WO2014038530A1 - 電動車両用強電ユニットの搭載構造 - Google Patents

電動車両用強電ユニットの搭載構造 Download PDF

Info

Publication number
WO2014038530A1
WO2014038530A1 PCT/JP2013/073625 JP2013073625W WO2014038530A1 WO 2014038530 A1 WO2014038530 A1 WO 2014038530A1 JP 2013073625 W JP2013073625 W JP 2013073625W WO 2014038530 A1 WO2014038530 A1 WO 2014038530A1
Authority
WO
WIPO (PCT)
Prior art keywords
power unit
vehicle
mounting structure
inverter
unit
Prior art date
Application number
PCT/JP2013/073625
Other languages
English (en)
French (fr)
Inventor
一紀 横澤
川村 智樹
敦明 横山
清水 宏文
出穂 平野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014038530A1 publication Critical patent/WO2014038530A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/01Reducing damages in case of crash, e.g. by improving battery protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a mounting structure for a high-power unit mounted on an electric vehicle.
  • An electric vehicle using only an electric motor as a drive source, or a hybrid vehicle having both an electric motor and an internal combustion engine as drive sources includes an electric motor as a high-power unit and an inverter that controls the drive of the electric motor.
  • an inverter case containing an inverter and having a longitudinal direction in the vehicle front-rear direction is inclined so that the front side in the vehicle front-rear direction is lower than the rear side, and the upper part of the motor case containing the electric motor A structure to be mounted on is disclosed.
  • the inverter case since the inverter case is inclined and the front end portion protrudes forward from the front end surface of the motor case, the frontmost surface of the high voltage unit composed of the inverter and the electric motor is It becomes a narrow surface of a part of the inverter case. Therefore, when the vehicle collides from the front, when a component such as a radiator disposed in front of the inverter or the motor moves backward, it first collides with the narrowest front surface of the inverter case. At this time, since the impact load is concentrated on the narrowest front surface of the inverter case, the inverter case may be damaged.
  • an object of the present invention is to provide a mounting structure that can alleviate the impact by dispersing the impact load applied to the high voltage unit in the event of a collision.
  • a high-power unit for an electric vehicle comprising: a first high-power unit; and a first high-power unit and a second high-power unit arranged side by side in the vehicle vertical direction or the vehicle width direction.
  • a structure is provided. The forefront surface of the first high-power unit in the vehicle front-rear direction and the forefront surface of the second high-power unit in the vehicle front-rear direction are at the same vehicle front-rear direction position.
  • FIG. 1 is a diagram showing a mounting structure of a high power unit for an electric vehicle according to one embodiment of the present invention.
  • FIG. 2 is a view of the high power unit portion of FIG. 1 as viewed from the side of the vehicle.
  • FIG. 3A is a view of the fastening structure of the inverter and the motor as viewed from the front of the vehicle.
  • FIG. 3B is a view similarly seen from the side of the vehicle.
  • FIG. 4 is a diagram illustrating a case where the inverter and the motor are arranged in the vehicle width direction.
  • FIG. 5A is a diagram illustrating a first example of an arrangement of an inverter and a motor.
  • FIG. 5B is a diagram illustrating a second example of the arrangement of the inverter and the motor.
  • FIG. 5A is a diagram illustrating a first example of an arrangement of an inverter and a motor.
  • FIG. 5C is a diagram illustrating a third example of the arrangement of the inverter and the motor.
  • FIG. 5D is a diagram illustrating a fourth example of the arrangement of the inverter and the motor.
  • FIG. 5E is a diagram illustrating a fifth example of the arrangement of the inverter and the motor.
  • FIG. 5F is a diagram illustrating a sixth example of the arrangement of the inverter and the motor.
  • (1) of FIG. 5G is a side view of a seventh example of the arrangement of the inverter and the motor.
  • (2) of FIG. 5G is a front view of a seventh example of the arrangement of the inverter and the motor.
  • FIG. 5H is a diagram illustrating an eighth example of the arrangement of the inverter and the motor.
  • FIG. 6A is a diagram illustrating a first example of a form of close contact between an inverter and a motor.
  • FIG. 6B is a diagram illustrating a second example of a form of close contact between the inverter and the motor.
  • FIG. 6C is a diagram illustrating a third example of the contact between the inverter and the motor.
  • FIG. 1 is a view showing a mounting structure of a high-power unit for an electric vehicle according to one embodiment of the present invention, and is a view of the inside of a motor room formed at the front part of a vehicle body as viewed from the side of the vehicle.
  • the left side is the front of the vehicle.
  • the broken line in a figure has shown the flow of the cooling water mentioned later.
  • FIG. 2 is a view of the high power unit portion of FIG. 1 as viewed from the front side of the vehicle.
  • inverter 1 As a first high-power unit, a motor 2 as a second high-power unit, a power distribution module (hereinafter referred to as PDM) as a third high-power unit, and a collided part A radiator core 4 is arranged.
  • PDM power distribution module
  • the dash panel 6 includes a lithium battery harness tunnel 8 that is a through hole.
  • the inverter 1 is equipped with a semiconductor element for electrically driving the motor 2 and a water-cooled cooler for cooling the semiconductor element.
  • the rear part of the inverter 1 is bent in an L shape so as to follow the shape of the rear side of the motor 2.
  • the rear end surface of the inverter 1 is a flat surface, and a sound insulation cover 7 is attached to the rear end surface.
  • the PDM3 is equipped with a DC / DC converter and a charger.
  • the DC / DC converter functions as a step-down circuit that steps down a DC voltage from a travel battery (eg, 350V) (not shown) to a DC voltage to an auxiliary battery (eg, 14V).
  • the charger functions as a conversion circuit that converts an alternating current supplied from an external AC power source for home use into a direct current and charges the battery for traveling.
  • the radiator core 4 is disposed on the vehicle front side of the inverter 1, the motor 2 and the PDM 3.
  • the cooling water flows from the motor 2 into the radiator core 4 through the compressor 9.
  • the cooling water that has passed through the radiator core 4 flows into the PDM 3, and then returns to the radiator core 4 through the inverter 1 and the motor 2.
  • the cooling water piping from the motor 2 to the compressor 9 and the cooling water piping from the radiator core 4 to the PDM 3 are both connected to the surface of the motor 2 and the PDM 3 in the vehicle width direction or the vehicle vertical direction.
  • cooling water piping is connected in the case of each unit. Further, a water cooling pipe bulge 5 is provided on the surface of the inverter 1 in the vehicle width direction, and the cooling water branches here and is supplied to other devices.
  • the motor 2 is arranged side by side on the vehicle vertical direction lower side of the inverter 1, and the foremost surface 1A in the vehicle front-rear direction of the inverter 1 and the foremost surface 2A in the vehicle front-rear direction of the motor 2 are the same vehicle front-rear. In the directional position.
  • the area of the foremost surface 2A of the motor 2 that is heavier than that of the inverter 1 is larger than the area of the foremost surface 1A of the inverter 1.
  • the entire surface of the upper surface 2B of the motor 2 is in close contact with the lower surface 1B of the inverter 1 among the opposing surfaces of the inverter 1 and the motor 2, that is, the lower surface 1B of the inverter 1 and the upper surface 2B of the motor 2.
  • the upper surface 1C of the inverter 1 is higher than the upper surface 4C of the radiator core 4 in the vehicle vertical direction.
  • FIG. 3A is a diagram of the inverter 1 and the motor 2 as viewed from the front of the vehicle
  • FIG. 3B is a diagram of the same as viewed from the side of the vehicle.
  • the inverter 1 and the motor 2 are fastened by using bolts 21, and a flange 20 for fastening is provided so as to protrude in the vehicle side of the inverter 1 and the motor 2, that is, in the vehicle width direction. The same applies to the fastening of the inverter 1 and the PDM 3.
  • frontmost surface 3A of the PDM 3 in the vehicle front-rear direction is also at the same vehicle front-rear direction position as the frontmost surface 1A of the inverter 1 and the frontmost surface 2A of the motor 2.
  • the vehicle collides from the front, the radiator core 4 moves backward, and collides with an electromechanical integrated structure composed of the inverter 1, the motor 2 and the PDM 3 while attenuating the impact force in the crushable zone of the vehicle body.
  • the impact load at the time of collision is a wider surface combining these two surfaces 1A and 2A.
  • the impact load is dispersed. Since the impact can be mitigated in this way, it is possible to prevent the impact load from being concentrated on the inverter 1 or the motor 2 as a high-power unit and being damaged. In addition, high voltage safety can be guaranteed by preventing damage to the high-power unit due to concentration of impact load.
  • the cooling water pipe mounting portion, the water cooling pipe bulge 5, etc. on the side surface of the vehicle By providing the bolt fastening flange 20, the cooling water pipe mounting portion, the water cooling pipe bulge 5, etc. on the side surface of the vehicle, the front surface of the inverter 1, the motor 2 and the PDM 3 are made flat. Therefore, when the radiator core 4 collides, the entire surface can receive an impact load.
  • the entire upper surface 2B of the motor 2 since the entire upper surface 2B of the motor 2 is in close contact with the lower surface 1B of the inverter 1, the forefront surface 1A of the inverter 1 and the foreground surface 2A of the motor 2 become one wide surface, further reducing the impact. Can be made.
  • the motor 2 having a larger inertial mass has a larger impact load than the inverter 1.
  • the area of the foremost surface 2A of the motor 2 having a relatively large inertial mass is larger than the area of the foremost surface 1A of the inverter 1 having a relatively small inertial mass. The maximum value of stress can be reduced.
  • the length of the inverter 1 in the front-rear direction can be shortened. If the front-rear direction of the inverter 1 is shortened, a shock absorbing space between the rear end of the inverter 1 and the dash panel 6 can be widened. That is, when the vehicle collides from the front, the impact force of the collision can be further attenuated until the inverter 1 moves backward and reaches the dash panel 6.
  • the area of the planar surface of the rear end of the inverter 1 can be further increased by bending it into an L shape.
  • the area of the plane it is possible to prevent concentration of impact load at the time of collision and reduce impact force.
  • the inverter 1 and the motor 2 can be arranged in a high density.
  • the rear end portion of the motor 2 is formed in a concave shape as shown in FIG. 1, a higher density layout is possible by forming the rear side portion of the inverter 1 along the concave portion. become.
  • the inverter 1 and the motor 2 have a mounting structure as described above, so that the impact when colliding from the front is sufficient. Can be relaxed. And the freedom degree of design improves about the space which does not receive an impact.
  • the foremost surface 3A of the PDM 3 is also in the same vehicle front-rear direction position as the foremost surface 1A of the inverter 1 and the foremost surface 2A of the motor 2, and therefore the upper surface 4C of the radiator core 4 Is lower than the upper surface 3C of the PDM 3, the same effect can be obtained.
  • the above description is about the case where the inverter 1 and the motor 2 are arranged side by side in the vehicle vertical direction as shown in FIG. 1, but the inverter 1 and the motor 2 are arranged in the vehicle width direction as shown in FIG.
  • the difference is that the projecting direction of the flange 20 for fastening is the vehicle vertical direction, and the cooling water pipe mounting portion is provided on the surface of the vehicle vertical direction.
  • FIGS. 5A to 5H are diagrams showing examples of the arrangement of the inverter 1 and the motor 2 included in the present embodiment.
  • the hatched surface in the figure is the forefront surface.
  • FIG. 5A shows the same arrangement as that in FIG. 1, in which the inverter 1 and the motor 2 are arranged side by side in the vehicle vertical direction.
  • FIG. 5G shows an arrangement similar to that in FIG. 4, in which the inverter 1 and the motor 2 are arranged side by side in the vehicle width direction.
  • the foremost surface 1A of the inverter 1 and the foremost surface 2A of the motor 2 are included in the same front-rear position in the vehicle direction. .
  • FIG. 6A to FIG. 6C are diagrams showing an example of a form of close contact between the inverter 1 and the motor 2 included in the present embodiment. It should be noted that the hatched surface in the figure is the surface that is in close contact.
  • FIG. 6A is the same form as FIG.
  • the rear side portion of the inverter 1 in the longitudinal direction of the vehicle is not bent in an L shape, and the entire surface of the lower surface 1B of the inverter 1 and the entire surface of the upper surface 2B of the motor 2 are in close contact with each other. Is also included. However, in this case, the effect of enabling a high-density layout is reduced.
  • the inverter 1 is smaller than the motor 2 and the entire lower surface 1B of the inverter 1 is in close contact with a part of the upper surface 2B of the motor 2.
  • various forms of close contact can be formed depending on the sizes of the inverter 1 and the motor 2, but in either form, the foremost surface 1A of the inverter 1 and the forefront of the motor 2
  • the surface 2A is the same vehicle longitudinal direction position. That is, the deviation between the frontmost surface 1A of the inverter 1 and the frontmost surface 2A of the motor 2 is smaller than the deviation between the rearmost surface 1D of the inverter 1 and the rearmost surface 2D of the motor 2.
  • the first high-voltage unit is described as the inverter 1 and the second high-voltage unit is described as the motor 2.
  • the first high-voltage unit is described as the PDM 3 and the second high-voltage unit as the inverter 1.
  • the relationship between the inverter 1 and the motor 2 may be applied to the relationship between the PDM 3 and the inverter 1.

Abstract

 本発明の電動車両用強電ユニットの搭載構造は、第1の強電ユニットと、第1の強電ユニットと車両上下方向または車幅方向に並べて配置される第2の強電ユニットと、を備える。さらに、第1の強電ユニットの車両前後方向における最前方の面と、第2の強電ユニットの車両前後方向における最前方の面とが、同一の車両前後方向位置にある。

Description

電動車両用強電ユニットの搭載構造
 本発明は、電動車両に搭載される強電ユニットの搭載構造に関する。
 電動モータのみを駆動源とする電動車両や、電動モータと内燃機関を駆動源として併せ持つハイブリッド車両は、強電ユニットとして電動モータと、電動モータを駆動制御するインバータを備える。JP2009-201218Aには、インバータを収容し車両前後方向を長手方向とするインバータケースを、車両前後方向における前方側が後方側より低位置となるように傾斜させて、電動モータを収容するモータケースの上部に搭載する構造が開示されている。
 上記文献に開示された搭載構造では、インバータケースが傾斜し、その前方端部がモータケースの前方端面よりも前方側へ突出しているため、インバータ及び電動モータからなる強電ユニットの最前方の面は、インバータケースの一部分の狭い面となる。したがって、車両が前方から衝突した場合、インバータやモータよりも車両前方に配置されたラジエータ等の部品が後退してくると、最初にインバータケースの最前方の狭い面に衝突する。このとき、インバータケースの最前方の狭い面に衝撃荷重が集中することとなるので、インバータケースが破損するおそれがある。
 そこで、本発明では、衝突時に強電ユニットにかかる衝撃荷重を分散して、衝撃を緩和し得る搭載構造を提供することを目的とする。
 本発明のある態様によれば、第1の強電ユニットと、第1の強電ユニットと車両上下方向または車幅方向に並べて配置される第2の強電ユニットと、を備える電動車両用強電ユニットの搭載構造が提供される。そして、第1の強電ユニットの車両前後方向における最前方の面と、第2の強電ユニットの車両前後方向における最前方の面とが、同一の車両前後方向位置にある。
図1は、本発明の一つの実施形態に係る電動車両用強電ユニットの搭載構造を示す図である。 図2は、図1の強電ユニット部分を車両側方から見た図である。 図3Aは、インバータとモータの締結構造を車両前方から見た図である。 図3B、は同じく車両側方から見た図である。 図4は、インバータとモータを車両幅方向に並べた場合を示す図である。 図5Aは、インバータとモータの配置の第1の例を示す図である。 図5Bは、インバータとモータの配置の第2の例を示す図である。 図5Cは、インバータとモータの配置の第3の例を示す図である。 図5Dは、インバータとモータの配置の第4の例を示す図である。 図5Eは、インバータとモータの配置の第5の例を示す図である。 図5Fは、インバータとモータの配置の第6の例を示す図である。 図5Gの(1)は、インバータとモータの配置の第7の例の側面図である。図5Gの(2)は、インバータとモータの配置の第7の例の正面図である。 図5Hは、インバータとモータの配置の第8の例を示す図である。 図6Aは、インバータとモータの密着の形態の第1の例を示す図である。 図6Bは、インバータとモータの密着の形態の第2の例を示す図である。 図6Cは、インバータとモータの密着の形態の第3の例を示す図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、本発明の一つの実施形態に係る電動車両用強電ユニットの搭載構造を示す図であり、車体の前部に形成したモータルームの内部を車両側方から見た図である。なお、図1において、左方が車両前方である。また、図中の破線は、後述する冷却水の流れを示している。
 図2は、図1の強電ユニット部分を車両前方側から見た図である。
 モータルーム内には、第1の強電ユニットとしてのインバータ1と、第2の強電ユニットとしてのモータ2と、第3の強電ユニットとしてのパワーディストリビューションモジュール(以下、PDMという)、及び被衝突部としてのラジエータコア4が配置されている。
 また、モータルームは、ダッシュパネル6により車室と隔離されている。ダッシュパネル6は、貫通穴であるリチウムバッテリハーネストンネル8を備える。
 インバータ1にはモータ2を電気的に駆動するための半導体素子、及び半導体素子を冷却する為の水冷式の冷却器が搭載されている。
 また、インバータ1の後方側部分は、モータ2の後方側の形状に沿うようにL字型に折れ曲がっている。なお、インバータ1の後端面は平面であり、この後端面には遮音カバー7が取り付けられている。
 PDM3には、DC/DCコンバータ及び充電器が搭載されている。DC/DCコンバータは、図示しない走行用バッテリ(例えば350V)からの直流電圧を補助バッテリ(例えば14V)への直流電圧に降圧する降圧回路として機能する。充電器は、家庭用の外部交流電源から供給される交流電流を直流電流に変換して走行用バッテリに充電する変換回路として機能する。
 ラジエータコア4は、インバータ1、モータ2及びPDM3よりも車両前方側に配置されている。冷却水は、モータ2からコンプレッサ9を介してラジエータコア4に流入する。ラジエータコア4を通過した冷却水は、PDM3に流入し、そこからインバータ1、モータ2を経て再びラジエータコア4に戻る。このように冷却水が循環することで、インバータ1、モータ2、及びPDM3が冷却される。なお、モータ2からコンプレッサ9への冷却水配管及びラジエータコア4からPDM3への冷却水配管は、いずれもモータ2、PDM3の車幅方向の面又は車両上下方向の面に接続されている。PDM3とインバータ1の間、及びインバータ1とモータ2との間は、それぞれのユニットのケース内で冷却水配管が接続されている。また、インバータ1の車幅方向の面には水冷用配管バルジ5が設けられており、冷却水はここで分岐して他の機器にも供給される。
 モータ2はインバータ1の車両上下方向下側に並べて配置されており、インバータ1の車両前後方向における最前方の面1Aと、モータ2の車両前後方向における最前方の面2Aは、同一の車両前後方向位置にある。そして、インバータ1と比べて質量が重いモータ2の最前方の面2Aの面積は、インバータ1の最前方の面1Aの面積よりも大きい。
 インバータ1とモータ2の対向する面、つまりインバータ1の下面1Bとモータ2の上面2Bのうち、モータ2の上面2Bの全面がインバータ1の下面1Bに密着している。
 また、インバータ1の上面1Cはラジエータコア4の上面4Cよりも車両上下方向で高い位置にある。
 ここで、インバータ1とモータ2の締結について説明する。
 図3Aは、インバータ1とモータ2を車両前方から見た図、図3Bは同じく車両側方から見た図である。インバータ1とモータ2は、ボルト21を用いて締結されており、締結の為のフランジ20は、インバータ1、モータ2の車両側方側、つまり車幅方向に突出して設けられている。なお、インバータ1とPDM3の締結も同様である。
 また、PDM3の車両前後方向における最前方の面3Aも、インバータ1の最前方の面1A、モータ2の最前方の面2Aと同一の車両前後方向位置にある。
 次に、上記のようなインバータ1、モータ2及びPDM3の搭載構造にすることの作用、効果について説明する。
 車両が前方から衝突して、ラジエータコア4が後退し、車体のクラッシャブルゾーンにおいて衝撃力を減衰しながら、インバータ1、モータ2及びPDM3からなる機電一体構造に衝突する場合を考える。
 このとき、インバータ1の最前方の面1Aとモータ2の最前方の面2Aが車両全方向において同一の位置にあるので、衝突時の衝撃荷重をこれら2つの面1A、2Aを合わせたより広い面で受けることになり、衝撃荷重は分散される。このように衝撃を緩和することができるので、強電ユニットとしてのインバータ1またはモータ2に衝撃荷重が集中して破損することを防止できる。また、衝撃荷重の集中による強電ユニットの破損を防止できることにより、高電圧安全保証が可能となる。
 ボルト締結用のフランジ20、冷却水配管の取り付け部、水冷用配管バルジ5等を車両側方側の面に設けることで、インバータ1、モータ2及びPDM3の車両前方側の面は平坦な面になっているので、ラジエータコア4が衝突する際に面全体で衝撃荷重を受けることができる。特に、本実施形態ではモータ2の上面2Bの全面をインバータ1の下面1Bに密着させているので、インバータ1の最前面1Aとモータ2の最前面2Aが一つの広い面となり、衝撃をより緩和させることができる。
 また、前方から衝突した場合には、前方の被衝突物には慣性質量に応じた反作用の力が作用する。そして、インバータ1とモータ2を比べると、慣性質量の大きいモータ2の方がインバータ1よりも衝撃荷重が大きくなる。その点、本実施形態では、相対的に慣性質量の大きいモータ2の最前方の面2Aの面積が、相対的に慣性質量の小さいインバータ1の最前方の面1Aの面積より広いので、衝撃による応力の最大値を低減することができる。
 インバータ1の後方側部分がモータ2方向にL字型に折れ曲がっているので、インバータ1の前後方向長さを短縮することができる。インバータ1の前後方向を短縮すれば、インバータ1の後端とダッシュパネル6との間の衝撃吸収空間を広くとることができる。すなわち、車両が前方から衝突したとき、インバータ1が後退してダッシュパネル6に到達するまでの間に、衝突の衝撃力をより減衰させることができる。
 さらに、L字型に折り曲げることで、インバータ1後端の平面の面積をより広くすることができる。このように平面の面積を広くすることで、衝突時の衝撃荷重の集中を防ぎ、衝撃力を低減することができる。
 また、L字型に曲がった部分がモータ2の後端面2Cに沿っているので、インバータ1とモータ2を高密度なレイアウトにすることできる。特に、図1のようにモータ2の後端部分が凹状に形成されている場合には、この凹状部分に沿うようにインバータ1の後方側部分を形成することで、より高密度なレイアウトが可能になる。
 インバータ1の上面1Cがラジエータコア4の上面4Cよりも車両上下方向で高い位置にあるので、インバータ1とモータ2を上述したような搭載構造にすることで、前方から衝突した場合の衝撃を十分に緩和することができる。そして、衝撃を受けない空間については、設計の自由度が向上する。なお、本実施形態ではPDM3の最前方の面3Aも、インバータ1の最前方の面1A、モータ2の最前方の面2Aと同一の車両前後方向位置にしてあるので、ラジエータコア4の上面4CがPDM3の上面3Cより低ければ同様の効果が得られる。
 ところで、上記の説明は、図1に示すようにインバータ1とモータ2を車両上下方向に並べて配置した場合についてのものであるが、図4に示すようにインバータ1とモータ2を車幅方向に並べて配置した場合についても、後述する相違点を除き同様に適用できる。相違点は、締結の為のフランジ20の突出方向が車両上下方向であること、及び冷却水配管取り付け部が車両上下方向の面に設けられていることである。
 図5A-図5Hは、本実施形態に含まれる、インバータ1とモータ2の配置の例を示す図である。なお、図中の斜線を付した面が最前方の面である。
 図5Aは、図1と同様の配置であって、インバータ1とモータ2を車両上下方向に並べて配置したものである。図5Gは、図4と同様の配置であって、インバータ1とモータ2を車幅方向に並べて配置したものである。
 この他に、図5B、図5Cに示すように、インバータ1の上面が傾斜していたり、図5Dのようにインバータ1の車両前後方向における前方側部分が凹凸形状になっていたりしても、インバータ1の最前方の面1Aがモータ2の最前方の面2Aと同一の車両前後方向位置であれば含まれる。
 また、図5Fのようにモータ2の下面が傾斜しているものや、図5Hのようにインバータ1の上面とモータ2の下面が傾斜しているものも含まれる。
 さらには、図5Eのようにインバータ1とモータ2が接触していなくても、インバータ1の最前方の面1Aとモータ2の最前方の面2Aが同一の車両方向前後位置にあれば含まれる。ただし、この場合は、インバータ1の最前面1Aとモータ2の最前面2Aが一つの広い面となることによる効果は得られない。
 図6A-図6Cは、本実施形態に含まれる、インバータ1とモータ2の密着の形態の例を示す図である。なお、図中の斜線を付した面が密着する面である。
 図6Aは図1と同様の形態である。この他に、図6Bに示すように、インバータ1の車両前後方向の後方側部分がL字型に曲がっておらず、インバータ1の下面1Bの全面とモータ2の上面2Bの全面が密着する形態も含まれる。ただし、この場合は高密度なレイアウトが可能になるという効果は小さくなる。また、図6Cに示すように、インバータ1の方がモータ2よりも小さく、インバータ1の下面1Bの全面がモータ2の上面2Bの一部と密着するものも含まれる。
 図6A-図6Cに示したように、インバータ1及びモータ2の大きさによって種々の密着の形態をとり得るが、いずれの形態でも、インバータ1の最前方の面1Aとモータ2の最前方の面2Aとが、同一の車両前後方向位置となる。すなわち、インバータ1の最前方の面1Aとモータ2の最前方の面2Aとのずれが、インバータ1の最後方の面1Dとモータ2の最後方の面2Dとのずれよりも小さくなる。
 なお、上記の実施形態では、第1の強電ユニットをインバータ1、第2の強電ユニットをモータ2として説明したが、第1の強電ユニットをPDM3、第2の強電ユニットをインバータ1として、上述したインバータ1とモータ2の関係をPDM3とインバータ1の関係に適用してもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年9月10日に日本国特許庁に出願された特願2012-198755に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (11)

  1.  第1の強電ユニットと、
     前記第1の強電ユニットと車両上下方向または車幅方向に並べて配置される第2の強電ユニットと、
    を備え、
     前記第1の強電ユニットの車両前後方向における最前方の面と、前記第2の強電ユニットの車両前後方向における最前方の面とが、同一の車両前後方向位置にある電動車両用強電ユニットの搭載構造。
  2.  請求項1に記載の電動車両用強電ユニットの搭載構造において、
     前記第1の強電ユニットと前記第2の強電ユニットの互いに対向する面のうち、いずれか一方の面全体を他方の面に密着させて配置する電動車両用強電ユニットの搭載構造。
  3.  請求項1または2に記載の電動車両用強電ユニットの搭載構造において、
     前記第1の強電ユニットと前記第2の強電ユニットのうち質量の重い方の強電ユニットの最前方の面の面積が、軽い方の強電ユニットの最前方の面の面積より大きい電動車両用強電ユニットの搭載構造。
  4.  請求項1から3のいずれかに記載の電動車両用強電ユニットの搭載構造において、
     前記第1の強電ユニットの車両前後方向における後方側部分が前記第2の強電ユニットの車両前後方向における後方側部分の形状に沿うように折れ曲がっている電動車両用強電ユニットの搭載構造。
  5.  請求項1から4のいずれかに記載の電動車両用強電ユニットの搭載構造において、
     前記第1の強電ユニットと前記第2の強電ユニットを締結する為のフランジ部が、車両前後方向に対して直交する方向に突出している電動車両用強電ユニットの搭載構造。
  6.  請求項1から5のいずれかに記載の電動車両用強電ユニットの搭載構造において、
     少なくとも前記第1の強電ユニット及び前記第2の強電ユニットとラジエータコアとを冷却水が循環する水冷システムをさらに備え、
     前記第1の強電ユニット及び前記第2の強電ユニットの冷却水出入り口が、車幅方向の面、車両上下方向の面、または車両前後方向の後方側の面に設けられている電動車両用強電ユニットの搭載構造。
  7.  請求項1から6のいずれかに記載の電動車両用強電ユニットの搭載構造において、
     前記第1の強電ユニットの車両前後方向における最前方の面の車両上下方向における上端、または前記第2の強電ユニットの車両前後方向における最前方の面の車両上下方向における上端のうち、車両上下方向位置の高い方が、前記第1の強電ユニット及び前記第2の強電ユニットに対して車両前後方向前方側に対向するように搭載されている被衝突物の上端よりも車両上下方向で高い位置にある電動車両用強電ユニットの搭載構造。
  8.  請求項1から7のいずれかに記載の電動車両用強電ユニットの搭載構造において、
     前記第1の強電ユニットと車両上下方向または車幅方向に並べて配置される第3の強電ユニットをさらに備え、
     前記第1の強電ユニットの車両前後方向における最前方の面と、
     前記第2の強電ユニットの車両前後方向における最前方の面と、
     前記第3の強電ユニットの車両前後方向における最前方の面と、
    が同一の車両前後方向位置にある電動車両用強電ユニットの搭載構造。
  9.  請求項1から8のいずれかに記載の電動車両用強電ユニットの搭載構造において、
     前記第1の強電ユニットはインバータを、
     前記第2の強電ユニットは電動モータを、
     前記第3の強電ユニットはDC/DCコンバータ及び車載充電器を、それぞれ含んで構成されている電動車両用強電ユニットの搭載構造。
  10.  第1の強電ユニットと、
     前記第1の強電ユニットと車両上下方向または車幅方向に並べて配置される第2の強電ユニットと、
    を備え、
     前記第1の強電ユニットと前記第2の強電ユニットを締結する為のフランジ部が、車両前後方向に対して直交する方向に突出している電動車両用強電ユニットの搭載構造。
  11.  第1の強電ユニットと、
     前記第1の強電ユニットと車両上下方向または車幅方向に並べて配置される第2の強電ユニットと、
    を備え、
     前記第1の強電ユニットと前記第2の強電ユニットとの車両前面側における車両前後方向のずれが、車両後面側における車両前後方向のずれよりも小さい電動車両用強電ユニットの搭載構造。
PCT/JP2013/073625 2012-09-10 2013-09-03 電動車両用強電ユニットの搭載構造 WO2014038530A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012198755 2012-09-10
JP2012-198755 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014038530A1 true WO2014038530A1 (ja) 2014-03-13

Family

ID=50237139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073625 WO2014038530A1 (ja) 2012-09-10 2013-09-03 電動車両用強電ユニットの搭載構造

Country Status (1)

Country Link
WO (1) WO2014038530A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067271A1 (ja) * 2018-09-28 2020-04-02 日本電産株式会社 モータユニット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310252A (ja) * 1995-05-17 1996-11-26 Nissan Motor Co Ltd 電気自動車のモータルーム内部品搭載構造および搭載方法
JP2004343845A (ja) * 2003-05-13 2004-12-02 Aisin Aw Co Ltd 電動機内蔵駆動装置
JP2006315578A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 車両用燃料電池システム
JP2007118808A (ja) * 2005-10-28 2007-05-17 Toyota Motor Corp ハイブリッド車両の駆動装置
JP2009051396A (ja) * 2007-08-28 2009-03-12 Toyota Motor Corp 車両駆動装置の搭載構造および車両
JP2011020625A (ja) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd 電気自動車の搭載構造
JP2011020622A (ja) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd 電気自動車の搭載構造
JP2012096587A (ja) * 2010-10-29 2012-05-24 Mazda Motor Corp 電動車両の電装部品搭載構造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310252A (ja) * 1995-05-17 1996-11-26 Nissan Motor Co Ltd 電気自動車のモータルーム内部品搭載構造および搭載方法
JP2004343845A (ja) * 2003-05-13 2004-12-02 Aisin Aw Co Ltd 電動機内蔵駆動装置
JP2006315578A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 車両用燃料電池システム
JP2007118808A (ja) * 2005-10-28 2007-05-17 Toyota Motor Corp ハイブリッド車両の駆動装置
JP2009051396A (ja) * 2007-08-28 2009-03-12 Toyota Motor Corp 車両駆動装置の搭載構造および車両
JP2011020625A (ja) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd 電気自動車の搭載構造
JP2011020622A (ja) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd 電気自動車の搭載構造
JP2012096587A (ja) * 2010-10-29 2012-05-24 Mazda Motor Corp 電動車両の電装部品搭載構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067271A1 (ja) * 2018-09-28 2020-04-02 日本電産株式会社 モータユニット
CN112840536A (zh) * 2018-09-28 2021-05-25 日本电产株式会社 马达单元

Similar Documents

Publication Publication Date Title
KR101523481B1 (ko) 전동 차량의 배선 보호 커버 구조
JP5714126B2 (ja) 電動車両
JP6414021B2 (ja) 燃料電池の搭載構造
JP5754551B2 (ja) 電気自動車
US8813887B2 (en) Battery unit mounting structure for vehicle
US9969274B2 (en) Power conversion module for vehicle
JP6396960B2 (ja) 電池パック
US8622161B2 (en) Installation structure for electrical equipment in rear vehicle body
JP5776622B2 (ja) 電気自動車
US9576701B2 (en) High-voltage wire wiring structure in vehicle
JP6922763B2 (ja) 車両下部構造
WO2013129247A1 (ja) 電気ユニット
CN110356211A (zh) 具有包括允许各个模块相对横向移动的引导件的电池装置的电动车辆
JP2011020624A (ja) 電気自動車の搭載構造
JP2011020625A (ja) 電気自動車の搭載構造
JP2011020622A (ja) 電気自動車の搭載構造
US11173855B2 (en) Electric device installation structure in vehicle
US20220324315A1 (en) Vehicle drive unit
WO2014038530A1 (ja) 電動車両用強電ユニットの搭載構造
JP2016107907A (ja) 電力変換装置
EP3772425A1 (en) Vehicle battery pack
JP5246650B2 (ja) 車両
JP6500740B2 (ja) 電力変換器の車載構造
JP2014094653A (ja) 電動車両
JP5853572B2 (ja) 車両用バッテリパック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP