WO2014038591A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2014038591A1
WO2014038591A1 PCT/JP2013/073804 JP2013073804W WO2014038591A1 WO 2014038591 A1 WO2014038591 A1 WO 2014038591A1 JP 2013073804 W JP2013073804 W JP 2013073804W WO 2014038591 A1 WO2014038591 A1 WO 2014038591A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement
engagement device
electrical machine
rotating electrical
torque
Prior art date
Application number
PCT/JP2013/073804
Other languages
English (en)
French (fr)
Inventor
糟谷悟
鬼頭昌士
大越利夫
杉坂繁
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE201311003315 priority Critical patent/DE112013003315T5/de
Priority to JP2014534389A priority patent/JP5920476B2/ja
Priority to US14/414,594 priority patent/US20150203099A1/en
Priority to CN201380041676.9A priority patent/CN104520156A/zh
Publication of WO2014038591A1 publication Critical patent/WO2014038591A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/186Preventing damage resulting from overload or excessive wear of the driveline excessive wear or burn out of friction elements, e.g. clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/029Clutch temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention controls a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the side of the internal combustion engine on a power transmission path connecting the internal combustion engine and wheels. It relates to a control device.
  • Patent Document 1 As a control device for a vehicle drive device as described above, for example, the technique described in Patent Document 1 below is already known.
  • the first engagement device when the driver's start acceleration request is detected, the first engagement device is controlled to be in the slip engagement state, the output torque of the internal combustion engine is transmitted to the wheels, and the vehicle is started. It is configured.
  • Patent Document 1 discloses a technique for a case where the amount of heat generated by friction between the engagement members of the first engagement device in the sliding engagement state is large and the temperature rise of the engagement member exceeds the allowable range. Not. Therefore, when the temperature of the engagement member of the first engagement device rises while the first engagement device is controlled to be in the slip engagement state, There is a need for a control device that can suppress a decrease in transmitted torque.
  • a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the side of the internal combustion engine in a power transmission path connecting the internal combustion engine and wheels is controlled.
  • the characteristic configuration of the target control device is a first mechanism for controlling the second engagement device to a direct engagement state and controlling the first engagement device to a slip engagement state during the rotational operation of the internal combustion engine.
  • a first engagement slip control unit that performs a combined slip control; and when the temperature of the first engagement device rises during the first engagement slip control, the output torque of the rotating electrical machine is increased, and the first And a temperature rise suppression control unit that reduces the transmission torque of the one engagement device.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
  • the temperature rise suppression control unit decreases the transmission torque of the first engagement device within a range larger than zero.
  • the first engagement device can be maintained in the sliding engagement state while suppressing the temperature increase of the first engagement device, and the output torque of the internal combustion engine can be transmitted to the wheel side.
  • the temperature increase suppression control unit is configured to perform the second engagement when the temperature of the first engagement device rises while the rotation of the wheel is stopped during the first engagement slip control.
  • the combined device is shifted from the direct engagement state to the sliding engagement state to increase the rotational speed of the rotating electrical machine, increase the output torque of the rotating electrical machine, and decrease the transmission torque of the first engaging device. It is preferable to execute the slip transition control.
  • the rotational speed of the rotating electrical machine is increased, even when torque is output to the rotating electrical machine, it is possible to suppress the occurrence of bias in the heat generation of the coil and the like. For this reason, the output torque of a rotary electric machine can be increased compared with the state where rotation of a rotary electric machine has stopped. Therefore, even when the rotation of the wheel is stopped, the output torque of the rotating electrical machine can be increased and the transmission torque of the first engagement device can be reduced, so that the temperature increase of the first engagement device is suppressed. It can suppress that the torque transmitted to a wheel reduces. In particular, when the vehicle is located on an uphill, the driving torque increases and the amount of heat generated by the first engagement device increases even when the rotation of the wheels is stopped. Even in such a case, according to said structure, it can suppress that the torque transmitted to a wheel reduces, suppressing the temperature rise of a 1st engagement apparatus.
  • the temperature increase suppression control unit is configured to perform the second engagement when the temperature of the first engagement device rises while the rotation of the wheel is stopped during the first engagement slip control. It is preferable to execute direct connection maintenance control in which the output torque of the rotating electrical machine is increased and the transmission torque of the first engagement device is decreased while the combined device is controlled to be in the directly connected state.
  • the temperature increase of the first engagement device can be suppressed.
  • the temperature increase rate of the first engagement device can be suppressed without decreasing the temperature increase rate of the first engagement device, or without shifting the second engagement device to the sliding engagement state as described above. can do.
  • the temperature rise suppression control unit During the first engagement slip control, in a state where the rotation of the wheel is stopped, When the temperature of the first engagement device exceeds a predetermined first threshold value, the output torque of the rotating electrical machine is increased while the second engagement device is controlled to be in the direct engagement state, Performing direct connection maintenance control to reduce the transmission torque of the first engagement device; When the temperature of the first engagement device exceeds a predetermined second threshold value higher than the first threshold value, the second engagement device is changed from the direct engagement state to the sliding engagement state. It is preferable to execute slip transition control that increases the rotational speed of the rotating electrical machine, increases the output torque of the rotating electrical machine, and decreases the transmission torque of the first engagement device.
  • the second engagement device when the temperature of the first engagement device exceeds the first threshold value while the rotation of the wheels is stopped, the second engagement device is controlled to be in the direct engagement state.
  • the output torque of the rotating electrical machine can be increased, the transmission torque of the first engagement device can be decreased, and the temperature increase of the first engagement device can be suppressed.
  • the temperature increase of the first engagement device is not sufficiently suppressed because of the restriction due to the temperature increase of the rotating electrical machine as described above.
  • the second engagement device when the temperature of the first engagement device exceeds the second threshold value higher than the first threshold value, the second engagement device is shifted from the direct engagement state to the slip engagement state, Since the rotational speed of the rotating electrical machine is increased, the output torque of the rotating electrical machine can be increased and the transmission torque of the first engagement device can be decreased without any restriction due to the temperature rise of the rotating electrical machine as described above.
  • the temperature rise of the combined device can be appropriately suppressed.
  • the temperature rise of the first engagement device can be appropriately suppressed so that the temperature of the first engagement device does not exceed the second threshold value while the second engagement device is controlled in the direct engagement state, The temperature increase of the first engagement device can be suppressed without shifting the combined device to the sliding engagement state.
  • the temperature increase suppression control unit is configured to perform the second engagement device when the temperature of the first engagement device is increased while the wheel is rotating during the first engagement slip control. It is preferable to execute control during rotation in which the output torque of the rotating electrical machine is increased and the transmission torque of the first engagement device is decreased while the motor is controlled to be in the direct engagement state.
  • the rotating electrical machine When the wheel is rotating and the rotating electrical machine is rotating, the rotating electrical machine can output a larger torque than when the rotation is stopped in order to suppress the temperature increase of the first engagement device.
  • the transmission torque of a 1st engagement apparatus when the temperature of a 1st engagement apparatus rises in the state which the wheel is rotating, the transmission torque of a 1st engagement apparatus is decreased and the output torque of a rotary electric machine is increased. Can do. Therefore, when the wheel is rotating, it can suppress that the torque transmitted to a wheel reduces, suppressing the temperature rise of a 1st engagement apparatus.
  • the temperature rise suppression control unit increases the output torque of the rotating electrical machine and reduces the transmission torque of the first engagement device according to the increase amount of the output torque of the rotating electrical machine. It is preferable to reduce the transmission torque of one engagement device.
  • the torque transmitted to the wheels can be maintained because the transmission torque of the first engagement device is reduced in accordance with the amount of increase in the output torque of the rotating electrical machine.
  • the temperature increase suppression control unit increases the output torque of the rotating electrical machine and decreases the transmission torque of the first engagement device in the slip transition control. It is preferable that the transmission torque of the first engagement device is decreased so as to be within a predetermined allowable range, and the output torque of the rotating electrical machine is increased according to the decrease amount.
  • the temperature rise suppression control unit increases the output torque of the rotating electrical machine in the direct connection maintaining control and reduces the rotation in a rotation stopped state of the rotating electrical machine when reducing the transmission torque of the first engagement device. It is preferable that the output torque of the rotating electrical machine is increased within a limit where the temperature rise of the electrical machine is within a predetermined allowable range, and the transmission torque of the first engagement device is decreased according to the increase amount.
  • the output torque of the rotating electrical machine is increased to the extent that the temperature rise of the coil of the rotating electrical machine is within an allowable range in the rotation stopped state of the rotating electrical machine, Since the transmission torque of the first engagement device is decreased according to the increase amount, the temperature increase of the first engagement device can be suppressed. As a result, the temperature increase of the first engagement device can be kept within the allowable range without decreasing the temperature increase rate of the first engagement device or shifting the second engagement device to the sliding engagement state as described above. Or can be suppressed.
  • the temperature rise suppression control unit increases the output torque of the rotating electrical machine in the control during rotation and decreases the transmission torque of the first engagement device. It is preferable that the transmission torque of the first engagement device is decreased so as to be within a predetermined allowable range, and the output torque of the rotating electrical machine is increased according to the decrease amount.
  • the first increase is performed so that the temperature increase of the first engagement device falls within a predetermined allowable range.
  • the transmission torque of the engaging device can be reduced, and the output torque of the rotating electrical machine can be increased according to the amount of reduction. Therefore, when the wheel is rotating, the torque transmitted to the wheel can be maintained while suppressing the temperature increase of the first engagement device.
  • the temperature rise suppression control unit moves the second engagement device to the slip engagement state after the second engagement device is shifted to the slip engagement state and the wheel starts to rotate in the slip transition control. It is preferable to shift from the direct engagement state to the direct engagement state.
  • the rotating electrical machine can be rotated even if the second engagement device is shifted to the direct engagement state, and accordingly, the output torque of the rotating electrical machine is increased compared to when the rotation is stopped. Can do.
  • the second engagement device is shifted from the slip engagement state to the direct engagement state, and heat is generated due to friction between the engagement members of the second engagement device. It is possible to prevent the deterioration of the durability of the second engagement device.
  • the temperature rise suppression control unit moves the first engagement device into a slip engagement state after the second engagement device is shifted to the slip engagement state in the slip transition control and the wheel starts to rotate. It is preferable that the second engagement device is shifted from the sliding engagement state to the direct engagement state after that.
  • driving connection refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two
  • This is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members.
  • a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • an engagement element that selectively transmits rotation and driving force such as a friction clutch or a meshing clutch, may be included.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle drive device 1 and a control device 30 according to the present embodiment.
  • the solid line indicates the driving force transmission path
  • the broken line indicates the hydraulic oil supply path
  • the alternate long and short dash line indicates the signal transmission path.
  • the vehicle drive device 1 according to the present embodiment schematically includes an engine E and a rotating electrical machine MG as drive force sources, and the drive force of these drive force sources is transmitted to a power transmission mechanism. It is the structure which transmits to the wheel W via this.
  • the vehicle drive device 1 is provided with a first engagement device CL1, a rotating electrical machine MG, and a second engagement device CL2 in order from the engine E side on a power transmission path 2 that connects the engine E and the wheels W. ing.
  • the first engagement device CL1 is in a state where the engine E and the rotating electrical machine MG are selectively connected or separated according to the engagement state.
  • the second engagement device CL2 is in a state in which the rotating electrical machine MG and the wheel W are selectively connected or separated according to the engaged state.
  • the vehicle drive device 1 according to the present embodiment includes a speed change mechanism TM in the power transmission path 2 between the rotating electrical machine MG and the wheels W.
  • the second engagement device CL2 is one of a plurality of engagement devices provided in the speed change mechanism TM.
  • the hybrid vehicle includes a control device 30 that controls the vehicle drive device 1.
  • the control device 30 according to the present embodiment includes a rotating electrical machine control unit 32 that controls the rotating electrical machine MG, and a power transmission control unit that controls the speed change mechanism TM, the first engagement device CL1, and the second engagement device CL2. 33 and a vehicle control unit 34 that integrates these control devices and controls the vehicle drive device 1.
  • the hybrid vehicle also includes an engine control device 31 that controls the engine E.
  • the control device 30 controls the second engagement device CL2 to the direct engagement state and controls the first engagement device CL1 to the slip engagement state.
  • a first engagement slip control unit 46 that performs engagement slip control is provided.
  • the control device 30 increases the output torque of the rotating electrical machine MG and increases the transmission torque of the first engagement device CL1. It is characterized in that it includes a temperature rise suppression control unit 47 that performs temperature rise suppression control to be reduced.
  • the hybrid vehicle includes an engine E and a rotating electrical machine MG as a driving force source of the vehicle, and is a parallel hybrid vehicle in which the engine E and the rotating electrical machine MG are connected in series. Yes.
  • the hybrid vehicle includes a speed change mechanism TM.
  • the speed change mechanism TM shifts the rotational speeds of the engine E and the rotating electrical machine MG transmitted to the intermediate shaft M, converts the torque, and transmits the torque to the output shaft O.
  • Engine E is an internal combustion engine that is driven by the combustion of fuel.
  • various known engines such as a gasoline engine and a diesel engine can be used.
  • an engine output shaft Eo such as a crankshaft of the engine E is selectively coupled to the input shaft I that is coupled to the rotating electrical machine MG via the first engagement device CL1. That is, the engine E is selectively connected to the rotating electrical machine MG via the first engagement device CL1 that is a friction engagement element.
  • the engine output shaft Eo is provided with a damper (not shown), and is configured so that fluctuations in output torque and rotational speed due to intermittent combustion of the engine E can be attenuated and transmitted to the wheel W side.
  • the rotating electrical machine MG has a stator fixed to a non-rotating member and a rotor that is rotatably supported radially inward at a position corresponding to the stator.
  • the rotor of the rotating electrical machine MG is drivingly connected so as to rotate integrally with the input shaft I and the intermediate shaft M. That is, in the present embodiment, both the engine E and the rotating electrical machine MG are drivingly connected to the input shaft I and the intermediate shaft M.
  • the rotating electrical machine MG is electrically connected to a battery as a power storage device via an inverter that performs direct current to alternating current conversion.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. It is possible. That is, the rotating electrical machine MG is powered by receiving power supply from the battery via the inverter, or generates power by the rotational driving force transmitted from the engine E or the wheels W, and the generated power is supplied to the battery via the inverter. Is stored.
  • the speed change mechanism TM is drivingly connected to the intermediate shaft M to which the driving force source is drivingly connected.
  • the speed change mechanism TM is a stepped automatic transmission having a plurality of speed stages with different speed ratios.
  • the speed change mechanism TM includes a gear mechanism such as a planetary gear mechanism and a plurality of engagement devices in order to form the plurality of speed stages.
  • one of the plurality of engagement devices is the second engagement device CL2.
  • the speed change mechanism TM shifts the rotational speed of the intermediate shaft M at the speed ratio of each speed stage, converts torque, and transmits the torque to the output shaft O.
  • Torque transmitted from the speed change mechanism TM to the output shaft O is distributed and transmitted to the left and right axles AX via the output differential gear unit DF, and is transmitted to the wheels W that are drivingly connected to the respective axles AX.
  • the gear ratio is the ratio of the rotational speed of the intermediate shaft M to the rotational speed of the output shaft O when each gear stage is formed in the transmission mechanism TM.
  • the rotational speed of the intermediate shaft M is defined as the output shaft.
  • the value divided by the rotation speed of O That is, the rotation speed obtained by dividing the rotation speed of the intermediate shaft M by the gear ratio becomes the rotation speed of the output shaft O.
  • torque obtained by multiplying the torque transmitted from the intermediate shaft M to the transmission mechanism TM by the transmission ratio becomes the torque transmitted from the transmission mechanism TM to the output shaft O.
  • the plurality of engagement devices (including the second engagement device CL2) of the speed change mechanism TM and the first engagement device CL1 each include a frictional member such as a clutch or a brake that includes a friction material. It is a joint element.
  • These frictional engagement elements can control the engagement pressure by controlling the hydraulic pressure supplied to continuously increase or decrease the transmission torque capacity.
  • a friction engagement element for example, a wet multi-plate clutch or a wet multi-plate brake is preferably used.
  • the friction engagement element transmits torque between the engagement members by friction between the engagement members.
  • torque slip torque
  • slip torque slip torque
  • the friction engagement element acts between the engagement members of the friction engagement element by static friction up to the size of the transmission torque capacity. Torque is transmitted.
  • the transmission torque capacity is the maximum torque that the friction engagement element can transmit by friction. The magnitude of the transmission torque capacity changes in proportion to the engagement pressure of the friction engagement element.
  • the engagement pressure is a pressure that presses the input side engagement member (friction plate) and the output side engagement member (friction plate) against each other.
  • the engagement pressure changes in proportion to the magnitude of the supplied hydraulic pressure. That is, in the present embodiment, the magnitude of the transmission torque capacity changes in proportion to the magnitude of the hydraulic pressure supplied to the friction engagement element.
  • Each friction engagement element is provided with a return spring and is biased to the release side by the reaction force of the spring.
  • a transmission torque capacity starts to be generated in each friction engagement element, and each friction engagement element is released from the released state. Change to engaged state.
  • the hydraulic pressure at which this transmission torque capacity begins to occur is called the stroke end pressure.
  • Each friction engagement element is configured such that, after the supplied hydraulic pressure exceeds the stroke end pressure, the transmission torque capacity increases in proportion to the increase in the hydraulic pressure. Note that the friction engagement element may not be provided with a return spring, and may be configured to be controlled by a differential pressure of the hydraulic pressure applied to both sides of the piston of the hydraulic cylinder.
  • the engagement state is a state in which a transmission torque capacity is generated in the friction engagement element, and includes a slip engagement state and a direct engagement state.
  • the released state is a state in which no transmission torque capacity is generated in the friction engagement element.
  • the slip engagement state is an engagement state in which there is a rotational speed difference (slip) between the engagement members of the friction engagement element, and the direct engagement state is between the engagement members of the friction engagement element.
  • the engaged state has no rotational speed difference (slip).
  • the non-directly coupled state is an engaged state other than the directly coupled state, and includes a released state and a sliding engaged state.
  • the friction engagement element may generate a transmission torque capacity due to dragging between the engagement members (friction members) even when the command for generating the transmission torque capacity is not issued by the control device 30.
  • the friction members may be in contact with each other, and the transmission torque capacity may be generated by dragging the friction members. Therefore, the “released state” includes a state in which the transmission torque capacity is generated by dragging between the friction members when the control device 30 does not issue a command to generate the transmission torque capacity to the friction engagement device.
  • the hydraulic control system of the vehicle drive device 1 is a hydraulic control device for adjusting the hydraulic pressure of hydraulic fluid supplied from a hydraulic pump driven by a vehicle driving force source or a dedicated motor to a predetermined pressure.
  • a PC is provided. Although detailed explanation is omitted here, the hydraulic control device PC drains from the regulating valve by adjusting the opening of one or more regulating valves based on the signal pressure from the linear solenoid valve for hydraulic regulation.
  • the hydraulic oil pressure is adjusted to one or more predetermined pressures by adjusting the amount of hydraulic oil.
  • the hydraulic oil adjusted to a predetermined pressure is supplied to the transmission mechanism TM and the friction engagement elements of the first engagement device CL1 and the second engagement device CL2 at a required level of hydraulic pressure.
  • the control units 32 to 34 and the engine control device 31 of the control device 30 include an arithmetic processing unit such as a CPU as a core member, and a RAM (random access) configured to be able to read and write data from the arithmetic processing unit.
  • a memory and a storage device such as a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing unit.
  • Each function unit 41 to 47 of the control device 30 is configured by software (program) stored in the ROM of the control device, hardware such as a separately provided arithmetic circuit, or both.
  • the control units 32 to 34 and the engine control device 31 of the control device 30 are configured to communicate with each other, share various information such as sensor detection information and control parameters, and perform cooperative control.
  • the functions of the function units 41 to 47 are realized.
  • the vehicle drive device 1 includes sensors Se1 to Se3, and electrical signals output from the sensors are input to the control device 30 and the engine control device 31.
  • the control device 30 and the engine control device 31 calculate detection information of each sensor based on the input electric signal.
  • the input rotation speed sensor Se1 is a sensor for detecting the rotation speeds of the input shaft I and the intermediate shaft M. Since the rotor of the rotating electrical machine MG is integrally connected to the input shaft I and the intermediate shaft M, the rotating electrical machine control unit 32 determines the rotational speed ( Angular velocity) and rotational speeds of the input shaft I and the intermediate shaft M are detected.
  • the output rotation speed sensor Se2 is a sensor for detecting the rotation speed of the output shaft O.
  • the power transmission control unit 33 detects the rotational speed (angular speed) of the output shaft O based on the input signal of the output rotational speed sensor Se2. Further, since the rotation speed of the output shaft O is proportional to the rotation speed of the wheel W and the vehicle speed, the power transmission control unit 33 calculates the rotation speed and the vehicle speed of the wheel W based on the input signal of the output rotation speed sensor Se2. To do.
  • the engine rotation speed sensor Se3 is a sensor for detecting the rotation speed of the engine output shaft Eo (engine E).
  • the engine control device 31 detects the rotational speed (angular speed) of the engine E based on the input signal of the engine rotational speed sensor Se3.
  • the engine control device 31 includes an engine control unit 41 that controls the operation of the engine E.
  • the engine control unit 41 sets the engine request torque commanded from the vehicle control unit 34 to the output torque command value, and the engine E Torque control is performed to control output torque command value torque.
  • the power transmission control unit 33 includes a speed change mechanism control unit 43 that controls the speed change mechanism TM, a first engagement device control unit 44 that controls the first engagement device CL1, and a second during start control of the engine E. And a second engagement device controller 45 that controls the engagement device CL2.
  • Transmission mechanism control unit 43 The transmission mechanism control unit 43 performs control to form a gear stage in the transmission mechanism TM.
  • the transmission mechanism control unit 43 determines a target gear position in the transmission mechanism TM based on sensor detection information such as the vehicle speed, the accelerator opening, and the shift position.
  • the transmission mechanism control unit 43 engages or releases each engagement device by controlling the hydraulic pressure supplied to the plurality of engagement devices provided in the transmission mechanism TM via the hydraulic control device PC.
  • the target gear stage is formed in the transmission mechanism TM.
  • the transmission mechanism control unit 43 instructs the target hydraulic pressure (command pressure) of each engagement device to the hydraulic control device PC, and the hydraulic control device PC sets the hydraulic pressure of the commanded target hydraulic pressure (command pressure). Supply to each engagement device.
  • First engagement device controller 44 The first engagement device controller 44 controls the engagement state of the first engagement device CL1.
  • the first engagement device controller 44 controls the hydraulic control device PC so that the transmission torque capacity of the first engagement device CL1 approaches the first target torque capacity commanded from the vehicle control unit 34. Via which the hydraulic pressure supplied to the first engagement device CL1 is controlled.
  • the first engagement device control unit 44 commands the target hydraulic pressure (command pressure) set based on the first target torque capacity to the hydraulic control device PC, and the hydraulic control device PC
  • the hydraulic pressure supplied to the first engagement device CL1 is controlled using the hydraulic pressure (command pressure) as a control target.
  • Second engagement device controller 45 The second engagement device control unit 45 controls the engagement state of the second engagement device CL2 during the start control of the engine E.
  • the second engagement device control unit 45 controls the hydraulic control device PC so that the transmission torque capacity of the second engagement device CL2 approaches the second target torque capacity commanded from the vehicle control unit 34.
  • the hydraulic pressure supplied to the second engagement device CL2 is controlled.
  • the second engagement device control unit 45 commands the target hydraulic pressure (command pressure) set based on the second target torque capacity to the hydraulic control device PC, and the hydraulic control device PC
  • the hydraulic pressure supplied to the second engagement device CL2 is controlled using the hydraulic pressure (command pressure) as a control target.
  • the second engagement device CL2 is one of a plurality or a single engagement device that forms a gear stage of the transmission mechanism TM.
  • the engaging device of the speed change mechanism TM used as the second engaging device CL2 may be changed depending on the formed gear position, or the same engaging device may be used.
  • Rotating electrical machine control unit 32 The rotating electrical machine control unit 32 includes a rotating electrical machine control unit 42 that controls the operation of the rotating electrical machine MG.
  • the rotating electrical machine control unit 42 sets the rotating electrical machine required torque commanded from the vehicle control unit 34 to the output torque command value, Control is performed so that the rotating electrical machine MG outputs the torque of the output torque command value.
  • the rotating electrical machine control unit 42 controls the output torque of the rotating electrical machine MG by performing on / off control of a plurality of switching elements included in the inverter.
  • Vehicle control unit 34 The vehicle control unit 34 performs various torque controls performed on the engine E, the rotating electrical machine MG, the speed change mechanism TM, the first engagement device CL1, the second engagement device CL2, and the like, and the engagement control of each engagement device. And so on as a whole vehicle.
  • the vehicle control unit 34 is a torque required for driving the wheel W according to the accelerator opening, the vehicle speed, the battery charge amount, and the like, and is transmitted from the intermediate shaft M side to the output shaft O side.
  • the vehicle request torque that is the target driving force to be calculated is calculated, and the operation modes of the engine E and the rotating electrical machine MG are determined. Then, the vehicle control unit 34 requests the engine required torque, which is an output torque required for the engine E, the rotating electrical machine required torque, which is an output torque required for the rotating electrical machine MG, and the first engagement device CL1.
  • the first target torque capacity which is the transmission torque capacity to be transmitted
  • the second target torque capacity which is the transmission torque capacity required for the second engagement device CL2
  • the vehicle control unit 34 includes a first engagement slip control unit 46, a temperature increase suppression control unit 47, and the like, and the temperature of the first engagement device CL1 is increased during the first engagement slip control. Perform suppression control.
  • the temperature rise suppression control will be described in detail.
  • the first engagement slip control unit 46 controls the second engagement device CL2 to the direct engagement state and the first engagement device CL1 to the slip engagement state during the rotational operation of the engine E. It is a function part which performs 1st engagement slip control.
  • the temperature rise suppression control unit 47 increases the output torque of the rotating electrical machine MG and transmits the transmission torque of the first engagement device CL1. It is a function part which performs the temperature rise suppression control which reduces the.
  • the temperature rise suppression control unit 47 decreases the transmission torque of the first engagement device CL1 within a range larger than zero, maintains the first engagement device CL1 in the sliding engagement state, and drives the driving force of the engine E. Is transmitted to the wheel W side.
  • the temperature increase suppression control unit 47 is configured such that the temperature of the first engagement device CL1 is set in advance while the rotation of the wheel W is stopped during the first engagement slip control. As the temperature rise suppression control, the output torque of the rotating electrical machine MG is increased and the transmission torque of the first engagement device CL1 is decreased while the second engagement device CL2 is controlled in the direct engagement state. The direct connection maintaining control is executed.
  • the auxiliary threshold value corresponds to the “first threshold value” in the present invention.
  • the temperature rise suppression control unit 47 stops the rotation of the rotating electrical machine MG when increasing the output torque of the rotating electrical machine MG and decreasing the transmission torque of the first engagement device CL1 in the direct connection maintenance control. In this state, the output torque of the rotating electrical machine MG is increased as long as the temperature rise of the rotating electrical machine is within a predetermined allowable range, and the transmission torque of the first engagement device CL1 is decreased according to the increase amount. ing.
  • the temperature rise suppression control unit 47 is configured so that the temperature of the first engagement device CL1 is set to a predetermined auxiliary threshold value while the rotation of the wheel W is stopped during the first engagement slip control.
  • the second engagement device CL2 is shifted from the direct engagement state to the slip engagement state to increase the rotation speed of the rotating electrical machine MG and rotate. It is configured to execute slip transition control that increases the output torque of the electric machine MG and decreases the transmission torque of the first engagement device CL1.
  • the slip threshold corresponds to the “second threshold” in the present invention.
  • the temperature increase suppression control unit 47 performs the second increase engagement control as the temperature increase suppression control. While the combined device CL2 is controlled to be in the directly connected state, it is configured to execute control during rotation in which the output torque of the rotating electrical machine MG is increased and the transmission torque of the first engagement device CL1 is decreased. In the present embodiment, the temperature rise suppression control unit 47 is in a state where the wheel W is rotating during the first engagement slip control, and the temperature of the first engagement device CL1 exceeds a predetermined rotation threshold value. In this case, control during rotation is executed.
  • the temperature rise suppression control according to the present embodiment described above can be configured as shown in the example of the flowchart shown in FIG.
  • the first engagement slip control unit 46 starts the first engagement slip control when the execution condition of the first engagement slip control is satisfied (step # 01: Yes).
  • the first engagement slip control when the wheels W are driven by the driving force of the engine E, the rotation speed of the engine E is kept higher than the rotation speed at which autonomous operation is possible, and the engine W In order to transmit the output torque of E, the first engagement device CL1 is brought into a sliding engagement state.
  • the first engagement device CL1 In order to keep the rotational speed of the engine E at or above the rotational speed at which autonomous operation is possible with the rotational speed of the wheel W being low, either the first engagement device CL1 or the second engagement device CL2 is engaged with the slip. What is necessary is just to control to a state.
  • the first engagement device CL1 is more excellent in heat resistance and cooling performance against frictional heat generated in the sliding engagement state than the second engagement device CL2.
  • the first engagement device CL1 is preferentially controlled to the slip engagement state during the first engagement slip control. This is because the first engagement device CL1 is provided exclusively for engaging or separating between the engine E and the rotary electric machine MG.
  • the second engagement device CL2 which is one of the plurality of engagement devices provided in the speed change mechanism TM, is adapted to the frictional heat generated in the sliding engagement state. This is because heat resistance and cooling performance are excellent. However, the heat resistance and cooling performance of the first engagement device CL1 are limited, and if the temperature of the first engagement device CL1 approaches the upper limit of the allowable range during the execution of the first engagement slip control, It is necessary to suppress the temperature increase of the first engagement device CL1 by the temperature increase suppression control described later.
  • the execution condition of the first engagement slip control is, for example, during the rotational operation of the engine E, the rotational speed or output rotational speed of the rotating electrical machine MG is less than the rotational speed of the engine E, and the vehicle required torque is zero. It is established when it becomes larger.
  • the engine E being rotated is a state in which the engine E is continuously rotating at a rotational speed at which it can operate autonomously and is typically burning.
  • the output rotation speed is a rotation speed obtained by multiplying the rotation speed of the output shaft O by the speed ratio of the speed change mechanism TM.
  • the first engagement slip control unit 46 slips the first engagement device CL1 from the released state or the direct engagement state.
  • the state is changed (step # 02). Specifically, the first engagement slip control unit 46 increases the first target torque capacity (engagement pressure) of the first engagement device CL1 from zero or complete engagement capacity (complete engagement pressure).
  • the first engagement device CL1 is shifted to the sliding engagement state.
  • the complete engagement capacity (complete engagement pressure) is a transmission torque capacity (engagement pressure) that can maintain an engagement state without slipping even if the torque transmitted from the driving force source to the engagement device fluctuates.
  • the first engagement slip control unit 46 increases or decreases the first target torque capacity to a value corresponding to the vehicle required torque, and the wheel W is in the slip engagement state.
  • the torque transmitted to the side is controlled to a torque corresponding to the vehicle required torque.
  • the temperature rise suppression control unit 47 determines whether or not the rotation of the wheel W is stopped after the first engagement device CL1 is shifted to the sliding engagement state (step # 03).
  • the temperature rise suppression control unit 47 when the rotation speed (vehicle speed) of the output shaft O or the rotation speed of the rotating electrical machine MG is within a predetermined range including zero (referred to as a stop determination range) It is comprised so that it may determine with rotation of the wheel W having stopped.
  • the stop determination range is set according to the rotational speed at which the temperature rise of the rotating electrical machine MG is within the allowable range even if the maximum torque is output to the rotating electrical machine MG.
  • the temperature rise suppression control unit 47 is configured to determine that the rotation of the wheel W has not stopped when the rotation speed becomes higher than the rotation speed at which the bias of heat generation can be sufficiently eliminated.
  • the temperature rise suppression control unit 47 determines that the rotation of the wheel W has not stopped when a state where the rotation speed of the output shaft O or the rotating electrical machine MG is outside the stop determination range has elapsed for a predetermined time. It may be configured. Waiting for the rotation speed of the output shaft O or the rotating electrical machine MG to be in a stop determination range in which the temperature rise of the rotating electrical machine MG is within an allowable range can be determined to stop the rotation of the wheel W. it can.
  • the temperature rise suppression control unit 47 is configured to calculate the temperature of the first engagement device CL1 as a temperature rise index.
  • the amount of heat generated by friction between the engagement members is a value obtained by multiplying the transmission torque transmitted between the engagement members and the rotational speed difference between the engagement members. Proportional.
  • the engagement member of the friction engagement element has a heat capacity, and the temperature of the engagement member changes with a delay with respect to an increase or decrease in the amount of heat generation.
  • the friction engagement element includes a cooling mechanism, and the temperature of the engagement member changes according to the deviation between the heat generation amount and the heat dissipation amount by the cooling mechanism. Further, the amount of heat released by the cooling mechanism varies depending on the temperature of the engaging member. Further, when the cooling mechanism uses a refrigerant such as oil, the amount of heat released by the cooling mechanism also changes depending on the refrigerant temperature.
  • the temperature rise suppression control unit 47 performs a response delay process due to heat capacity and heat dissipation based on the heat generation amount due to friction of the first engagement device CL1, and the temperature of the engagement member of the first engagement device CL1. Is configured to estimate. Specifically, the temperature rise suppression control unit 47 is a value obtained by multiplying the transmission torque capacity (transmission torque) of the first engagement device CL1 by the rotational speed difference between the engagement members of the first engagement device CL1. Is calculated as the calorific value of the first engagement device CL1. Further, based on the temperature of the first engagement device CL1, the amount of heat released from the engagement member of the first engagement device CL1 is calculated.
  • a characteristic map in which a relational characteristic between the temperature of the first engagement device CL1 and the heat radiation amount is stored is used. Note that when calculating the heat release amount, the oil temperature detected or estimated using the oil temperature sensor may be used. Then, a value obtained by subtracting the heat release amount from the heat generation amount of the first engagement device CL1 is integrated by a heat capacity, and the integrated value is estimated as the temperature of the engagement member of the first engagement device CL1.
  • the temperature rise suppression control unit 47 uses the characteristic map in which the characteristics of the heat generation amount of the first engagement device CL1 and the temperature of the engagement member of the first engagement device CL1 in a steady state are stored in advance. Based on the calorific value of the combined device CL1, the steady temperature of the first engagement device CL1 is calculated. And the value which performed response delay processing, such as a primary delay by heat capacity and heat dissipation, with respect to the steady temperature of 1st engagement apparatus CL1 is estimated as a temperature of the engagement member of 1st engagement apparatus CL1. May be.
  • the temperature rise suppression control unit 47 performs the first engagement based on the output signal of the temperature sensor. It may be configured to detect the temperature of the device CL1.
  • the temperature rise suppression control unit 47 determines whether or not the temperature of the first engagement device CL1 has exceeded a predetermined rotation threshold (step). # 04).
  • the rotation threshold value is set to an allowable upper limit temperature or less determined from heat resistance. If the temperature increase suppression control unit 47 determines that the temperature of the first engagement device CL1 does not exceed the rotation threshold value (step # 04: No), the vehicle request torque is not performed without performing the temperature increase suppression control. Accordingly, transmission torque control for controlling the transmission torque (transmission torque capacity) of the first engagement device CL1 is executed (step # 05).
  • the temperature rise suppression control unit 47 performs the rotation control as the first engagement device CL1.
  • Transmission torque limiting motor assist control is executed to decrease the transmission torque and increase the output torque of the rotating electrical machine MG (step # 06). Thereby, the temperature rise of 1st engagement apparatus CL1 is suppressed.
  • the temperature rise suppression control unit 47 determines whether or not the direct connection transition condition for shifting the first engagement device CL1 from the slip engagement state to the direct engagement state is satisfied. However (step # 07), if the direct transfer condition is not satisfied (step # 07: No), the process returns to step # 03 and the process is repeated.
  • the temperature rise suppression control unit 47 directly connects the first engagement device CL1 when the rotational speed difference ⁇ 1 between the engagement members of the first engagement device CL1 is equal to or less than a predetermined value. It is configured to determine that the transition condition is satisfied.
  • step # 03: Yes when the temperature rise suppression control unit 47 determines that the rotation of the wheel W is stopped (step # 03: Yes), the temperature of the first engagement device CL1 is set to a predetermined auxiliary threshold. It is determined whether or not the value has been exceeded (step # 09).
  • the auxiliary threshold value is set to be less than the slip threshold value.
  • the temperature increase suppression control unit 47 performs the vehicle request without performing the temperature increase suppression control. Transmission torque control for controlling the transmission torque (transmission torque capacity) of the first engagement device CL1 according to the torque is executed (step # 10).
  • the temperature rise suppression control unit 47 determines that the temperature of the first engagement device CL1 has exceeded the auxiliary threshold (step # 09: Yes)
  • the temperature of the first engagement device CL1 is determined in advance. It is determined whether or not the slip threshold value has been exceeded (step # 11).
  • the slip threshold value is set to an allowable upper limit temperature or less determined from heat resistance.
  • the temperature rise suppression control unit 47 determines that the temperature of the first engagement device CL1 exceeds the auxiliary threshold (step # 09: Yes) but does not exceed the slip threshold (step # 11). : No), as the direct connection maintaining control, the rotation that increases the output torque of the rotating electrical machine MG and decreases the transmission torque of the first engagement device CL1 while the second engagement device CL2 is controlled to be in the direct connection engagement state.
  • Stop motor assist control is executed (step # 12). Even when the rotation of the rotating electrical machine MG is stopped and the coil of the rotating electrical machine MG and the heat generation of the switching element are biased, the output torque of the rotating electrical machine MG is limited to the extent that the temperature rise of the rotating electrical machine MG is within the allowable range. Can be increased. And the transmission torque of 1st engagement apparatus CL1 can be decreased and the temperature rise of 1st engagement apparatus CL1 can be suppressed. Then, after the steps # 10 and # 12, the temperature rise suppression control unit 47 returns to step # 03 when the direct connection transition condition for the first engagement device CL1 is not satisfied (step # 07: No). repeat.
  • step # 09: Yes, step # 11: Yes when it is determined that the temperature of the first engagement device CL1 exceeds the auxiliary threshold value and the slipping threshold value (step # 09: Yes, step # 11: Yes). Further, as the slip transition control, the second engagement device CL2 is shifted from the direct engagement state to the slip engagement state to increase the rotation speed of the rotating electrical machine MG (step # 13), and the first engagement device CL1.
  • the transmission torque limiting motor assist control is executed to decrease the transmission torque of the rotating electrical machine MG and increase the output torque of the rotating electrical machine MG (step # 14).
  • step # 15: No a direct connection transition condition for shifting from the direct engagement state to the direct engagement state is satisfied. If the direct connection transition condition is satisfied (step # 16: Yes), the second engagement device CL2 is turned on. The slip engagement state is shifted to the direct engagement state (step # 17). On the other hand, when the temperature rise suppression control unit 47 determines that the rotation of the wheel W is stopped (step # 15: Yes), or when the direct connection transition condition of the second engagement device CL2 is not satisfied. (Step # 16: No) returns to Step # 15 and repeats the process.
  • the temperature rise suppression control unit 47 shifts the direct engagement of the second engagement device CL2 when the rotational speed difference between the engagement members of the second engagement device CL2 is equal to or less than a predetermined value. It is configured to determine that the condition is satisfied. Then, after the temperature rise suppression control unit 47 shifts the second engagement device CL2 to the direct engagement state in step # 17, the direct connection transition condition of the first engagement device CL1 is not satisfied (step #). 07: No) returns to Step # 03 and repeats the process.
  • the temperature rise suppression control unit 47 shifts the first engagement device CL1 from the slip engagement state to the direct engagement state when the direct connection transition condition of the first engagement device CL1 is satisfied (step # 07: Yes). (Step # 08), the first engagement slip control and the temperature rise suppression control are terminated.
  • the vehicle is located on the uphill, and the uphill resistance torque that acts on the wheel W due to the vehicle weight at the uphill is balanced with the torque according to the vehicle required torque. Has stopped.
  • the amount of heat generated by the first engagement device CL ⁇ b> 1 is large because the slope of the uphill is large and the vehicle required torque is large. For this reason, the temperature of the engaging member of the first engaging device CL1 rises rapidly.
  • the heat generation amount of the first engagement device CL1 is a heat generation amount in a steady state where the temperature of the first engagement device CL1 exceeds the allowable range, but the temperature of the first engagement device CL1 is a heat capacity or the like. Is rising with a delay due to
  • the temperature rise suppression control unit 47 determines that the rotation of the wheel W is stopped, and determines that the temperature of the first engagement device CL1 does not exceed the auxiliary threshold value. Therefore, transmission torque control for controlling the transmission torque (transmission torque capacity) of the first engagement device CL1 according to the vehicle required torque is executed. Therefore, the first target torque capacity of the first engagement device CL1 is set to a value corresponding to the vehicle required torque.
  • the engine required torque of the engine E is also set to a value corresponding to the vehicle required torque.
  • the engine required torque is configured to be changed by the rotational speed control of the engine E that maintains the rotational speed of the engine E at a predetermined rotational speed.
  • the first target torque capacity may be changed by the rotation speed control of the engine E.
  • the rotating electrical machine required torque of the rotating electrical machine MG is set to near zero.
  • the second target torque capacity of the second engagement device CL2 is set to a complete engagement capacity (complete engagement pressure), and the second engagement device CL2 is controlled to be in a direct engagement state.
  • the temperature rise suppression control unit 47 determines that the temperature of the first engagement device CL1 has exceeded the auxiliary threshold value. Then, the temperature rise suppression control unit 47 ends the transmission torque control, starts executing the rotation stop motor assist control that increases the output torque of the rotating electrical machine MG and decreases the transmission torque of the first engagement device CL1. Yes.
  • the temperature rise suppression control unit 47 is configured to reduce the transmission torque of the first engagement device CL1 according to the increase amount of the output torque of the rotating electrical machine MG. As the rotation stop motor assist control, the temperature rise suppression control unit 47 increases the output torque of the rotating electrical machine MG to the limit that the temperature rise of the rotating electrical machine MG is within a predetermined allowable range when the rotating electrical machine MG is stopped. The transmission torque of the first engagement device CL1 is reduced according to the increase amount.
  • the temperature rise suppression control unit 47 reduces the rotating electrical machine MG to a predetermined rotation stop allowable torque that allows the temperature increase of the rotating electrical machine MG to be within the allowable range. Is increased (time T01 to time T02). On the other hand, the temperature rise suppression control unit 47 reduces the first target torque capacity of the first engagement device CL1 according to the rotation stop allowable torque. Further, the temperature rise suppression control unit 47 reduces the engine required torque of the engine E in accordance with the rotation stop allowable torque.
  • the transmission torque of the first engagement device CL1 By reducing the transmission torque of the first engagement device CL1 according to the rotation stop allowable torque, the transmission torque of the first engagement device CL1 and the rotation speed difference ⁇ 1 between the engagement members of the first engagement device CL1 are reduced. The amount of heat generated by the first engagement device CL1 determined by the multiplication value is reduced.
  • the vehicle required torque since the vehicle required torque is large, it is possible to increase the rotating electrical machine required torque of the rotating electrical machine MG until the temperature of the first engagement device CL1 (temperature increase index) can be sufficiently suppressed. Although not done, the rate of temperature rise can be reduced.
  • the temperature rise suppression control unit 47 determines that the temperature of the first engagement device CL1 has exceeded the slip threshold. And the temperature rise suppression control part 47 has started the transition control which transfers 2nd engagement apparatus CL2 to a sliding engagement state from a direct connection engagement state.
  • the temperature rise suppression control unit 47 decreases the second target torque capacity of the second engagement device CL2 from the complete engagement capacity to a transmission torque capacity or less corresponding to the vehicle required torque, and thereby performs the second engagement.
  • the device CL2 is configured to shift to the sliding engagement state.
  • the temperature rise suppression control unit 47 gradually decreases the second target torque capacity of the second engagement device CL2 after decreasing the second target torque capacity from the complete engagement capacity (step T02). To T03).
  • the temperature rise suppression control unit 47 ends the decrease in the second target torque capacity and performs the second engagement.
  • the second target torque capacity is set to the value of the transmission torque capacity that allows the device CL2 to transmit the torque corresponding to the vehicle required torque from the rotating electrical machine MG side to the wheel W side (time T03 to T05). 4 and 5, the transmission torque and the second target torque capacity of the second engagement device CL2 are converted into the transmission torque and the transmission torque capacity corresponding to the intermediate shaft M, that is, the intermediate shaft M. It is converted based on.
  • rotation speed control for controlling the rotation speed of the rotating electrical machine MG to a predetermined target rotation speed greater than zero is started (time T03).
  • This target rotation speed is set to a rotation speed that can suppress the bias of heat generation of the coil and the switching element.
  • the rotating electrical machine required torque is changed by the rotation speed control.
  • the temperature rise suppression control unit 47 shifts the second engagement device CL2 to the sliding engagement state to increase the rotation speed of the rotating electrical machine MG, and then ends the rotation stop motor assist control, so that the first engagement device Execution of the transmission torque limiting motor assist control for decreasing the transmission torque of CL1 and increasing the output torque of the rotating electrical machine MG is started (time T03).
  • the temperature rise suppression control unit 47 is configured to reduce the transmission torque of the first engagement device CL1 according to the increase amount of the output torque of the rotating electrical machine MG.
  • the temperature rise suppression control unit 47 decreases the transmission torque of the first engagement device CL1 so that the temperature rise of the first engagement device CL1 falls within a predetermined allowable range.
  • the output torque of the rotating electrical machine MG is increased in accordance with the amount of decrease.
  • the temperature rise suppression control unit 47 has a limited heat generation that is a heat generation amount of the first engagement device CL1 that is set in advance so that the temperature rise of the first engagement device CL1 is within an allowable range in a steady state. Based on the amount, the upper limit value of the transmission torque of the first engagement device CL1 is obtained, the transmission torque of the first engagement device CL1 is reduced to the upper limit value, and the output torque of the rotating electrical machine MG according to the amount of decrease. Is configured to increase.
  • the temperature rise suppression control unit 47 sets the limit heat generation amount of the first engagement device CL1 set in advance so that the temperature rise of the first engagement device CL1 is within the allowable range in the steady state.
  • the value divided by the rotational speed difference ⁇ 1 between the engaging members of one engaging device CL1 is set as the upper limit value.
  • the temperature rise suppression control part 47 sets the value which carried out the upper limit limitation of the value set according to the vehicle request
  • the limited heat generation amount of the first engagement device CL1 is set in advance so that the temperature increase of the first engagement device CL1 is within an allowable range based on the slip threshold in a steady state. .
  • the limited heat generation amount of the first engagement device CL1 is set so that the temperature of the first engagement device CL1 becomes the slip threshold in a steady state. Since the limit calorific value of the first engagement device CL1 is set to a value greater than zero, the upper limit limit value of the transmission torque of the first engagement device CL1 is also set to a value greater than zero. Therefore, the transmission torque of the first engagement device CL1 is reduced within a range larger than zero.
  • the required vehicle torque has increased due to an increase in the accelerator opening. Since the upper limit of the first target torque capacity of the first engagement device CL1 is limited by the upper limit value, the required rotating electrical machine torque is increased as the vehicle required torque increases. Due to the increase in the vehicle required torque, the drive torque transmitted to the wheels W exceeds the climbing resistance torque, and the vehicle speed begins to increase (after time T04).
  • the rotational speed difference ⁇ 1 of the first engagement device CL1 decreases, and the upper limit value calculated by dividing the limited heat generation amount by the rotational speed difference ⁇ 1 increases.
  • the first target torque capacity is increased (from time T05 to time T06).
  • the first target torque capacity is no longer limited and is set to a value according to the vehicle request torque (from time T06 to T07).
  • the output torque of the engine E is also increased according to the increase in the first target torque capacity.
  • the decrease amount of the first target torque capacity from the value corresponding to the vehicle request torque decreases, and the increase amount of the rotating electrical machine request torque decreases (from time T05 to T06).
  • the rotational speed difference ⁇ 1 of the first engagement device CL1 decreases, the transmission torque of the first engagement device CL1 and the engine are maintained while maintaining the temperature rise of the first engagement device CL1 within an allowable range.
  • the output torque of E is increased and the output torque of the rotating electrical machine MG is decreased. Therefore, consumption of the charging power of the battery due to the output torque of the rotating electrical machine MG can be suppressed, and the wheels W can be driven by the output torque of the engine E, so that fuel efficiency can be improved.
  • FIG. 4 shows an output rotation speed that is a rotation speed obtained by multiplying the rotation speed of the output shaft O by the speed ratio of the speed change mechanism TM.
  • the temperature rise suppression control unit 47 determines that the rotation speed difference between the rotation speed of the rotating electrical machine MG and the output rotation speed corresponding to the rotation speed difference between the engagement members of the second engagement device CL2 is in advance. When the value is equal to or less than the predetermined value, it is determined that the direct connection transition condition for the second engagement device CL2 is satisfied (time T05). And the temperature rise suppression control part 47 is making the 2nd target torque capacity
  • the temperature rise suppression control unit 47 increases the first engagement device CL1. Is determined to have been established (time T07). Then, the temperature rise suppression control unit 47 increases the first target torque capacity of the first engagement device CL1 to the full engagement capacity and shifts to the direct engagement state, and performs the first engagement slip control and the temperature rise suppression control. Exit.
  • step # 03: No when it is determined that the rotation of the wheel W has not stopped (step # 03: No), the first A case where the temperature of the engagement device CL1 exceeds the rotation threshold value (step # 04: Yes) will be described.
  • the first engagement device CL1 is shifted to the slip engagement state, and the first engagement slip control is started.
  • the drive torque transmitted to the wheels W according to the vehicle required torque is slightly higher than the uphill resistance torque, and the vehicle is traveling at a low speed. Yes.
  • the temperature rise suppression control unit 47 determines that the rotation of the wheel W has not stopped, and determines that the temperature of the first engagement device CL1 does not exceed the rotation threshold value. Therefore, transmission torque control for controlling the transmission torque (transmission torque capacity) of the first engagement device CL1 according to the vehicle required torque is executed. Therefore, the first target torque capacity of the first engagement device CL1 and the engine required torque of the engine E are set to values corresponding to the vehicle required torque.
  • the rotating electrical machine required torque of the rotating electrical machine MG is set to near zero.
  • the second target torque capacity of the second engagement device CL2 is set to a complete engagement capacity (complete engagement pressure), and the second engagement device CL2 is controlled to be in a direct engagement state.
  • the temperature rise suppression control unit 47 determines that the temperature of the first engagement device CL1 has exceeded the rotation threshold value. Then, the temperature rise suppression control unit 47 ends the transmission torque control, starts executing the transmission torque limit motor assist control that decreases the transmission torque of the first engagement device CL1 and increases the output torque of the rotating electrical machine MG. (Time T11).
  • the temperature rise suppression control unit 47 is configured to reduce the transmission torque of the first engagement device CL1 according to the increase amount of the output torque of the rotating electrical machine MG. As in the case described with reference to FIG. 4, the temperature rise suppression control unit 47 performs first transmission torque limiting motor assist control so that the temperature rise of the first engagement device CL1 falls within a predetermined allowable range. The transmission torque of the engagement device CL1 is decreased, and the output torque of the rotating electrical machine MG is increased according to the amount of decrease.
  • the temperature rise suppression control unit 47 limits the heat generation that is a heat generation amount of the first engagement device CL1 that is set in advance so that the temperature rise of the first engagement device CL1 is within the allowable range in the steady state. Based on the amount, the upper limit value of the transmission torque of the first engagement device CL1 is obtained, the transmission torque of the first engagement device CL1 is reduced to the upper limit value, and the output torque of the rotating electrical machine MG according to the amount of decrease. Is configured to increase. In the present embodiment, the limited heat generation amount of the first engagement device CL1 is set in advance so that the temperature increase of the first engagement device CL1 is within an allowable range based on the rotation threshold value in a steady state. .
  • the limited heat generation amount of the first engagement device CL1 is set so that the temperature of the first engagement device CL1 becomes a rotation threshold value in a steady state.
  • the heat generation amount of the first engagement device CL1 is reduced to the limit heat generation amount, an increase in the temperature (temperature increase index) of the first engagement device CL1 is suppressed and allowed. It is within the range.
  • the vehicle required torque increases due to an increase in the accelerator opening. Since the upper limit of the first target torque capacity of the first engagement device CL1 is limited by the upper limit value, the required rotating electrical machine torque is increased as the vehicle required torque increases. Due to the increase in vehicle request torque, the vehicle speed starts to increase further (after time T12). As the vehicle speed increases, the rotational speed difference ⁇ 1 of the first engagement device CL1 decreases, and the upper limit value calculated by dividing the limited heat generation amount by the rotational speed difference ⁇ 1 increases. As the upper limit value increases, the first target torque capacity increases (from time T12 to time T13).
  • the first target torque capacity is no longer limited and is set to a value according to the vehicle request torque (time T13 to T14). .
  • the increase amount of the rotating electrical machine request torque decreases (time T12 to T13).
  • the temperature rise suppression control unit 47 increases the speed of the first engagement device CL1. It is determined that the direct connection transition condition is satisfied (time T14). Then, the temperature rise suppression control unit 47 increases the first target torque capacity of the first engagement device CL1 to the full engagement capacity and shifts to the direct engagement state, and performs the first engagement slip control and the temperature rise suppression control. Exit.
  • the temperature rise suppression control unit 47 slips the second engagement device CL2 after the second engagement device CL2 is in the sliding engagement state and the wheel W starts to rotate.
  • the case where the engagement state is changed to the direct engagement state and then the first engagement device CL1 is changed from the slip engagement state to the direct engagement state has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the temperature rise suppression control unit 47 moves the first engagement device CL1 from the slip engagement state to the direct engagement state after the second engagement device CL2 is in the slip engagement state and the wheel W starts to rotate. Then, the second engagement device CL2 may be configured to shift from the sliding engagement state to the direct connection state. If comprised in this way, even if a torque shock arises when shifting 1st engagement apparatus CL1 to a direct connection engagement state, since 2nd engagement apparatus CL2 is a sliding engagement state, torque shock is a wheel. Transmission to W can be prevented.
  • step # 35 the temperature increase suppression control unit 47 determines whether the first engagement device CL1 is engaged between the engagement members.
  • the rotation synchronization control for reducing the rotation speed difference ⁇ 1 to synchronize is started (step # 36).
  • the temperature rise suppression control unit 47 determines whether or not a direct connection transition condition for shifting the first engagement device CL1 from the slipping engagement state to the direct engagement state is satisfied (step # 37), and the direct connection transition is performed.
  • step # 37: Yes the condition is satisfied
  • step # 38 the first engagement device CL1 is shifted from the sliding engagement state to the direct engagement state
  • step # 39 the temperature rise suppression control unit 47 determines whether or not a direct connection transition condition for shifting the second engagement device CL2 from the slip engagement state to the direct engagement state is satisfied (step # 39), and the direct connection transition is performed.
  • the condition is satisfied (step # 39: Yes) the second engagement device CL2 is shifted from the slip engagement state to the direct engagement state (step # 40), and the first engagement slip control and temperature rise suppression are performed. End control.
  • the example of the time chart shown in FIG. 4 changes like the example of the time chart shown in FIG.
  • the process until time T24 shown in FIG. 7 is the same as that until time T04 shown in FIG.
  • the temperature rise suppression control unit 47 determines that the wheel W is rotating, and executes the rotation synchronization control of the first engagement device CL1. Has started.
  • the temperature rise suppression control unit 47 maintains the rotation speed difference of the second engagement device CL2 at a predetermined value in order to suppress an increase in the amount of heat generated by the second engagement device CL2. However, it is configured to perform rotation synchronization of the first engagement device CL1.
  • the temperature rise suppression control unit 47 adds a value obtained by adding a predetermined rotational speed to the output rotational speed obtained by multiplying the rotational speed of the output shaft O by the speed ratio of the speed change mechanism TM, and the target rotational speed of the rotating electrical machine MG. Is set. Then, the rotation speed control for controlling the rotation speed of the rotating electrical machine MG to the target rotation speed is continued (from time T24 to T26). Thereby, as the vehicle speed (output rotation speed) increases, the rotation speed of the rotating electrical machine MG can also be increased and the rotation of the first engagement device CL1 can be synchronized.
  • the rotational speed addition value may not be a constant value, but may be increased or decreased.
  • the temperature rise suppression control unit 47 When the rotational speed difference ⁇ 1 between the engagement members of the first engagement device CL1 becomes equal to or less than a predetermined value, the temperature rise suppression control unit 47 satisfies the direct connection transition condition of the first engagement device CL1. (Time T26). And the temperature rise suppression control part 47 is making the 1st target torque capacity
  • one of the plurality of engagement devices of the speed change mechanism TM is set to the second engagement device CL2 that is controlled to the slip engagement state during the first engagement slip control.
  • the vehicle drive device 1 further includes an engagement device in the power transmission path 2 between the rotating electrical machine MG and the speed change mechanism TM, and the engagement device performs first engagement slip control. You may be comprised so that it may set to the 2nd engagement apparatus CL2 controlled to a sliding engagement state inside. Alternatively, the vehicle drive device 1 shown in FIG. 8 may be configured not to include the speed change mechanism TM.
  • the vehicle drive device 1 further includes a torque converter TC in the power transmission path between the rotating electrical machine MG and the speed change mechanism TM, and the input / output members of the torque converter TC are directly connected to each other.
  • the lock-up clutch to be set may be configured to be set in the second engagement device CL2 that is controlled to the slip engagement state during the first engagement slip control.
  • first engagement device CL1 and the second engagement device CL2 are engagement devices controlled by hydraulic pressure
  • the embodiment of the present invention is not limited to this. That is, one or both of the first engagement device CL1 and the second engagement device CL2 is an engagement device controlled by a driving force other than hydraulic pressure, for example, an electromagnet driving force, a servo motor driving force, or the like. May be.
  • the speed change mechanism TM is a stepped automatic transmission
  • the embodiment of the present invention is not limited to this. That is, the speed change mechanism TM may be configured to be a speed change device other than the stepped automatic speed change device such as a continuously variable automatic speed change device capable of continuously changing the speed ratio.
  • the engagement device provided in the speed change mechanism TM is set to the second engagement device CL2 that is controlled to the slip engagement state during the first engagement slip control, or provided separately from the speed change mechanism TM.
  • the made engagement device may be the second engagement device CL2.
  • the control device 30 includes a plurality of control units 32 to 34, and a case where the plurality of control units 32 to 34 share a plurality of functional units 41 to 47 is described as an example. did.
  • the embodiment of the present invention is not limited to this. That is, the control device 30 may be provided as a control device in which the plurality of control units 32 to 34 described above are integrated or separated in any combination, and the assignment of the plurality of functional units 41 to 47 is also arbitrarily set. Can do.
  • the second engagement device CL2 is one of the engagement devices of the transmission mechanism TM
  • the transmission mechanism control unit 43 and the second engagement device control unit 45 may be integrated.
  • the temperature rise suppression control unit 47 is configured to execute the rotation stop motor assist control when it is determined that the temperature of the first engagement device CL1 exceeds the auxiliary threshold value.
  • the temperature rise suppression control unit 47 may be configured not to execute the rotation stop motor assist control when it is determined that the temperature of the first engagement device CL1 exceeds the auxiliary threshold value. That is, the temperature rise suppression control unit 47 does not perform the rotation stop motor assist control when it is determined that the temperature of the first engagement device CL1 is equal to or higher than the auxiliary threshold and lower than the slip threshold. You may be comprised so that transmission torque control may be performed.
  • the temperature rise suppression control unit 47 determines that the temperature increases when the temperature of the first engagement device CL1 rises while the rotation of the wheel W is stopped during the first engagement slip control.
  • the rise suppression control the second engagement device CL2 is shifted from the direct engagement state to the sliding engagement state to increase the rotation speed of the rotating electrical machine MG and increase the output torque of the rotating electrical machine MG. Only the slip transition control for reducing the transmission torque of the combined device CL1 is executed.
  • the temperature rise suppression control unit 47 determines that the temperature of the first engagement device CL1 exceeds the slip threshold, the second engagement device CL2 is in the slip engagement state.
  • the transmission torque limiting motor assist control is executed.
  • the embodiment of the present invention is not limited to this. That is, when it is determined that the temperature of the first engagement device CL1 has exceeded the slip threshold, the temperature rise suppression control unit 47 transmits the second engagement device CL2 without shifting to the slip engagement state.
  • the torque limit motor assist control may not be executed. That is, the temperature rise suppression control unit 47 may be configured to execute the rotation stop motor assist control even when the temperature of the first engagement device CL1 is equal to or higher than the slip threshold.
  • the temperature rise suppression control unit 47 determines that the temperature increases when the temperature of the first engagement device CL1 rises while the rotation of the wheel W is stopped during the first engagement slip control.
  • the rise suppression control only the direct connection maintenance control for increasing the output torque of the rotating electrical machine MG and decreasing the transmission torque of the first engagement device CL1 is executed while the second engagement device CL2 is controlled in the direct engagement state. Will be configured.
  • the temperature increase suppression control unit 47 starts executing the transmission torque limiting motor assist control, according to the decrease in the rotational speed difference ⁇ 1 between the engagement members of the first engagement device CL1.
  • the case where the first target torque capacity of the first engagement device CL1 is increased and the rotating electrical machine required torque of the rotating electrical machine MG is decreased has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the temperature increase suppression control unit 47 starts the execution of the transmission torque limiting motor assist control, regardless of the decrease in the rotational speed difference ⁇ 1 between the engagement members of the first engagement device CL1.
  • the first target torque capacity may not be changed, and the value set after the start of execution may be maintained.
  • the temperature rise suppression control unit 47 is configured to reduce the transmission torque of the first engagement device CL1 according to the increase amount of the output torque of the rotating electrical machine MG. Described as an example. However, the embodiment of the present invention is not limited to this. That is, if the temperature rise suppression control unit 47 is configured to increase the output torque of the rotating electrical machine MG and decrease the transmission torque of the first engagement device CL1, the increase amount of the output torque of the rotating electrical machine MG The amount of reduction of the transmission torque of the first engagement device CL1 does not have to correspond. For example, when the increase amount of the output torque of the rotating electrical machine MG is limited, the decrease amount of the transmission torque of the first engagement device CL1 may be larger than the increase amount of the output torque of the rotating electrical machine MG.
  • the temperature rise suppression control unit 47 rotates as the rotation stop motor assist control within the limit in which the temperature rise of the rotating electrical machine MG is within a predetermined allowable range when the rotating electrical machine MG is stopped.
  • the case where the output torque of the electric machine MG is increased and the transmission torque of the first engagement device CL1 is decreased according to the increase amount has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the temperature rise suppression control unit 47 increases the output torque of the rotating electrical machine MG and decreases the transmission torque of the first engagement device CL1, while controlling the second engagement device CL2 in the direct engagement state. Or what is necessary is just to be comprised so that the transmission torque of 1st engagement apparatus CL1 may be decreased according to the increase amount of the output torque of the rotary electric machine MG.
  • the transmission torque of the first engagement device CL1 is decreased so that the temperature increase of the first engagement device CL1 falls within a predetermined allowable range.
  • the case where the output torque of the rotating electrical machine MG is increased in accordance with the decrease amount has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the temperature rise suppression control unit 47 increases the output torque of the rotating electrical machine MG, decreases the transmission torque of the first engagement device CL1, or increases the output torque of the rotating electrical machine MG as the transmission torque limit motor assist control. What is necessary is just to be comprised so that the transmission torque of 1st engagement apparatus CL1 may be reduced according to quantity.
  • the present invention controls a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the side of the internal combustion engine on a power transmission path connecting the internal combustion engine and wheels. It can utilize suitably for the control apparatus.
  • ⁇ 1 Rotational speed difference between engagement members of the first engagement device 1: Vehicle drive device 2: Power transmission path 30: Vehicle drive device control device 31: Engine control device 32: Rotating electrical machine control unit 33: Power Transmission control unit 34: vehicle control unit 41: engine control unit 42: rotating electrical machine control unit 43: transmission mechanism control unit 44: first engagement device control unit 45: second engagement device control unit 46: first engagement slip Control unit 47: Temperature rise suppression control unit CL1: First engagement device CL2: Second engagement device E: Engine (internal combustion engine) Eo: engine output shaft I: input shaft M: intermediate shaft MG: rotating electrical machine O: output shaft PC: hydraulic control device Se1: input rotational speed sensor Se2: output rotational speed sensor Se3: engine rotational speed sensor TM: speed change mechanism W: Wheel

Abstract

第一係合装置(CL1)を滑り係合状態に制御している間に、第一係合装置(CL1)の係合部材の温度が上昇した場合に、係合部材の温度上昇を抑制しつつ、車輪(W)に伝達されるトルクが減少することを抑制できる制御装置の実現。内燃機関(E)の回転運転中、第二係合装置(CL2)を直結係合状態に制御し、第一係合装置(CL1)を滑り係合状態に制御する第一係合滑り制御部と、第一係合滑り制御中に、第一係合装置(CL1)の温度が上昇した場合に、回転電機(MG)の出力トルクを増加させ、第一係合装置(CL1)の伝達トルクを減少させる温度上昇抑制制御部と、を備える制御装置。

Description

車両用駆動装置の制御装置
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置に関する。
 上記のような車両駆動装置の制御装置として、例えば、下記の特許文献1に記載された技術が既に知られている。特許文献1の技術では、運転者の発進加速要求を検出した場合に、第一係合装置を滑り係合状態に制御して内燃機関の出力トルクを車輪に伝達し、車両を発進するように構成されている。
特開2012-6575号公報
 しかしながら、特許文献1には、滑り係合状態における第一係合装置の係合部材間の摩擦による発熱量が大きく、係合部材の温度上昇が許容範囲を超えるような場合に対する技術が開示されていない。
 そこで、第一係合装置を滑り係合状態に制御している間に、第一係合装置の係合部材の温度が上昇した場合に、係合部材の温度上昇を抑制しつつ、車輪に伝達されるトルクが減少することを抑制できる制御装置が求められる。
 本発明に係る、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置の特徴構成は、前記内燃機関の回転運転中、前記第二係合装置を直結係合状態に制御し、前記第一係合装置を滑り係合状態に制御する第一係合滑り制御を行う第一係合滑り制御部と、前記第一係合滑り制御中に、前記第一係合装置の温度が上昇した場合に、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる温度上昇抑制制御部と、を備える点にある。
 なお、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 上記の特徴構成によれば、第一係合装置の温度が上昇した場合に、第一係合装置の伝達トルクが減少されるので、第一係合装置の係合部材間の摩擦による発熱量を減少させることができ、第一係合装置の温度上昇を抑制することができる。また、この際、回転電機の出力トルクが増加されるので、車輪に伝達されるトルクが減少することを抑制できる。
 ここで、温度上昇抑制制御部は、前記第一係合装置の伝達トルクを、ゼロより大きい範囲内で減少させると好適である。
 この構成によれば、第一係合装置の温度上昇を抑制しつつ、第一係合装置を滑り係合状態に維持でき、内燃機関の出力トルクを車輪側に伝達することができる。
 また、前記温度上昇抑制制御部は、前記第一係合滑り制御中に、前記車輪の回転が停止している状態で、前記第一係合装置の温度が上昇した場合に、前記第二係合装置を直結係合状態から滑り係合状態に移行させて、前記回転電機の回転速度を増加させると共に、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる滑り移行制御を実行すると好適である。
 回転電機の回転が停止している状態で回転電機にトルクを出力させると、電流が流れるコイルが回転に従って切り替わっていかず、電流が一部のコイルに流れ続けるため、一部のコイル及び一部のスイッチング素子に発熱が偏り、これらの温度上昇が大きくなる恐れがある。よって、車輪の回転が停止し、回転電機の回転が停止している状態では、上記温度上昇を抑制しつつ、回転電機に出力させることができるトルクに制約があるため、回転電機に十分なトルクを出力させることができない場合が生じる。
 上記の構成によれば、車輪の回転が停止していると判定され、第一係合装置の温度が上昇した場合に、第二係合装置を直結係合状態から滑り係合状態に移行させて、回転電機の回転速度を増加させるので、回転電機にトルクを出力させても、コイルなどの発熱に偏りが生じることを抑制することができる。このため、回転電機の回転が停止している状態に比べて回転電機の出力トルクを増加させることができる。よって、車輪の回転が停止している場合でも、回転電機の出力トルクを増加させ、第一係合装置の伝達トルクを減少させることができるため、第一係合装置の温度上昇を抑制しつつ、車輪に伝達されるトルクが減少することを抑制できる。
 特に、車両が登坂に位置している場合は、車輪の回転が停止している状態でも、駆動トルクが大きくなり、第一係合装置の発熱量が大きくなる。このような場合でも、上記の構成によれば、第一係合装置の温度上昇を抑制しつつ、車輪に伝達されるトルクが減少することを抑制できる。
 また、前記温度上昇抑制制御部は、前記第一係合滑り制御中に、前記車輪の回転が停止している状態で、前記第一係合装置の温度が上昇した場合に、前記第二係合装置を直結係合状態に制御したままで、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる直結維持制御を実行すると好適である。
 この構成によれば、車輪の回転が停止している場合でも、第二係合装置を直結係合状態に制御したままで、回転電機の出力トルクを増加させ、第一係合装置の伝達トルクを減少させるので、第一係合装置の温度上昇を抑制することができる。これにより、第一係合装置の温度上昇速度を減少させたり、上記のように、第二係合装置を滑り係合状態に移行させることなく、第一係合装置の温度上昇を抑制したりすることができる。
 また、前記温度上昇抑制制御部は、
 前記第一係合滑り制御中に、前記車輪の回転が停止している状態で、
 前記第一係合装置の温度が予め定めた第一しきい値を超えた場合に、前記第二係合装置を直結係合状態に制御したままで、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる直結維持制御を実行し、
 前記第一係合装置の温度が、予め定めた、前記第一しきい値より高い第二しきい値を超えた場合に、前記第二係合装置を直結係合状態から滑り係合状態に移行させて、前記回転電機の回転速度を増加させると共に、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる滑り移行制御を実行すると好適である。
 この構成によれば、車輪の回転が停止している状態で、第一係合装置の温度が、第一しきい値を超えた場合は、第二係合装置を直結係合状態に制御したままで、回転電機の出力トルクを増加させ、第一係合装置の伝達トルクを減少させて、第一係合装置の温度上昇を抑制できる。しかし、回転電機の回転が停止して状態では、上記のように回転電機の温度上昇による制約があるため、第一係合装置の温度上昇の抑制が十分でない場合が生じ得る。そのため、第一係合装置の温度が、第一しきい値より高い第二しきい値を超えた場合は、第二係合装置を直結係合状態から滑り係合状態に移行させて、前記回転電機の回転速度を増加させるので、上記のような回転電機の温度上昇による制約なく、回転電機の出力トルクを増加させ、第一係合装置の伝達トルクを減少させることができ、第一係合装置の温度上昇を適切に抑制できる。
 一方、第二係合装置を直結係合状態に制御したままで、第一係合装置の温度が第二しきい値を超えないように、温度上昇を適切に抑制できる場合は、第二係合装置を滑り係合状態に移行させることなく、第一係合装置の温度上昇を抑制することができる。
 また、前記温度上昇抑制制御部は、前記第一係合滑り制御中に、前記車輪が回転している状態で、前記第一係合装置の温度が上昇した場合に、前記第二係合装置を直結係合状態に制御したままで、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる回転中制御を実行すると好適である。
 車輪が回転し、回転電機が回転している状態では、第一係合装置の温度上昇を抑制するため、回転停止中に比べて大きいトルクを回転電機に出力させることができる。上記の構成によれば、車輪が回転している状態で、第一係合装置の温度が上昇した場合に、第一係合装置の伝達トルクを減少させ、回転電機の出力トルクを増加させることができる。よって、車輪が回転している場合に、第一係合装置の温度上昇を抑制しつつ、車輪に伝達されるトルクが減少することを抑制できる。
 また、前記温度上昇抑制制御部は、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記回転電機の出力トルクの増加量に応じて、前記第一係合装置の伝達トルクを減少させると好適である。
 この構成によれば、回転電機の出力トルクの増加量に応じて、第一係合装置の伝達トルクを減少させるので、車輪に伝達されるトルクを維持することができる。
 また、前記温度上昇抑制制御部は、前記滑り移行制御において前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記第一係合装置の温度上昇が予め定めた許容範囲内となるように前記第一係合装置の伝達トルクを減少させ、その減少量に応じて前記回転電機の出力トルクを増加させると好適である。
 この構成によれば、車輪の回転が停止している場合でも、第一係合装置の温度上昇を許容範囲内に抑制しつつ、車輪に伝達されるトルクを維持することができる。
 また、前記温度上昇抑制制御部は、前記直結維持制御において前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記回転電機の回転停止状態で前記回転電機の温度上昇が予め定めた許容範囲内となる限度で前記回転電機の出力トルクを増加させ、その増加量に応じて前記第一係合装置の伝達トルクを減少させると好適である。
 この構成によれば、車輪の回転が停止している場合でも、回転電機の回転停止状態で回転電機のコイルなどの温度上昇が許容範囲内となる限度で、回転電機の出力トルクを増加させ、その増加量に応じて第一係合装置の伝達トルクを減少させるので、第一係合装置の温度上昇を抑制することができる。これにより、第一係合装置の温度上昇速度を減少させたり、上記のように、第二係合装置を滑り係合状態に移行させることなく、第一係合装置の温度上昇を許容範囲内に抑制したりすることができる。
 また、前記温度上昇抑制制御部は、前記回転中制御において前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記第一係合装置の温度上昇が予め定めた許容範囲内となるように前記第一係合装置の伝達トルクを減少させ、その減少量に応じて前記回転電機の出力トルクを増加させると好適である。
 この構成によれば、車輪が回転していると判定され、第一係合装置の温度が上昇した場合に、第一係合装置の温度上昇が予め定めた許容範囲内となるように第一係合装置の伝達トルクを減少させ、その減少量に応じて回転電機の出力トルクを増加させることができる。よって、車輪が回転している場合に、第一係合装置の温度上昇を抑制しつつ、車輪に伝達されるトルクを維持することができる。
 また、前記温度上昇抑制制御部は、前記滑り移行制御において前記第二係合装置が滑り係合状態に移行され、前記車輪が回転し始めた後、前記第二係合装置を滑り係合状態から直結係合状態に移行させると好適である。
 車輪が回転し始めると、第二係合装置を直結係合状態に移行させても、回転電機を回転させることができ、それに伴って回転停止中に比べて回転電機の出力トルクを増加させることができる。上記の構成によれば、車輪が回転し始めた後、第二係合装置を滑り係合状態から直結係合状態に移行させて、第二係合装置の係合部材間の摩擦による発熱を防止し、第二係合装置の耐久性の悪化を抑制することができる。
 また、前記温度上昇抑制制御部は、前記滑り移行制御において前記第二係合装置が滑り係合状態に移行され、前記車輪が回転し始めた後、前記第一係合装置を滑り係合状態から直結係合状態に移行させ、その後第二係合装置を滑り係合状態から直結係合状態に移行させると好適である。
 この構成によれば、第一係合装置を直結係合状態に移行させる際に、トルクショックが生じたとしても、第二係合装置が滑り係合状態であるので、トルクショックが車輪に伝達されることを抑制できる。
 なお、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合要素、例えば摩擦クラッチや噛み合い式クラッチ等が含まれていてもよい。
本発明の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。 本発明の実施形態に係る制御装置の構成を示すブロック図である。 本発明の実施形態に係る制御装置の処理を示すフローチャートである。 車輪の回転停止中の制御装置の処理を示すタイミングチャートである。 車輪の回転中の制御装置の処理を示すタイミングチャートである。 本発明のその他の実施形態に係る制御装置の処理を示すフローチャートである。 その他の実施形態に係る車輪の回転停止中の制御装置の処理を示すタイミングチャートである。 本発明のその他の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。 本発明のその他の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。
 本発明に係る車両用駆動装置1の制御装置30(以下、単に制御装置30と称す)の実施形態について図面を参照して説明する。図1は、本実施形態に係る車両用駆動装置1及び制御装置30の概略構成を示す模式図である。この図において、実線は駆動力の伝達経路を示し、破線は作動油の供給経路を示し、一点鎖線は信号の伝達経路を示している。この図に示すように、本実施形態に係る車両用駆動装置1は、概略的には、エンジンE及び回転電機MGを駆動力源として備え、これらの駆動力源の駆動力を、動力伝達機構を介して車輪Wへ伝達する構成となっている。車両用駆動装置1には、エンジンEと車輪Wとを結ぶ動力伝達経路2に、エンジンEの側から順に、第一係合装置CL1、回転電機MG、及び第二係合装置CL2が設けられている。ここで、第一係合装置CL1は、その係合状態に応じて、エンジンEと回転電機MGとの間を選択的に連結した状態又は分離した状態とする。第二係合装置CL2は、その係合状態に応じて、回転電機MGと車輪Wとの間を選択的に連結した状態又は分離した状態とする。本実施形態に係る車両用駆動装置1には、回転電機MGと車輪Wとの間の動力伝達経路2に変速機構TMが備えられている。そして、第二係合装置CL2は、変速機構TMに備えられた複数の係合装置の中の1つとされている。
 ハイブリッド車両には、車両用駆動装置1を制御対象とする制御装置30が備えられている。本実施形態に係わる制御装置30は、回転電機MGの制御を行う回転電機制御ユニット32と、変速機構TM、第一係合装置CL1、及び第二係合装置CL2の制御を行う動力伝達制御ユニット33と、これらの制御装置を統合して車両用駆動装置1の制御を行う車両制御ユニット34と、を有している。また、ハイブリッド車両には、エンジンEの制御を行うエンジン制御装置31も備えられている。
 図2に示すように、制御装置30は、エンジンEの回転運転中、第二係合装置CL2を直結係合状態に制御し、第一係合装置CL1を滑り係合状態に制御する第一係合滑り制御を行う第一係合滑り制御部46を備えている。そして、制御装置30は、第一係合滑り制御中に、第一係合装置CL1の温度が上昇した場合に、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる温度上昇抑制制御を行う温度上昇抑制制御部47と、を備えている点に特徴を有している。
 以下、本実施形態に係る車両用駆動装置1及び制御装置30について、詳細に説明する。
1.車両用駆動装置1の構成
 まず、本実施形態に係るハイブリッド車両の車両用駆動装置1の構成について説明する。図1に示すように、ハイブリッド車両は、車両の駆動力源としてエンジンE及び回転電機MGを備え、これらのエンジンEと回転電機MGとが直列に駆動連結されるパラレル方式のハイブリッド車両となっている。ハイブリッド車両は、変速機構TMを備えており、当該変速機構TMにより、中間軸Mに伝達されたエンジンE及び回転電機MGの回転速度を変速すると共にトルクを変換して出力軸Oに伝達する。
 エンジンEは、燃料の燃焼により駆動される内燃機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種エンジンを用いることができる。本例では、エンジンEのクランクシャフト等のエンジン出力軸Eoが、第一係合装置CL1を介して、回転電機MGに駆動連結された入力軸Iと選択的に駆動連結される。すなわち、エンジンEは、摩擦係合要素である第一係合装置CL1を介して回転電機MGに選択的に駆動連結される。また、エンジン出力軸Eoには、図示しないダンパが備えられており、エンジンEの間欠的な燃焼による出力トルク及び回転速度の変動を減衰して、車輪W側に伝達可能に構成されている。
 回転電機MGは、非回転部材に固定されたステータと、このステータと対応する位置で径方向内側に回転自在に支持されたロータと、を有している。この回転電機MGのロータは、入力軸I及び中間軸Mと一体回転するように駆動連結されている。すなわち、本実施形態においては、入力軸I及び中間軸MにエンジンE及び回転電機MGの双方が駆動連結される構成となっている。回転電機MGは、直流交流変換を行うインバータを介して蓄電装置としてのバッテリに電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機MGは、インバータを介してバッテリからの電力供給を受けて力行し、或いはエンジンEや車輪Wから伝達される回転駆動力により発電し、発電された電力は、インバータを介してバッテリに蓄電される。
 駆動力源が駆動連結される中間軸Mには、変速機構TMが駆動連結されている。本実施形態では、変速機構TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速機構TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と複数の係合装置とを備えている。本実施形態では、複数の係合装置の中の一つが、第二係合装置CL2とされる。この変速機構TMは、各変速段の変速比で、中間軸Mの回転速度を変速するとともにトルクを変換して、出力軸Oへ伝達する。変速機構TMから出力軸Oへ伝達されたトルクは、出力用差動歯車装置DFを介して左右二つの車軸AXに分配されて伝達され、各車軸AXに駆動連結された車輪Wに伝達される。ここで、変速比は、変速機構TMにおいて各変速段が形成された場合の、出力軸Oの回転速度に対する中間軸Mの回転速度の比であり、本願では中間軸Mの回転速度を出力軸Oの回転速度で除算した値である。すなわち、中間軸Mの回転速度を変速比で除算した回転速度が、出力軸Oの回転速度になる。また、中間軸Mから変速機構TMに伝達されるトルクに、変速比を乗算したトルクが、変速機構TMから出力軸Oに伝達されるトルクになる。
 本例では、変速機構TMの複数の係合装置(第二係合装置CL2を含む)、及び第一係合装置CL1は、それぞれ摩擦材を有して構成されるクラッチやブレーキ等の摩擦係合要素である。これらの摩擦係合要素は、供給される油圧を制御することによりその係合圧を制御して伝達トルク容量の増減を連続的に制御することが可能とされている。このような摩擦係合要素としては、例えば湿式多板クラッチや湿式多板ブレーキ等が好適に用いられる。
 摩擦係合要素は、その係合部材間の摩擦により、係合部材間でトルクを伝達する。摩擦係合要素の係合部材間に回転速度差(滑り)がある場合は、動摩擦により回転速度の大きい方の部材から小さい方の部材に伝達トルク容量の大きさのトルク(スリップトルク)が伝達される。摩擦係合要素の係合部材間に回転速度差(滑り)がない場合は、摩擦係合要素は、伝達トルク容量の大きさを上限として、静摩擦により摩擦係合要素の係合部材間に作用するトルクを伝達する。ここで、伝達トルク容量とは、摩擦係合要素が摩擦により伝達することができる最大のトルクの大きさである。伝達トルク容量の大きさは、摩擦係合要素の係合圧に比例して変化する。係合圧とは、入力側係合部材(摩擦板)と出力側係合部材(摩擦板)とを相互に押し付け合う圧力である。本実施形態では、係合圧は、供給されている油圧の大きさに比例して変化する。すなわち、本実施形態では、伝達トルク容量の大きさは、摩擦係合要素に供給されている油圧の大きさに比例して変化する。
 各摩擦係合要素は、リターンばねを備えており、ばねの反力により解放側に付勢されている。そして、各摩擦係合要素の油圧シリンダに供給される油圧により生じる力がばねの反力を上回ると、各摩擦係合要素に伝達トルク容量が生じ始め、各摩擦係合要素は、解放状態から係合状態に変化する。この伝達トルク容量が生じ始めるときの油圧を、ストロークエンド圧と称す。各摩擦係合要素は、供給される油圧がストロークエンド圧を上回った後、油圧の増加に比例して、その伝達トルク容量が増加するように構成されている。なお、摩擦係合要素は、リターンばねを備えておらず、油圧シリンダのピストンの両側にかかる油圧の差圧によって制御させる構造でもよい。
 本実施形態において、係合状態とは、摩擦係合要素に伝達トルク容量が生じている状態であり滑り係合状態と直結係合状態とが含まれる。解放状態とは、摩擦係合要素に伝達トルク容量が生じていない状態である。また、滑り係合状態とは、摩擦係合要素の係合部材間に回転速度差(滑り)がある係合状態であり、直結係合状態とは、摩擦係合要素の係合部材間に回転速度差(滑り)がない係合状態である。また、非直結係合状態とは、直結係合状態以外の係合状態であり、解放状態と滑り係合状態とが含まれる。
 なお、摩擦係合要素には、制御装置30により伝達トルク容量を生じさせる指令が出されていない場合でも、係合部材(摩擦部材)同士の引き摺りによって伝達トルク容量が生じる場合がある。例えば、ピストンにより摩擦部材同士が押圧されていない場合でも、摩擦部材同士が接触し、摩擦部材同士の引き摺りによって伝達トルク容量が生じる場合がある。そこで、「解放状態」には、制御装置30が摩擦係合装置に伝達トルク容量を生じさせる指令を出していない場合に、摩擦部材同士の引き摺りにより、伝達トルク容量が生じている状態も含まれるものとする。
2.油圧制御系の構成
 車両用駆動装置1の油圧制御系は、車両の駆動力源や専用のモータによって駆動される油圧ポンプから供給される作動油の油圧を所定圧に調整するための油圧制御装置PCを備えている。ここでは詳しい説明を省略するが、油圧制御装置PCは、油圧調整用のリニアソレノイド弁からの信号圧に基づき一又は二以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、変速機構TM、並びに第一係合装置CL1や第二係合装置CL2の各摩擦係合要素等に供給される。
3.制御装置の構成
 次に、車両用駆動装置1の制御を行う制御装置30及びエンジン制御装置31の構成について、図2を参照して説明する。
 制御装置30の制御ユニット32~34及びエンジン制御装置31は、CPU等の演算処理装置を中核部材として備えるとともに、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている。そして、制御装置のROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置30の各機能部41~47などが構成されている。また、制御装置30の制御ユニット32~34及びエンジン制御装置31は、互いに通信を行うように構成されており、センサの検出情報及び制御パラメータ等の各種情報を共有するとともに協調制御を行い、各機能部41~47の機能が実現される。
 また、車両用駆動装置1は、センサSe1~Se3を備えており、各センサから出力される電気信号は制御装置30及びエンジン制御装置31に入力される。制御装置30及びエンジン制御装置31は、入力された電気信号に基づき各センサの検出情報を算出する。
 入力回転速度センサSe1は、入力軸I及び中間軸Mの回転速度を検出するためのセンサである。入力軸I及び中間軸Mには回転電機MGのロータが一体的に駆動連結されているので、回転電機制御ユニット32は、入力回転速度センサSe1の入力信号に基づいて回転電機MGの回転速度(角速度)、並びに入力軸I及び中間軸Mの回転速度を検出する。出力回転速度センサSe2は、出力軸Oの回転速度を検出するためのセンサである。動力伝達制御ユニット33は、出力回転速度センサSe2の入力信号に基づいて出力軸Oの回転速度(角速度)を検出する。また、出力軸Oの回転速度は、車輪Wの回転速度及び車速に比例するため、動力伝達制御ユニット33は、出力回転速度センサSe2の入力信号に基づいて、車輪Wの回転速度及び車速を算出する。エンジン回転速度センサSe3は、エンジン出力軸Eo(エンジンE)の回転速度を検出するためのセンサである。エンジン制御装置31は、エンジン回転速度センサSe3の入力信号に基づいてエンジンEの回転速度(角速度)を検出する。
3-1.エンジン制御装置31
 エンジン制御装置31は、エンジンEの動作制御を行うエンジン制御部41を備えている。本実施形態では、エンジン制御部41は、車両制御ユニット34からエンジン要求トルクが指令されている場合は、車両制御ユニット34から指令されたエンジン要求トルクを出力トルク指令値に設定し、エンジンEが出力トルク指令値のトルクを出力するように制御するトルク制御を行う。
3-2.動力伝達制御ユニット33
 動力伝達制御ユニット33は、変速機構TMの制御を行う変速機構制御部43と、第一係合装置CL1の制御を行う第一係合装置制御部44と、エンジンEの始動制御中に第二係合装置CL2の制御を行う第二係合装置制御部45と、を備えている。
3-2-1.変速機構制御部43
 変速機構制御部43は、変速機構TMに変速段を形成する制御を行う。変速機構制御部43は、車速、アクセル開度、及びシフト位置などのセンサ検出情報に基づいて変速機構TMにおける目標変速段を決定する。そして、変速機構制御部43は、油圧制御装置PCを介して変速機構TMに備えられた複数の係合装置に供給される油圧を制御することにより、各係合装置を係合又は解放して目標とされた変速段を変速機構TMに形成させる。具体的には、変速機構制御部43は、油圧制御装置PCに各係合装置の目標油圧(指令圧)を指令し、油圧制御装置PCは、指令された目標油圧(指令圧)の油圧を各係合装置に供給する。
3-2-2.第一係合装置制御部44
 第一係合装置制御部44は、第一係合装置CL1の係合状態を制御する。本実施形態では、第一係合装置制御部44は、第一係合装置CL1の伝達トルク容量が、車両制御ユニット34から指令された第一目標トルク容量に近づくように、油圧制御装置PCを介して第一係合装置CL1に供給される油圧を制御する。具体的には、第一係合装置制御部44は、第一目標トルク容量に基づき設定した目標油圧(指令圧)を、油圧制御装置PCに指令し、油圧制御装置PCは、指令された目標油圧(指令圧)を制御目標として第一係合装置CL1に供給する油圧を制御する。
3-2-3.第二係合装置制御部45
 第二係合装置制御部45は、エンジンEの始動制御中に第二係合装置CL2の係合状態を制御する。本実施形態では、第二係合装置制御部45は、第二係合装置CL2の伝達トルク容量が、車両制御ユニット34から指令された第二目標トルク容量に近づくように、油圧制御装置PCを介して第二係合装置CL2に供給される油圧を制御する。具体的には、第二係合装置制御部45は、第二目標トルク容量に基づき設定した目標油圧(指令圧)を、油圧制御装置PCに指令し、油圧制御装置PCは、指令された目標油圧(指令圧)を制御目標として第二係合装置CL2に供給する油圧を制御する。
 本実施形態では、第二係合装置CL2は、変速機構TMの変速段を形成している複数又は単数の係合装置の一つとされる。第二係合装置CL2として用いる変速機構TMの係合装置は、形成されている変速段によって変更されても良いし、同じ係合装置が使用されても良い。
3-3.回転電機制御ユニット32
 回転電機制御ユニット32は、回転電機MGの動作制御を行う回転電機制御部42を備えている。本実施形態では、回転電機制御部42は、車両制御ユニット34から回転電機要求トルクが指令されている場合は、車両制御ユニット34から指令された回転電機要求トルクを出力トルク指令値に設定し、回転電機MGが出力トルク指令値のトルクを出力するように制御する。具体的には、回転電機制御部42は、インバータが備える複数のスイッチング素子をオンオフ制御することにより、回転電機MGの出力トルクを制御する。
3-4.車両制御ユニット34
 車両制御ユニット34は、エンジンE、回転電機MG、変速機構TM、第一係合装置CL1、及び第二係合装置CL2等に対して行われる各種トルク制御、及び各係合装置の係合制御等を車両全体として統合する制御を行う機能部を備えている。
 車両制御ユニット34は、アクセル開度、車速、及びバッテリの充電量等に応じて、車輪Wの駆動のために要求されているトルクであって、中間軸M側から出力軸O側に伝達される目標駆動力である車両要求トルクを算出するとともに、エンジンE及び回転電機MGの運転モードを決定する。そして、車両制御ユニット34は、エンジンEに対して要求する出力トルクであるエンジン要求トルク、回転電機MGに対して要求する出力トルクである回転電機要求トルク、第一係合装置CL1に対して要求する伝達トルク容量である第一目標トルク容量、及び第二係合装置CL2に対して要求する伝達トルク容量である第二目標トルク容量を算出し、それらを他の制御ユニット32、33及びエンジン制御装置31に指令して統合制御を行う機能部である。
 本実施形態では、車両制御ユニット34は、第一係合滑り制御部46、及び温度上昇抑制制御部47などを備えており、第一係合滑り制御中に第一係合装置CL1の温度上昇抑制制御を行う。
 以下、温度上昇抑制制御について詳細に説明する。
3-4-1.温度上昇抑制制御
 第一係合滑り制御部46は、エンジンEの回転運転中、第二係合装置CL2を直結係合状態に制御し、第一係合装置CL1を滑り係合状態に制御する第一係合滑り制御を行う機能部である。
 温度上昇抑制制御部47は、第一係合滑り制御中に、第一係合装置CL1の温度が上昇した場合に、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる温度上昇抑制制御を行う機能部である。
 なお、温度上昇抑制制御部47は、第一係合装置CL1の伝達トルクを、ゼロより大きい範囲内で減少させ、第一係合装置CL1を滑り係合状態に維持し、エンジンEの駆動力を車輪W側に伝達させるように構成されている。
<車輪Wの回転停止状態での温度上昇抑制制御>
 本実施形態では、温度上昇抑制制御部47は、第一係合滑り制御中に、車輪Wの回転が停止している状態で、第一係合装置CL1の温度が予め定めた補助しきい値を超えた場合に、温度上昇抑制制御として、第二係合装置CL2を直結係合状態に制御したままで、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる直結維持制御を実行するように構成されている。なお、補助しきい値が、本発明における「第一しきい値」に相当する。
 また、本実施形態では、温度上昇抑制制御部47は、直結維持制御において回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる際に、回転電機MGの回転停止状態で回転電機の温度上昇が予め定めた許容範囲内となる限度で回転電機MGの出力トルクを増加させ、その増加量に応じて第一係合装置CL1の伝達トルクを減少させるように構成されている。
 或いは、温度上昇抑制制御部47は、第一係合滑り制御中に、車輪Wの回転が停止している状態で、第一係合装置CL1の温度が、予め定めた、補助しきい値より高い滑りしきい値を超えた場合に、温度上昇抑制制御として、第二係合装置CL2を直結係合状態から滑り係合状態に移行させて、回転電機MGの回転速度を増加させると共に、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる滑り移行制御を実行するように構成されている。なお、滑りしきい値が、本発明における「第二しきい値」に相当する。
<車輪Wの回転状態での温度上昇抑制制御>
 温度上昇抑制制御部47は、第一係合滑り制御中に、車輪Wが回転している状態で、第一係合装置CL1の温度が上昇した場合に、温度上昇抑制制御として、第二係合装置CL2を直結係合状態に制御したままで、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる回転中制御を実行するように構成されている。
 本実施形態では、温度上昇抑制制御部47は、第一係合滑り制御中に、車輪Wが回転している状態で、第一係合装置CL1の温度が予め定めた回転しきい値を超えた場合に、回転中制御を実行するように構成されている。
3-4-1-1.フローチャート
 以上で説明した本実施形態に係る温度上昇抑制制御を、図3に示すフローチャートの例に示すように構成することができる。
 第一係合滑り制御部46は、第一係合滑り制御の実行条件が成立した場合(ステップ♯01:Yes)に、第一係合滑り制御を開始する。第一係合滑り制御は、エンジンEの駆動力により車輪Wを駆動する際、エンジンEの回転速度を自律運転可能な回転速度以上に保った状態で、回転速度の低い車輪W側に、エンジンEの出力トルクを伝達するために、第一係合装置CL1を滑り係合状態にする制御である。
 なお、車輪Wの回転速度が低い状態で、エンジンEの回転速度を自律運転可能な回転速度以上に保つためには、第一係合装置CL1及び第二係合装置CL2のいずれかを滑り係合状態に制御すればよい。しかし、本実施形態に係る車両用駆動装置1では、第一係合装置CL1は、第二係合装置CL2より、滑り係合状態で生じる摩擦熱に対する耐熱性及び冷却性能が優れたものとされており、第一係合滑り制御中に第一係合装置CL1が優先的に滑り係合状態に制御される。これは、第一係合装置CL1は、エンジンEと回転電機MGとの間を係合又は分離するために専用に設けられており、また、エンジンEの始動制御などにおいても、第一係合装置CL1が滑り係合状態に制御されることから、変速機構TMに備えられた複数の係合装置の中の1つとされる第二係合装置CL2より、滑り係合状態で生じる摩擦熱に対する耐熱性及び冷却性能が優れたものとされているためである。
 ただし、第一係合装置CL1の耐熱性及び冷却性能には限界があり、第一係合滑り制御の実行中に、第一係合装置CL1の温度が許容範囲の上限に近づいた場合は、後述する温度上昇抑制制御により第一係合装置CL1の温度上昇を抑制させる必要がある。
 第一係合滑り制御の実行条件は、例えば、エンジンEの回転運転中であって、回転電機MGの回転速度又は出力回転速度が、エンジンEの回転速度未満であって、車両要求トルクがゼロより大きくなった場合に成立する。エンジンEの回転運転中とは、エンジンEが、自律運転可能な回転速度以上で継続的に回転しており、典型的には燃焼している状態である。出力回転速度は、出力軸Oの回転速度に変速機構TMの変速比を乗算した回転速度である。
 第一係合滑り制御部46は、第一係合滑り制御の実行条件が成立した場合(ステップ♯01:Yes)に、第一係合装置CL1を解放状態または直結係合状態から滑り係合状態に移行させる(ステップ♯02)。具体的には、第一係合滑り制御部46は、第一係合装置CL1の第一目標トルク容量(係合圧)を、ゼロから増加させる、又は完全係合容量(完全係合圧)から減少させて、第一係合装置CL1を滑り係合状態に移行させる。完全係合容量(完全係合圧)とは、駆動力源から係合装置に伝達されるトルクが変動しても滑りのない係合状態を維持できる伝達トルク容量(係合圧)である。
 本実施形態では、第一係合滑り制御部46は、第一目標トルク容量を、車両要求トルクに応じた値まで増加又は減少させて、第一係合装置CL1が滑り係合状態で車輪W側に伝達するトルクを、車両要求トルクに応じたトルクに制御するように構成されている。
<車輪Wの回転停止判定>
 温度上昇抑制制御部47は、第一係合装置CL1が滑り係合状態に移行された後、車輪Wの回転が停止しているか否かを判定する(ステップ♯03)。
 本実施形態では、温度上昇抑制制御部47は、出力軸Oの回転速度(車速)又は回転電機MGの回転速度が、ゼロを含む所定の範囲(停止判定範囲と称す)内にある場合に、車輪Wの回転が停止していると判定するように構成されている。ここで、停止判定範囲は、回転電機MGに最大限のトルクを出力させても、回転電機MGの温度上昇が許容範囲内になるような回転速度に応じて設定される。これは、回転電機MGの回転が停止している状態で、トルクを出力させると、電流が流れるコイルが回転に従って切り替わっていかず、電流が一部のコイルに流れ続け、一部のコイル及び一部のスイッチング素子に発熱が偏り、これらの温度上昇が許容範囲を超えるおそれがあるためである。また、回転電機MGの回転速度がゼロより極僅かに増加したとしても、コイル及びスイッチング素子の発熱の偏りが十分解消しない。よって、温度上昇抑制制御部47は、発熱の偏りが十分解消できるような回転速度以上になった場合に、車輪Wの回転が停止していないと判定するように構成されている。また、温度上昇抑制制御部47は、出力軸O又は回転電機MGの回転速度が停止判定範囲外である状態が所定時間経過した場合に、車輪Wの回転が停止していないと判定するように構成されていてもよい。出力軸O又は回転電機MGの回転速度が、安定的に、回転電機MGの温度上昇が許容範囲内になるような停止判定範囲になるのを待って、車輪Wの回転停止を判定することができる。
<第一係合装置CL1の温度の算出>
 温度上昇抑制制御部47は、温度上昇指標として、第一係合装置CL1の温度を算出するように構成されている。
 摩擦係合要素が滑り係合状態である場合における係合部材間の摩擦による発熱量は、係合部材間を伝達している伝達トルクと、係合部材間の回転速度差を乗算した値に比例する。摩擦係合要素の係合部材は熱容量を有しており、係合部材の温度は、発熱量の増加又は減少に対して、遅れを有して変化する。また、摩擦係合要素は冷却機構を備えており、発熱量と冷却機構による放熱量との偏差に応じて、係合部材の温度が変化する。また、冷却機構による放熱量は、係合部材の温度に応じて変化する。また、冷却機構が油などの冷媒を用いている場合は、冷却機構による放熱量は冷媒温度によっても変化する。
 本実施形態では、温度上昇抑制制御部47は、第一係合装置CL1の摩擦による発熱量に基づき、熱容量及び放熱による応答遅れ処理を行って、第一係合装置CL1の係合部材の温度を推定するように構成されている。
 具体的には、温度上昇抑制制御部47は、第一係合装置CL1の伝達トルク容量(伝達トルク)と、第一係合装置CL1の係合部材間の回転速度差と、を乗算した値を第一係合装置CL1の発熱量として算出する。また、第一係合装置CL1の温度に基づいて、第一係合装置CL1の係合部材からの放熱量を算出する。この際、第一係合装置CL1の温度と放熱量との関係特性を記憶した特性マップを用いる。なお、放熱量を算出する際、油温センサを用いて検出した、或いは推定した油温を用いるように構成されてもよい。そして、第一係合装置CL1の発熱量から放熱量を減算した熱量を、熱容量で除算した値を積分し、その積分値を、第一係合装置CL1の係合部材の温度として推定する。
 或いは、温度上昇抑制制御部47は、定常状態における第一係合装置CL1の発熱量と第一係合装置CL1の係合部材の温度との特性を予め記憶した特性マップを用い、第一係合装置CL1の発熱量に基づいて、第一係合装置CL1の定常温度を算出する。そして、第一係合装置CL1の定常温度に対して、熱容量及び放熱による一次遅れなどの応答遅れ処理を行った値を、第一係合装置CL1の係合部材の温度として推定するように構成されてもよい。
 或いは、第一係合装置CL1に係合部材の温度を計測するための温度センサが備えられている場合は、温度上昇抑制制御部47は、温度センサの出力信号に基づいて、第一係合装置CL1の温度を検出するように構成されてもよい。
<車輪Wの回転中>
 温度上昇抑制制御部47は、車輪Wが回転していると判定している場合に、第一係合装置CL1の温度が、予め定めた回転しきい値を超えたか否かを判定する(ステップ♯04)。ここで、回転しきい値は、耐熱性から定まる許容上限温度以下に設定されている。
 温度上昇抑制制御部47は、第一係合装置CL1の温度が回転しきい値を超えていないと判定した場合(ステップ♯04:No)に、温度上昇抑制制御を行わずに、車両要求トルクに応じて第一係合装置CL1の伝達トルク(伝達トルク容量)を制御する伝達トルク制御を実行する(ステップ♯05)。
 一方、温度上昇抑制制御部47は、第一係合装置CL1の温度が回転しきい値を超えたと判定した場合(ステップ♯04:Yes)に、回転中制御として、第一係合装置CL1の伝達トルクを減少させ、回転電機MGの出力トルクを増加させる伝達トルク制限モータアシスト制御を実行する(ステップ♯06)。これにより、第一係合装置CL1の温度上昇が抑制される。
 そして、温度上昇抑制制御部47は、ステップ♯05及び♯06の後、第一係合装置CL1を滑り係合状態から直結係合状態へ移行させる直結移行条件が成立しているか否かを判定し(ステップ♯07)、直結移行条件が成立していない場合(ステップ♯07:No)は、ステップ♯03に戻り処理を繰り返す。本実施形態では、温度上昇抑制制御部47は、第一係合装置CL1の係合部材間の回転速度差Δω1が予め定めた所定値以下になった場合に、第一係合装置CL1の直結移行条件が成立したと判定するように構成されている。
<車輪Wの回転停止中>
 一方、温度上昇抑制制御部47は、車輪Wの回転が停止していると判定している場合(ステップ♯03:Yes)に、第一係合装置CL1の温度が、予め定めた補助しきい値を超えたか否かを判定する(ステップ♯09)。ここで、補助しきい値は、滑りしきい値未満に設定されている。
 温度上昇抑制制御部47は、第一係合装置CL1の温度が補助しきい値を超えていないと判定された場合(ステップ♯09:No)に、温度上昇抑制制御を行わずに、車両要求トルクに応じて第一係合装置CL1の伝達トルク(伝達トルク容量)を制御する伝達トルク制御を実行する(ステップ♯10)。
 一方、温度上昇抑制制御部47は、第一係合装置CL1の温度が補助しきい値を超えたと判定した場合(ステップ♯09:Yes)に、第一係合装置CL1の温度が、予め定めた滑りしきい値を超えたか否かを判定する(ステップ♯11)。ここで、滑りしきい値は、耐熱性から定まる許容上限温度以下に設定されている。
 温度上昇抑制制御部47は、第一係合装置CL1の温度が補助しきい値を超えている(ステップ♯09:Yes)が、滑りしきい値を超えていないと判定した場合(ステップ♯11:No)に、直結維持制御として、第二係合装置CL2を直結係合状態に制御したままで、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる回転停止モータアシスト制御を実行する(ステップ♯12)。回転電機MGの回転が停止し、回転電機MGのコイル及びスイッチング素子の発熱の偏りが生じる場合であっても、回転電機MGの温度上昇が許容範囲内となる限度で、回転電機MGの出力トルクを増加させることができる。そして、第一係合装置CL1の伝達トルクを減少させて、第一係合装置CL1の温度上昇を抑制することができる。
 そして、温度上昇抑制制御部47は、ステップ♯10及び♯12の後、第一係合装置CL1の直結移行条件が成立していない場合(ステップ♯07:No)は、ステップ♯03に戻り処理を繰り返す。
 一方、温度上昇抑制制御部47は、第一係合装置CL1の温度が補助しきい値及び滑りしきい値を超えていると判定された場合(ステップ♯09:Yes、ステップ♯11:Yes)に、滑り移行制御として、第二係合装置CL2を直結係合状態から滑り係合状態に移行させて、回転電機MGの回転速度を増加させる(ステップ♯13)と共に、第一係合装置CL1の伝達トルクを減少させ、回転電機MGの出力トルクを増加させる伝達トルク制限モータアシスト制御を実行する(ステップ♯14)。
 伝達トルク制限モータアシスト制御の実行中に、温度上昇抑制制御部47は、車輪Wが回転していると判定した場合(ステップ♯15:No)に、第二係合装置CL2を滑り係合状態から直結係合状態へ移行させる直結移行条件が成立しているか否かを判定し(ステップ♯16)、直結移行条件が成立した場合に(ステップ♯16:Yes)、第二係合装置CL2を滑り係合状態から直結係合状態へ移行させる(ステップ♯17)。一方、温度上昇抑制制御部47は、車輪Wの回転が停止していると判定している場合(ステップ♯15:Yes)、又は第二係合装置CL2の直結移行条件が成立していない場合(ステップ♯16:No)は、ステップ♯15に戻り処理を繰り返す。本実施形態では、温度上昇抑制制御部47は、第二係合装置CL2の係合部材間の回転速度差が予め定めた所定値以下になった場合に、第二係合装置CL2の直結移行条件が成立したと判定するように構成されている。
 そして、温度上昇抑制制御部47は、ステップ♯17で第二係合装置CL2を直結係合状態へ移行させた後、第一係合装置CL1の直結移行条件が成立していない場合(ステップ♯07:No)は、ステップ♯03に戻り処理を繰り返す。
 温度上昇抑制制御部47は、第一係合装置CL1の直結移行条件が成立した場合(ステップ♯07:Yes)は、第一係合装置CL1を滑り係合状態から直結係合状態に移行させて(ステップ♯08)、第一係合滑り制御及び温度上昇抑制制御を終了する。
3-4-1-2.車輪Wが回転停止の場合のタイムチャート
 次に、図4に示すタイムチャートの例に基づき、車輪Wの回転が停止していると判定されている場合(ステップ♯03:Yes)に、第一係合装置CL1の温度が、順番に補助しきい値及び滑りしきい値を超える場合(ステップ♯09:Yes、ステップ♯11:Yes)を説明する。
 図4に示す例では、時刻T01までに、第一係合装置CL1が滑り係合状態に移行されており第一係合滑り制御が開始されている。また、車両要求トルクが増加されており、車両要求トルクに応じた第一係合装置CL1の伝達トルクが車輪W側に伝達されている。しかし、図4に示す例では、車両が登坂に位置しており、登坂で車重により車輪Wに作用する登坂抵抗トルクと、車両要求トルクに応じたトルクとが釣り合っており、車輪Wの回転が停止している。また、図4に示す例では、登坂の傾斜が大きく車両要求トルクが大きくなっているので、第一係合装置CL1の発熱量が大きくなっている。このため、第一係合装置CL1の係合部材の温度が急速に上昇している。なお、第一係合装置CL1の発熱量は、定常状態で、第一係合装置CL1の温度が許容範囲を超える発熱量となっているが、第一係合装置CL1の温度は、熱容量などによる遅れを有して上昇している。
 時刻T01までは、温度上昇抑制制御部47は、車輪Wの回転が停止していると判定しており、第一係合装置CL1の温度が補助しきい値を超えていないと判定しているので、車両要求トルクに応じて第一係合装置CL1の伝達トルク(伝達トルク容量)を制御する伝達トルク制御を実行している。よって、第一係合装置CL1の第一目標トルク容量は、車両要求トルクに応じた値に設定されている。また、エンジンEのエンジン要求トルクも、車両要求トルクに応じた値に設定されている。本実施形態では、エンジン要求トルクが、エンジンEの回転速度を所定の回転速度に維持するエンジンEの回転速度制御によって変更されるように構成されている。なお、第一目標トルク容量が、エンジンEの回転速度制御によって変更されるように構成されてもよい。また、回転電機MGの回転電機要求トルクは、ゼロ付近に設定されている。第二係合装置CL2の第二目標トルク容量は、完全係合容量(完全係合圧)に設定されており、第二係合装置CL2は直結係合状態に制御されている。
 時刻T02で、温度上昇抑制制御部47は、第一係合装置CL1の温度が補助しきい値を超えたと判定している。そして、温度上昇抑制制御部47は、伝達トルク制御を終了し、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる回転停止モータアシスト制御の実行を開始している。
 本実施形態では、温度上昇抑制制御部47は、回転電機MGの出力トルクの増加量に応じて、第一係合装置CL1の伝達トルクを減少させるように構成されている。
 温度上昇抑制制御部47は、回転停止モータアシスト制御として、回転電機MGの回転停止状態で回転電機MGの温度上昇が予め定めた許容範囲内となる限度で回転電機MGの出力トルクを増加させ、その増加量に応じて第一係合装置CL1の伝達トルクを減少させるように構成されている。
 温度上昇抑制制御部47は、回転電機MGの回転が停止している場合であっても、回転電機MGの温度上昇が許容範囲内となるような予め定めた回転停止許容トルクまで、回転電機MGの回転電機要求トルクを増加させている(時刻T01から時刻T02)。一方、温度上昇抑制制御部47は、第一係合装置CL1の第一目標トルク容量を、回転停止許容トルクに応じて減少させている。また、温度上昇抑制制御部47は、エンジンEのエンジン要求トルクも、回転停止許容トルクに応じて減少させている。
 第一係合装置CL1の伝達トルクを回転停止許容トルクに応じて減少させることによって、第一係合装置CL1の伝達トルクと第一係合装置CL1の係合部材間の回転速度差Δω1との乗算値により定まる第一係合装置CL1の発熱量が減少している。しかし、図4に示す例では、車両要求トルクが大きいので、第一係合装置CL1の温度(温度上昇指標)の上昇を十分抑制できるまで、回転電機MGの回転電機要求トルクを増加させることができていないが、温度上昇速度を減少させることができている。
 時刻T02で、温度上昇抑制制御部47は、第一係合装置CL1の温度が滑りしきい値を超えたと判定している。そして、温度上昇抑制制御部47は、第二係合装置CL2を直結係合状態から滑り係合状態に移行させる移行制御を開始している。本実施形態では、温度上昇抑制制御部47は、第二係合装置CL2の第二目標トルク容量を完全係合容量から車両要求トルクに応じた伝達トルク容量以下まで減少させて、第二係合装置CL2を滑り係合状態に移行させるように構成されている。図4に示す例では、温度上昇抑制制御部47は、第二係合装置CL2の第二目標トルク容量を、完全係合容量からステップ的に減少させた後、次第に減少させている(時刻T02からT03)。温度上昇抑制制御部47は、第二係合装置CL2の係合部材間に回転速度差が生じたと判定した場合(時刻T03)に、第二目標トルク容量の減少を終了し、第二係合装置CL2が車両要求トルクに応じたトルクを回転電機MG側から車輪W側に伝達可能な伝達トルク容量の値を第二目標トルク容量に設定している(時刻T03からT05)。なお、図4及び図5には、第二係合装置CL2の伝達トルク及び第二目標トルク容量を、中間軸Mに作用する伝達トルク及び伝達トルク容量相当に換算したもの、すなわち、中間軸Mを基準に換算したものを示している。
 第二係合装置CL2が滑り係合状態に移行した後、回転電機MGの回転速度を、ゼロより大きい所定の目標回転速度に制御する回転速度制御の実行を開始している(時刻T03)。この目標回転速度は、コイル及びスイッチング素子の発熱の偏りを抑制できるような回転速度に設定されている。本実施形態では、回転速度制御により回転電機要求トルクを変化させるように構成されている。
 温度上昇抑制制御部47は、第二係合装置CL2を滑り係合状態に移行させて回転電機MGの回転速度を増加させた後、回転停止モータアシスト制御を終了して、第一係合装置CL1の伝達トルクを減少させ、回転電機MGの出力トルクを増加させる伝達トルク制限モータアシスト制御の実行を開始している(時刻T03)。
 本実施形態では、温度上昇抑制制御部47は、回転電機MGの出力トルクの増加量に応じて、第一係合装置CL1の伝達トルクを減少させるように構成されている。
 温度上昇抑制制御部47は、伝達トルク制限モータアシスト制御として、第一係合装置CL1の温度上昇が予め定めた許容範囲内となるように第一係合装置CL1の伝達トルクを減少させ、その減少量に応じて回転電機MGの出力トルクを増加させるように構成されている。
 本実施形態では、温度上昇抑制制御部47は、第一係合装置CL1の温度上昇が定常状態で許容範囲内となるように予め設定された第一係合装置CL1の発熱量である制限発熱量に基づいて、第一係合装置CL1の伝達トルクの上限制限値を求め、第一係合装置CL1の伝達トルクを上限制限値まで減少させ、その減少量に応じて回転電機MGの出力トルクを増加させるように構成されている。
 具体的には、温度上昇抑制制御部47は、第一係合装置CL1の温度上昇が定常状態で許容範囲内となるように予め設定された第一係合装置CL1の制限発熱量を、第一係合装置CL1の係合部材間の回転速度差Δω1で除算した値を上限制限値に設定している。そして、温度上昇抑制制御部47は、車両要求トルクに応じて設定した値を、当該上限制限値により上限制限した値を、第一係合装置CL1の第一目標トルク容量に設定している。そして、温度上昇抑制制御部47は、車両要求トルクに応じて設定した値からの上限制限による第一目標トルク容量の減少量に応じて回転電機要求トルクを増加させている。
 第一係合装置CL1の発熱量が、制限発熱量まで低減されているので、第一係合装置CL1の温度(温度上昇指標)の上昇が抑制されて、許容範囲内となっている。
 本実施形態では、第一係合装置CL1の制限発熱量は、第一係合装置CL1の温度上昇が定常状態で滑りしきい値を基準にした許容範囲内になるように予め設定されている。例えば、第一係合装置CL1の制限発熱量は、第一係合装置CL1の温度が定常状態で滑りしきい値となるように設定される。
 第一係合装置CL1の制限発熱量はゼロより大きい値に設定されるため、第一係合装置CL1の伝達トルクの上限制限値もゼロより大きい値に設定される。よって、第一係合装置CL1の伝達トルクは、ゼロより大きい範囲内で減少されることになる。
 時刻T04で、アクセル開度の増加などにより、車両要求トルクが増加している。第一係合装置CL1の第一目標トルク容量は、上限制限値により上限制限されているので、車両要求トルクの増加に応じて、回転電機要求トルクが増加されている。車両要求トルクの増加により、車輪Wに伝達される駆動トルクが、登坂抵抗トルクを上回り、車速が増加し始める(時刻T04以降)。
 車速の増加と共に、第一係合装置CL1の回転速度差Δω1が減少し、制限発熱量を回転速度差Δω1で除算して算出する上限制限値が増加している。上限制限値の増加に従い、第一目標トルク容量が増加されている(時刻T05からT06)。上限制限値が、車両要求トルクに応じて設定した値を上回るまで増加すると、第一目標トルク容量は、上限制限されなくなり、車両要求トルクに応じた値に設定されている(時刻T06からT07)。また、第一目標トルク容量の増加に応じて、エンジンEの出力トルクも増加されている。そして、上限制限値の増加に従い、車両要求トルクに応じた値からの第一目標トルク容量の減少量が減少し、回転電機要求トルクの増加量が減少している(時刻T05からT06)。このように、第一係合装置CL1の回転速度差Δω1が減少した場合に、第一係合装置CL1の温度上昇を許容範囲内に維持しつつ、第一係合装置CL1の伝達トルク及びエンジンEの出力トルクを増加させ、回転電機MGの出力トルクを減少させている。よって、回転電機MGの出力トルクによるバッテリの充電電力の消費を抑制し、エンジンEの出力トルクにより車輪Wを駆動することができるので、燃費を向上させることができる。
 車速の増加に比例して出力軸Oの回転速度が増加する。図4には、出力軸Oの回転速度に変速機構TMの変速比を乗算した回転速度である出力回転速度を示している。
 本実施形態では、温度上昇抑制制御部47は、第二係合装置CL2の係合部材間の回転速度差に対応する、回転電機MGの回転速度と出力回転速度との回転速度差が、予め定めた所定値以下になった場合に、第二係合装置CL2の直結移行条件が成立したと判定している(時刻T05)。そして、温度上昇抑制制御部47は、第二係合装置CL2の第二目標トルク容量を完全係合容量まで増加させて直結係合状態に移行させている。
 温度上昇抑制制御部47は、車速が更に増加して、第一係合装置CL1の係合部材間の回転速度差Δω1が予め定めた所定値以下になった場合に、第一係合装置CL1の直結移行条件が成立したと判定している(時刻T07)。そして、温度上昇抑制制御部47は、第一係合装置CL1の第一目標トルク容量を完全係合容量まで増加させて直結係合状態に移行させ、第一係合滑り制御及び温度上昇抑制制御を終了する。
3-4-1-3.車輪Wが回転中の場合のタイムチャート
 次に、図5に示すタイムチャートの例に基づき、車輪Wの回転が停止していないと判定されている場合(ステップ♯03:No)に、第一係合装置CL1の温度が、回転しきい値を超える場合(ステップ♯04:Yes)を説明する。
 図5に示す例でも、図4に示す例と同様に、時刻T11までに、第一係合装置CL1が滑り係合状態に移行されており第一係合滑り制御が開始されている。しかし、図5に示す例では、車両が登坂に位置しているが、車両要求トルクに応じて車輪Wに伝達される駆動トルクが、登坂抵抗トルクを若干上回っており、車両は微速走行している。
 時刻T11までは、温度上昇抑制制御部47は、車輪Wの回転が停止していないと判定しており、第一係合装置CL1の温度が回転しきい値を超えていないと判定しているので、車両要求トルクに応じて第一係合装置CL1の伝達トルク(伝達トルク容量)を制御する伝達トルク制御を実行している。よって、第一係合装置CL1の第一目標トルク容量、及びエンジンEのエンジン要求トルクは、車両要求トルクに応じた値に設定されている。また、回転電機MGの回転電機要求トルクは、ゼロ付近に設定されている。第二係合装置CL2の第二目標トルク容量は、完全係合容量(完全係合圧)に設定されており、第二係合装置CL2は直結係合状態に制御されている。
 時刻T11で、温度上昇抑制制御部47は、第一係合装置CL1の温度が回転しきい値を超えたと判定している。そして、温度上昇抑制制御部47は、伝達トルク制御を終了して、第一係合装置CL1の伝達トルクを減少させ、回転電機MGの出力トルクを増加させる伝達トルク制限モータアシスト制御の実行を開始している(時刻T11)。
 本実施形態では、温度上昇抑制制御部47は、回転電機MGの出力トルクの増加量に応じて、第一係合装置CL1の伝達トルクを減少させるように構成されている。
 温度上昇抑制制御部47は、伝達トルク制限モータアシスト制御として、図4を用いて説明した場合と同様に、第一係合装置CL1の温度上昇が予め定めた許容範囲内となるように第一係合装置CL1の伝達トルクを減少させ、その減少量に応じて回転電機MGの出力トルクを増加させるように構成されている。
 具体的には、温度上昇抑制制御部47は、第一係合装置CL1の温度上昇が定常状態で許容範囲内となるように予め設定された第一係合装置CL1の発熱量である制限発熱量に基づいて、第一係合装置CL1の伝達トルクの上限制限値を求め、第一係合装置CL1の伝達トルクを上限制限値まで減少させ、その減少量に応じて回転電機MGの出力トルクを増加させるように構成されている。
 本実施形態では、第一係合装置CL1の制限発熱量は、第一係合装置CL1の温度上昇が定常状態で回転しきい値を基準にした許容範囲内になるように予め設定されている。例えば、第一係合装置CL1の制限発熱量は、第一係合装置CL1の温度が定常状態で回転しきい値となるように設定される。
 図4に示した場合と同様に、第一係合装置CL1の発熱量が制限発熱量まで低減されているので、第一係合装置CL1の温度(温度上昇指標)の上昇が抑制されて許容範囲内となっている。
 時刻T12で、アクセル開度の増加などにより、車両要求トルクが増加している。第一係合装置CL1の第一目標トルク容量は、上限制限値により上限制限されているので、車両要求トルクの増加に応じて、回転電機要求トルクが増加されている。
 車両要求トルクの増加により、車速が更に増加し始める(時刻T12以降)。
 車速の増加と共に、第一係合装置CL1の回転速度差Δω1が減少し、制限発熱量を回転速度差Δω1で除算して算出する上限制限値が増加している。上限制限値の増加に従い、第一目標トルク容量が増加している(時刻T12からT13)。上限制限値が、車両要求トルクに応じて設定した値を上回るまで増加すると、第一目標トルク容量は、上限制限されなくなり、車両要求トルクに応じた値に設定されている(時刻T13からT14)。
 そして、上限制限値の増加に従い、車両要求トルクに応じた値からの第一目標トルク容量の減少量が減少し、回転電機要求トルクの増加量が減少している(時刻T12からT13)。
 温度上昇抑制制御部47は、車速が増加して、第一係合装置CL1の係合部材間の回転速度差Δω1が予め定めた所定値以下になった場合に、第一係合装置CL1の直結移行条件が成立したと判定している(時刻T14)。そして、温度上昇抑制制御部47は、第一係合装置CL1の第一目標トルク容量を完全係合容量まで増加させて直結係合状態に移行させ、第一係合滑り制御及び温度上昇抑制制御を終了する。
〔その他の実施形態〕
 最後に、本発明のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記の実施形態においては、温度上昇抑制制御部47は、第二係合装置CL2が滑り係合状態であって、車輪Wが回転し始めた後、第二係合装置CL2を滑り係合状態から直結係合状態に移行させ、その後第一係合装置CL1を滑り係合状態から直結係合状態へ移行させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、温度上昇抑制制御部47は、第二係合装置CL2が滑り係合状態であって、車輪Wが回転し始めた後、第一係合装置CL1を滑り係合状態から直結係合状態に移行させ、その後第二係合装置CL2を滑り係合状態から直結係合状態に移行させるように構成されてもよい。このように構成すると、第一係合装置CL1を直結係合状態に移行させる際に、トルクショックが生じたとしても、第二係合装置CL2が滑り係合状態であるので、トルクショックが車輪Wに伝達されることを防止できる。
<フローチャート>
 この場合は、図3に示したフローチャートは、図6に示すフローチャートに変更される。ここで、図6に示す、ステップ♯21からステップ♯35は、図4に示すステップ♯01からステップ♯15と同様なので説明を省略する。
 温度上昇抑制制御部47は、伝達トルク制限モータアシスト制御の実行中に、車輪Wが回転していると判定した場合(ステップ♯35:No)に、第一係合装置CL1の係合部材間の回転速度差Δω1を減少させて同期させる回転同期制御の実行を開始する(ステップ♯36)。
 そして、温度上昇抑制制御部47は、第一係合装置CL1を滑り係合状態から直結係合状態へ移行させる直結移行条件が成立しているか否かを判定し(ステップ♯37)、直結移行条件が成立した場合に(ステップ♯37:Yes)、第一係合装置CL1を滑り係合状態から直結係合状態へ移行させる(ステップ♯38)。
 そして、温度上昇抑制制御部47は、第二係合装置CL2を滑り係合状態から直結係合状態へ移行させる直結移行条件が成立しているか否かを判定し(ステップ♯39)、直結移行条件が成立した場合に(ステップ♯39:Yes)、第二係合装置CL2を滑り係合状態から直結係合状態へ移行させて(ステップ♯40)、第一係合滑り制御及び温度上昇抑制制御を終了する。
<タイムチャート>
 この場合は、図4に示したタイムチャートの例は、図7に示すタイムチャートの例のように変化する。ここで、図7に示す時刻T24までは、図4に示す時刻T04までと同様であるので説明を省略する。
 時刻T24で、車両要求トルクが増加され、車速が増加し始めると、温度上昇抑制制御部47は、車輪Wが回転していると判定し、第一係合装置CL1の回転同期制御の実行を開始している。図7に示す例では、温度上昇抑制制御部47は、第二係合装置CL2の発熱量の増加を抑制するため、第二係合装置CL2の回転速度差を、予め定めた所定値に維持しつつ、第一係合装置CL1の回転同期を行うように構成されている。具体的には、温度上昇抑制制御部47は、出力軸Oの回転速度に変速機構TMの変速比を乗算した出力回転速度に所定の回転速度を加算した値を、回転電機MGの目標回転速度に設定している。そして、回転電機MGの回転速度を目標回転速度に制御する回転速度制御を引き続き継続している(時刻T24からT26)。これにより、車速(出力回転速度)が増加するに従い、回転電機MGの回転速度も増加させて、第一係合装置CL1の回転同期を行うことができる。なお、回転速度の加算値は、一定値でなくてもよく、増加又は減少されてもよい。
 温度上昇抑制制御部47は、第一係合装置CL1の係合部材間の回転速度差Δω1が予め定めた所定値以下になった場合に、第一係合装置CL1の直結移行条件が成立したと判定している(時刻T26)。そして、温度上昇抑制制御部47は、第一係合装置CL1の第一目標トルク容量を完全係合容量まで増加させて直結係合状態へ移行させている。
 温度上昇抑制制御部47は、車速が更に増加して、第二係合装置CL2の係合部材間の回転速度差が予め定めた所定値以下になった場合に、第二係合装置CL2の直結移行条件が成立したと判定している(時刻T27)。そして、温度上昇抑制制御部47は、第二係合装置CL2の第二目標トルク容量を完全係合容量まで増加させて直結係合状態へ移行させ、第二係合滑り制御及び温度上昇抑制制御を終了している。
(2)上記の実施形態においては、変速機構TMの複数の係合装置の中の1つが、第一係合滑り制御中に滑り係合状態に制御される第二係合装置CL2に設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、車両用駆動装置1は、図8に示すように、回転電機MGと変速機構TMと間の動力伝達経路2に更に係合装置を備え、当該係合装置が、第一係合滑り制御中に滑り係合状態に制御される第二係合装置CL2に設定されるように構成されてもよい。或いは、図8に示す車両用駆動装置1において、変速機構TMが備えられないように構成されてもよい。
 或いは、車両用駆動装置1は、図9に示すように、回転電機MGと変速機構TMと間の動力伝達経路に更にトルクコンバータTCを備え、トルクコンバータTCの入出力部材間を直結係合状態にするロックアップクラッチが、第一係合滑り制御中に滑り係合状態に制御される第二係合装置CL2に設定されるように構成されてもよい。
(3)上記の実施形態においては、第一係合装置CL1及び第二係合装置CL2が油圧により制御される係合装置である場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第一係合装置CL1及び第二係合装置CL2の一方又は双方は、油圧以外の駆動力、例えば、電磁石の駆動力、サーボモータの駆動力など、により制御される係合装置であってもよい。
(4)上記の実施形態においては、変速機構TMが有段の自動変速装置である場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速機構TMが、連続的に変速比を変更可能な無段の自動変速装置など、有段の自動変速装置以外の変速装置にされるように構成されてもよい。この場合も、変速機構TMに備えられた係合装置が、第一係合滑り制御中に滑り係合状態に制御される第二係合装置CL2に設定され、或いは変速機構TMとは別に設けられた係合装置が第二係合装置CL2とされてもよい。
(5)上記の実施形態において、制御装置30は、複数の制御ユニット32~34を備え、これら複数の制御ユニット32~34が分担して複数の機能部41~47を備える場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、制御装置30は、上述した複数の制御ユニット32~34を任意の組み合わせで統合又は分離した制御装置として備えるようにしてもよく、複数の機能部41~47の分担も任意に設定することができる。例えば、第二係合装置CL2が変速機構TMの係合装置の1つとされる場合は、変速機構制御部43と第二係合装置制御部45とが統合されてもよい。
(6)上記の実施形態において、温度上昇抑制制御部47が、第一係合装置CL1の温度が補助しきい値を超えたと判定された場合に、回転停止モータアシスト制御を実行するように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、温度上昇抑制制御部47は、第一係合装置CL1の温度が補助しきい値を超えたと判定された場合に、回転停止モータアシスト制御を実行しないように構成されてもよい。すなわち、温度上昇抑制制御部47は、第一係合装置CL1の温度が補助しきい値以上であって滑りしきい値未満と判定されている場合に、回転停止モータアシスト制御を行わずに、伝達トルク制御を実行するように構成されてもよい。
 よって、この場合は、温度上昇抑制制御部47は、第一係合滑り制御中に、車輪Wの回転が停止している状態で、第一係合装置CL1の温度が上昇した場合に、温度上昇抑制制御として、第二係合装置CL2を直結係合状態から滑り係合状態に移行させて、回転電機MGの回転速度を増加させると共に、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる滑り移行制御のみを実行するように構成されることとなる。
(7)上記の実施形態において、温度上昇抑制制御部47が、第一係合装置CL1の温度が滑りしきい値を超えたと判定された場合に、第二係合装置CL2を滑り係合状態に移行させて、伝達トルク制限モータアシスト制御を実行するように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、温度上昇抑制制御部47は、第一係合装置CL1の温度が滑りしきい値を超えたと判定された場合に、第二係合装置CL2を滑り係合状態に移行させずに、伝達トルク制限モータアシスト制御を実行しないように構成されてもよい。すなわち、温度上昇抑制制御部47は、第一係合装置CL1の温度が滑りしきい値以上になった場合も、回転停止モータアシスト制御を実行するように構成されてもよい。
 よって、この場合は、温度上昇抑制制御部47は、第一係合滑り制御中に、車輪Wの回転が停止している状態で、第一係合装置CL1の温度が上昇した場合に、温度上昇抑制制御として、第二係合装置CL2を直結係合状態に制御したままで、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる直結維持制御のみを実行するように構成されることとなる。
(8)上記の実施形態において、温度上昇抑制制御部47が、伝達トルク制限モータアシスト制御の実行開始後、第一係合装置CL1の係合部材間の回転速度差Δω1の減少に応じて、第一係合装置CL1の第一目標トルク容量を増加させ、回転電機MGの回転電機要求トルクを減少させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、温度上昇抑制制御部47は、伝達トルク制限モータアシスト制御の実行開始後、第一係合装置CL1の係合部材間の回転速度差Δω1の減少に関わらず、第一係合装置CL1の第一目標トルク容量を変化させず、実行開始後に設定された値を維持するように構成されてもよい。
(9)上記の実施形態において、温度上昇抑制制御部47が、回転電機MGの出力トルクの増加量に応じて、第一係合装置CL1の伝達トルクを減少させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、温度上昇抑制制御部47は、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させるように構成されていれば、回転電機MGの出力トルクの増加量と第一係合装置CL1の伝達トルクを減少量とが対応していなくともよい。例えば、回転電機MGの出力トルクの増加量が制限される場合は、回転電機MGの出力トルクの増加量に対して、第一係合装置CL1の伝達トルクの減少量が大きくなってもよい。
(10)上記の実施形態において、温度上昇抑制制御部47が、回転停止モータアシスト制御として、回転電機MGの回転停止状態で回転電機MGの温度上昇が予め定めた許容範囲内となる限度で回転電機MGの出力トルクを増加させ、その増加量に応じて第一係合装置CL1の伝達トルクを減少させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、温度上昇抑制制御部47は、第二係合装置CL2を直結係合状態に制御したままで、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる、或いは回転電機MGの出力トルクの増加量に応じて、第一係合装置CL1の伝達トルクを減少させるように構成されていればよい。
(11)上記の実施形態において、伝達トルク制限モータアシスト制御として、第一係合装置CL1の温度上昇が予め定めた許容範囲内となるように第一係合装置CL1の伝達トルクを減少させ、その減少量に応じて回転電機MGの出力トルクを増加させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、温度上昇抑制制御部47は、伝達トルク制限モータアシスト制御として、回転電機MGの出力トルクを増加させ、第一係合装置CL1の伝達トルクを減少させる、或いは回転電機MGの出力トルクの増加量に応じて、第一係合装置CL1の伝達トルクを減少させるように構成されていればよい。
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置に好適に利用することができる。
Δω1  :第一係合装置の係合部材間の回転速度差
1    :車両用駆動装置
2    :動力伝達経路
30   :車両用駆動装置の制御装置
31   :エンジン制御装置
32   :回転電機制御ユニット
33   :動力伝達制御ユニット
34   :車両制御ユニット
41   :エンジン制御部
42   :回転電機制御部
43   :変速機構制御部
44   :第一係合装置制御部
45   :第二係合装置制御部
46   :第一係合滑り制御部
47   :温度上昇抑制制御部
CL1  :第一係合装置
CL2  :第二係合装置
E    :エンジン(内燃機関)
Eo   :エンジン出力軸
I    :入力軸
M    :中間軸
MG   :回転電機
O    :出力軸
PC   :油圧制御装置
Se1  :入力回転速度センサ
Se2  :出力回転速度センサ
Se3  :エンジン回転速度センサ
TM   :変速機構
W    :車輪

Claims (12)

  1.  内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置であって、
     前記内燃機関の回転運転中、前記第二係合装置を直結係合状態に制御し、前記第一係合装置を滑り係合状態に制御する第一係合滑り制御を行う第一係合滑り制御部と、
     前記第一係合滑り制御中に、前記第一係合装置の温度が上昇した場合に、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる温度上昇抑制制御部と、
    を備える車両用駆動装置の制御装置。
  2.  前記温度上昇抑制制御部は、前記第一係合装置の伝達トルクを、ゼロより大きい範囲内で減少させる請求項1に記載の車両用駆動装置の制御装置。
  3.  前記温度上昇抑制制御部は、前記第一係合滑り制御中に、前記車輪の回転が停止している状態で、前記第一係合装置の温度が上昇した場合に、前記第二係合装置を直結係合状態から滑り係合状態に移行させて、前記回転電機の回転速度を増加させると共に、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる滑り移行制御を実行する請求項1又は2に記載の車両用駆動装置の制御装置。
  4.  前記温度上昇抑制制御部は、前記第一係合滑り制御中に、前記車輪の回転が停止している状態で、前記第一係合装置の温度が上昇した場合に、前記第二係合装置を直結係合状態に制御したままで、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる直結維持制御を実行する請求項1又は2に記載の車両用駆動装置の制御装置。
  5.  前記温度上昇抑制制御部は、
     前記第一係合滑り制御中に、前記車輪の回転が停止している状態で、
     前記第一係合装置の温度が予め定めた第一しきい値を超えた場合に、前記第二係合装置を直結係合状態に制御したままで、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる直結維持制御を実行し、
     前記第一係合装置の温度が、予め定めた、前記第一しきい値より高い第二しきい値を超えた場合に、前記第二係合装置を直結係合状態から滑り係合状態に移行させて、前記回転電機の回転速度を増加させると共に、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる滑り移行制御を実行する請求項1から4のいずれか一項に記載の車両用駆動装置の制御装置。
  6.  前記温度上昇抑制制御部は、前記第一係合滑り制御中に、前記車輪が回転している状態で、前記第一係合装置の温度が上昇した場合に、前記第二係合装置を直結係合状態に制御したままで、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる回転中制御を実行する請求項1から5のいずれか一項に記載の車両用駆動装置の制御装置。
  7.  前記温度上昇抑制制御部は、前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記回転電機の出力トルクの増加量に応じて、前記第一係合装置の伝達トルクを減少させる請求項1から6のいずれか一項に記載の車両用駆動装置の制御装置。
  8.  前記温度上昇抑制制御部は、前記滑り移行制御において前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記第一係合装置の温度上昇が予め定めた許容範囲内となるように前記第一係合装置の伝達トルクを減少させ、その減少量に応じて前記回転電機の出力トルクを増加させる請求項3又は5のいずれか一項に記載の車両用駆動装置の制御装置。
  9.  前記温度上昇抑制制御部は、前記直結維持制御において前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記回転電機の回転停止状態で前記回転電機の温度上昇が予め定めた許容範囲内となる限度で前記回転電機の出力トルクを増加させ、その増加量に応じて前記第一係合装置の伝達トルクを減少させる請求項4又は5に記載の車両用駆動装置の制御装置。
  10.  前記温度上昇抑制制御部は、前記回転中制御において前記回転電機の出力トルクを増加させ、前記第一係合装置の伝達トルクを減少させる際に、前記第一係合装置の温度上昇が予め定めた許容範囲内となるように前記第一係合装置の伝達トルクを減少させ、その減少量に応じて前記回転電機の出力トルクを増加させる請求項6に記載の車両用駆動装置の制御装置。
  11.  前記温度上昇抑制制御部は、前記滑り移行制御において前記第二係合装置が滑り係合状態に移行され、前記車輪が回転し始めた後、前記第二係合装置を滑り係合状態から直結係合状態に移行させる請求項3又は5に記載の車両用駆動装置の制御装置。
  12.  前記温度上昇抑制制御部は、前記滑り移行制御において前記第二係合装置が滑り係合状態に移行され、前記車輪が回転し始めた後、前記第一係合装置を滑り係合状態から直結係合状態に移行させ、その後第二係合装置を滑り係合状態から直結係合状態に移行させる請求項3又は5に記載の車両用駆動装置の制御装置。
PCT/JP2013/073804 2012-09-06 2013-09-04 車両用駆動装置の制御装置 WO2014038591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE201311003315 DE112013003315T5 (de) 2012-09-06 2013-09-04 Steuerungsvorrichtung einer Fahrzeugantriebsvorrichtung
JP2014534389A JP5920476B2 (ja) 2012-09-06 2013-09-04 車両用駆動装置の制御装置
US14/414,594 US20150203099A1 (en) 2012-09-06 2013-09-04 Control device of vehicular drive
CN201380041676.9A CN104520156A (zh) 2012-09-06 2013-09-04 车辆用驱动装置的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-196473 2012-09-06
JP2012196473 2012-09-06

Publications (1)

Publication Number Publication Date
WO2014038591A1 true WO2014038591A1 (ja) 2014-03-13

Family

ID=50237200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073804 WO2014038591A1 (ja) 2012-09-06 2013-09-04 車両用駆動装置の制御装置

Country Status (5)

Country Link
US (1) US20150203099A1 (ja)
JP (1) JP5920476B2 (ja)
CN (1) CN104520156A (ja)
DE (1) DE112013003315T5 (ja)
WO (1) WO2014038591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092587A1 (ja) * 2014-12-08 2016-06-16 日産自動車株式会社 制駆動力制御装置及び制駆動力制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358981B2 (en) * 2014-08-21 2016-06-07 Ford Global Technologies, Llc Methods and system for improving launching of a hybrid vehicle
CN106564499B (zh) * 2015-10-13 2019-02-15 上海汽车集团股份有限公司 动力源转速控制的方法及装置
DE102016206735A1 (de) * 2016-04-21 2017-10-26 Zf Friedrichshafen Ag Verfahren zum Betrieb eines Antriebsstranges eines Kraftfahrzeugs, und Antriebsstrangmodul eines solchen Kraftfahrzeugs
FR3100198B1 (fr) * 2019-08-30 2022-07-15 Psa Automobiles Sa Procede de protection d’un embrayage d’un vehicule hybride contre une surchauffe
CN111532275B (zh) * 2020-06-22 2020-10-16 北京航空航天大学 一种湿式换挡离合器的保护控制装置及保护控制方法
CN114379530B (zh) * 2021-04-19 2024-04-02 长城汽车股份有限公司 分动器过热保护方法、装置及终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007094A (ja) * 2006-05-29 2008-01-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2008068650A (ja) * 2006-09-12 2008-03-27 Toyota Motor Corp 車両用サスペンションシステム
JP2010111193A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172490B2 (ja) * 1998-05-18 2001-06-04 株式会社日立製作所 ハイブリッド車
JP3956957B2 (ja) * 2004-05-17 2007-08-08 トヨタ自動車株式会社 駆動制御装置及び駆動装置
JP5167786B2 (ja) * 2007-11-29 2013-03-21 日産自動車株式会社 ハイブリッド車両の制御装置
JP2011125775A (ja) * 2009-12-16 2011-06-30 Denso Corp 金属焼結フィルタの再生方法、およびこの再生方法を実施するための金属焼結フィルタ再生装置
CN102725172B (zh) * 2010-03-31 2015-09-23 爱信艾达株式会社 控制装置
KR20120000951A (ko) * 2010-06-28 2012-01-04 현대자동차주식회사 하이브리드 차량의 발진 제어장치 및 방법
JP5578362B2 (ja) * 2010-09-27 2014-08-27 アイシン・エィ・ダブリュ株式会社 制御装置
JP5565627B2 (ja) * 2010-09-29 2014-08-06 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007094A (ja) * 2006-05-29 2008-01-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2008068650A (ja) * 2006-09-12 2008-03-27 Toyota Motor Corp 車両用サスペンションシステム
JP2010111193A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092587A1 (ja) * 2014-12-08 2016-06-16 日産自動車株式会社 制駆動力制御装置及び制駆動力制御方法
JPWO2016092587A1 (ja) * 2014-12-08 2017-04-27 日産自動車株式会社 制駆動力制御装置及び制駆動力制御方法
CN107000607A (zh) * 2014-12-08 2017-08-01 日产自动车株式会社 制动力驱动力控制装置以及制动力驱动力控制方法
US9950697B2 (en) 2014-12-08 2018-04-24 Nissan Motor Co., Ltd. Braking-driving force control system and braking-driving force control method
CN107000607B (zh) * 2014-12-08 2018-04-27 日产自动车株式会社 制动力驱动力控制装置以及制动力驱动力控制方法

Also Published As

Publication number Publication date
JP5920476B2 (ja) 2016-05-18
CN104520156A (zh) 2015-04-15
JPWO2014038591A1 (ja) 2016-08-12
DE112013003315T5 (de) 2015-03-26
US20150203099A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5920476B2 (ja) 車両用駆動装置の制御装置
JP5761570B2 (ja) 制御装置
JP5168600B2 (ja) 制御装置
JP5915666B2 (ja) 車両用駆動装置の制御装置
JP5403377B2 (ja) 制御装置
WO2013081011A1 (ja) 制御装置
US20170327122A1 (en) Control device for vehicle drive transfer device
WO2013005844A1 (ja) 制御装置
US9919698B2 (en) Control device for vehicle driving device
JPWO2011122533A1 (ja) 車両用変速装置
JP5967190B2 (ja) 制御装置
JP5803736B2 (ja) 制御装置
JP5578362B2 (ja) 制御装置
JP2013028304A (ja) 制御装置
JP5557026B2 (ja) 変速制御装置
JP2016203646A (ja) 車両用駆動装置の制御装置
JP5445867B2 (ja) 車両用駆動装置の制御装置
JP5874594B2 (ja) 車両用駆動装置の制御装置
JP6350676B2 (ja) 車両用駆動装置の制御装置
JP2013208970A (ja) 制御装置
JP5765579B2 (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414594

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130033151

Country of ref document: DE

Ref document number: 112013003315

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2014534389

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13835691

Country of ref document: EP

Kind code of ref document: A1