JP7045647B2 - Glass substrate - Google Patents

Glass substrate Download PDF

Info

Publication number
JP7045647B2
JP7045647B2 JP2017218075A JP2017218075A JP7045647B2 JP 7045647 B2 JP7045647 B2 JP 7045647B2 JP 2017218075 A JP2017218075 A JP 2017218075A JP 2017218075 A JP2017218075 A JP 2017218075A JP 7045647 B2 JP7045647 B2 JP 7045647B2
Authority
JP
Japan
Prior art keywords
glass substrate
surface roughness
main surface
region
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017218075A
Other languages
Japanese (ja)
Other versions
JP2019089667A (en
Inventor
隼人 奥
好晴 山本
弘樹 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017218075A priority Critical patent/JP7045647B2/en
Priority to PCT/JP2018/038676 priority patent/WO2019093087A1/en
Priority to KR1020207014657A priority patent/KR102609772B1/en
Priority to CN201880073224.1A priority patent/CN111356663A/en
Priority to TW107137819A priority patent/TW201922661A/en
Publication of JP2019089667A publication Critical patent/JP2019089667A/en
Application granted granted Critical
Publication of JP7045647B2 publication Critical patent/JP7045647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、ガラス基板に関する。 The present invention relates to a glass substrate.

周知のように、近年の画像表示装置については、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、有機ELディスプレイ(OLED)などに代表されるフラットパネルディスプレイ(以下、単にFPDという。)が主流となっている。これらFPDについては軽量化が推進されていることから、FPDに使用されるガラス基板についても薄板化に対する要求が高まっている。 As is well known, recent image display devices include flat panel displays (hereinafter, simply referred to as simple) represented by liquid crystal displays (LCDs), plasma displays (PDPs), field emission displays (FEDs), organic EL displays (OLEDs), and the like. FPD) is the mainstream. Since weight reduction is being promoted for these FPDs, there is an increasing demand for thinning glass substrates used for FPDs.

上述したガラス基板は、例えば各種ダウンドロー法に代表される板状ガラスの成形方法により帯状に成形した板状ガラス(帯状板ガラス)を長手方向で所定の寸法に切断し、切断した板状ガラスの幅方向(帯状板ガラスの主表面に平行で、かつ長手方向に直交する向きをいう。以下、同じ。)両端部分をさらに切断した後、必要に応じて、各切断面に研磨加工等を施すことにより得られる。 The above-mentioned glass substrate is a plate-shaped glass obtained by cutting a plate-shaped glass (strip-shaped plate glass) formed into a strip shape by, for example, a plate-shaped glass forming method represented by various down-draw methods, into a predetermined size in the longitudinal direction, and cutting the plate-shaped glass. Width direction (direction parallel to the main surface of the strip glass and orthogonal to the longitudinal direction; the same shall apply hereinafter) After further cutting both ends, polish each cut surface as necessary. Obtained by

ところで、この種のガラス基板を用いてFPDを製造するに際しては、その製造過程における静電気の帯電が問題となることがある。すなわち、絶縁体であるガラスは帯電し易いため、例えば載置台にガラス基板を載置して所定の加工を施す際、ガラス基板と載置台との接触及び剥離によりガラス基板が帯電することがある(これを、剥離帯電と呼ぶことがある。)。帯電したガラス基板に導電性の物体が近づくと放電が生じ、この放電によって、ガラス基板の主表面上に形成された各種素子や電子回路を構成する電極線の破損、あるいはガラス基板自体の破損を招くおそれがある(これらを、絶縁破壊又は静電破壊と呼ぶことがある。)。また、帯電したガラス基板は載置台に張り付き易く、これを無理やり引き剥がすことでガラス基板の破損を招くおそれもある。これらは当然に表示不良の原因となるため、極力回避すべき事象である。 By the way, when manufacturing an FPD using this kind of glass substrate, static electricity charging in the manufacturing process may become a problem. That is, since glass, which is an insulator, is easily charged, for example, when a glass substrate is placed on a mounting table and subjected to predetermined processing, the glass substrate may be charged due to contact and peeling between the glass substrate and the mounting table. (This is sometimes called peeling charge.) When a conductive object approaches a charged glass substrate, an electric discharge occurs, and this discharge causes damage to the electrode wires that make up various elements and electronic circuits formed on the main surface of the glass substrate, or damage to the glass substrate itself. There is a risk of inviting (these may be called dielectric breakdown or electrostatic breakdown). In addition, the charged glass substrate easily sticks to the mounting table, and forcibly peeling it off may cause damage to the glass substrate. These are events that should be avoided as much as possible because they naturally cause display defects.

上記事象を回避するための手段として、例えばガラス基板の裏面(載置台の載置面と接触する側の主表面)に所定のガスを供給して裏面に表面処理を施すことにより、裏面を粗面化する方法が考えられる(例えば、特許文献1を参照)。ガラス基板と載置面との接触面積が大きいほど剥離した際の帯電量が増大する傾向にあることから、載置面と接触するガラス基板の裏面を粗面化することで、ガラス基板と載置面との接触面積を減少させて、剥離時の帯電抑制を図っている。また、ガラス基板の裏面が平滑であるほど載置面の如き平滑面に張り付き易い点に鑑み、ガラス基板と載置面との接触面積を減少させることで、ガラス基板を載置面に張り付き難くして、剥離時のガラス基板の破損防止を図っている。 As a means for avoiding the above phenomenon, for example, the back surface is roughened by supplying a predetermined gas to the back surface of the glass substrate (the main surface on the side in contact with the mounting surface of the mounting table) and performing surface treatment on the back surface. A method of surface treatment can be considered (see, for example, Patent Document 1). As the contact area between the glass substrate and the mounting surface increases, the amount of charge when peeled off tends to increase. Therefore, by roughening the back surface of the glass substrate that comes into contact with the mounting surface, the glass substrate and the mounting surface can be mounted. The contact area with the mounting surface is reduced to suppress charge during peeling. Further, considering that the smoother the back surface of the glass substrate is, the easier it is to stick to a smooth surface such as a mounting surface, by reducing the contact area between the glass substrate and the mounting surface, it is difficult for the glass substrate to stick to the mounting surface. This prevents damage to the glass substrate during peeling.

特開2014-80331号公報Japanese Unexamined Patent Publication No. 2014-80331

上述した粗面化は、通常、ガラス基板における一方の主表面の全域にわたって均一になされる。しかしながら、粗面化の程度が主表面全域にわたって均一な状態では、実際のガラス基板の取扱い性を考慮した場合、必ずしも適切でない場合があることがわかってきた。すなわち、実際の剥離工程では、載置台の複数箇所に設置されたピンを上昇させることにより、ガラス基板を載置台から剥離させる。その際、ガラス基板はその端部から剥がれていくことになる。このような剥離動作を考慮した場合、表面粗さの分布が均一な状態だと、粗面化の効果が十分に得られない可能性がある。言い換えると、実際の剥離動作に適した表面粗さ分布が存在する可能性がある。また、単に剥がし易さだけを考慮するのであれば、裏面の粗面化度合い(表面粗さ)を全体的に高めればよいが、そうすると、必要以上に粗面化処理に時間をかけることになるため、生産性の面、ひいてはコスト面で好ましいとはいえない。 The roughening described above is usually made uniform over the entire surface of one main surface of the glass substrate. However, it has been found that when the degree of roughening is uniform over the entire main surface, it may not always be appropriate in consideration of the actual handleability of the glass substrate. That is, in the actual peeling step, the glass substrate is peeled from the mounting table by raising the pins installed at a plurality of places on the mounting table. At that time, the glass substrate will be peeled off from the end portion. Considering such a peeling operation, if the surface roughness distribution is uniform, the effect of roughening may not be sufficiently obtained. In other words, there may be a surface roughness distribution suitable for the actual peeling operation. Further, if only the ease of peeling is considered, the degree of roughening of the back surface (surface roughness) may be increased as a whole, but if this is done, the roughening process will take more time than necessary. Therefore, it cannot be said that it is preferable in terms of productivity and cost.

以上の事情に鑑み、本明細書では、実際の剥離動作に適した主表面の表面粗さ分布を有するガラス基板を低コストに得ることを、解決すべき技術課題とする。 In view of the above circumstances, in the present specification, it is a technical problem to be solved to obtain a glass substrate having a surface roughness distribution of a main surface suitable for an actual peeling operation at low cost.

前記課題の解決は、本発明に係るガラス基板により達成される。すなわち、このガラス基板は、第一の主表面と、第二の主表面とを有するガラス基板において、第一の主表面の表面粗さRaが0.2nm以下で、第二の主表面の中央領域における表面粗さRaが0.3nm以上でかつ1.0nm以下で、第二の主表面の外周領域に、中央領域における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域が設けられている点をもって特徴付けられる。なお、本明細書でいう「中央領域」とは、ガラス基板の第二の主表面の中央(重心)に位置し、第二の主表面の輪郭を縮尺0.6で縮小した形状を境界とする領域を意味する。また、「外周領域」とは、ガラス基板の第二の主表面の外周に位置し、第二の主表面のうち上述の中央領域を除いた残りの領域を意味する。また、中央領域における表面粗さRaは、中央領域の中央位置と、外周領域と中央領域との境界上の位置(本明細書では図1に示すP1~P8の8ヶ所)とでそれぞれ測定した算術平均粗さの平均値とし、外周領域における表面粗さRaは、ガラス基板の第二の主表面を画成する各辺部を中央領域側に10mm移動させて形成される形状上の位置(本明細書では図1に示すP9~P16の8ヶ所)でそれぞれ測定するものとする。「粗面化領域が設けられている」とは、外周領域の測定位置の何れかが、中央領域の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示すことを意味する。 The solution to the above problems is achieved by the glass substrate according to the present invention. That is, in this glass substrate, in a glass substrate having a first main surface and a second main surface, the surface roughness Ra of the first main surface is 0.2 nm or less, and the center of the second main surface. The surface roughness Ra in the region is 0.3 nm or more and 1.0 nm or less, and the outer peripheral region of the second main surface exhibits a surface roughness Ra larger than the surface roughness Ra in the central region by 0.2 nm or more. It is characterized by the fact that a surfaced area is provided. The "central region" as used herein is located at the center (center of gravity) of the second main surface of the glass substrate, and the boundary is a shape obtained by reducing the contour of the second main surface to a scale of 0.6. Means the area to do. Further, the "outer peripheral region" means an outer peripheral region of the second main surface of the glass substrate, and the remaining region of the second main surface excluding the above-mentioned central region. The surface roughness Ra in the central region was measured at the central position of the central region and the position on the boundary between the outer peripheral region and the central region (8 locations P1 to P8 shown in FIG. 1 in the present specification). The surface roughness Ra in the outer peripheral region is defined as the average value of the arithmetic mean roughness, and the surface roughness Ra is a position on the shape formed by moving each side portion defining the second main surface of the glass substrate to the central region side by 10 mm. In this specification, it is assumed that the measurement is performed at each of the eight locations (P9 to P16) shown in FIG. "The roughened region is provided" means that any of the measurement positions in the outer peripheral region shows a surface roughness Ra that is 0.2 nm or more larger than the surface roughness Ra in the central region.

このように、本発明では、ガラス基板の一方の主表面(第一の主表面)において、その表面粗さRaを、各種素子や電極線、電子回路等を高精度に形成可能な程度の大きさ(0.2nm以下)としつつ、他方の主表面(第二の主表面)において、第二の主表面の中央領域における表面粗さRaを0.3nm以上でかつ1.0nm以下とし、かつ第二の主表面の外周領域に、中央領域における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域を設けるようにした。これにより、外周領域に位置する粗面化領域が剥離の起点となり、剥離を円滑に開始することができる。よって、ガラス基板の割れを低減でき、安全にガラス基板を剥がすことができる。また、ガラス基板が載置台に密着することによってガラス基板が載置台から剥離しない問題を低減できる。さらに、外周領域に含まれる一つ以上の粗面化領域における表面粗さRaについてのみ、所定の大きさ以上の値(中央領域の表面粗さRaより0.2nm以上大きい値)を示すようなガラス基板であればよいため、粗面化のための処理を最小限の領域及び量に抑えることができる。これにより粗面化処理を効率よく低コストに実施することができる。 As described above, in the present invention, the surface roughness Ra of one main surface (first main surface) of the glass substrate is large enough to form various elements, electrode wires, electronic circuits, etc. with high accuracy. On the other main surface (second main surface), the surface roughness Ra in the central region of the second main surface is 0.3 nm or more and 1.0 nm or less, and the surface roughness Ra is set to 0.3 nm or less. In the outer peripheral region of the second main surface, a roughened region showing a surface roughness Ra larger than the surface roughness Ra in the central region is provided. As a result, the roughened region located in the outer peripheral region becomes the starting point of the peeling, and the peeling can be started smoothly. Therefore, the cracking of the glass substrate can be reduced, and the glass substrate can be safely peeled off. Further, it is possible to reduce the problem that the glass substrate does not peel off from the mounting table because the glass substrate is in close contact with the mounting table. Further, only the surface roughness Ra in one or more roughened regions included in the outer peripheral region shows a value of a predetermined size or more (a value 0.2 nm or more larger than the surface roughness Ra of the central region). Since it may be a glass substrate, the processing for roughening can be suppressed to the minimum area and amount. As a result, the roughening process can be carried out efficiently and at low cost.

また、本発明に係るガラス基板においては、粗面化領域が、第二の主表面が有する複数の辺部のうちいずれか一つの辺部に沿って延び、かつ外周領域の表面粗さRaが上記一つの辺部から遠ざかるにつれて減少していてもよい。なお、「粗面化領域が辺部に沿って延びる」とは、ある辺部からの距離が10mmである測定位置の表面粗さRaが、いずれも、中央領域の表面粗さRaよりも0.2nm以上大きいことを意味する。 Further, in the glass substrate according to the present invention, the roughened region extends along any one of the plurality of side portions of the second main surface, and the surface roughness Ra of the outer peripheral region is increased. It may decrease as the distance from the above one side increases. In addition, "the roughened area extends along the side portion" means that the surface roughness Ra at the measurement position where the distance from a certain side portion is 10 mm is 0 in all cases compared to the surface roughness Ra in the central region. It means that it is larger than .2 nm.

このように、粗面化領域がいずれかの辺部に沿って延びる場合、外周領域の表面粗さRaが上記辺部から遠ざかるにつれて減少するように表面粗さ分布を設けることで、ガラス基板が剥がれ易い方向を意図的に作り出すことができる。従って、起点となる粗面化領域からガラス基板の剥離を円滑に進展させて、ガラス基板を容易にかつ安全に剥がすことが可能となる。 In this way, when the roughened area extends along any side portion, the glass substrate is provided with a surface roughness distribution so that the surface roughness Ra of the outer peripheral region decreases as the distance from the side portion increases. It is possible to intentionally create a direction in which it is easy to peel off. Therefore, it is possible to smoothly advance the peeling of the glass substrate from the roughened region which is the starting point, and to easily and safely peel the glass substrate.

また、本発明に係るガラス基板においては、粗面化領域が、第二の主表面が有する複数の角部のうち少なくとも一つの角部に設けられていてもよい。なお、「粗面化領域が角部に設けられている」とは、ガラス基板の第二の主表面を画成する各辺部を中央領域側に10mm移動させて形成される形状において、頂点に位置する測定位置の表面粗さRaが、中央領域の表面粗さRaよりも0.2nm以上大きいことを意味する。 Further, in the glass substrate according to the present invention, the roughened region may be provided at at least one of the plurality of corners of the second main surface. It should be noted that "the roughened region is provided at the corner" means that the apex is formed by moving each side portion defining the second main surface of the glass substrate by 10 mm toward the central region. It means that the surface roughness Ra of the measurement position located at is larger than the surface roughness Ra of the central region by 0.2 nm or more.

このように、粗面化領域を、第二の主表面の四つの角部の少なくとも一つに設けることにより、当該角部が剥離の起点となるので、ガラス基板の剥離を円滑に開始させることができる。 In this way, by providing the roughened region at at least one of the four corners of the second main surface, the corner becomes the starting point of peeling, so that the peeling of the glass substrate can be smoothly started. Can be done.

また、この場合、本発明に係るガラス基板においては、粗面化領域が、複数の角部全てに設けられていてもよい。 Further, in this case, in the glass substrate according to the present invention, the roughened surface region may be provided on all of the plurality of corner portions.

このように、粗面化領域を、複数の角部全てに設けることによって、全ての角部が剥離の起点となるので、ガラス基板の剥離を円滑に開始させることができる。 By providing the roughened region in all of the plurality of corners in this way, all the corners serve as starting points for peeling, so that the peeling of the glass substrate can be smoothly started.

以上に述べたように、本発明によれば、実際の剥離動作に適した裏面の表面粗さ分布を有するガラス基板を低コストに得ることが可能となる。 As described above, according to the present invention, it is possible to obtain a glass substrate having a surface roughness distribution on the back surface suitable for an actual peeling operation at low cost.

本発明の第一実施形態に係るガラス基板の平面図である。It is a top view of the glass substrate which concerns on 1st Embodiment of this invention. 図1に示すガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。FIG. 3 is a diagram schematically depicting the surface roughness distribution on the second main surface of the glass substrate shown in FIG. 1. 図1に示すガラス基板の製造方法の一例を説明するための図であって、ガラス基板の第二の主表面に表面処理を施す工程の概略正面図である。It is a figure for demonstrating an example of the manufacturing method of the glass substrate shown in FIG. 1, and is the schematic front view of the process of applying surface treatment to the second main surface of a glass substrate. 本発明の第二実施形態に係るガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。It is a figure which schematically drew the surface roughness distribution on the 2nd main surface of the glass substrate which concerns on the 2nd Embodiment of this invention. 図4に示すガラス基板の製造方法の一例を説明するための図であって、ガラス基板の第二の主表面に表面処理を施す工程の搬送方向に直交する向きの概略側面図である。It is a figure for demonstrating an example of the manufacturing method of the glass substrate shown in FIG. 4, and is the schematic side view of the direction orthogonal to the transport direction of the process of applying surface treatment to the second main surface of a glass substrate. 本発明の第三実施形態に係るガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。It is a figure which schematically drew the surface roughness distribution on the 2nd main surface of the glass substrate which concerns on 3rd Embodiment of this invention. 図6に示すガラス基板の製造方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing method of the glass substrate shown in FIG. 本発明の第四実施形態に係るガラス基板の第二の主表面における表面粗さ分布を模式的に描いた図である。It is a figure which schematically drew the surface roughness distribution on the 2nd main surface of the glass substrate which concerns on 4th Embodiment of this invention. 図8に示すガラス基板の製造方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing method of the glass substrate shown in FIG.

≪本発明の第一実施形態≫
以下、本発明の第一実施形態を、図1~図3を参照して説明する。
<< First Embodiment of the present invention >>
Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

本実施形態に係るガラス基板1は、図1に示すように矩形状をなすもので、例えばケイ酸塩ガラス、シリカガラスなどで形成され、好ましくはホウ珪酸ガラスで形成され、より好ましくは無アルカリガラスで形成される。この場合、ガラス基板1のガラス組成の一例として、質量%で、SiO2:50~70%、Al23:12~25%、B23:0~12%、MgO:0~8%、CaO:0~15%、SrO:0~12%、BaO:0~15%含有するものを挙げることができる。 The glass substrate 1 according to the present embodiment has a rectangular shape as shown in FIG. 1, and is formed of, for example, silicate glass, silica glass, or the like, preferably borosilicate glass, and more preferably non-alkali. Formed of glass. In this case, as an example of the glass composition of the glass substrate 1, SiO 2 : 50 to 70%, Al 2 O 3 : 12 to 25%, B 2 O 3 : 0 to 12%, MgO: 0 to 8 in mass%. %, CaO: 0 to 15%, SrO: 0 to 12%, BaO: 0 to 15%.

なお、ここでいう無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスを指し、具体的には、アルカリ成分が3000ppm以下のガラスを指す。経年劣化を少しでも防止又は軽減する観点からは、アルカリ成分が1000ppm以下のガラスが好ましく、500ppm以下のガラスがより好ましく、300ppm以下のガラスがさらに好ましい。 The non-alkali glass referred to here refers to glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically refers to glass having an alkaline component of 3000 ppm or less. From the viewpoint of preventing or reducing aging deterioration as much as possible, glass having an alkaline component of 1000 ppm or less is preferable, glass having an alkaline component of 500 ppm or less is more preferable, and glass having an alkaline component of 300 ppm or less is further preferable.

ガラス基板1の厚み寸法は、例えば700μm以下に設定され、好ましくは600μm以下に設定され、より好ましくは500μm以下に設定され、さらに好ましくは400μm以下に設定される。厚み寸法が小さいほど、剥離工程でガラス基板1の破損を生じ易いからであり、故に、厚み寸法が小さいほど、本発明による効果を有効に享受し得るからである。なお、厚み寸法の下限については特に設けられていないが、成形後の取り扱い性(例えば剥離時の取り扱い性など)などを考慮すると、1μm以上、好ましくは5μm以上に設定されるのがよい。 The thickness dimension of the glass substrate 1 is set to, for example, 700 μm or less, preferably 600 μm or less, more preferably 500 μm or less, and further preferably 400 μm or less. This is because the smaller the thickness dimension, the more easily the glass substrate 1 is damaged in the peeling step. Therefore, the smaller the thickness dimension, the more effectively the effect of the present invention can be enjoyed. Although the lower limit of the thickness dimension is not particularly set, it is preferably set to 1 μm or more, preferably 5 μm or more in consideration of handleability after molding (for example, handleability at the time of peeling).

ガラス基板1の第一の主表面2の面積、すなわち第二の主表面3の面積(ともに図2を参照)は、例えば0.09m2以上に設定され、好ましくは0.2m2以上に設定され、より好ましくは0.5m2以上に設定され、さらに好ましくは1.0m2以上に設定される。第二の主表面3の面積が大きいほど、剥離帯電を引き起こし易く、またその際の帯電量も多くなる傾向にあるためである。故に、第二の主表面3の面積が大きいほど、本発明による効果を有効に享受し得る。なお、面積の上限については特に設けられていないが、成形後の取り扱い性、特に表面処理時の取り扱い性などを考慮すると、第二の主表面3の面積は、例えば10m2以下に設定され、好ましくは6.5m2以下に設定される。 The area of the first main surface 2 of the glass substrate 1, that is, the area of the second main surface 3 (both see FIG. 2) is set to, for example, 0.09 m 2 or more, preferably 0.2 m 2 or more. It is more preferably set to 0.5 m 2 or more, and further preferably set to 1.0 m 2 or more. This is because the larger the area of the second main surface 3, the more likely it is to cause peeling charge, and the larger the amount of charge at that time tends to be. Therefore, the larger the area of the second main surface 3, the more effectively the effect of the present invention can be enjoyed. Although the upper limit of the area is not particularly set, the area of the second main surface 3 is set to, for example, 10 m 2 or less in consideration of the handleability after molding, particularly the handleability at the time of surface treatment. It is preferably set to 6.5 m 2 or less.

次に、ガラス基板1の表面性状、特に表面粗さについて述べる。 Next, the surface texture of the glass substrate 1, particularly the surface roughness, will be described.

ガラス基板1の第一の主表面2における表面粗さRaは、0.2nm以下である。なお、ここでいう表面粗さRaは、JIS R 1683:2014に準拠した算術平均粗さであり、原子間力顕微鏡により測定、評価される(以下、本明細書において同じ。)。 The surface roughness Ra on the first main surface 2 of the glass substrate 1 is 0.2 nm or less. The surface roughness Ra referred to here is an arithmetic mean roughness based on JIS R 1683: 2014, and is measured and evaluated by an atomic force microscope (hereinafter, the same applies in the present specification).

図2は、ガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図2中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置(図1を参照)をそれぞれ示している。図2に示すように、第二の主表面3の表面粗さRaは、中央領域4と外周領域5とで相違している。具体的には、図2に示すように、第二の主表面3の中央領域4における表面粗さRaが0.3nm以上でかつ1.0nm以下であるのに対し、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。 FIG. 2 shows an example of the distribution of the surface roughness Ra on the second main surface 3 of the glass substrate 1. In FIG. 2, the height of the bar graph is the size of the surface roughness Ra, and the numbers or symbols in parentheses described above or to the side of the bar graph are the second main surface 3 of the glass substrate 1 shown in FIG. The upper positions (see FIG. 1) are shown respectively. As shown in FIG. 2, the surface roughness Ra of the second main surface 3 is different between the central region 4 and the outer peripheral region 5. Specifically, as shown in FIG. 2, the surface roughness Ra in the central region 4 of the second main surface 3 is 0.3 nm or more and 1.0 nm or less, whereas the second main surface 3 The outer peripheral region 5 is provided with a roughened region A showing a surface roughness Ra larger than the surface roughness Ra of the central region 4 by 0.2 nm or more.

ここで、中央領域4とは、図1に示すように、第二の主表面3の中央(重心)に位置し、第二の主表面3の輪郭を縮尺0.6で縮小した形状を境界とする領域を指す。なお、第二の主表面3の重心と、第二の主表面3の輪郭を縮尺0.6で縮小した形状の重心は一致している。また、外周領域5とは、第二の主表面3のうち上述のように定義した中央領域4を除いた残りの領域を指す。 Here, as shown in FIG. 1, the central region 4 is defined as a shape located at the center (center of gravity) of the second main surface 3 and the contour of the second main surface 3 is reduced to a scale of 0.6. Refers to the area to be. The center of gravity of the second main surface 3 and the center of gravity of the shape obtained by reducing the contour of the second main surface 3 at a scale of 0.6 coincide with each other. Further, the outer peripheral region 5 refers to the remaining region of the second main surface 3 excluding the central region 4 defined as described above.

また、中央領域4における表面粗さRaは、本明細書では、中央領域4の中央位置P0と、外周領域5と中央領域4との境界10上の位置(本明細書では図1に示すように境界10の角部P1~P4と、これら角部P1~P4の中間位置P5~P8)でそれぞれ測定した算術平均粗さの平均値として評価される。また、外周領域5の表面粗さRaは、ガラス基板1の第二の主表面3の各辺部6~8を中央領域側に10mm移動させて形成される形状の角部P9~P12及びその形状の各辺部6’~8’の中間位置P13~P16で測定して評価される。 Further, in the present specification, the surface roughness Ra in the central region 4 is a position on the boundary 10 between the central position P0 of the central region 4 and the outer peripheral region 5 and the central region 4 (as shown in FIG. 1 in the present specification). It is evaluated as the average value of the arithmetic mean roughness measured at the corners P1 to P4 of the boundary 10 and the intermediate positions P5 to P8) of these corners P1 to P4, respectively. Further, the surface roughness Ra of the outer peripheral region 5 is formed by moving each side portion 6 to 8 of the second main surface 3 of the glass substrate 1 toward the central region side by 10 mm, and the corner portions P9 to P12 and the corner portions P9 to P12 thereof. It is measured and evaluated at intermediate positions P13 to P16 of each side portion 6'to 8'of the shape.

「第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている」とは、外周領域5の測定位置P9~P16における算術平均粗さの値のいずれかが、中央領域4の表面粗さRa(P1~P8の平均値)よりも0.2nm以上大きいことを意味する。 "The outer peripheral region 5 of the second main surface 3 is provided with a roughened region A showing a surface roughness Ra larger than the surface roughness Ra of the central region 4 by 0.2 nm or more." It means that any of the values of the arithmetic mean roughness at the measurement positions P9 to P16 of the region 5 is 0.2 nm or more larger than the surface roughness Ra (the average value of P1 to P8) of the central region 4.

また、本実施形態では、図2に示すように、粗面化領域Aが、第二の主表面3が有する複数の辺部6~8のうち一つの短辺部8に沿って延びている。ここで、「粗面化領域Aが、第二の主表面3が有する複数の辺部6~8のうち一つの辺部8に沿って延び」とは、中央領域4側に10mm移動させた辺部8’にある測定位置P9,P11及びP14の表面粗さRaが、いずれも、中央領域4の表面粗さRa(P1~P8の平均値)よりも0.2nm以上大きいことを意味する。 Further, in the present embodiment, as shown in FIG. 2, the roughened area A extends along the short side portion 8 of one of the plurality of side portions 6 to 8 of the second main surface 3. .. Here, "the roughened region A extends along one side portion 8 of the plurality of side portions 6 to 8 of the second main surface 3" is moved to the central region 4 side by 10 mm. It means that the surface roughness Ra of the measurement positions P9, P11 and P14 on the side portion 8'is larger than the surface roughness Ra of the central region 4 (the average value of P1 to P8) by 0.2 nm or more. ..

本実施形態では、図2に示すように、外周領域5の表面粗さRaが上記一つの短辺部8から遠ざかるにつれて減少している。このため、外周領域5のうちでP10、P12及びP15の表面粗さRaは、中央領域4の表面粗さRaよりも小さい。つまり、中央領域4の表面粗さRaよりも小さい領域が、中央領域4を挟んで粗面化領域Aと平行に設けられている。 In the present embodiment, as shown in FIG. 2, the surface roughness Ra of the outer peripheral region 5 decreases as the distance from the one short side portion 8 increases. Therefore, the surface roughness Ra of P10, P12, and P15 in the outer peripheral region 5 is smaller than the surface roughness Ra of the central region 4. That is, a region smaller than the surface roughness Ra of the central region 4 is provided in parallel with the roughened region A with the central region 4 interposed therebetween.

なお、粗面化領域Aの表面粗さRaは、剥離のし易さの観点では大きいほど良いが、あまりに大きくし過ぎると、後述する表面処理に必要以上の時間を要することになる。また、FPDの製造工程の熱処理でピッチズレが起こりやすくなる。以上の観点から、粗面化領域Aの表面粗さRaは、中央領域4の表面粗さRa+0.5nm以下に設定するのがよく、好ましくは中央領域4の表面粗さRa+0.3nm以下に設定するのがよい。 The surface roughness Ra of the roughened region A is better from the viewpoint of ease of peeling, but if it is too large, it will take more time than necessary for the surface treatment described later. In addition, the heat treatment in the FPD manufacturing process tends to cause pitch deviation. From the above viewpoint, the surface roughness Ra of the roughened region A is preferably set to the surface roughness Ra of the central region 4 + 0.5 nm or less, preferably set to the surface roughness Ra of the central region 4 + 0.3 nm or less. It is better to do it.

上記構成のガラス基板1は、例えば各種ダウンドロー法に代表される公知の成形方法により帯状に成形したガラス基板を長手方向で所定の寸法に切断し、切断して得たガラス基板の幅方向両端部分をさらに切断した後、必要に応じて、各切断面に研削及び研磨加工を施す等により得られる。なお、各種ダウンドロー法としては、オーバーフローダウンドロー法が好適な一例として挙げられる。オーバーフローダウンドロー法によれば、ガラス基板の第一の主表面2が火造り面となり、その表面粗さRaを容易に0.2nm以下とすることができる。 The glass substrate 1 having the above configuration is obtained by cutting a glass substrate formed into a strip shape by a known molding method typified by various downdraw methods into a predetermined size in the longitudinal direction and cutting the glass substrate at both ends in the width direction. After further cutting the portion, it is obtained by grinding and polishing each cut surface as needed. As the various downdraw methods, the overflow downdraw method is a preferable example. According to the overflow down draw method, the first main surface 2 of the glass substrate becomes a fire-made surface, and the surface roughness Ra thereof can be easily set to 0.2 nm or less.

また、ガラス基板1の裏面となる第二の主表面3における表面粗さRaの分布については、例えば以下に示す表面処理工程を端面加工工程の後に設けることにより得られる。 Further, the distribution of the surface roughness Ra on the second main surface 3 which is the back surface of the glass substrate 1 can be obtained by, for example, providing the following surface treatment step after the end face processing step.

図3は、図2に示す表面粗さRaの分布を第二の主表面3に付与するための表面処理工程20を示している。この表面処理工程20は、ガラス基板1を所定の方向X1に搬送するための搬送装置21と、搬送装置21で搬送されているガラス基板1の第二の主表面3(図3でいえば下面)に所定の表面処理を施す表面処理装置22と、搬送装置21及び表面処理装置22を収容する処理室23とを備える。 FIG. 3 shows a surface treatment step 20 for imparting the distribution of the surface roughness Ra shown in FIG. 2 to the second main surface 3. In this surface treatment step 20, a transport device 21 for transporting the glass substrate 1 in a predetermined direction X1 and a second main surface 3 of the glass substrate 1 transported by the transport device 21 (lower surface in FIG. 3). ) Is provided with a surface treatment device 22 for performing a predetermined surface treatment, and a treatment chamber 23 for accommodating the transfer device 21 and the surface treatment device 22.

このうち、搬送装置21は、例えば複数対のローラ24を有しており、複数対のローラ24の少なくとも一部を回転駆動させることにより、ローラ24上に位置するガラス基板1を所定の方向X1に搬送可能としている。回転駆動していない残りのローラ24がある場合、これら残りのローラ24はいわゆるフリーローラである。なお、図3では、複数対のローラ24は表面処理装置22の搬送方向X1前後に配設されているが、必要に応じて、表面処理装置22の挿通路25上に配設してもかまわない。 Of these, the transport device 21 has, for example, a plurality of pairs of rollers 24, and by rotationally driving at least a part of the plurality of pairs of rollers 24, the glass substrate 1 located on the rollers 24 is rotated in a predetermined direction X1. Can be transported to. If there are remaining rollers 24 that are not rotationally driven, these remaining rollers 24 are so-called free rollers. In FIG. 3, a plurality of pairs of rollers 24 are arranged before and after the transport direction X1 of the surface treatment device 22, but may be arranged on the insertion passage 25 of the surface treatment device 22 as needed. do not have.

表面処理装置22は、ガラス基板1の第二の主表面3に処理ガスGを供給して所定の表面処理を施すためのもので、処理対象となるガラス基板1が挿通される挿通路25と、挿通路25に開口する一又は複数の給気口26と、給気口26とは異なる位置で挿通路25に開口する一又は複数の排気口27と、処理ガスGを生成する処理ガス生成装置28と、使用した処理ガスGを無害化する排ガス処理装置29とを備える。処理ガス生成装置28は給気路30を介して給気口26につながり、排ガス処理装置29は排気路31を介して排気口27とつながっている。 The surface treatment device 22 is for supplying the treatment gas G to the second main surface 3 of the glass substrate 1 to perform a predetermined surface treatment, and has an insertion passage 25 through which the glass substrate 1 to be treated is inserted. One or more air supply ports 26 that open in the insertion passage 25, one or more exhaust ports 27 that open in the insertion passage 25 at a position different from the air supply port 26, and a processing gas generation that generates the processing gas G. A device 28 and an exhaust gas treatment device 29 for detoxifying the used treatment gas G are provided. The treated gas generator 28 is connected to the air supply port 26 via the air supply passage 30, and the exhaust gas treatment device 29 is connected to the exhaust port 27 via the exhaust passage 31.

処理ガスGの種類並びに組成は、ガラス基板1に対する所定の表面処理(腐食による粗面化)を可能とする限りにおいて任意であり、例えばフッ化水素ガスなどの酸性ガス、又はこの種のガスを一部に含むものを使用することができる。 The type and composition of the treatment gas G are arbitrary as long as a predetermined surface treatment (roughening due to corrosion) of the glass substrate 1 is possible, and for example, an acid gas such as hydrogen fluoride gas or a gas of this kind may be used. Those included in some can be used.

上記構成の表面処理工程20では、処理ガス生成装置28で生成された処理ガスGは給気路30に導入され、給気路30の下流端に位置する給気口26から放出される。給気口26が面する挿通路25に図1に示すガラス基板1(図3中、二点鎖線で示している)が挿通されると、給気口26から放出された処理ガスGがガラス基板1の第二の主表面3と接触し、第二の主表面3に所定の表面処理が施される。これにより、ガラス基板1の第二の主表面3が腐食し、粗面化される。 In the surface treatment step 20 having the above configuration, the treated gas G generated by the treated gas generating device 28 is introduced into the supply air passage 30 and discharged from the air supply port 26 located at the downstream end of the supply air passage 30. When the glass substrate 1 (indicated by the alternate long and short dash line in FIG. 3) shown in FIG. 1 is inserted into the insertion passage 25 facing the air supply port 26, the processing gas G released from the air supply port 26 is glass. It comes into contact with the second main surface 3 of the substrate 1 and is subjected to a predetermined surface treatment on the second main surface 3. As a result, the second main surface 3 of the glass substrate 1 is corroded and roughened.

この際、表面処理条件を適宜に設定することにより、図2に示す表面粗さRaの分布が第二の主表面3に付与され得る。具体的には、ガラス基板1の長辺部6,7の長手方向と、搬送方向X1(図3を参照)とを一致させた状態で、ガラス基板1を水平姿勢で搬送する。これにより、ガラス基板1は、短辺部8側(図1)を先頭にして挿通路25に導入される。また、ガラス基板1の挿通路25への導入開始に伴い、ガラス基板1の搬送速度を次第に大きくし、又は/及び、挿通路25中の第二の主表面3に供給する処理ガスGの流量を次第に小さくする等の制御を行う。このように各種表面処理条件を設定することにより、粗面化領域Aが一つの短辺部8に沿って延び(図1)、かつ外周領域5の表面粗さRaが一つの短辺部8から遠ざかるにつれて減少する表面粗さRaの分布が第二の主表面3に付与され得る。 At this time, by appropriately setting the surface treatment conditions, the distribution of the surface roughness Ra shown in FIG. 2 can be imparted to the second main surface 3. Specifically, the glass substrate 1 is conveyed in a horizontal posture in a state where the longitudinal directions of the long side portions 6 and 7 of the glass substrate 1 coincide with the conveying direction X1 (see FIG. 3). As a result, the glass substrate 1 is introduced into the insertion passage 25 with the short side portion 8 side (FIG. 1) at the head. Further, with the start of introduction of the glass substrate 1 into the insertion passage 25, the transport speed of the glass substrate 1 is gradually increased and / and the flow rate of the processing gas G supplied to the second main surface 3 in the insertion passage 25. Is controlled to be gradually reduced. By setting various surface treatment conditions in this way, the roughened region A extends along one short side portion 8 (FIG. 1), and the surface roughness Ra of the outer peripheral region 5 is one short side portion 8. A distribution of surface roughness Ra, which decreases with distance from, can be imparted to the second main surface 3.

なお、ガラス基板1に供給された処理ガスGは、挿通路25に面する排気口27(本実施形態では二つ)を介して排気路31に引き込まれ、排気路31の下流側に位置する排ガス処理装置29に導入される。導入された処理ガスGは、排ガス処理装置29によって有害物質を取り除いた状態で系外に排出される。 The processing gas G supplied to the glass substrate 1 is drawn into the exhaust passage 31 through the exhaust ports 27 (two in the present embodiment) facing the insertion passage 25, and is located on the downstream side of the exhaust passage 31. It is introduced into the exhaust gas treatment device 29. The introduced treated gas G is discharged to the outside of the system in a state where harmful substances are removed by the exhaust gas treatment device 29.

このように、本発明に係るガラス基板1では、第一の主表面2において、その表面粗さRaを、各種素子や電極線、電子回路等を高精度に形成可能な程度の大きさ(0.2nm以下)とし、第二の主表面3において、第二の主表面3の中央領域4における表面粗さRaを0.3nm以上でかつ1.0nm以下とし、かつ第二の主表面3の外周領域5に、中央領域4における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aを設けるようにした。これにより、外周領域5に位置する粗面化領域Aが剥離の起点となり、剥離を円滑に開始することができる。よって、ガラス基板1の割れを低減でき、安全にガラス基板1を剥がすことができる。また、ガラス基板1が載置台に密着することによってガラス基板1が載置台から剥離しない問題を低減できる。さらに、外周領域5に含まれる一つ以上の粗面化領域Aにおける表面粗さRaについてのみ、所定の大きさ以上の値(中央領域4の表面粗さRaより0.2nm以上大きい値)を示すようなガラス基板1であればよいため、粗面化のための処理、例えば図3に示す処理ガスGによる表面処理を最小限の領域及び量に抑えることができる。これにより粗面化処理を効率よく低コストに実施することができる。 As described above, in the glass substrate 1 according to the present invention, the surface roughness Ra of the first main surface 2 is large enough to form various elements, electrode wires, electronic circuits, etc. with high accuracy (0). .2 nm or less), and on the second main surface 3, the surface roughness Ra in the central region 4 of the second main surface 3 is 0.3 nm or more and 1.0 nm or less, and the surface roughness Ra of the second main surface 3 is set to 0.3 nm or less. The outer peripheral region 5 is provided with a roughened region A showing a surface roughness Ra larger than the surface roughness Ra in the central region 4 by 0.2 nm or more. As a result, the roughened area A located in the outer peripheral region 5 becomes the starting point of the peeling, and the peeling can be started smoothly. Therefore, the cracking of the glass substrate 1 can be reduced, and the glass substrate 1 can be safely peeled off. Further, it is possible to reduce the problem that the glass substrate 1 does not peel off from the mounting table because the glass substrate 1 is in close contact with the mounting table. Further, only for the surface roughness Ra in one or more roughened regions A included in the outer peripheral region 5, a value of a predetermined size or more (a value 0.2 nm or more larger than the surface roughness Ra of the central region 4) is set. Since the glass substrate 1 as shown can be used, the treatment for roughening, for example, the surface treatment with the treatment gas G shown in FIG. 3 can be suppressed to the minimum region and amount. As a result, the roughening process can be carried out efficiently and at low cost.

また、本実施形態では、粗面化領域Aが辺部8に沿って延び、かつ外周領域5の表面粗さRaが上記辺部8から遠ざかるにつれて減少する表面粗さRaの分布を第二の主表面3に設けるようにした。このように、表面粗さRaの分布に、長辺部6,7に沿った所定の偏りを設けることによって、ガラス基板1を剥がし易い方向(ここでは長辺部6,7に沿った向き)を意図的に作り出すことができる。従って、起点となる粗面化領域A内の短辺部8から長辺部6,7に沿って剥離が円滑に進展しやすく、ガラス基板1を容易にかつ安全に剥がすことが可能となる。 Further, in the present embodiment, the second distribution of the surface roughness Ra is that the roughened region A extends along the side portion 8 and the surface roughness Ra of the outer peripheral region 5 decreases as the distance from the side portion 8 increases. It is provided on the main surface 3. In this way, by providing a predetermined bias along the long side portions 6 and 7 in the distribution of the surface roughness Ra, the direction in which the glass substrate 1 can be easily peeled off (here, the direction along the long side portions 6 and 7). Can be intentionally created. Therefore, the peeling easily progresses smoothly along the long side portions 6 and 7 from the short side portion 8 in the roughened surface region A which is the starting point, and the glass substrate 1 can be easily and safely peeled off.

以上、本発明の第一実施形態を説明したが、本発明に係るガラス基板は、上記実施形態には限定されることなく、本発明の範囲内で種々の形態を採ることが可能である。 Although the first embodiment of the present invention has been described above, the glass substrate according to the present invention is not limited to the above embodiment, and various forms can be adopted within the scope of the present invention.

≪本発明の第二実施形態≫ << Second Embodiment of the present invention >>

図4は、本発明の第二実施形態に係るガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図4中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置をそれぞれ示している。図4に示すように、本実施形態においても、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。 FIG. 4 shows an example of the distribution of the surface roughness Ra on the second main surface 3 of the glass substrate 1 according to the second embodiment of the present invention. In FIG. 4, the height of the bar graph is the size of the surface roughness Ra, and the numbers or symbols in parentheses described above or to the side of the bar graph are the second main surface 3 of the glass substrate 1 shown in FIG. The upper positions are shown respectively. As shown in FIG. 4, also in the present embodiment, the outer peripheral region 5 of the second main surface 3 has a roughened surface showing a surface roughness Ra larger than the surface roughness Ra of the central region 4 by 0.2 nm or more. Area A is provided.

また、本実施形態では、上記構成に加えて、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布を示している。つまり、本実施形態は、前述の第一実施形態と、粗面化領域Aが延びる方向、及び、外周領域5の表面粗さRaが変化する方向が異なる。 Further, in the present embodiment, in addition to the above configuration, the roughened surface region A extends along the long side portion 7, and the surface roughness Ra of the outer peripheral region 5 decreases as the distance from the long side portion 7 increases. The distribution of Ra is shown. That is, this embodiment is different from the above-mentioned first embodiment in the direction in which the roughened region A extends and the direction in which the surface roughness Ra of the outer peripheral region 5 changes.

図4に示す如き第二の主表面3の表面粗さRaの分布については、例えば以下に示す表面処理工程を端面加工工程の後に設けることにより得られる。 The distribution of the surface roughness Ra of the second main surface 3 as shown in FIG. 4 can be obtained, for example, by providing the following surface treatment step after the end face processing step.

図5は、図4に示す表面粗さRaの分布を第二の主表面3に付与するための表面処理工程40を示している。この表面処理工程40は、図3と同様、ガラス基板1を所定の方向X1に搬送するための搬送装置41と、表面処理装置42と、搬送装置41及び表面処理装置42を収容する処理室43とを備える。 FIG. 5 shows a surface treatment step 40 for imparting the distribution of the surface roughness Ra shown in FIG. 4 to the second main surface 3. Similar to FIG. 3, the surface treatment step 40 includes a transport device 41 for transporting the glass substrate 1 in a predetermined direction X1, a surface treatment device 42, and a treatment chamber 43 that houses the transport device 41 and the surface treatment device 42. And prepare.

このうち、搬送装置41は、一対のローラ44,45を有している。一対のローラ44,45の回転軸は、水平面に対して傾斜している。これにより、長辺部7側が長辺部6側よりも下方に位置するようにガラス基板1を傾斜させた状態で、ガラス基板1を所定の方向X1に搬送可能としている。 Of these, the transport device 41 has a pair of rollers 44, 45. The rotation axes of the pair of rollers 44, 45 are inclined with respect to the horizontal plane. As a result, the glass substrate 1 can be conveyed in a predetermined direction X1 in a state where the glass substrate 1 is tilted so that the long side portion 7 side is located below the long side portion 6 side.

この場合、表面処理装置42の挿通路46は、ガラス基板1が短辺部8,9に沿って傾斜した状態で挿通路46に挿通可能なように、第一のローラ44側が第二のローラ45側よりも下方に位置するようにその姿勢を傾斜させている。その他の構成は図3に示す表面処理装置22と同じであるので、詳細な説明を省略する。 In this case, in the insertion passage 46 of the surface treatment device 42, the first roller 44 side is the second roller so that the glass substrate 1 can be inserted into the insertion passage 46 in a state of being inclined along the short sides 8 and 9. The posture is tilted so that it is located below the 45 side. Since other configurations are the same as those of the surface treatment apparatus 22 shown in FIG. 3, detailed description thereof will be omitted.

上記構成の表面処理工程40では、処理ガス生成装置28(図3)で生成された処理ガスGは給気路30(図3)に導入され、給気路30の下流端に位置する給気口47(図5)から放出される。給気口47が面する挿通路46に図1に示すガラス基板1(図5中、二点鎖線で示している)が挿通されると、給気口47から放出された処理ガスGがガラス基板1の第二の主表面3に供給され、第二の主表面3に所定の表面処理が施される。これにより、ガラス基板1の第二の主表面3が腐食し、粗面化される。 In the surface treatment step 40 having the above configuration, the treated gas G generated by the treated gas generator 28 (FIG. 3) is introduced into the supply air passage 30 (FIG. 3), and the air supply is located at the downstream end of the supply air passage 30. It is released from the mouth 47 (FIG. 5). When the glass substrate 1 (indicated by the alternate long and short dash line in FIG. 5) shown in FIG. 1 is inserted into the insertion passage 46 facing the air supply port 47, the processing gas G released from the air supply port 47 is glass. It is supplied to the second main surface 3 of the substrate 1, and a predetermined surface treatment is applied to the second main surface 3. As a result, the second main surface 3 of the glass substrate 1 is corroded and roughened.

この際、表面処理条件を適宜に設定することにより、図4に示す表面粗さRaの分布が第二の主表面3に付与され得る。具体的には、ガラス基板1の長辺部6,7の長手方向と、搬送方向X1とを一致させ(図3を参照)、かつ長辺部7側が長辺部6側より下方に位置するようにガラス基板1を傾斜させた状態で搬送しながら、処理ガスGを第二の主表面3に供給する(図5)。このように、各主表面処理条件を設定することにより、第二の主表面3の下方に位置する領域ほど、相対的に粗面化の度合いが高まり、第二の主表面3の上方に位置する領域ほど、相対的に粗面化の度合いが低下する。よって、上述の表面処理工程40を経て得られたガラス基板1においては、図4に示すように、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布が第二の主表面3に付与され得る。 At this time, by appropriately setting the surface treatment conditions, the distribution of the surface roughness Ra shown in FIG. 4 can be imparted to the second main surface 3. Specifically, the longitudinal direction of the long side portions 6 and 7 of the glass substrate 1 coincides with the transport direction X1 (see FIG. 3), and the long side portion 7 side is located below the long side portion 6 side. The processing gas G is supplied to the second main surface 3 while the glass substrate 1 is conveyed in an inclined state as described above (FIG. 5). By setting each main surface treatment condition in this way, the region located below the second main surface 3 has a relatively higher degree of roughening, and is located above the second main surface 3. The more the area is, the lower the degree of roughening is relatively. Therefore, in the glass substrate 1 obtained through the above-mentioned surface treatment step 40, as shown in FIG. 4, the roughened region A extends along the long side portion 7, and the surface roughness Ra of the outer peripheral region 5 Ra. The distribution of surface roughness Ra, which decreases as the distance from the long side portion 7 increases, may be imparted to the second main surface 3.

このように、本実施形態では、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが、上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布を第二の主表面3に設けるようにした。このように、表面粗さRaの分布に、短辺部8,9に沿った所定の偏りを設けることによって、ガラス基板1を剥がし易い方向(ここでは短辺部8,9に沿った向き)を第一実施形態とは異なる向きに作り出すことができる。従って、起点となる粗面化領域A内の長辺部7から短辺部8,9に沿って剥離が円滑に進展しやすく、ガラス基板1を容易にかつ安全に剥がすことが可能となる。 As described above, in the present embodiment, the roughened surface region A extends along the long side portion 7, and the surface roughness Ra of the outer peripheral region 5 decreases as the distance from the long side portion 7 increases. The distribution was set on the second main surface 3. In this way, by providing a predetermined bias along the short side portions 8 and 9 in the distribution of the surface roughness Ra, the direction in which the glass substrate 1 can be easily peeled off (here, the direction along the short side portions 8 and 9). Can be produced in a different orientation from that of the first embodiment. Therefore, the peeling easily progresses smoothly from the long side portion 7 to the short side portions 8 and 9 in the roughened surface region A which is the starting point, and the glass substrate 1 can be easily and safely peeled off.

≪本発明の第三実施形態≫
図6は、本発明の第三実施形態に係るガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図6中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置をそれぞれ示している。図6に示すように、本実施形態においても、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。
<< Third Embodiment of the present invention >>
FIG. 6 shows an example of the distribution of the surface roughness Ra on the second main surface 3 of the glass substrate 1 according to the third embodiment of the present invention. In FIG. 6, the height of the bar graph is the size of the surface roughness Ra, and the numbers or symbols in parentheses described above or to the side of the bar graph are the second main surface 3 of the glass substrate 1 shown in FIG. The upper positions are shown respectively. As shown in FIG. 6, also in the present embodiment, the outer peripheral region 5 of the second main surface 3 has a roughened surface showing a surface roughness Ra larger than the surface roughness Ra of the central region 4 by 0.2 nm or more. Area A is provided.

また、本実施形態では、粗面化領域Aが、第二の主表面3を画成する四つの角部のうち一つの角部に設けられている。「粗面化領域Aが角部に設けられている」とは、各辺部6~9を中央領域側に10mm移動させて形成される形状6’~9’において、頂点に位置する測定位置P9~P12の表面粗さRaのいずれかが、中央領域4の表面粗さRaよりも0.2nm以上大きいことを意味する(図1参照)。図6に示すガラス基板1では、左下の角部(測定位置P11)に粗面化領域Aが設けられている。 Further, in the present embodiment, the roughened area A is provided at one of the four corners defining the second main surface 3. "The roughened region A is provided at the corner portion" means that the measurement position located at the apex in the shape 6'to 9'formed by moving each side portion 6 to 9 toward the central region side by 10 mm. It means that any of the surface roughness Ras of P9 to P12 is 0.2 nm or more larger than the surface roughness Ra of the central region 4 (see FIG. 1). In the glass substrate 1 shown in FIG. 6, a roughened surface region A is provided at the lower left corner portion (measurement position P11).

図6に示す如き第二の主表面3の表面粗さRaの分布については、例えば図7に示すフローに従って、ガラス基板1に対して各種処理を施すことにより得られる。 The distribution of the surface roughness Ra of the second main surface 3 as shown in FIG. 6 can be obtained by subjecting the glass substrate 1 to various treatments according to, for example, the flow shown in FIG.

具体的には、図7に示すように、まず図3に示す表面処理工程20においてガラス基板1に処理ガスGによる表面処理を施すことにより、第二の主表面3をその全域にわたって粗面化する(第一粗面化工程S1)。然る後、ガラス基板1の第二の主表面3のうち所定の角部(ここでは図1に示す位置P11が含まれる角部)を除いた領域にマスキングを施す(マスキング工程S2)。そして、マスキングした状態のガラス基板1に対して、再び図3に示す表面処理工程20の表面処理を施すことにより、マスキングされていない所定の角部のみを再び粗面化する(第二粗面化工程S3)。これにより、粗面化領域Aが、第二の主表面3を画成する四つの角部のうち所定の一つの角部(位置P11を含む角部)に設けられた表面粗さRaの分布が第二の主表面3に付与され得る。 Specifically, as shown in FIG. 7, first, in the surface treatment step 20 shown in FIG. 3, the glass substrate 1 is surface-treated with the treatment gas G to roughen the second main surface 3 over the entire area thereof. (First roughening step S1). After that, masking is applied to a region of the second main surface 3 of the glass substrate 1 excluding a predetermined corner portion (here, the corner portion including the position P11 shown in FIG. 1) (masking step S2). Then, the masked glass substrate 1 is subjected to the surface treatment of the surface treatment step 20 shown in FIG. 3 again to roughen only the unmasked predetermined corners (second rough surface). Chemical step S3). As a result, the surface roughness Ra is distributed so that the roughened region A is provided at a predetermined one corner (corner including the position P11) among the four corners defining the second main surface 3. Can be imparted to the second main surface 3.

このように、本実施形態では、粗面化領域Aを、第二の主表面3の四つの角部の少なくとも一つに設けるようにしたので、粗面化領域Aに位置する角部P11が剥離の起点となる。従って、ガラス基板1の剥離を円滑に開始させることができる。 As described above, in the present embodiment, the roughened area A is provided at at least one of the four corners of the second main surface 3, so that the corners P11 located in the roughened area A are provided. It is the starting point of peeling. Therefore, the peeling of the glass substrate 1 can be started smoothly.

≪本発明の第四実施形態≫
図8は、本発明の第四実施形態に係るガラス基板1の第二の主表面3における表面粗さRaの分布の一例を示している。図8中、棒状グラフの高さは表面粗さRaの大きさ、棒状グラフの上方又は側方に記載された括弧内の数字又は記号は図1に示すガラス基板1の第二の主表面3上の位置をそれぞれ示している。図8に示すように、本実施形態においても、第二の主表面3の外周領域5には、中央領域4の表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている。
<< Fourth Embodiment of the present invention >>
FIG. 8 shows an example of the distribution of the surface roughness Ra on the second main surface 3 of the glass substrate 1 according to the fourth embodiment of the present invention. In FIG. 8, the height of the bar graph is the size of the surface roughness Ra, and the numbers or symbols in parentheses described above or to the side of the bar graph are the second main surface 3 of the glass substrate 1 shown in FIG. The upper positions are shown respectively. As shown in FIG. 8, also in the present embodiment, the outer peripheral region 5 of the second main surface 3 has a roughened surface showing a surface roughness Ra larger than the surface roughness Ra of the central region 4 by 0.2 nm or more. Area A is provided.

また、本実施形態では、粗面化領域Aが、第二の主表面3を画成する四つの角部全てに設けられている。図8に示すガラス基板1では、測定位置P9~P12の表面粗さRaが何れも、中央領域4の表面粗さRaよりも0.2nm以上大きく、四つ全ての角部に粗面化領域Aが設けられている(図8)。 Further, in the present embodiment, the roughened area A is provided on all four corners defining the second main surface 3. In the glass substrate 1 shown in FIG. 8, the surface roughness Ra of the measurement positions P9 to P12 is 0.2 nm or more larger than the surface roughness Ra of the central region 4, and the roughened regions are formed at all four corners. A is provided (FIG. 8).

図8に示す如き第二の主表面3の表面粗さRaの分布については、例えば図9に示すフローに従って、ガラス基板1に対して各種処理を施すことにより得られる。 The distribution of the surface roughness Ra of the second main surface 3 as shown in FIG. 8 can be obtained by subjecting the glass substrate 1 to various treatments according to, for example, the flow shown in FIG.

具体的には、図9に示すように、まず図3に示す表面処理工程20においてガラス基板1に処理ガスGによる表面処理を施すことにより、第二の主表面3をその全域にわたって粗面化する(第一粗面化工程S4)。然る後、ガラス基板1の第二の主表面3のうち四つ全ての角部(ここでは図1に示す位置P9~P12が含まれる角部)を除いた領域にマスキングを施す(マスキング工程S5)。そして、マスキングした状態のガラス基板1に対して、再び図3に示す表面処理工程20の表面処理を施すことにより、マスキングされていない四つ全ての角部を再び粗面化する(第二粗面化工程S3)。これにより、粗面化領域Aが、第二の主表面3を画成する四つの角部全てに設けられた表面粗さRaの分布が第二の主表面3に付与され得る。 Specifically, as shown in FIG. 9, first, in the surface treatment step 20 shown in FIG. 3, the glass substrate 1 is surface-treated with the treatment gas G to roughen the second main surface 3 over the entire area thereof. (First roughening step S4). After that, masking is applied to the region excluding all four corners (here, the corners including the positions P9 to P12 shown in FIG. 1) of the second main surface 3 of the glass substrate 1 (masking step). S5). Then, the masked glass substrate 1 is subjected to the surface treatment of the surface treatment step 20 shown in FIG. 3 again to roughen all four unmasked corners again (second coarse surface). Surface treatment step S3). As a result, the roughened region A can impart the distribution of the surface roughness Ra provided on all four corners defining the second main surface 3 to the second main surface 3.

このように、本実施形態では、粗面化領域Aを、第二の主表面3の四つの角部全てに設けるようにしたので、粗面化領域Aに位置する全ての角部P9~P12が剥離の起点となり、剥離を円滑に開始させることができる。 As described above, in the present embodiment, since the roughened area A is provided on all four corners of the second main surface 3, all the corners P9 to P12 located in the roughened area A are provided. Is the starting point of peeling, and peeling can be started smoothly.

なお、第三実施形態では、所定の一つの角部に粗面化領域Aが設けられた場合を例示し、第四実施形態では、四つの角部全てに粗面化領域Aが設けられた場合を例示したが、もちろん、二つ又は三つの角部に粗面化領域Aが設けられた表面粗さRaの分布を第二の主表面3に付与することも可能である。 In the third embodiment, the case where the roughened area A is provided in one predetermined corner is illustrated, and in the fourth embodiment, the roughened area A is provided in all four corners. Although the case is illustrated, of course, it is also possible to impart the distribution of the surface roughness Ra having the roughened regions A at the two or three corners to the second main surface 3.

また、第三及び第四実施形態において、外周領域5のうち角部以外の領域における表面粗さRaの大きさは任意であるから、例えば図1に示す位置P13~P16における表面粗さRaの全て又は一部が中央領域4の表面粗さRaより0.2nm以上大きい分布をとることも可能である。このように外周領域5の外周縁、すなわち第二の主表面3の外周縁全ての領域が粗面化領域Aであれば、剥離をより円滑に開始させることができる。 Further, in the third and fourth embodiments, the size of the surface roughness Ra in the region other than the corner portion of the outer peripheral region 5 is arbitrary, and therefore, for example, the surface roughness Ra at the positions P13 to P16 shown in FIG. 1 It is also possible that all or part of the distribution is 0.2 nm or more larger than the surface roughness Ra of the central region 4. As described above, if the outer peripheral edge of the outer peripheral region 5, that is, the entire outer peripheral edge of the second main surface 3 is the roughened region A, the peeling can be started more smoothly.

また、第一実施形態では、ガラス基板1の搬送速度や処理ガスGの供給流量を調整することで、図2に示す表面粗さRaの分布を第二の主表面3に付与した場合を例示し、第二実施形態では、ガラス基板1を所定の向きに傾斜させた状態で搬送しながら表面処理を施すことで、図4に示す表面粗さRaの分布を第二の主表面3に付与した場合を例示したが、これらの分布は、上記以外の方法で形成することも可能である。すなわち、図示は省略するが、短辺部8,9の長手方向と搬送方向X1とを一致させた状態で、ガラス基板1を水平姿勢で搬送しながら、第一実施形態のように搬送速度や処理ガスGの供給流量を適宜に設定することによっても、図4に示す表面粗さRaの分布を第二の主表面3に付与し得る。あるいは、同じく図示は省略するが、短辺部8,9の長手方向と、搬送方向X1とを一致させ、かつ短辺部8側が短辺部9側より下方に位置するようにガラス基板1を傾斜させた状態で搬送しながら、処理ガスGを第二の主表面3に供給することによっても、図2に示す表面粗さRaの分布を第二の主表面3に付与し得る。 Further, in the first embodiment, the case where the distribution of the surface roughness Ra shown in FIG. 2 is imparted to the second main surface 3 is exemplified by adjusting the transport speed of the glass substrate 1 and the supply flow rate of the processing gas G. In the second embodiment, the surface roughness Ra shown in FIG. 4 is distributed to the second main surface 3 by performing surface treatment while transporting the glass substrate 1 in a state of being tilted in a predetermined direction. However, these distributions can be formed by a method other than the above. That is, although not shown, the transport speed and the transport speed are increased as in the first embodiment while transporting the glass substrate 1 in a horizontal posture in a state where the longitudinal direction of the short side portions 8 and 9 and the transport direction X1 are matched. The distribution of the surface roughness Ra shown in FIG. 4 can also be imparted to the second main surface 3 by appropriately setting the supply flow rate of the processing gas G. Alternatively, although not shown, the glass substrate 1 is provided so that the longitudinal direction of the short side portions 8 and 9 coincides with the transport direction X1 and the short side portion 8 side is located below the short side portion 9 side. The distribution of the surface roughness Ra shown in FIG. 2 can also be imparted to the second main surface 3 by supplying the processing gas G to the second main surface 3 while transporting the glass in an inclined state.

あるいは、第一及び第二実施形態に係る表面粗さRaの分布は、上記以外の方法で形成することも可能である。例えば図示は省略するが、表面処理工程20,40の前工程として、ガラス基板1を水等で洗浄する洗浄工程を設けると共に、洗浄時に第二の主表面3に付着する水分に所定の偏りを設けた状態とする。この際、例えば短辺部8側ほど付着した水分が多く、短辺部9側ほど付着した水分が少なくなるよう、水分の付着状態に偏りを設けた後、図3に示すような表面処理を施すことにより、図2に示す表面粗さRaの分布を第二の主表面3に付与し得る。あるいは、長辺部7側ほど付着した水分が多く、長辺部6側ほど付着した水分が少なくなるよう、水分の付着状態に偏りを設けた後、図3に示すような表面処理を施すことにより、図4に示す表面粗さRaの分布を第二の主表面3に付与し得る。この場合、水分の付着度合いによって処理ガスGによる表面処理(粗面化)の度合いが変化するものと推察される。従って、水分の付着状態に上述の如き偏りを設けた状態でガラス基板1に表面処理を施すのであれば、搬送速度や処理ガスGの供給流量、あるいはガラス基板1の搬送姿勢を変化させる必要はない。すなわち、搬送速度や処理ガスGの供給流量が一定で、ガラス基板1が水平姿勢で搬送される場合であっても、図2や図4に示す表面粗さRaの分布を付与し得る。もちろん、前洗浄が必要でなければ、上述した水分の付着状態の偏りを第二の主表面3に設けるためだけに、水分を例えば霧状にして供給する工程を表面処理工程20,40の前に設けることも可能である。 Alternatively, the distribution of the surface roughness Ra according to the first and second embodiments can be formed by a method other than the above. For example, although not shown, a cleaning step of cleaning the glass substrate 1 with water or the like is provided as a pre-process of the surface treatment steps 20 and 40, and a predetermined bias is applied to the water adhering to the second main surface 3 during cleaning. It shall be in the provided state. At this time, for example, the surface treatment as shown in FIG. 3 is performed after biasing the adhesion state of the moisture so that the moisture adhered to the short side 8 side is large and the moisture adhered to the short side 9 side is small. By applying, the distribution of the surface roughness Ra shown in FIG. 2 can be imparted to the second main surface 3. Alternatively, surface treatment as shown in FIG. 3 is performed after biasing the state of adhesion of water so that the amount of water adhering to the long side 7 side is large and the amount of water adhering to the long side 6 side is small. Therefore, the distribution of the surface roughness Ra shown in FIG. 4 can be imparted to the second main surface 3. In this case, it is presumed that the degree of surface treatment (roughening) by the treatment gas G changes depending on the degree of adhesion of water. Therefore, if the glass substrate 1 is to be surface-treated with the moisture adhering state being biased as described above, it is necessary to change the transport speed, the supply flow rate of the treated gas G, or the transport posture of the glass substrate 1. do not have. That is, even when the transport speed and the supply flow rate of the processing gas G are constant and the glass substrate 1 is transported in a horizontal posture, the distribution of the surface roughness Ra shown in FIGS. 2 and 4 can be imparted. Of course, if pre-cleaning is not necessary, the step of supplying the water in the form of a mist, for example, is performed before the surface treatment steps 20 and 40 only in order to provide the above-mentioned bias of the adhesion state of the water on the second main surface 3. It is also possible to install it in.

もちろん、第二の主表面3の中央領域4における表面粗さRaが0.3nm以上でかつ1.0nm以下で、外周領域5に、中央領域4における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域Aが設けられている限りにおいて、当該表面粗さRaの分布を第二の主表面3に付与するための手段は任意である。 Of course, the surface roughness Ra in the central region 4 of the second main surface 3 is 0.3 nm or more and 1.0 nm or less, and the outer peripheral region 5 is 0.2 nm or more larger than the surface roughness Ra in the central region 4. As long as the roughened region A showing the surface roughness Ra is provided, the means for imparting the distribution of the surface roughness Ra to the second main surface 3 is arbitrary.

また、第一~第四実施形態に係るガラス基板1では、図示は省略するが、FPDを製造するに際し、載置台の複数個所に設置されたピンを上昇させることにより、ガラス基板1を載置台から剥離させる態様を採用することができる。この場合、複数のピンを同時に上昇させても、外周領域5に位置する粗面化領域Aが起点となり、剥離を円滑に開始することができるが、複数のピンのうちで粗面化領域Aに位置するピンを先行して上昇させることが好ましい。粗面化領域A又はその周辺に位置するピンを先行して上昇させれば、粗面化領域Aがより確実に起点となるので、剥離をより円滑に開始することができる。加えて、起点とする粗面化領域Aからの距離が近い順にピンを上昇させることが好ましい。起点とする粗面化領域Aからの距離が近い順にピンを上昇させれば、起点の剥離をより円滑に伸展させることができる。 Further, in the glass substrate 1 according to the first to fourth embodiments, although not shown, the glass substrate 1 is mounted on the mounting table by raising the pins installed at a plurality of places on the mounting table when manufacturing the FPD. It is possible to adopt a mode of peeling from the glass. In this case, even if a plurality of pins are raised at the same time, the roughened area A located in the outer peripheral region 5 becomes the starting point and peeling can be started smoothly, but the roughened area A among the plurality of pins A. It is preferable to raise the pin located at the position in advance. If the pins located in or around the roughened region A are raised in advance, the roughened region A becomes the starting point more reliably, so that the peeling can be started more smoothly. In addition, it is preferable to raise the pins in ascending order of distance from the roughened region A as the starting point. If the pins are raised in order of increasing distance from the roughened region A as the starting point, the peeling of the starting point can be extended more smoothly.

本発明の実施例として、1000枚のガラス基板を製造した。ガラス基板は、日本電気硝子社製のディスプレイ用の無アルカリガラス基板(製品名:OA-11)とした。ガラス基板のサイズは、2200mm×2500mm、厚みは50μmとした。成形方法は、オーバーフローダウンドロー法とした。ガラス基板の第二の主表面には、図5に示す表面処理工程による表面処理を施した。 As an example of the present invention, 1000 glass substrates were manufactured. The glass substrate was a non-alkali glass substrate (product name: OA-11) for a display manufactured by Nippon Electric Glass Co., Ltd. The size of the glass substrate was 2200 mm × 2500 mm, and the thickness was 50 μm. The molding method was an overflow down draw method. The second main surface of the glass substrate was surface-treated by the surface treatment step shown in FIG.

製造されたガラス基板から1枚のガラス基板を採取し、第二の主表面の表面粗さRaを測定装置(Bruker社製、型式:Dimension ICON)で測定した。その結果、中央領域の表面粗さRa(P0~P8の平均値)は0.4nmであった。外周領域の表面粗さRaは、P9で0.3nm、P10で0.3nm、P11で0.6nm、P12で0.6nm、P13で0.3nm、P14で0.4nm、P15で0.4nm、P16で0.6nmであった。したがって、ガラス基板の第二の主表面3には、図4に示すように、粗面化領域Aが長辺部7に沿って延び、かつ外周領域5の表面粗さRaが上記長辺部7から遠ざかるにつれて減少する表面粗さRaの分布が付与された。得られたガラス基板を剥離試験に供した。剥離試験では、載置台に載置した後、載置台が備える複数のピンを同時に上昇させることによって載置台からガラス基板を剥離させた。 One glass substrate was taken from the manufactured glass substrate, and the surface roughness Ra of the second main surface was measured by a measuring device (manufactured by Bruker, model: Dimension ICON). As a result, the surface roughness Ra (average value of P0 to P8) in the central region was 0.4 nm. The surface roughness Ra of the outer peripheral region is 0.3 nm for P9, 0.3 nm for P10, 0.6 nm for P11, 0.6 nm for P12, 0.3 nm for P13, 0.4 nm for P14, and 0.4 nm for P15. , P16 was 0.6 nm. Therefore, on the second main surface 3 of the glass substrate, as shown in FIG. 4, the roughened region A extends along the long side portion 7, and the surface roughness Ra of the outer peripheral region 5 is the long side portion. A distribution of surface roughness Ra, which decreases as the distance from 7 is increased, is given. The obtained glass substrate was subjected to a peeling test. In the peeling test, after mounting on the mounting table, the glass substrate was peeled off from the mounting table by simultaneously raising a plurality of pins provided on the mounting table.

比較例では、水平姿勢でガラス基板の第二の主表面に表面処理を施した点を除き、実施例と同じ条件でガラス基板を製造した。その結果、中央領域の表面粗さRa(P0~P8の平均値)は0.4nmであった。外周領域(P9~P16)の表面粗さRaは、0.3~0.5nmであった。したがって、ガラス基板の第二の主表面には、粗面化領域Aが形成されなかった。このガラス基板を剥離試験に供した。 In the comparative example, the glass substrate was manufactured under the same conditions as in the examples except that the second main surface of the glass substrate was surface-treated in the horizontal posture. As a result, the surface roughness Ra (average value of P0 to P8) in the central region was 0.4 nm. The surface roughness Ra of the outer peripheral region (P9 to P16) was 0.3 to 0.5 nm. Therefore, the roughened region A was not formed on the second main surface of the glass substrate. This glass substrate was subjected to a peeling test.

比較例に係る剥離試験では、1000枚のガラス基板のうちで50枚のガラス基板がピンを上昇させても載置台から剥離しなかった。これに対し、実施例の剥離試験では、1000枚のガラス基板の全部がピンの上昇に伴って載置台から剥離した。すなわち、ガラス基板が載置台から剥離しない問題を抑制できた。このことから、本発明のガラス基板によれば、外周領域に位置する粗面化領域Aを起点として利用でき、剥離を円滑に開始可能なことが確認できた。 In the peeling test according to the comparative example, 50 of the 1000 glass substrates did not peel off from the mounting table even when the pins were raised. On the other hand, in the peeling test of the example, all of the 1000 glass substrates were peeled from the mounting table as the pins were raised. That is, the problem that the glass substrate did not peel off from the mounting table could be suppressed. From this, it was confirmed that according to the glass substrate of the present invention, the roughened region A located in the outer peripheral region can be used as a starting point, and the peeling can be started smoothly.

1 ガラス基板
2 第一の主表面
3 第二の主表面
4 中央領域
5 外周領域
6,7 長辺部
8,9 短辺部
10 中央領域と外周領域との境界
20,40 表面処理工程
21,41 搬送装置
22,42 表面処理装置
23,43 処理室
24,44,45 ローラ
25,46 挿通路
26,47 給気口
27 排気口
28 処理ガス生成装置
29 排ガス処理装置
30 給気路
31 排気路
A 粗面化領域
G 処理ガス
P0~P16 表面粗さRaの測定位置
1 Glass substrate 2 First main surface 3 Second main surface 4 Central region 5 Outer peripheral region 6, 7 Long side portion 8, 9 Short side portion 10 Boundary between central region and outer peripheral region 20, 40 Surface treatment step 21, 41 Conveyor device 22, 42 Surface treatment device 23, 43 Treatment room 24, 44, 45 Roller 25, 46 Insertion passage 26, 47 Air supply port 27 Exhaust port 28 Treatment gas generator 29 Exhaust gas treatment device 30 Air supply path 31 Exhaust channel A Roughening region G Treatment gas P0 to P16 Measurement position of surface roughness Ra

Claims (1)

第一の主表面と、第二の主表面とを有するガラス基板において、
前記第一の主表面の表面粗さRaが0.2nm以下で、
前記第二の主表面の中央領域における表面粗さRaが0.3nm以上でかつ1.0nm以下で、
前記第二の主表面の外周領域に、前記中央領域における表面粗さRaよりも0.2nm以上大きな表面粗さRaを示す粗面化領域が設けられ、
前記粗面化領域は、前記第二の主表面が有する複数の辺部のうち何れか一つの辺部に沿って延び、かつ前記外周領域の表面粗さRaが、前記一つの辺部から遠ざかるにつれて減少し
前記外周領域のうち前記一つの辺部と対辺をなす対辺部に沿って延びる対辺領域の表面粗さRaが、前記外周領域のうち前記粗面化領域と前記対辺領域との間に位置する中間領域の表面粗さRa及び前記中央領域の表面粗さRaの何れよりも小さいことを特徴とするガラス基板。
In a glass substrate having a first main surface and a second main surface,
The surface roughness Ra of the first main surface is 0.2 nm or less, and the surface roughness Ra is 0.2 nm or less.
The surface roughness Ra in the central region of the second main surface is 0.3 nm or more and 1.0 nm or less.
In the outer peripheral region of the second main surface, a roughened region showing a surface roughness Ra larger than the surface roughness Ra in the central region by 0.2 nm or more is provided.
The roughened region extends along any one of the plurality of sides of the second main surface, and the surface roughness Ra of the outer peripheral region moves away from the one side. Decreases with
The surface roughness Ra of the opposite side region extending along the opposite side portion opposite to the one side portion of the outer peripheral region is located between the roughened surface region and the opposite side region of the outer peripheral region. A glass substrate characterized by being smaller than any of the surface roughness Ra of the region and the surface roughness Ra of the central region .
JP2017218075A 2017-11-13 2017-11-13 Glass substrate Active JP7045647B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017218075A JP7045647B2 (en) 2017-11-13 2017-11-13 Glass substrate
PCT/JP2018/038676 WO2019093087A1 (en) 2017-11-13 2018-10-17 Glass substrate
KR1020207014657A KR102609772B1 (en) 2017-11-13 2018-10-17 glass substrate
CN201880073224.1A CN111356663A (en) 2017-11-13 2018-10-17 Glass substrate
TW107137819A TW201922661A (en) 2017-11-13 2018-10-25 glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218075A JP7045647B2 (en) 2017-11-13 2017-11-13 Glass substrate

Publications (2)

Publication Number Publication Date
JP2019089667A JP2019089667A (en) 2019-06-13
JP7045647B2 true JP7045647B2 (en) 2022-04-01

Family

ID=66439095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218075A Active JP7045647B2 (en) 2017-11-13 2017-11-13 Glass substrate

Country Status (5)

Country Link
JP (1) JP7045647B2 (en)
KR (1) KR102609772B1 (en)
CN (1) CN111356663A (en)
TW (1) TW201922661A (en)
WO (1) WO2019093087A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128673A1 (en) 2009-05-07 2010-11-11 日本電気硝子株式会社 Glass substrate and method for producing same
JP2015202997A (en) 2014-04-16 2015-11-16 旭硝子株式会社 Substrate, substrate production system, peeling device, substrate production method and peeling method
JP2018052805A (en) 2016-09-21 2018-04-05 旭硝子株式会社 Glass sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148727C (en) * 1996-09-30 2004-05-05 Hoya株式会社 Glass substrate, magnetic recording medium and method of manufacturing magnetic recording medium
KR101707056B1 (en) * 2009-03-10 2017-02-15 니폰 덴키 가라스 가부시키가이샤 Glass substrate and method for manufacturing same
KR101522452B1 (en) * 2012-04-17 2015-05-21 아반스트레이트 가부시키가이샤 Method for making glass substrate for display, glass substrate and display panel
CN103373818B (en) * 2012-04-17 2017-05-17 安瀚视特控股株式会社 Method for making glass substrate for display, glass substrate and display panel
JP2014009124A (en) * 2012-06-29 2014-01-20 Avanstrate Inc Method for manufacturing glass substrate for display, and device for manufacturing glass substrate for display
JP2014080331A (en) 2012-10-17 2014-05-08 Asahi Glass Co Ltd Method for producing anti-reflective glass
US9153457B2 (en) * 2013-06-14 2015-10-06 Tokyo Electron Limited Etch process for reducing directed self assembly pattern defectivity using direct current positioning
WO2015137196A1 (en) * 2014-03-14 2015-09-17 日本電気硝子株式会社 Display cover member and method for manufacturing same
WO2016143583A1 (en) * 2015-03-10 2016-09-15 日本電気硝子株式会社 Semiconductor supporting glass substrate and laminated substrate using same
CN107857479B (en) * 2016-09-21 2022-12-06 Agc株式会社 Glass plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128673A1 (en) 2009-05-07 2010-11-11 日本電気硝子株式会社 Glass substrate and method for producing same
JP2015202997A (en) 2014-04-16 2015-11-16 旭硝子株式会社 Substrate, substrate production system, peeling device, substrate production method and peeling method
JP2018052805A (en) 2016-09-21 2018-04-05 旭硝子株式会社 Glass sheet

Also Published As

Publication number Publication date
KR20200078564A (en) 2020-07-01
KR102609772B1 (en) 2023-12-05
TW201922661A (en) 2019-06-16
WO2019093087A1 (en) 2019-05-16
CN111356663A (en) 2020-06-30
JP2019089667A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
KR101838339B1 (en) Method for making glass substrate for display, glass substrate and display panel
JP5066895B2 (en) Glass substrate for display and manufacturing method thereof
WO2014179251A1 (en) Method of cleaning glass substrates
JP5798505B2 (en) Substrate processing apparatus and substrate processing method
TW201817693A (en) Glass plate and glass substrate manufacturing method having an adsorption surface capable of preventing peeling and electrification
JP2005255478A (en) Glass substrate
JP6520928B2 (en) Etching apparatus, etching method, method of manufacturing substrate, and substrate
KR101543832B1 (en) Glass substrate and glass substrate production method
JP7045647B2 (en) Glass substrate
JP6629557B2 (en) Glass substrate manufacturing equipment
KR101932329B1 (en) Method for producing glass substrate, glass substrate, and display panel
JP2017066002A (en) Method for producing glass substrate for display, and apparatus for producing glass substrate for display
JP2015202997A (en) Substrate, substrate production system, peeling device, substrate production method and peeling method
JP6870617B2 (en) Display glass substrate and its manufacturing method
JP2017066003A (en) Method and apparatus for producing glass substrate for display
JP2017218351A (en) Production method of glass substrate, and glass substrate
JP2017071516A (en) Manufacturing method of glass substrate
KR101543831B1 (en) Glass substrate and glass substrate production method
KR101521345B1 (en) Method for manufacturing glass substrate
CN107857479B (en) Glass plate
JP2017069466A (en) Manufacturing method for glass substrate
JP2005026554A (en) Substrate processing method and apparatus
KR20200019693A (en) Glass substrate surface treatment method
JP6225908B2 (en) Glass substrate for display and manufacturing method thereof
JP2013212965A (en) Apparatus and method for treating surface of sheet glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220119

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220127

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7045647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150