WO2014038369A1 - Glass substrate for display and method for manufacturing glass substrate for display - Google Patents

Glass substrate for display and method for manufacturing glass substrate for display Download PDF

Info

Publication number
WO2014038369A1
WO2014038369A1 PCT/JP2013/072121 JP2013072121W WO2014038369A1 WO 2014038369 A1 WO2014038369 A1 WO 2014038369A1 JP 2013072121 W JP2013072121 W JP 2013072121W WO 2014038369 A1 WO2014038369 A1 WO 2014038369A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
display
fine particles
coating
roughness
Prior art date
Application number
PCT/JP2013/072121
Other languages
French (fr)
Japanese (ja)
Inventor
悟史 岡田
啓史 佐藤
厚 城山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014534270A priority Critical patent/JP6225908B2/en
Priority to CN201380046986.XA priority patent/CN104620306B/en
Priority to KR1020157006170A priority patent/KR102141879B1/en
Publication of WO2014038369A1 publication Critical patent/WO2014038369A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/068Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/121Antistatic or EM shielding layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • the present invention relates to a glass substrate for display and a method for producing the same.
  • a flat panel display such as a plasma display panel (PDP), a liquid crystal display (LCD), an electroluminescence display (ELD), or a field emission display (FED) uses a substrate on which a transparent electrode, a semiconductor element, etc. are formed on a glass substrate. It has been.
  • an LCD uses a substrate in which a transparent electrode, TFT (ThinTFilmTransistor), etc. are formed on a glass substrate.
  • Formation of a transparent electrode, a semiconductor element, etc. on a glass substrate is performed in the state which fixed the glass substrate on the adsorption
  • the glass substrate is an insulator and is easily charged by contact or friction with a different kind of substance and strongly adheres to the adsorption stage. For this reason, when the glass substrate on which a semiconductor element or the like is formed is peeled from the suction stage, the glass substrate is difficult to peel from the suction stage, and the glass substrate is damaged if it is forced to peel. Moreover, when peeling electrification occurs when the glass substrate is peeled from the adsorption stage, electrostatic breakdown of a semiconductor element such as a TFT formed on the glass substrate occurs.
  • the surface of the glass substrate on the side in contact with the suction stage is roughened to reduce the contact area between the glass substrate and the suction stage.
  • the contact area between the glass substrate and the suction stage is reduced, the amount of charge of the glass substrate is reduced, and the glass substrate is easily peeled off from the suction stage, and the amount of charge for peeling is reduced.
  • a surface roughening method for example, a method of spraying a slurry containing a liquid and abrasive grains onto one surface of a glass substrate and polishing the surface of the glass substrate with a brush is known (Patent Document 1). .
  • the present invention provides a glass substrate for display and a method for producing the same, wherein the surface on the side in contact with the suction stage has a roughness that can sufficiently reduce the contact area with the suction stage.
  • [5] A method for manufacturing a glass substrate for display according to any one of [1] to [4], wherein a coating step of coating a coating liquid containing fine particles on one surface of the glass substrate;
  • the surface roughness Ra of the glass substrate for display of the present invention is 0.5 to 10 nm, the contact area with the adsorption stage can be sufficiently reduced by arranging the one surface on the side in contact with the adsorption stage. Therefore, the glass substrate for display of the present invention can be easily peeled off when peeled from the adsorption stage, and peeling charge is hardly generated. According to the method for producing a glass substrate for display of the present invention, it is possible to produce a glass substrate for display having a surface whose surface in contact with the adsorption stage has a roughness that can sufficiently reduce the contact area with the adsorption stage.
  • FIG. 1 is a sectional view showing an example of a glass substrate for display of the present invention.
  • FIG. 2 is a diagram for explaining a method of manufacturing the glass substrate for display shown in FIG.
  • FIG. 3 is a diagram for explaining a method of manufacturing the glass substrate for display shown in FIG.
  • FIG. 4 is a cross-sectional view showing an example of a glass substrate used for the display glass substrate of the present invention.
  • FIGS. 5A to 5C are diagrams for explaining another method for manufacturing the glass substrate for display shown in FIG.
  • FIG. 1 is a sectional view showing an example of a glass substrate for display of the present invention.
  • a display glass substrate 1 shown in FIG. 1 has a back surface 21 (one surface (upper surface in FIG. 1)) on which fine particles 3 are attached on a glass substrate 2.
  • the back surface 21 of the display glass substrate 1 is a surface disposed in contact with the suction stage when a transparent electrode, a semiconductor element, or the like is formed on the display glass substrate 1.
  • the surface 2b (surface opposite to the one surface (lower surface in FIG. 1)) of the display glass substrate 1 is a surface on which a transparent electrode, a semiconductor element, and the like are formed.
  • the surface 2 b of the glass substrate 1 for display is composed of the surface of the glass substrate 2.
  • the surface 2b of the glass substrate 1 for display (the surface of the glass substrate 2) is a smooth surface having a roughness Ra of about 0.2 to 0.4 nm.
  • the roughness Ra of the back surface 21 of the glass substrate 1 for display shown in FIG. 1 is 0.5 to 10 nm, preferably 0.7 to 5 nm, and more preferably 1 to 4 nm.
  • the roughness Ra in the present invention was calculated by determining the arithmetic average height defined in JIS B0601 (2001) by measuring a measurement area of 5 ⁇ m ⁇ 5 ⁇ m with an atomic force microscope, and calculating the average value. Is. When a minute measurement region of 5 ⁇ m ⁇ 5 ⁇ m is measured using an atomic force microscope, the “roughness” of the glass substrate 2 can be measured purely without adding “undulation” of the glass substrate 2.
  • the contact area between the back surface 21 and the suction stage is sufficiently small when a transparent electrode, a semiconductor element or the like is formed on the front surface 2b of the glass substrate 1 for display. It becomes. As a result, the display glass substrate 1 can be easily peeled off when peeled from the adsorption stage, and peeling charge is hardly generated. Moreover, when the roughness Ra of the back surface 21 is 10 nm or less, occurrence of visible light scattering can be suppressed, and high visible light transmittance can be maintained.
  • the adherend surface 2a to which the fine particles 3 are adhered on the glass substrate 2 may be a fire-making surface having a roughness Ra of about 0.2 nm, for example. As shown, it may be a surface having a roughness Ra of about 0.4 nm that has been roughened.
  • the glass substrate for display 1 in which the adherend surface 2a is roughened has a smaller contact area between the back surface 21 of the glass substrate 2 and the suction stage. Accordingly, when the display glass substrate 1 is peeled from the suction stage, it can be peeled off more easily, and the occurrence of peeling charging can be more effectively suppressed.
  • the glass substrate 2 examples include alkali-containing glass substrates such as soda lime silicate glass substrates, alkali-free glass substrates such as borosilicate glass substrates, and the like.
  • the shape and planar dimensions of the glass substrate 2 are not particularly limited, but a rectangular shape having a length and width of 100 to 3000 mm is suitable as a display substrate.
  • the thickness of the glass substrate 2 is preferably 0.1 to 3 mm in order to be used as a display substrate.
  • the composition of the glass substrate 2 is, for example, expressed in mol%, SiO 2 : 66 to 70%, Al 2 O 3 : 9 to 14%, B 2 O 3 : 6 to It is preferably composed of 9.5%, MgO: 1 to 5%, CaO: 1 to 6%, SrO: 2 to 8%, MgO + CaO + SrO: 9 to 16%, and substantially free of BaO. Further, when the glass substrate 2 is an alkali-free glass substrate, the thickness is particularly preferably 0.3 to 1.0 mm.
  • the fine particles 3 are preferably made of a metal oxide.
  • the fine particles 3 made of a metal oxide are one or more selected from ceria (CeO 2 ) fine particles, zirconia (ZrO 2 ) fine particles, silica (SiO 2 ) fine particles, and alumina (Al 2 O 3 ) fine particles. Among them, it is preferable to use ceria fine particles from the viewpoint of adhesion due to a difference in surface potential.
  • the average particle size of the fine particles 3 is not particularly limited as long as it is a size capable of forming the back surface 21 with Ra of 0.5 to 10 nm, but is preferably 50 nm or less, and more preferably 5 to 30 nm. More preferably, the thickness is 10 to 20 nm.
  • the average particle diameter of the fine particles 3 is a converted value from a specific surface area measurement value according to the BET adsorption method (according to JIS Z8830 1990 (the latest revision year 2013)).
  • the average particle size of the fine particles 3 is 50 nm or less, when the fine particles 3 are attached to the glass substrate 2 using a coating solution containing the fine particles, the fine particles 3 in the coating solution are difficult to settle, and the fine particles 3 in the coating solution 3 can be dispersed well, and the coating liquid is easy to handle, which is preferable. Further, when the average particle size of the fine particles 3 is 50 nm or less, the fine particles 3 that have been washed away in a rinsing process described later or dropped after being attached to the glass substrate 2 will interfere with the manufacturing process of the display as foreign matters. There is nothing to do.
  • a coating liquid 4 containing fine particles 3 is applied on the adherend surface 2a of the glass substrate 2 (the surface to be the back surface 21 of the display glass substrate 1) (application step). ).
  • the fine particles 3 are supplied onto the adherend surface 2 a of the glass substrate 2, and the adherence force of the glass substrate 2 due to the difference in surface energy and surface potential between the glass substrate 2 and the fine particles 3 causes The fine particles 3 adhere to the adhesion surface 2a.
  • Examples of the coating solution 4 containing the fine particles 3 include those in which the fine particles 3 are dispersed in water.
  • the content of the fine particles 3 in the coating solution can be appropriately determined according to the density of the fine particles 3 on the back surface 21 of the glass substrate 1 for display, the coating amount of the coating solution 4, the viscosity at which the coating solution 4 is easily applied, and the like.
  • the coating liquid 4 may contain additives such as a pH adjuster such as nitric acid and a dielectric constant adjuster such as alcohol as necessary.
  • the coating liquid 4 the thing which disperse
  • the coating amount of the coating solution 4 can be appropriately determined according to the content of the fine particles 3 in the coating solution, and it is preferable that Ra on the adherend surface 2a of the glass substrate 2 is 0.5 to 10 nm.
  • a method for applying the coating liquid 4 is not particularly limited, but it is preferable that the coating liquid 4 can be applied only to the adherend surface 2a side of the glass substrate 2.
  • the adherend surface 2a of the glass substrate 2 is directed upward. Examples thereof include a method in which the coating liquid 4 is dropped and a method in which the adherend surface 2a is directed downward and coating is performed using a coating roll or spray.
  • a rinsing process is performed in which a part of the fine particles 3 on the adherend surface 2 a is washed away with pure water 5.
  • a method of supplying pure water 5 using a spray nozzle onto the adherend surface 2a of the glass substrate 2 on which the coating liquid 4 has been applied can be used.
  • the fine particles 3 adhering to the adherend surface 2a of the glass substrate 2 are removed by the adhesive force resulting from the difference in surface energy and surface potential. Only the extra fine particles 3 remaining on the adherend surface 2a of the glass substrate 2 are selectively removed.
  • the extra fine particles 3 mean fine particles 3a (3) not directly interacting with the adherend surface 2a of the glass substrate 2.
  • the glass substrate 2 after the rinsing process is dried, and the pure water 5 used in the rinsing process is removed (drying process).
  • the drying method is not particularly limited, and an air blow drying method or the like can be used.
  • a rinsing step is performed before the drying step to remove excess fine particles 3 a (3) present on the adherend surface 2 a of the glass substrate 2. For this reason, in the drying process, extra fine particles 3a (3) remaining without adhering to the adherend surface 2a wrap around on the surface 2b of the display glass substrate 1, and the display glass substrate 1 It can prevent adhering on the surface 2b.
  • the fine particles 3 on the adherend surface 2a of the glass substrate 2 are adhered on the adherend surface 2a due to the adhesion force caused by the difference in surface energy or surface potential, it is difficult to remove even if a drying process is performed. . Accordingly, the fine particles 3 remain at a sufficient density on the adherend surface 2a after the drying step. Therefore, the roughness Ra of the back surface 21 of the display glass substrate 1 after the drying step is in the range of 0.5 to 10 nm. Further, since the fine particles 3 on the adherend surface 2a are not easily removed even after the drying process, the drying process can be performed using a method that can be efficiently and easily dried, such as an air blow drying method. Through the above steps, the glass substrate 1 for display shown in FIG. 1 is obtained.
  • both surfaces of the display glass substrate 1 may be scrubbed.
  • the fine particles 3 are adhered on the adherend surface 2a of the glass substrate 2 due to the adhesive force resulting from the difference in surface energy and surface potential, even if scrub cleaning is performed.
  • the fine particles 3 are difficult to be removed. Therefore, even if a part of the fine particles 3 adhering to the adherend surface 2a is removed by scrub cleaning, a sufficient roughness Ra of about 1 nm can be secured on the back surface 21 of the display glass substrate 1.
  • the manufacturing method of the glass substrate for display of the present invention is not limited to the method described above.
  • the glass substrate 2 is transported at 80 to 1500 cm / min in the direction of the arrow shown in FIG. However, it may be performed continuously.
  • the manufacturing apparatus used in the present embodiment is provided with a conveying means including a plurality of conveying rolls (not shown), for example.
  • a conveyance roll what was arrange
  • the glass substrate 2 is conveyed by the conveying means with the adherend surface 2a facing downward.
  • the manufacturing apparatus used in the present embodiment includes a coating unit having a coating liquid tank 41 and a coating roll 42 arranged below the glass substrate 2 being transported. .
  • a coating solution 4 containing fine particles 3 is placed in the coating solution tank 41.
  • the coating roll 42 has a dimension in a direction orthogonal to the conveyance direction of the glass substrate 2 longer than the width of the glass substrate 2 (direction orthogonal to the conveyance direction of the glass substrate 2).
  • the coating roll 42 rotates in a direction along the conveyance direction of the glass substrate 2 around a rotation axis extending in a direction orthogonal to the conveyance direction of the glass substrate 2. .
  • the lower surface of the coating roll 42 is in contact with the coating solution 4 placed in the coating solution tank 41.
  • the upper surface of the coating roll 42 is disposed so as to be in contact with the adherend surface 2a of the glass substrate 2 that moves in the transport direction.
  • the moving glass that is in contact with the upper surface of the coating roll 42 is rotated by rotating the coating roll 42 that is in contact with the glass substrate 2 as the glass substrate 2 that is being transported moves.
  • the coating liquid 4 is supplied onto the adherend surface 2 a of the substrate 2.
  • the coating liquid 4 is applied to the adherend surface 2a of the glass substrate 2 (application process).
  • the manufacturing apparatus used in the present embodiment includes pure water supply means for supplying pure water 5 to the upper and lower surfaces of the glass substrate 2 transported by the transport means using spray nozzles (not shown).
  • a plurality of spray nozzles are arranged facing each other so as to sandwich the upper and lower surfaces of the glass substrate 2 to be conveyed.
  • the glass substrate 2 coated with the coating liquid 4 is transported by the transporting means and passes through the region where the pure water 5 is supplied by the pure water supplying means as shown in FIG. .
  • a part of the fine particles 3 existing on the adherend surface 2a of the glass substrate 2 being conveyed is washed away with the pure water 5 (rinsing step).
  • the fine particles adhered on the adherend surface 2a of the glass substrate 2 due to the adhesive force resulting from the difference in surface energy and surface potential. 3 remains without being removed, and only the extra fine particles 3a (3) existing on the adherend surface 2a of the glass substrate 2 are selectively removed.
  • the pure water 5 is supplied not only to the adherend surface 2a of the glass substrate 2 being transferred but also to the surface 2b in the rinsing step.
  • the glass substrate 2 is conveyed with the adherend surface 2a facing downward, excess fine particles 3a (3) washed away in the rinsing step are discharged downward.
  • the manufacturing apparatus used in the present embodiment includes drying means (not shown) arranged above and below the glass substrate 2, respectively.
  • the drying means include an air knife that ejects air in a wall shape toward the glass substrate 2 along a direction orthogonal to the conveyance direction of the glass substrate 2.
  • the glass substrate 2 after the rinsing process is transported by the transport means, and is passed through the region where air is ejected from the air knife as the drying means in a wall shape.
  • the pure water 5 used at the rinse process is removed from both surfaces of the glass substrate 2 in conveyance (drying process).
  • Example 1 The glass substrate for display of Example 1 was manufactured using the method shown below. First, after forming and cutting by a float method as a glass substrate, both surfaces are roughened by sequentially performing polishing for removing waviness and washing for removing residues after polishing. (Asahi Glass Co., Ltd .: AN100, length 550 mm ⁇ width 440 mm ⁇ thickness 0.7 mm) was prepared.
  • CE-20A trade name: manufactured by Nissan Chemical Co., Ltd.
  • ceria fine particles having an average particle diameter of 8 to 12 nm is diluted with pure water to make the ceria content 0.01% by mass. The solution used was used.
  • a rinsing process was performed in which a part of the fine particles on the adherend surface was washed away with pure water.
  • the rinsing step was performed by supplying pure water for 5 seconds at a flow rate of 2000 mL / min using a spray nozzle on the adherend surface of the glass substrate.
  • the glass substrate after the rinsing process was dried using an air blow drying method to remove pure water used in the rinsing process (drying process).
  • the glass substrate for display of Example 1 was obtained by the above process.
  • the roughness Ra of the back surface of the display glass substrate of Example 1 was 2.78 nm.
  • Example 2 As a coating solution, a solution in which PL-1 (trade name: manufactured by Fuso Chemical Co., Ltd.) containing 12% by mass of silica fine particles having an average particle diameter of 15 nm was diluted with pure water to have a silica content of 0.01% by mass was used. A glass substrate for display of Example 2 was obtained in the same manner as Example 1 except that.
  • PL-1 trade name: manufactured by Fuso Chemical Co., Ltd.
  • the roughness Ra of the back surface of the display glass substrate of Example 2 was 5.37 nm.
  • Example 3 COMPOL20 (trade name: manufactured by Fujimi Incorporated) containing 40% by mass of silica fine particles having an average particle diameter of 15 nm as a coating solution was diluted with pure water to have a silica content of 0.01% by mass. Except for this, the display glass substrate of Example 3 was obtained in the same manner as Example 1.
  • the roughness Ra of the back surface of the display glass substrate of Example 3 was 1.22 nm.
  • Example 4 The same procedure as in Example 1 was carried out except that CE-20A (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the ceria content was 0.1% by mass as the coating solution. The glass substrate for display of Example 4 was obtained.
  • CE-20A trade name: manufactured by Nissan Chemical Industries, Ltd.
  • the roughness Ra of the back surface of the display glass substrate of Example 4 was 4.29 nm.
  • Example 5 The same procedure as in Example 1 was performed except that CE-20A (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the ceria content was 0.001% by mass as the coating solution. The display glass substrate of Example 5 was obtained.
  • CE-20A trade name: manufactured by Nissan Chemical Industries, Ltd.
  • the roughness Ra of the back surface of the display glass substrate of Example 5 was 1.16 nm.
  • Example 6 Except that the surface to be adhered after being molded and cut by the float method as a glass substrate has a fired surface (Asahi Glass Co., Ltd .: AN100, length 550 mm ⁇ width 440 mm ⁇ thickness 0.7 mm) In the same manner as in Example 1, the glass substrate for display of Example 6 was obtained.
  • the roughness Ra of the back surface of the display glass substrate of Example 6 was 2.19 nm.
  • Example 7 The same procedure as in Example 6 was performed except that CE-20A (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the ceria content was 0.001% by mass as the coating solution. A display glass substrate of Example 7 was obtained.
  • CE-20A trade name: manufactured by Nissan Chemical Industries, Ltd.
  • the roughness Ra of the back surface of the display glass substrate of Example 7 was 1.47 nm.
  • the roughness Ra of the back surface of the display glass substrate of Example 8 was 2.46 nm.
  • the roughness Ra of the back surface of the display glass substrate of Example 9 was 0.96 nm.
  • Example 10 As a coating solution, CE-20A (trade name: manufactured by Nissan Chemical Co., Ltd.) was diluted with a pure water / ethanol solution of 1/1 (weight ratio) to obtain a ceria content of 0.01% by mass. A glass substrate for display of Example 10 was obtained in the same manner as Example 6 except that.
  • the roughness Ra of the back surface of the display glass substrate of Example 10 was 2.94 nm.
  • Example 11 As a coating solution, CE-20A (trade name: manufactured by Nissan Chemical Co., Ltd.) was diluted with a pure water / glycerin 1/1 (weight ratio) solution to a ceria content of 0.01% by mass. A glass substrate for display of Example 11 was obtained in the same manner as Example 6 except that.
  • the roughness Ra of the back surface of the display glass substrate of Example 11 was 2.56 nm.
  • Example 12 Except that Snowtex AK (trade name: manufactured by Nissan Chemical Co., Ltd.) was diluted with pure water as a coating solution, and a solution having a cationic silica content of 0.01% by mass was used in the same manner as in Example 6. A glass substrate for display of Example 12 was obtained.
  • Snowtex AK trade name: manufactured by Nissan Chemical Co., Ltd.
  • the roughness Ra of the back surface of the display glass substrate of Example 12 was 2.16 nm.
  • Example 13 The same procedure as in Example 6 was used, except that an ultrafine zirconia sol # 1 (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the zirconia content was 0.01% by mass as the coating solution. Thus, a display glass substrate of Example 13 was obtained.
  • an ultrafine zirconia sol # 1 (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the zirconia content was 0.01% by mass as the coating solution.
  • the roughness Ra of the back surface of the display glass substrate of Example 13 was 1.57 nm.
  • Comparative Example 1 The display glass substrate of Comparative Example 1 was produced using the method described below. The glass substrate before the coating process prepared in Example 6 was used as the display glass substrate of Comparative Example 1. The roughness Ra of the back surface of the display glass substrate of Comparative Example 1 was 0.20 nm.
  • the peeling charge amount of the glass substrate for display of Example 6 and Comparative Example 1 was evaluated by the following method.
  • the glass substrate for display was vacuum-sucked on the suction stage for a certain time, and then peeled off using lift pins.
  • the voltage between the glass substrate and the adsorption stage caused by the charge generated when peeling from the adsorption stage was measured for each time.
  • Equation (3) represents that the slope of data obtained by measurement is proportional to the charge amount. Since the charge amount Q decreases with the passage of time due to disturbance, the maximum value of the gradient at the moment of peeling is defined as the peel charge amount.
  • the peel charge amount calculated in this way was as low as 0.66 in Example 6 when Comparative Example 1 was set to “1”.
  • Comparative Example 2 A display glass substrate of Comparative Example 2 was produced using the method described below.
  • the glass substrate for display of Comparative Example 2 is processed by spraying a polishing liquid containing an abrasive described in Patent Document 1 and rubbing with a brush on the glass substrate before the coating step prepared in Example 6 is performed. It was.
  • the roughness Ra of the back surface of the display glass substrate of Comparative Example 2 was 0.42 nm.
  • the calculated peel charge amount was as low as 0.64 in Example 11 when Comparative Example 2 was set to “1”.
  • the glass substrate for display of the present invention is useful as a substrate for displays such as PDP, LCD, ELD, FED and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided are: a glass substrate for display, wherein the surface on the side in contact with a suction stage has a sufficiently small contact area with the suction stage; and a method for manufacturing the glass substrate for display. A glass substrate (1) for display has one surface (21) having fine particles (3) adhered on a glass substrate (2), and roughness (Ra) of the one surface (21) is 0.5-10 nm. The average particle diameter of the fine particles (3) is preferably 50 nm or less. The fine particles (3) are preferably formed of a metal oxide.

Description

ディスプレイ用ガラス基板およびその製造方法Glass substrate for display and manufacturing method thereof
 本発明は、ディスプレイ用ガラス基板およびその製造方法に関する。 The present invention relates to a glass substrate for display and a method for producing the same.
 プラズマディスプレイパネル(PDP)、液晶ディスプレイ(LCD)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)等のフラットパネルディスプレイには、ガラス基板上に透明電極、半導体素子等を形成した基板が用いられている。たとえば、LCDにおいては、ガラス基板上に透明電極、TFT(Thin Film Transistor)等が形成された基板が用いられている。 A flat panel display such as a plasma display panel (PDP), a liquid crystal display (LCD), an electroluminescence display (ELD), or a field emission display (FED) uses a substrate on which a transparent electrode, a semiconductor element, etc. are formed on a glass substrate. It has been. For example, an LCD uses a substrate in which a transparent electrode, TFT (ThinTFilmTransistor), etc. are formed on a glass substrate.
 ガラス基板上への透明電極、半導体素子等の形成は、ガラス基板を吸着ステージ上に真空吸着によって固定した状態で行われる。
 しかし、ガラス基板は絶縁体であり、異種物質との接触や摩擦により容易に帯電し、吸着ステージに強く貼り付いてしまう。このため、半導体素子等の形成されたガラス基板を吸着ステージから剥離する際に、ガラス基板が吸着ステージから剥離しにくく、無理に剥離しようとすると、ガラス基板が破損してしまう。
 また、ガラス基板を吸着ステージから剥離する際に剥離帯電が発生した場合、ガラス基板に形成されているTFT等の半導体素子の静電破壊が起こる。
Formation of a transparent electrode, a semiconductor element, etc. on a glass substrate is performed in the state which fixed the glass substrate on the adsorption | suction stage by vacuum adsorption.
However, the glass substrate is an insulator and is easily charged by contact or friction with a different kind of substance and strongly adheres to the adsorption stage. For this reason, when the glass substrate on which a semiconductor element or the like is formed is peeled from the suction stage, the glass substrate is difficult to peel from the suction stage, and the glass substrate is damaged if it is forced to peel.
Moreover, when peeling electrification occurs when the glass substrate is peeled from the adsorption stage, electrostatic breakdown of a semiconductor element such as a TFT formed on the glass substrate occurs.
 このため、吸着ステージに接する側のガラス基板の表面を粗面化処理し、ガラス基板と吸着ステージとの接触面積を小さくしている。ガラス基板と吸着ステージとの接触面積を小さくすると、ガラス基板の帯電量が少なくなり、吸着ステージから剥離されやすくなるとともに、剥離帯電量が少なくなる。
 粗面化処理の方法としては、たとえば、液体および研磨砥粒を含むスラリーをガラス基板の一方の面に吹き付けるとともに、ガラス基板の表面をブラシで研磨する方法が知られている(特許文献1)。
For this reason, the surface of the glass substrate on the side in contact with the suction stage is roughened to reduce the contact area between the glass substrate and the suction stage. When the contact area between the glass substrate and the suction stage is reduced, the amount of charge of the glass substrate is reduced, and the glass substrate is easily peeled off from the suction stage, and the amount of charge for peeling is reduced.
As a surface roughening method, for example, a method of spraying a slurry containing a liquid and abrasive grains onto one surface of a glass substrate and polishing the surface of the glass substrate with a brush is known (Patent Document 1). .
日本国特開2001-343632号公報Japanese Unexamined Patent Publication No. 2001-343632
 しかし、従来の方法で粗面化処理されたガラス基板では、ガラス基板を吸着ステージから剥離する際における剥離帯電の発生が充分に抑えられず、半導体素子の静電破壊が起こる場合があった。また、従来の粗面化処理されたガラス基板は、より一層吸着ステージから剥離しやすくすることが要求されていた。 However, in the case of a glass substrate that has been roughened by a conventional method, the occurrence of peeling electrification when the glass substrate is peeled off from the adsorption stage cannot be sufficiently suppressed, and electrostatic breakdown of the semiconductor element may occur. In addition, the conventional roughened glass substrate has been required to be more easily separated from the adsorption stage.
 本発明は、吸着ステージに接する側の表面が、吸着ステージとの接触面積を充分に小さくできる粗さを有するディスプレイ用ガラス基板およびその製造方法を提供する。 The present invention provides a glass substrate for display and a method for producing the same, wherein the surface on the side in contact with the suction stage has a roughness that can sufficiently reduce the contact area with the suction stage.
[1]ガラス基板上に微粒子が付着された一面を有し、前記一面の粗さRaが0.5~10nmであるディスプレイ用ガラス基板。
[2]前記微粒子の平均粒径が、50nm以下である[1]に記載のディスプレイ用ガラス基板。
[3]前記微粒子が、金属酸化物からなるものである[1]または[2]に記載のディスプレイ用ガラス基板。
[4]前記微粒子が、セリア微粒子、ジルコニア微粒子、シリカ微粒子、アルミナ微粒子から選ばれる1種または2種以上のものである[1]~[3]のいずれか1項に記載のディスプレイ用ガラス基板。
[1] A glass substrate for a display having a surface on which fine particles are adhered on a glass substrate, wherein the surface has a roughness Ra of 0.5 to 10 nm.
[2] The glass substrate for display according to [1], wherein an average particle size of the fine particles is 50 nm or less.
[3] The glass substrate for display according to [1] or [2], wherein the fine particles are made of a metal oxide.
[4] The glass substrate for display according to any one of [1] to [3], wherein the fine particles are one or more selected from ceria fine particles, zirconia fine particles, silica fine particles, and alumina fine particles. .
[5][1]~[4]のいずれか1項に記載のディスプレイ用ガラス基板の製造方法であって、ガラス基板の一面上に微粒子を含有する塗布液を塗布する塗布工程と、前記一面上の前記微粒子の一部を純水で洗い流すリンス工程と、前記ガラス基板を乾燥する乾燥工程とを含むディスプレイ用ガラス基板の製造方法。 [5] A method for manufacturing a glass substrate for display according to any one of [1] to [4], wherein a coating step of coating a coating liquid containing fine particles on one surface of the glass substrate; A method for producing a glass substrate for a display, comprising a rinsing step of rinsing a part of the fine particles with pure water and a drying step of drying the glass substrate.
 本発明のディスプレイ用ガラス基板は、一面の粗さRaが0.5~10nmであるため、吸着ステージに接する側に一面を配置することで、吸着ステージとの接触面積を充分に小さくできる。したがって、本発明のディスプレイ用ガラス基板は、吸着ステージから剥離する際に、容易に剥離できるとともに、剥離帯電が発生しにくいものとなる。
 本発明のディスプレイ用ガラス基板の製造方法によれば、吸着ステージに接する側の表面が、吸着ステージとの接触面積を充分に小さくできる粗さを有するディスプレイ用ガラス基板を製造できる。
Since the surface roughness Ra of the glass substrate for display of the present invention is 0.5 to 10 nm, the contact area with the adsorption stage can be sufficiently reduced by arranging the one surface on the side in contact with the adsorption stage. Therefore, the glass substrate for display of the present invention can be easily peeled off when peeled from the adsorption stage, and peeling charge is hardly generated.
According to the method for producing a glass substrate for display of the present invention, it is possible to produce a glass substrate for display having a surface whose surface in contact with the adsorption stage has a roughness that can sufficiently reduce the contact area with the adsorption stage.
図1は、本発明のディスプレイ用ガラス基板の一例を示した断面図である。FIG. 1 is a sectional view showing an example of a glass substrate for display of the present invention. 図2は、図1に示すディスプレイ用ガラス基板の製造方法を説明するための図である。FIG. 2 is a diagram for explaining a method of manufacturing the glass substrate for display shown in FIG. 図3は、図1に示すディスプレイ用ガラス基板の製造方法を説明するための図である。FIG. 3 is a diagram for explaining a method of manufacturing the glass substrate for display shown in FIG. 図4は、本発明のディスプレイ用ガラス基板に用いられるガラス基板の一例を示した断面図である。FIG. 4 is a cross-sectional view showing an example of a glass substrate used for the display glass substrate of the present invention. 図5(a)~(c)は、図1に示すディスプレイ用ガラス基板の他の製造方法を説明するための図である。FIGS. 5A to 5C are diagrams for explaining another method for manufacturing the glass substrate for display shown in FIG.
<ディスプレイ用ガラス基板>
 図1は、本発明のディスプレイ用ガラス基板の一例を示した断面図である。図1に示すディスプレイ用ガラス基板1は、ガラス基板2上に微粒子3が付着された裏面21(一面(図1においては上面))を有している。
<Glass substrate for display>
FIG. 1 is a sectional view showing an example of a glass substrate for display of the present invention. A display glass substrate 1 shown in FIG. 1 has a back surface 21 (one surface (upper surface in FIG. 1)) on which fine particles 3 are attached on a glass substrate 2.
 ディスプレイ用ガラス基板1の裏面21は、ディスプレイ用ガラス基板1上に透明電極、半導体素子等を形成する際に、吸着ステージに接して配置される面である。
 一方、ディスプレイ用ガラス基板1の表面2b(一面と反対側の面(図1においては下面))は、透明電極、半導体素子等が形成される面である。図1に示すように、ディスプレイ用ガラス基板1の表面2bは、ガラス基板2の表面からなる。ディスプレイ用ガラス基板1の表面2b(ガラス基板2の表面)は、粗さRaが0.2~0.4nm程度の平滑面とされている。
The back surface 21 of the display glass substrate 1 is a surface disposed in contact with the suction stage when a transparent electrode, a semiconductor element, or the like is formed on the display glass substrate 1.
On the other hand, the surface 2b (surface opposite to the one surface (lower surface in FIG. 1)) of the display glass substrate 1 is a surface on which a transparent electrode, a semiconductor element, and the like are formed. As shown in FIG. 1, the surface 2 b of the glass substrate 1 for display is composed of the surface of the glass substrate 2. The surface 2b of the glass substrate 1 for display (the surface of the glass substrate 2) is a smooth surface having a roughness Ra of about 0.2 to 0.4 nm.
 図1に示すディスプレイ用ガラス基板1の裏面21の粗さRaは0.5~10nmであり、0.7~5nmであることが好ましく、1~4nmであることがより好ましい。
 本発明における粗さRaは、原子間力顕微鏡によって5μm×5μmの測定領域を測定することによってJIS B0601(2001年)に規定される算術平均高さを求め、その平均値を求めることによって算出したものである。原子間力顕微鏡を用いて5μm×5μmの微小な測定領域を測定した場合、ガラス基板2の「うねり」が加味されることなく、純粋にガラス基板2の「粗さ」を測定できる。
The roughness Ra of the back surface 21 of the glass substrate 1 for display shown in FIG. 1 is 0.5 to 10 nm, preferably 0.7 to 5 nm, and more preferably 1 to 4 nm.
The roughness Ra in the present invention was calculated by determining the arithmetic average height defined in JIS B0601 (2001) by measuring a measurement area of 5 μm × 5 μm with an atomic force microscope, and calculating the average value. Is. When a minute measurement region of 5 μm × 5 μm is measured using an atomic force microscope, the “roughness” of the glass substrate 2 can be measured purely without adding “undulation” of the glass substrate 2.
 裏面21の粗さRaが0.5nm以上であると、ディスプレイ用ガラス基板1の表面2bに透明電極、半導体素子等を形成する際に、裏面21と吸着ステージとの接触面積が充分に小さいものとなる。その結果、ディスプレイ用ガラス基板1は、吸着ステージから剥離する際に容易に剥離できるとともに、剥離帯電が発生しにくいものとなる。また、裏面21の粗さRaが10nm以下である場合、可視光の散乱の発生を抑えられ、可視光の高透過率を維持することができる。 When the roughness Ra of the back surface 21 is 0.5 nm or more, the contact area between the back surface 21 and the suction stage is sufficiently small when a transparent electrode, a semiconductor element or the like is formed on the front surface 2b of the glass substrate 1 for display. It becomes. As a result, the display glass substrate 1 can be easily peeled off when peeled from the adsorption stage, and peeling charge is hardly generated. Moreover, when the roughness Ra of the back surface 21 is 10 nm or less, occurrence of visible light scattering can be suppressed, and high visible light transmittance can be maintained.
 図1に示すディスプレイ用ガラス基板1において、ガラス基板2上の微粒子3の付着されている被付着面2aは、たとえば粗さRa0.2nm程度の火造り面であってもよいし、図4に示すように、粗面化処理されている粗さRa0.4nm程度の面であってもよい。
 被付着面2aが粗面化処理されているディスプレイ用ガラス基板1は、ガラス基板2の裏面21と吸着ステージとの接触面積がより一層小さいものとなる。したがって、ディスプレイ用ガラス基板1を吸着ステージから剥離する際に、より容易に剥離できるとともに、剥離帯電の発生をより効果的に抑制できる。
In the glass substrate 1 for display shown in FIG. 1, the adherend surface 2a to which the fine particles 3 are adhered on the glass substrate 2 may be a fire-making surface having a roughness Ra of about 0.2 nm, for example. As shown, it may be a surface having a roughness Ra of about 0.4 nm that has been roughened.
The glass substrate for display 1 in which the adherend surface 2a is roughened has a smaller contact area between the back surface 21 of the glass substrate 2 and the suction stage. Accordingly, when the display glass substrate 1 is peeled from the suction stage, it can be peeled off more easily, and the occurrence of peeling charging can be more effectively suppressed.
 ガラス基板2としては、ソーダライムシリケートガラス基板等のアルカリ含有ガラス基板、ホウケイ酸ガラス基板等の無アルカリガラス基板等が挙げられる。
 ガラス基板2の形状および平面寸法は、特に限定されないが、矩形状であって、縦および横ともに100~3000mmであると、ディスプレイ用の基板として好適である。また、ガラス基板2の厚さは、ディスプレイ用の基板として用いるために、0.1~3mmであることが好ましい。
Examples of the glass substrate 2 include alkali-containing glass substrates such as soda lime silicate glass substrates, alkali-free glass substrates such as borosilicate glass substrates, and the like.
The shape and planar dimensions of the glass substrate 2 are not particularly limited, but a rectangular shape having a length and width of 100 to 3000 mm is suitable as a display substrate. The thickness of the glass substrate 2 is preferably 0.1 to 3 mm in order to be used as a display substrate.
 ガラス基板2が無アルカリガラス基板である場合、ガラス基板2の組成は、たとえばモル%表示で、SiO:66~70%、Al:9~14%、B:6~9.5%、MgO:1~5%、CaO:1~6%、SrO:2~8%、MgO+CaO+SrO:9~16%からなり、BaOを実質的に含有しないものであることが好ましい。また、ガラス基板2が無アルカリガラス基板である場合、0.3~1.0mmの厚さであることが特に好ましい。 When the glass substrate 2 is an alkali-free glass substrate, the composition of the glass substrate 2 is, for example, expressed in mol%, SiO 2 : 66 to 70%, Al 2 O 3 : 9 to 14%, B 2 O 3 : 6 to It is preferably composed of 9.5%, MgO: 1 to 5%, CaO: 1 to 6%, SrO: 2 to 8%, MgO + CaO + SrO: 9 to 16%, and substantially free of BaO. Further, when the glass substrate 2 is an alkali-free glass substrate, the thickness is particularly preferably 0.3 to 1.0 mm.
 微粒子3は、金属酸化物からなるものであることが好ましい。金属酸化物からなる微粒子3は、セリア(CeO)微粒子、ジルコニア(ZrO)微粒子、シリカ(SiO)微粒子、アルミナ(Al)微粒子から選ばれる1種または2種以上のものであることが好ましく、中でも特に、表面電位の差に起因する付着力の観点からセリア微粒子を用いることが好ましい。 The fine particles 3 are preferably made of a metal oxide. The fine particles 3 made of a metal oxide are one or more selected from ceria (CeO 2 ) fine particles, zirconia (ZrO 2 ) fine particles, silica (SiO 2 ) fine particles, and alumina (Al 2 O 3 ) fine particles. Among them, it is preferable to use ceria fine particles from the viewpoint of adhesion due to a difference in surface potential.
 微粒子3の平均粒径は、Raが0.5~10nmである裏面21を形成できる大きさであればよく特に限定されないが、50nm以下であることが好ましく、5~30nmであることがより好ましく、10~20nmであることがより好ましい。
 なお、微粒子3の平均粒径は、BET吸着法による比表面積測定値(JIS Z8830 1990年制定(最新改正年2013年)に準じる)からの換算値である。
The average particle size of the fine particles 3 is not particularly limited as long as it is a size capable of forming the back surface 21 with Ra of 0.5 to 10 nm, but is preferably 50 nm or less, and more preferably 5 to 30 nm. More preferably, the thickness is 10 to 20 nm.
The average particle diameter of the fine particles 3 is a converted value from a specific surface area measurement value according to the BET adsorption method (according to JIS Z8830 1990 (the latest revision year 2013)).
 微粒子3の平均粒径が50nm以下であると、微粒子を含有する塗布液を用いてガラス基板2に微粒子3を付着させる場合に、塗布液中の微粒子3が沈降しにくく、塗布液中に微粒子3を良好に分散させることができ、塗布液の取り扱いが容易であり好ましい。また、微粒子3の平均粒径が50nm以下であると、後述するリンス工程において洗い流されたり、ガラス基板2に付着させた後に脱落したりした微粒子3が、異物としてディスプレイの製造工程に支障を来すことがない。 When the average particle size of the fine particles 3 is 50 nm or less, when the fine particles 3 are attached to the glass substrate 2 using a coating solution containing the fine particles, the fine particles 3 in the coating solution are difficult to settle, and the fine particles 3 in the coating solution 3 can be dispersed well, and the coating liquid is easy to handle, which is preferable. Further, when the average particle size of the fine particles 3 is 50 nm or less, the fine particles 3 that have been washed away in a rinsing process described later or dropped after being attached to the glass substrate 2 will interfere with the manufacturing process of the display as foreign matters. There is nothing to do.
<製造方法>
 次に、本発明のディスプレイ用ガラス基板の製造方法の一例として、図2および図3を用いて、図1に示すディスプレイ用ガラス基板の製造方法を説明する。
 図1に示すディスプレイ用ガラス基板1を製造するには、まず、ガラス基板2を用意する。
<Manufacturing method>
Next, as an example of the method for producing a glass substrate for display according to the present invention, a method for producing the glass substrate for display shown in FIG. 1 will be described with reference to FIGS.
In order to manufacture the glass substrate 1 for display shown in FIG. 1, first, the glass substrate 2 is prepared.
 次に、ガラス基板2の被付着面2a(ディスプレイ用ガラス基板1の裏面21となる側の面)上に、図2に示すように、微粒子3を含有する塗布液4を塗布する(塗布工程)。
 塗布工程を行うことで、ガラス基板2の被付着面2a上に微粒子3が供給され、ガラス基板2と微粒子3との表面エネルギーや表面電位の差に起因する付着力によって、ガラス基板2の被付着面2a上に微粒子3が付着する。
Next, as shown in FIG. 2, a coating liquid 4 containing fine particles 3 is applied on the adherend surface 2a of the glass substrate 2 (the surface to be the back surface 21 of the display glass substrate 1) (application step). ).
By performing the coating process, the fine particles 3 are supplied onto the adherend surface 2 a of the glass substrate 2, and the adherence force of the glass substrate 2 due to the difference in surface energy and surface potential between the glass substrate 2 and the fine particles 3 causes The fine particles 3 adhere to the adhesion surface 2a.
 微粒子3を含有する塗布液4としては、微粒子3を水に分散させたものが挙げられる。塗布液中の微粒子3の含有量は、ディスプレイ用ガラス基板1の裏面21における微粒子3の密度、塗布液4の塗布量、塗布液4の塗布しやすい粘度等に応じて適宜決定でき、特に限定されない。塗布液4には、必要に応じて、硝酸等のpH調整剤やアルコール等の誘電率調整剤等の添加剤が含まれていてもよい。
 なお、塗布液4としては、微粒子3を、水とエタノールの混合溶液や、水とグリセリンの混合溶液に分散させたものを用いることもできる。
Examples of the coating solution 4 containing the fine particles 3 include those in which the fine particles 3 are dispersed in water. The content of the fine particles 3 in the coating solution can be appropriately determined according to the density of the fine particles 3 on the back surface 21 of the glass substrate 1 for display, the coating amount of the coating solution 4, the viscosity at which the coating solution 4 is easily applied, and the like. Not. The coating liquid 4 may contain additives such as a pH adjuster such as nitric acid and a dielectric constant adjuster such as alcohol as necessary.
In addition, as the coating liquid 4, the thing which disperse | distributed the microparticles | fine-particles 3 to the mixed solution of water and ethanol, or the mixed solution of water and glycerol can also be used.
 塗布液4の塗布量は、塗布液中の微粒子3の含有量等に応じて適宜決定でき、ガラス基板2の被付着面2aにおけるRaが0.5~10nmとなるようにすることが好ましい。 The coating amount of the coating solution 4 can be appropriately determined according to the content of the fine particles 3 in the coating solution, and it is preferable that Ra on the adherend surface 2a of the glass substrate 2 is 0.5 to 10 nm.
 塗布液4の塗布方法は、特に限定されないが、ガラス基板2の被付着面2a側のみに塗布液4を塗布できる方法であることが好ましく、たとえば、ガラス基板2の被付着面2aを上方に向けて塗布液4を滴下する方法、被付着面2aを下方に向け、塗布ロールやスプレーを用いて塗布する方法等が挙げられる。 A method for applying the coating liquid 4 is not particularly limited, but it is preferable that the coating liquid 4 can be applied only to the adherend surface 2a side of the glass substrate 2. For example, the adherend surface 2a of the glass substrate 2 is directed upward. Examples thereof include a method in which the coating liquid 4 is dropped and a method in which the adherend surface 2a is directed downward and coating is performed using a coating roll or spray.
 次に、図3に示すように、被付着面2a上の微粒子3の一部を純水5で洗い流すリンス工程を行う。リンス工程においては、たとえば塗布液4の塗布されたガラス基板2の被付着面2a上に、スプレーノズルを用いて純水5を供給する方法を用いることができる。
 本実施形態では、リンス工程を行っても、図3に示すように、表面エネルギーや表面電位の差に起因する付着力によってガラス基板2の被付着面2a上に付着している微粒子3は除去されずに残存し、ガラス基板2の被付着面2a上に存在する余分な微粒子3のみが選択的に除去される。
Next, as shown in FIG. 3, a rinsing process is performed in which a part of the fine particles 3 on the adherend surface 2 a is washed away with pure water 5. In the rinsing step, for example, a method of supplying pure water 5 using a spray nozzle onto the adherend surface 2a of the glass substrate 2 on which the coating liquid 4 has been applied can be used.
In the present embodiment, even if the rinsing step is performed, as shown in FIG. 3, the fine particles 3 adhering to the adherend surface 2a of the glass substrate 2 are removed by the adhesive force resulting from the difference in surface energy and surface potential. Only the extra fine particles 3 remaining on the adherend surface 2a of the glass substrate 2 are selectively removed.
 本実施形態において、余分な微粒子3とは、ガラス基板2の被付着面2aと直接相互作用していない微粒子3a(3)を意味する。 In the present embodiment, the extra fine particles 3 mean fine particles 3a (3) not directly interacting with the adherend surface 2a of the glass substrate 2.
 続いて、リンス工程の終了したガラス基板2を乾燥して、リンス工程で使用した純水5を除去する(乾燥工程)。乾燥方法としては、特に限定されないが、エアブロー乾燥法等を用いることができる。
 本実施形態においては、乾燥工程の前にリンス工程を行ってガラス基板2の被付着面2a上に存在する余分な微粒子3a(3)を除去している。このため、乾燥工程において、被付着面2a上に付着せずに残留している余分な微粒子3a(3)が、ディスプレイ用ガラス基板1の表面2b上に回り込んで、ディスプレイ用ガラス基板1の表面2b上に付着することを防止できる。
Subsequently, the glass substrate 2 after the rinsing process is dried, and the pure water 5 used in the rinsing process is removed (drying process). The drying method is not particularly limited, and an air blow drying method or the like can be used.
In the present embodiment, a rinsing step is performed before the drying step to remove excess fine particles 3 a (3) present on the adherend surface 2 a of the glass substrate 2. For this reason, in the drying process, extra fine particles 3a (3) remaining without adhering to the adherend surface 2a wrap around on the surface 2b of the display glass substrate 1, and the display glass substrate 1 It can prevent adhering on the surface 2b.
 また、ガラス基板2の被付着面2a上の微粒子3は、表面エネルギーや表面電位の差に起因する付着力によって被付着面2a上に付着しているため、乾燥工程を行っても除去されにくい。したがって、乾燥工程後の被付着面2a上にも充分な密度で微粒子3が残存する。よって、乾燥工程後のディスプレイ用ガラス基板1の裏面21の粗さRaは、0.5~10nmの範囲内となる。また、乾燥工程を行っても被付着面2a上の微粒子3が除去されにくいため、たとえばエアブロー乾燥法等の効率よく容易に乾燥できる方法を用いて乾燥工程を行うことができる。
 以上の工程により、図1に示すディスプレイ用ガラス基板1が得られる。
Moreover, since the fine particles 3 on the adherend surface 2a of the glass substrate 2 are adhered on the adherend surface 2a due to the adhesion force caused by the difference in surface energy or surface potential, it is difficult to remove even if a drying process is performed. . Accordingly, the fine particles 3 remain at a sufficient density on the adherend surface 2a after the drying step. Therefore, the roughness Ra of the back surface 21 of the display glass substrate 1 after the drying step is in the range of 0.5 to 10 nm. Further, since the fine particles 3 on the adherend surface 2a are not easily removed even after the drying process, the drying process can be performed using a method that can be efficiently and easily dried, such as an air blow drying method.
Through the above steps, the glass substrate 1 for display shown in FIG. 1 is obtained.
 その後、このようにして得られた図1に示すディスプレイ用ガラス基板1の表面2b(図1においては下面)には、透明電極、半導体素子等が形成される。透明電極、半導体素子等を形成する前には、ディスプレイ用ガラス基板1の両面をスクラブ洗浄してもよい。図1に示すディスプレイ用ガラス基板1では、微粒子3がガラス基板2の被付着面2a上に、表面エネルギーや表面電位の差に起因する付着力によって付着しているため、スクラブ洗浄を行っても微粒子3が除去されにくい。したがって、スクラブ洗浄によって被付着面2a上に付着していた微粒子3の一部が脱落したとしても、ディスプレイ用ガラス基板1の裏面21において1nm程度の充分な粗さRaを確保できる。 Thereafter, a transparent electrode, a semiconductor element, and the like are formed on the surface 2b (lower surface in FIG. 1) of the display glass substrate 1 shown in FIG. 1 thus obtained. Before forming a transparent electrode, a semiconductor element, or the like, both surfaces of the display glass substrate 1 may be scrubbed. In the glass substrate 1 for display shown in FIG. 1, since the fine particles 3 are adhered on the adherend surface 2a of the glass substrate 2 due to the adhesive force resulting from the difference in surface energy and surface potential, even if scrub cleaning is performed. The fine particles 3 are difficult to be removed. Therefore, even if a part of the fine particles 3 adhering to the adherend surface 2a is removed by scrub cleaning, a sufficient roughness Ra of about 1 nm can be secured on the back surface 21 of the display glass substrate 1.
 本発明のディスプレイ用ガラス基板の製造方法は、上述した方法に限定されるものではない。たとえば、上記の塗布工程、リンス工程、乾燥工程は、搬送手段の備えられた製造装置を用いて、たとえば、ガラス基板2を図5(a)に示す矢印の方向に80~1500cm/分で搬送しながら、連続して行ってもよい。 The manufacturing method of the glass substrate for display of the present invention is not limited to the method described above. For example, in the above coating process, rinsing process, and drying process, for example, the glass substrate 2 is transported at 80 to 1500 cm / min in the direction of the arrow shown in FIG. However, it may be performed continuously.
 本実施形態において使用される製造装置は、たとえば複数の搬送ロール(不図示)からなる搬送手段を備えている。搬送ロールとしては、たとえばガラス基板2を挟むように上下に対になって配置されたものを用いることができる。
 本実施形態においては、搬送手段によって、ガラス基板2が被付着面2aを下に向けて搬送されるようになっている。
The manufacturing apparatus used in the present embodiment is provided with a conveying means including a plurality of conveying rolls (not shown), for example. As a conveyance roll, what was arrange | positioned up and down and paired so that the glass substrate 2 may be pinched | interposed can be used, for example.
In this embodiment, the glass substrate 2 is conveyed by the conveying means with the adherend surface 2a facing downward.
 本実施形態において用いられる製造装置は、図5(a)に示すように、搬送中のガラス基板2の下に配置される塗布液槽41と、塗布ロール42とを有する塗布手段を備えている。図5(a)に示すように、塗布液槽41には、微粒子3を含有する塗布液4が入れられている。塗布ロール42は、ガラス基板2の搬送方向と直交する方向の寸法が、ガラス基板2の幅(ガラス基板2の搬送方向と直交する方向)よりも長いものである。塗布ロール42は、図5(a)に示すように、ガラス基板2の搬送方向と直交する方向に延在する回転軸を中心として、ガラス基板2の搬送方向に沿う方向に回転するものである。 As shown in FIG. 5A, the manufacturing apparatus used in the present embodiment includes a coating unit having a coating liquid tank 41 and a coating roll 42 arranged below the glass substrate 2 being transported. . As shown in FIG. 5A, a coating solution 4 containing fine particles 3 is placed in the coating solution tank 41. The coating roll 42 has a dimension in a direction orthogonal to the conveyance direction of the glass substrate 2 longer than the width of the glass substrate 2 (direction orthogonal to the conveyance direction of the glass substrate 2). As shown in FIG. 5A, the coating roll 42 rotates in a direction along the conveyance direction of the glass substrate 2 around a rotation axis extending in a direction orthogonal to the conveyance direction of the glass substrate 2. .
 図5(a)に示すように、塗布ロール42の下面は、塗布液槽41内に入れられた塗布液4に接触している。塗布ロール42の上面は、搬送方向に移動するガラス基板2の被付着面2aと接触するように配置されている。
 図5(a)に示す塗布手段では、搬送されるガラス基板2の移動に伴ってガラス基板2に接触された塗布ロール42が回転し、塗布ロール42の上面と接触されている移動中のガラス基板2の被付着面2a上に塗布液4が供給される。このことによって、ガラス基板2の被付着面2aに塗布液4が塗布される(塗布工程)。
As shown in FIG. 5A, the lower surface of the coating roll 42 is in contact with the coating solution 4 placed in the coating solution tank 41. The upper surface of the coating roll 42 is disposed so as to be in contact with the adherend surface 2a of the glass substrate 2 that moves in the transport direction.
In the coating means shown in FIG. 5A, the moving glass that is in contact with the upper surface of the coating roll 42 is rotated by rotating the coating roll 42 that is in contact with the glass substrate 2 as the glass substrate 2 that is being transported moves. The coating liquid 4 is supplied onto the adherend surface 2 a of the substrate 2. Thus, the coating liquid 4 is applied to the adherend surface 2a of the glass substrate 2 (application process).
 本実施形態において用いられる製造装置は、搬送手段によって搬送されるガラス基板2の上下両面に、スプレーノズル(不図示)を用いて純水5を供給する純水供給手段を備えている。図5(b)に示す純水供給手段では、スプレーノズルは、搬送されるガラス基板2の上下両面を挟むように対向して複数配置されている。 The manufacturing apparatus used in the present embodiment includes pure water supply means for supplying pure water 5 to the upper and lower surfaces of the glass substrate 2 transported by the transport means using spray nozzles (not shown). In the pure water supply means shown in FIG. 5B, a plurality of spray nozzles are arranged facing each other so as to sandwich the upper and lower surfaces of the glass substrate 2 to be conveyed.
 本実施形態においては、塗布液4の塗布されたガラス基板2を搬送手段によって搬送させて、図5(b)に示すように、純水供給手段の純水5の供給される領域を通過させる。このことにより、搬送中のガラス基板2の被付着面2a上に存在する微粒子3の一部が純水5で洗い流される(リンス工程)。本実施形態では、図5(b)に示すように、リンス工程を行っても、表面エネルギーや表面電位の差に起因する付着力によってガラス基板2の被付着面2a上に付着している微粒子3は除去されずに残存し、ガラス基板2の被付着面2a上に存在する余分な微粒子3a(3)のみが選択的に除去される。 In the present embodiment, the glass substrate 2 coated with the coating liquid 4 is transported by the transporting means and passes through the region where the pure water 5 is supplied by the pure water supplying means as shown in FIG. . As a result, a part of the fine particles 3 existing on the adherend surface 2a of the glass substrate 2 being conveyed is washed away with the pure water 5 (rinsing step). In the present embodiment, as shown in FIG. 5B, even if the rinsing process is performed, the fine particles adhered on the adherend surface 2a of the glass substrate 2 due to the adhesive force resulting from the difference in surface energy and surface potential. 3 remains without being removed, and only the extra fine particles 3a (3) existing on the adherend surface 2a of the glass substrate 2 are selectively removed.
 なお、図5(b)に示す純水供給手段では、リンス工程において、搬送中のガラス基板2の被付着面2aのみだけでなく表面2bにも純水5が供給される。しかも、本実施形態においては、ガラス基板2が被付着面2aを下に向けて搬送されているため、リンス工程において洗い流された余分な微粒子3a(3)が、下方へ排出される。これらのことにより、本実施形態では、リンス工程において洗い流された被付着面2a上に付着していない余分な微粒子3a(3)が、ガラス基板2の表面2bに付着することが効果的に防止される。 In the pure water supply means shown in FIG. 5B, the pure water 5 is supplied not only to the adherend surface 2a of the glass substrate 2 being transferred but also to the surface 2b in the rinsing step. In addition, in the present embodiment, since the glass substrate 2 is conveyed with the adherend surface 2a facing downward, excess fine particles 3a (3) washed away in the rinsing step are discharged downward. For these reasons, in this embodiment, it is possible to effectively prevent the extra fine particles 3a (3) not adhered on the adherend surface 2a washed away in the rinsing process from adhering to the surface 2b of the glass substrate 2. Is done.
 本実施形態において用いられる製造装置は、ガラス基板2の上下にそれぞれ配置された乾燥手段(不図示)を備えている。乾燥手段としては、たとえばガラス基板2に向かって、ガラス基板2の搬送方向と直交する方向に沿って壁状に空気を噴出するエアナイフが挙げられる。
 本実施形態では、リンス工程の終了したガラス基板2を搬送手段によって搬送させて、乾燥手段であるエアナイフから壁状に空気の噴出される領域を通過させる。このことにより、図5(c)に示すように、リンス工程で使用した純水5が、搬送中のガラス基板2の両面から除去される(乾燥工程)。
The manufacturing apparatus used in the present embodiment includes drying means (not shown) arranged above and below the glass substrate 2, respectively. Examples of the drying means include an air knife that ejects air in a wall shape toward the glass substrate 2 along a direction orthogonal to the conveyance direction of the glass substrate 2.
In the present embodiment, the glass substrate 2 after the rinsing process is transported by the transport means, and is passed through the region where air is ejected from the air knife as the drying means in a wall shape. Thereby, as shown in FIG.5 (c), the pure water 5 used at the rinse process is removed from both surfaces of the glass substrate 2 in conveyance (drying process).
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
「実施例1」
 以下に示す方法を用いて、実施例1のディスプレイ用ガラス基板を製造した。
 まず、ガラス基板として、フロート法により成形して切断した後に、うねりを除去するための研磨と、研磨後の残渣を除去するための洗浄とを順次行うことにより、両面が粗面化処理されているもの(旭硝子社製:AN100、縦550mm×横440mm×厚さ0.7mm)を用意した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
"Example 1"
The glass substrate for display of Example 1 was manufactured using the method shown below.
First, after forming and cutting by a float method as a glass substrate, both surfaces are roughened by sequentially performing polishing for removing waviness and washing for removing residues after polishing. (Asahi Glass Co., Ltd .: AN100, length 550 mm × width 440 mm × thickness 0.7 mm) was prepared.
 次に、ガラス基板の被付着面(ディスプレイ用ガラス基板の裏面となる側の面)上に、微粒子を含有する塗布液200mLを基板全体に広がるように滴下した(塗布工程)。
 塗布液としては、平均粒径8~12nmのセリア微粒子を20~21質量%含むCE-20A(商品名:日産化学社製)を純水で希釈し、セリア含有量を0.01質量%にした溶液を用いた。
Next, 200 mL of the coating liquid containing fine particles was dropped on the surface to be adhered (the surface on the back side of the glass substrate for display) so as to spread over the entire substrate (application process).
As a coating solution, CE-20A (trade name: manufactured by Nissan Chemical Co., Ltd.) containing 20 to 21% by mass of ceria fine particles having an average particle diameter of 8 to 12 nm is diluted with pure water to make the ceria content 0.01% by mass. The solution used was used.
 次に、図3に示すように、被付着面上の微粒子の一部を純水で洗い流すリンス工程を行った。リンス工程は、ガラス基板の被付着面上に、スプレーノズルを用いて流量2000mL/分で5秒間純水を供給することにより行った。
 続いて、リンス工程の終了したガラス基板を、エアブロー乾燥法を用いて乾燥して、リンス工程で使用した純水を除去した(乾燥工程)。
 以上の工程により、実施例1のディスプレイ用ガラス基板を得た。
Next, as shown in FIG. 3, a rinsing process was performed in which a part of the fine particles on the adherend surface was washed away with pure water. The rinsing step was performed by supplying pure water for 5 seconds at a flow rate of 2000 mL / min using a spray nozzle on the adherend surface of the glass substrate.
Subsequently, the glass substrate after the rinsing process was dried using an air blow drying method to remove pure water used in the rinsing process (drying process).
The glass substrate for display of Example 1 was obtained by the above process.
 実施例1のディスプレイ用ガラス基板の裏面の粗さRaは2.78nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 1 was 2.78 nm.
「実施例2」
 塗布液として、平均粒径15nmのシリカ微粒子を12質量%含むPL-1(商品名:扶桑化学社製)を純水で希釈し、シリカ含有量を0.01質量%にした溶液を用いたこと以外は実施例1と同様にして、実施例2のディスプレイ用ガラス基板を得た。
"Example 2"
As a coating solution, a solution in which PL-1 (trade name: manufactured by Fuso Chemical Co., Ltd.) containing 12% by mass of silica fine particles having an average particle diameter of 15 nm was diluted with pure water to have a silica content of 0.01% by mass was used. A glass substrate for display of Example 2 was obtained in the same manner as Example 1 except that.
 実施例2のディスプレイ用ガラス基板の裏面の粗さRaは5.37nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 2 was 5.37 nm.
「実施例3」
 塗布液として、平均粒径15nmのシリカ微粒子を40質量%含むCOMPOL20(商品名:フジミインコーポレーテッド社製)を純水で希釈し、シリカ含有量を0.01質量%にした溶液を用いたこと以外は実施例1と同様にして、実施例3のディスプレイ用ガラス基板を得た。
"Example 3"
COMPOL20 (trade name: manufactured by Fujimi Incorporated) containing 40% by mass of silica fine particles having an average particle diameter of 15 nm as a coating solution was diluted with pure water to have a silica content of 0.01% by mass. Except for this, the display glass substrate of Example 3 was obtained in the same manner as Example 1.
 実施例3のディスプレイ用ガラス基板の裏面の粗さRaは1.22nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 3 was 1.22 nm.
「実施例4」
 塗布液として、CE-20A(商品名:日産化学社製)を純水で希釈し、セリア含有量を0.1質量%にした溶液を用いたこと以外は実施例1と同様にして、実施例4のディスプレイ用ガラス基板を得た。
"Example 4"
The same procedure as in Example 1 was carried out except that CE-20A (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the ceria content was 0.1% by mass as the coating solution. The glass substrate for display of Example 4 was obtained.
 実施例4のディスプレイ用ガラス基板の裏面の粗さRaは4.29nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 4 was 4.29 nm.
「実施例5」
 塗布液として、CE-20A(商品名:日産化学社製)を純水で希釈し、セリア含有量を0.001質量%にした溶液を用いたこと以外は実施例1と同様にして、実施例5のディスプレイ用ガラス基板を得た。
"Example 5"
The same procedure as in Example 1 was performed except that CE-20A (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the ceria content was 0.001% by mass as the coating solution. The display glass substrate of Example 5 was obtained.
 実施例5のディスプレイ用ガラス基板の裏面の粗さRaは1.16nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 5 was 1.16 nm.
「実施例6」
 ガラス基板として、フロート法により成形して切断した後の被付着面が火造り面のもの(旭硝子社製:AN100、縦550mm×横440mm×厚さ0.7mm)を用意したこと以外は、実施例1と同様にして、実施例6のディスプレイ用ガラス基板を得た。
"Example 6"
Except that the surface to be adhered after being molded and cut by the float method as a glass substrate has a fired surface (Asahi Glass Co., Ltd .: AN100, length 550 mm × width 440 mm × thickness 0.7 mm) In the same manner as in Example 1, the glass substrate for display of Example 6 was obtained.
 実施例6のディスプレイ用ガラス基板の裏面の粗さRaは2.19nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 6 was 2.19 nm.
「実施例7」
 塗布液として、CE-20A(商品名:日産化学社製)を純水で希釈し、セリア含有量を0.001質量%にした溶液を用いたこと以外は実施例6と同様にして、実施例7のディスプレイ用ガラス基板を得た。
"Example 7"
The same procedure as in Example 6 was performed except that CE-20A (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the ceria content was 0.001% by mass as the coating solution. A display glass substrate of Example 7 was obtained.
 実施例7のディスプレイ用ガラス基板の裏面の粗さRaは1.47nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 7 was 1.47 nm.
「実施例8」
 実施例1で作製したRa=2.78nmのガラス基板の裏面を2000mL/分の流水で5秒間スクラブ洗浄をおこない、実施例8のディスプレイ用ガラス基板を得た。
"Example 8"
The back surface of the glass substrate with Ra = 2.78 nm prepared in Example 1 was scrubbed with running water of 2000 mL / min for 5 seconds to obtain a display glass substrate of Example 8.
 実施例8のディスプレイ用ガラス基板の裏面の粗さRaは2.46nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 8 was 2.46 nm.
「実施例9」
 実施例6で作製したRa=2.19nmのガラス基板の裏面を2000mL/分の流水で5秒間スクラブ洗浄をおこない、実施例9のディスプレイ用ガラス基板を得た。
"Example 9"
The back surface of the glass substrate of Ra = 2.19 nm produced in Example 6 was scrubbed with running water of 2000 mL / min for 5 seconds to obtain a display glass substrate of Example 9.
 実施例9のディスプレイ用ガラス基板の裏面の粗さRaは0.96nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 9 was 0.96 nm.
「実施例10」
 塗布液として、CE-20A(商品名:日産化学社製)を純水/エタノールが1/1(重量比)の溶液で希釈し、セリア含有量を0.01質量%にした溶液を用いたこと以外は実施例6と同様にして、実施例10のディスプレイ用ガラス基板を得た。
"Example 10"
As a coating solution, CE-20A (trade name: manufactured by Nissan Chemical Co., Ltd.) was diluted with a pure water / ethanol solution of 1/1 (weight ratio) to obtain a ceria content of 0.01% by mass. A glass substrate for display of Example 10 was obtained in the same manner as Example 6 except that.
 実施例10のディスプレイ用ガラス基板の裏面の粗さRaは2.94nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 10 was 2.94 nm.
「実施例11」
 塗布液として、CE-20A(商品名:日産化学社製)を純水/グリセリンが1/1(重量比)の溶液で希釈し、セリア含有量を0.01質量%にした溶液を用いたこと以外は実施例6と同様にして、実施例11のディスプレイ用ガラス基板を得た。
"Example 11"
As a coating solution, CE-20A (trade name: manufactured by Nissan Chemical Co., Ltd.) was diluted with a pure water / glycerin 1/1 (weight ratio) solution to a ceria content of 0.01% by mass. A glass substrate for display of Example 11 was obtained in the same manner as Example 6 except that.
 実施例11のディスプレイ用ガラス基板の裏面の粗さRaは2.56nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 11 was 2.56 nm.
「実施例12」
 塗布液として、スノーテックスAK(商品名:日産化学社製)を純水で希釈し、カチオン性シリカ含有量を0.01質量%にした溶液を用いたこと以外は実施例6と同様にして、実施例12のディスプレイ用ガラス基板を得た。
"Example 12"
Except that Snowtex AK (trade name: manufactured by Nissan Chemical Co., Ltd.) was diluted with pure water as a coating solution, and a solution having a cationic silica content of 0.01% by mass was used in the same manner as in Example 6. A glass substrate for display of Example 12 was obtained.
 実施例12のディスプレイ用ガラス基板の裏面の粗さRaは2.16nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 12 was 2.16 nm.
「実施例13」
 塗布液として、超微粒子ジルコニアゾル#1(商品名:日産化学社製)を純水で希釈し、ジルコニア含有量を0.01質量%にした溶液を用いたこと以外は実施例6と同様にして、実施例13のディスプレイ用ガラス基板を得た。
"Example 13"
The same procedure as in Example 6 was used, except that an ultrafine zirconia sol # 1 (trade name: manufactured by Nissan Chemical Industries, Ltd.) was diluted with pure water and the zirconia content was 0.01% by mass as the coating solution. Thus, a display glass substrate of Example 13 was obtained.
 実施例13のディスプレイ用ガラス基板の裏面の粗さRaは1.57nmであった。 The roughness Ra of the back surface of the display glass substrate of Example 13 was 1.57 nm.
「比較例1」
 以下に示す方法を用いて、比較例1のディスプレイ用ガラス基板を製造した。
 実施例6において用意した塗布工程を行う前のガラス基板を、比較例1のディスプレイ用ガラス基板とした。
 比較例1のディスプレイ用ガラス基板の裏面の粗さRaは0.20nmであった。
“Comparative Example 1”
The display glass substrate of Comparative Example 1 was produced using the method described below.
The glass substrate before the coating process prepared in Example 6 was used as the display glass substrate of Comparative Example 1.
The roughness Ra of the back surface of the display glass substrate of Comparative Example 1 was 0.20 nm.
 次に、実施例6と比較例1のディスプレイ用ガラス基板の剥離帯電量について、以下に示す方法により評価した。
(剥離帯電量)
 ディスプレイ用ガラス基板を一定時間吸着ステージ上に真空吸着し、その後リフトピンを用いて剥離した。吸着ステージから剥離する際に発生する帯電がもたらすガラス基板と吸着ステージと間の電圧を、時間経過毎に測定した。
Next, the peeling charge amount of the glass substrate for display of Example 6 and Comparative Example 1 was evaluated by the following method.
(Peeling charge amount)
The glass substrate for display was vacuum-sucked on the suction stage for a certain time, and then peeled off using lift pins. The voltage between the glass substrate and the adsorption stage caused by the charge generated when peeling from the adsorption stage was measured for each time.
 帯電がもたらすガラス基板と吸着ステージとの間の電圧(V)は、Q:帯電量、d:ガラス基板と吸着ステージとの距離、S:ガラス基板面積、ε:大気中の誘電率とすると、次式(1)で表わされる。
 V=dQ/εS  ・・・(1)
The voltage (V) between the glass substrate and the adsorption stage brought about by charging is Q: charge amount, d: distance between the glass substrate and the adsorption stage, S: glass substrate area, and ε: dielectric constant in the atmosphere. It is represented by the following formula (1).
V = dQ / εS (1)
 ガラス基板と吸着ステージとの距離dは、リフトピン上昇速度νと時間tとの積で表わされるため、式(1)は次式(2)で表わされる。
 V=νtQ/εS ・・・(2)
Since the distance d between the glass substrate and the suction stage is expressed by the product of the lift pin rising speed ν and time t, the expression (1) is expressed by the following expression (2).
V = νtQ / εS (2)
 (2)式を時間微分すると次式(3)が得られる。
dV/dt=νQ/εS ・・・(3)
 式(3)は測定により得られたデータの傾きが帯電量に比例することを表わしている。帯電量Qは、時間経過とともに外乱により減少していくため、剥離される瞬間の傾きの最大値を剥離帯電量とした。
When the equation (2) is differentiated with respect to time, the following equation (3) is obtained.
dV / dt = νQ / εS (3)
Equation (3) represents that the slope of data obtained by measurement is proportional to the charge amount. Since the charge amount Q decreases with the passage of time due to disturbance, the maximum value of the gradient at the moment of peeling is defined as the peel charge amount.
 このようにして算出した剥離帯電量は、比較例1を「1」としたとき、実施例6は「0.66」と低かった。 The peel charge amount calculated in this way was as low as 0.66 in Example 6 when Comparative Example 1 was set to “1”.
「比較例2」
 以下に示す方法を用いて、比較例2のディスプレイ用ガラス基板を製造した。
 実施例6において用意した塗布工程を行う前のガラス基板を、特許文献1に記載の研磨材を含む研磨液を吹付けるとともにブラシでこする方法で処理することで比較例2のディスプレイ用ガラス基板とした。
 比較例2のディスプレイ用ガラス基板の裏面の粗さRaは0.42nmであった。
“Comparative Example 2”
A display glass substrate of Comparative Example 2 was produced using the method described below.
The glass substrate for display of Comparative Example 2 is processed by spraying a polishing liquid containing an abrasive described in Patent Document 1 and rubbing with a brush on the glass substrate before the coating step prepared in Example 6 is performed. It was.
The roughness Ra of the back surface of the display glass substrate of Comparative Example 2 was 0.42 nm.
 次に、実施例11と比較例2のディスプレイ用ガラス基板の剥離帯電量を評価した。 Next, the peel charge amount of the glass substrate for display of Example 11 and Comparative Example 2 was evaluated.
 算出した剥離帯電量は、比較例2を「1」としたとき、実施例11は「0.64」と低かった。 The calculated peel charge amount was as low as 0.64 in Example 11 when Comparative Example 2 was set to “1”.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2012年9月10日出願の日本特許出願2012-198825に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-198825 filed on Sep. 10, 2012, the contents of which are incorporated herein by reference.
 本発明のディスプレイ用ガラス基板は、PDP、LCD、ELD、FED等のディスプレイの基板として有用である。 The glass substrate for display of the present invention is useful as a substrate for displays such as PDP, LCD, ELD, FED and the like.
1 ディスプレイ用ガラス基板
2 ガラス基板
2a 被付着面
2b 表面
3 微粒子
4 塗布液
5 純水
21 裏面(一面)
41 塗布液槽
42 塗布ロール
DESCRIPTION OF SYMBOLS 1 Display glass substrate 2 Glass substrate 2a Adhered surface 2b Surface 3 Fine particle 4 Coating liquid 5 Pure water 21 Back surface (one surface)
41 Coating liquid tank 42 Coating roll

Claims (5)

  1.  ガラス基板上に微粒子が付着された一面を有し、前記一面の粗さRaが0.5~10nmであるディスプレイ用ガラス基板。 A glass substrate for display having a surface on which fine particles are adhered on a glass substrate, and the roughness Ra of the one surface is 0.5 to 10 nm.
  2.  前記微粒子の平均粒径が、50nm以下である請求項1に記載のディスプレイ用ガラス基板。 The glass substrate for display according to claim 1, wherein the fine particles have an average particle size of 50 nm or less.
  3.  前記微粒子が、金属酸化物からなるものである請求項1または請求項2に記載のディスプレイ用ガラス基板。 The glass substrate for display according to claim 1 or 2, wherein the fine particles are made of a metal oxide.
  4.  前記微粒子が、セリア微粒子、ジルコニア微粒子、シリカ微粒子、アルミナ微粒子から選ばれる1種または2種以上のものである請求項1~請求項3のいずれか1項に記載のディスプレイ用ガラス基板。 The display glass substrate according to any one of claims 1 to 3, wherein the fine particles are one or more selected from ceria fine particles, zirconia fine particles, silica fine particles, and alumina fine particles.
  5.  請求項1~請求項4のいずれか1項に記載のディスプレイ用ガラス基板の製造方法であって、ガラス基板の一面上に微粒子を含有する塗布液を塗布する塗布工程と、前記一面上の前記微粒子の一部を純水で洗い流すリンス工程と、前記ガラス基板を乾燥する乾燥工程とを含むディスプレイ用ガラス基板の製造方法。 The method for producing a glass substrate for display according to any one of claims 1 to 4, wherein a coating step of coating a coating liquid containing fine particles on one surface of the glass substrate; A method for producing a glass substrate for display, comprising a rinsing step in which a part of fine particles is washed away with pure water, and a drying step of drying the glass substrate.
PCT/JP2013/072121 2012-09-10 2013-08-19 Glass substrate for display and method for manufacturing glass substrate for display WO2014038369A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014534270A JP6225908B2 (en) 2012-09-10 2013-08-19 Glass substrate for display and manufacturing method thereof
CN201380046986.XA CN104620306B (en) 2012-09-10 2013-08-19 Glass substrate for display and its manufacturing method
KR1020157006170A KR102141879B1 (en) 2012-09-10 2013-08-19 Glass substrate for display and method for manufacturing glass substrate for display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-198825 2012-09-10
JP2012198825 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014038369A1 true WO2014038369A1 (en) 2014-03-13

Family

ID=50236983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072121 WO2014038369A1 (en) 2012-09-10 2013-08-19 Glass substrate for display and method for manufacturing glass substrate for display

Country Status (5)

Country Link
JP (1) JP6225908B2 (en)
KR (1) KR102141879B1 (en)
CN (2) CN104620306B (en)
TW (1) TWI609001B (en)
WO (1) WO2014038369A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100933A (en) * 2015-11-20 2017-06-08 旭硝子株式会社 Glass substrate and glass plate packaging body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292568A (en) * 1997-12-09 1999-10-26 Nippon Sheet Glass Co Ltd Antireflection glass sheet, its production and coating composition for antireflection film
JP2001278637A (en) * 1999-12-13 2001-10-10 Nippon Sheet Glass Co Ltd Low reflection glass article
JP2005255478A (en) * 2004-03-12 2005-09-22 Nippon Electric Glass Co Ltd Glass substrate
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
JP2008120638A (en) * 2006-11-14 2008-05-29 Asahi Glass Co Ltd Glass substrate for display and method of manufacturing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0118676Y1 (en) * 1994-11-30 1998-07-15 엄길용 Stage structure for reducing electro-static charge caused by peeling process in lcd manufacturing process
WO2001042155A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
JP2001343632A (en) * 2000-06-02 2001-12-14 Sharp Corp Method for manufacturing liquid crystal display device
JP2002265235A (en) * 2001-03-09 2002-09-18 Naomi Yamada Glass sheet having sliding resistivity and producing method therefor
CN1417146A (en) * 2001-11-06 2003-05-14 林商行强化安全玻璃厂股份有限公司 Manufacture of Newton's ring-resisting and anti-dazzle glass
US8088475B2 (en) * 2004-03-03 2012-01-03 Hitachi, Ltd. Anti-reflecting membrane, and display apparatus, optical storage medium and solar energy converting device having the same, and production method of the membrane
JP2006130685A (en) * 2004-11-02 2006-05-25 Fuji Photo Film Co Ltd Fine particle laminated substrate and its manufacturing method
JP4894060B2 (en) * 2005-12-26 2012-03-07 日本電気硝子株式会社 Glass substrate for flat display
CN101295738B (en) * 2008-04-15 2010-06-02 福建钧石能源有限公司 Film and manufacturing method thereof, solar battery with the same
KR101272120B1 (en) * 2009-09-08 2013-06-10 에스케이이노베이션 주식회사 Optical films with controlled surface morphology and the method of manufacturing the same
KR20120086704A (en) * 2009-10-26 2012-08-03 아사히 가라스 가부시키가이샤 Glass substrate for display and method for manufacturing the glass substrate
CN102446673A (en) * 2010-09-30 2012-05-09 旭硝子株式会社 Glass substrate for display and manufacturing method thereof
JP5110613B2 (en) * 2010-11-25 2012-12-26 東洋アルミ千葉株式会社 Release material for resin base substrate and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292568A (en) * 1997-12-09 1999-10-26 Nippon Sheet Glass Co Ltd Antireflection glass sheet, its production and coating composition for antireflection film
JP2001278637A (en) * 1999-12-13 2001-10-10 Nippon Sheet Glass Co Ltd Low reflection glass article
JP2005255478A (en) * 2004-03-12 2005-09-22 Nippon Electric Glass Co Ltd Glass substrate
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
JP2008120638A (en) * 2006-11-14 2008-05-29 Asahi Glass Co Ltd Glass substrate for display and method of manufacturing the same

Also Published As

Publication number Publication date
TW201414689A (en) 2014-04-16
TWI609001B (en) 2017-12-21
CN104620306A (en) 2015-05-13
JPWO2014038369A1 (en) 2016-08-08
KR20150054819A (en) 2015-05-20
CN107043220A (en) 2017-08-15
JP6225908B2 (en) 2017-11-08
CN104620306B (en) 2018-12-14
KR102141879B1 (en) 2020-08-07

Similar Documents

Publication Publication Date Title
JP5066895B2 (en) Glass substrate for display and manufacturing method thereof
US9561982B2 (en) Method of cleaning glass substrates
JP2017100933A (en) Glass substrate and glass plate packaging body
JP2021514928A (en) Undulating glass surface to reduce electrostatic charge
JP5572196B2 (en) Glass substrate and glass substrate manufacturing method
CN102446673A (en) Glass substrate for display and manufacturing method thereof
JP6225908B2 (en) Glass substrate for display and manufacturing method thereof
JP6585984B2 (en) Display glass substrate manufacturing method, display glass substrate manufacturing apparatus
WO2015012307A1 (en) Method for producing glass substrate, glass substrate, and display panel
JP6870617B2 (en) Display glass substrate and its manufacturing method
KR101543831B1 (en) Glass substrate and glass substrate production method
KR101521345B1 (en) Method for manufacturing glass substrate
TWI613041B (en) Method for manufacturing glass substrate
TWI675706B (en) Method and apparatus for substrate surface cleaning
JP7045647B2 (en) Glass substrate
JP2013521631A (en) Light scattering inorganic substrate using monomolecular layer
JP2017066001A (en) Method for producing glass substrate for display, and apparatus for producing glass substrate for display
JP2013193889A (en) Method of manufacturing glass sheet
KR20230104183A (en) Substrates with improved electrostatic performance
JP2006260819A (en) Polishing method of substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534270

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006170

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835477

Country of ref document: EP

Kind code of ref document: A1