A. De C.V. Method for producing hot sponge iron by introducing hydrocarbon for carburizing into reduction zone
US4880459A (en) * 1988-06-27 1989-11-14 T.C., Inc. Method of and apparatus for reducing iron oxide to metallic iron
DE4037977A1 (de) * 1990-11-29 1992-06-11 Voest Alpine Ind Anlagen Verfahren zur herstellung von roheisen bzw. eisenschwamm
US5618032A (en) 1994-05-04 1997-04-08 Midrex International B.V. Rotterdam, Zurich Branch Shaft furnace for production of iron carbide
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
JP2727436B2 (ja) * 1995-05-31 1998-03-11 川崎重工業株式会社 鉄カーバイドの製造方法及び製造装置
AT403696B (de) * 1996-06-20 1998-04-27 Voest Alpine Ind Anlagen Einschmelzvergaser und anlage für die herstellung einer metallschmelze
AT404256B (de) * 1996-11-06 1998-10-27 Voest Alpine Ind Anlagen Verfahren zum herstellen von eisenschwamm
DE19714512C2 (de) 1997-04-08 1999-06-10 Tassilo Dipl Ing Pflanz Maritime Kraftwerksanlage mit Herstellungsprozeß zur Gewinnung, Speicherung und zum Verbrauch von regenerativer Energie
DE19838368C1 (de) * 1998-08-24 1999-08-12 Ferrostaal Ag Verfahren und Vorrichtung zum Betreiben eines Reaktors zur Reduktion von Eisenerzen
DE19853747C1 (de) 1998-11-21 2000-03-30 Ferrostaal Ag Kombinierter Prozeß zur Direktreduktion von Feinerzen
IT1302811B1 (it) 1998-12-11 2000-09-29 Danieli & C Ohg Sp Procedimento e relativo apparato per la riduzione direttadi ossidi di ferro
IT1310535B1 (it) * 1999-02-18 2002-02-18 Danieli Off Mecc Procedimento di riduzione diretta di materiale metallicoe relativo impianto
EP1160337A1 (en) * 2000-05-31 2001-12-05 DANIELI & C. OFFICINE MECCANICHE S.p.A. Process to preheat and carburate directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
US6858953B2 (en) * 2002-12-20 2005-02-22 Hawaiian Electric Company, Inc. Power control interface between a wind farm and a power transmission system
DE102005060094A1 (de) 2005-12-15 2007-06-21 Linde Ag Stoffliche Nutzung von Biogas
EP2181491A2 (de) * 2007-08-09 2010-05-05 Werner Leonhard Unterstuetzung einer nachhaltigen energieversorgung mit einem kohlenstoff-kreislauf unter einsatz von regenerativ erzeugtem wasserstoff
DE102007045888B4 (de) * 2007-09-25 2010-04-15 Ea Energiearchitektur Gmbh Verfahren zur Umwandlung und Speicherung von regenerativer Energie
US20090249922A1 (en) * 2008-04-02 2009-10-08 Bristlecone International, Llc Process for the production of steel using a locally produced hydrogen as the reducing agent
JP5413821B2 (ja) * 2008-05-19 2014-02-12 公益財団法人若狭湾エネルギー研究センター 高速製錬可能な低温製鉄法
CN101768651A (zh) * 2008-09-23 2010-07-07 樊显理 氢冶金法
JP5311334B2 (ja) * 2008-11-21 2013-10-09 公益財団法人若狭湾エネルギー研究センター 海綿鉄を利用した水素製造方法
US8915981B2 (en) 2009-04-07 2014-12-23 Gas Technology Institute Method for producing methane from biomass
CA2769950C (en) 2009-08-13 2017-08-15 Silicon Fire Ag Method and system for providing a hydrocarbon-based energy carrier using a portion of renewably produced methanol and a portion of methanol that is produced by means of direct oxidation, partial oxidation, or reforming
AU2010320483A1 (en) * 2009-11-20 2012-07-12 Cri Ehf Storage of intermittent renewable energy as fuel using carbon containing feedstock
WO2011116141A2 (en) * 2010-03-18 2011-09-22 Sun Hydrogen, Inc. Clean steel production process using carbon-free renewable energy source
US8600572B2 (en) 2010-05-27 2013-12-03 International Business Machines Corporation Smarter-grid: method to forecast electric energy production and utilization subject to uncertain environmental variables
JP5593883B2 (ja) * 2010-07-02 2014-09-24 Jfeスチール株式会社 炭酸ガス排出量の削減方法
JP5510199B2 (ja) * 2010-08-31 2014-06-04 Jfeスチール株式会社 水素および酸素の製造・使用方法
EP2426236B1 (de) * 2010-09-03 2013-01-02 Carbon-Clean Technologies AG Verfahren und Energieträger-Erzeugungsanlage zum kohlendioxidneutralen Ausgleich von Erzeugungsspitzen und Erzeugungstälern bei der Erzeugung von elektrischer Energie und/oder zur Erzeugung eines kohlenwasserstoffhaltigen Energieträgers
JP5594013B2 (ja) * 2010-09-21 2014-09-24 Jfeスチール株式会社 還元鉄製造方法
CN101975141B (zh) * 2010-10-20 2013-09-04 中电普瑞科技有限公司 一种海上风电功率/频率控制方法
DE102011112093A1 (de) 2011-06-03 2012-12-06 Carbon-Clean Technologies Ag Verfahren und Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien, Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden
CN102424873B (zh) 2011-12-03 2013-01-30 石家庄市新华工业炉有限公司 一种太阳能还原炼铁的装置
US20150259760A1 (en) 2012-09-14 2015-09-17 Voestalpine Stahl Gmbh Method for producing steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB657824A (en) * 1948-08-06 1951-09-26 Alfred Gordon Evans Robiette Improvements in and relating to the direct reduction of iron ores
US4376648A (en) * 1980-12-04 1983-03-15 Mitsubishi Jukogyo Kabushiki Kaisha Process for producing reduced iron
CN101636510A (zh) * 2006-10-13 2010-01-27 西门子Vai金属科技有限责任公司 熔融材料生产方法与装置
CN101638702B (zh) * 2009-08-14 2011-07-20 中冶赛迪工程技术股份有限公司 一种煤气作还原气的直接还原工艺出口煤气的回用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
国际电工委员会(IEC): "《IEC2010-2030年白皮书——应对能源挑战》", 31 January 2011, 中国电力出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058749A (zh) * 2016-12-27 2017-08-18 武汉钢铁有限公司 利用竖炉脱除瓦斯泥中锌与铅的装置及其方法
CN115427588A (zh) * 2020-04-27 2022-12-02 杰富意钢铁株式会社 炼钢设备和还原铁的制造方法

Also Published As

Publication number Publication date
KR20150053809A (ko) 2015-05-18
ES2689779T3 (es) 2018-11-15
KR20150065728A (ko) 2015-06-15
WO2014040997A1 (de) 2014-03-20
JP2015532948A (ja) 2015-11-16
EP2895629A1 (de) 2015-07-22
EP2895631B1 (de) 2018-07-18
ES2952386T3 (es) 2023-10-31
WO2014040990A3 (de) 2014-06-12
CN104662177A (zh) 2015-05-27
EP2895631A2 (de) 2015-07-22
CN104662176A (zh) 2015-05-27
EP2895630B1 (de) 2023-06-07
WO2014040989A3 (de) 2014-06-12
WO2014040989A2 (de) 2014-03-20
EP2895630A2 (de) 2015-07-22
US20150259759A1 (en) 2015-09-17
US20150259760A1 (en) 2015-09-17
KR20150063075A (ko) 2015-06-08
JP2015529751A (ja) 2015-10-08
FI2895630T3 (en) 2023-08-15
JP2015534604A (ja) 2015-12-03
US20150329931A1 (en) 2015-11-19
WO2014040990A2 (de) 2014-03-20

Similar Documents

Publication Publication Date Title
CN104662175A (zh) 用于直接还原系统的工艺气体的加热方法
JP2022535446A (ja) 放出を減らした鋼または溶鉄含有材料を生産する方法及びシステム
US6986800B2 (en) Method and apparatus for improved use of primary energy sources in integrated steel plants
JP2023525937A (ja) 浸炭海綿鉄の生産プロセス
WO2009037587A2 (en) Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
CN107337179A (zh) 一种气基竖炉还原气的制备系统及方法
US20240052441A1 (en) Smart hydrogen production for dri making
US20170298461A1 (en) Method for producing steel
CN105671228A (zh) 氧气高炉与气基竖炉联合生产系统和联合生产方法
AU2012265081B2 (en) Reduction of metal oxides using a gas stream containing both hydrocarbon and hydrogen
KR101321928B1 (ko) 용선 제조장치 및 이를 이용한 용선 제조방법
EP4032991A1 (en) Smart hydrogen production for dri making
CN105543437A (zh) 一种两段式气流床铁矿粉还原工艺
JP2016536468A (ja) コークス乾式消火システムにおける鋼鉄製造
DE102013104002A1 (de) Verfahren zum Aufheizen von Prozessgasen für Direktreduktionsanlagen
Garza Decrease of GHG emissions through the Carbon Free Emissions ENERGIRON DR Scheme in Integrated Mills
CN116888281A (zh) 用于dri制造的智能氢气生产
CN117355617A (zh) 设施网络的操作方法
SE2150742A1 (en) Process for the production of carburized sponge iron
WO2023052308A1 (en) Method for operating a shaft furnace plant
Sun et al. Advanced low-carbon technologies for steel manufacturing process
Vaish et al. Smelting reduction of iron ore-An optimum approach
WO2017185178A1 (en) System and method of high pressure oxy-fired (hiprox) flash metallization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150527