JP2013212965A - Apparatus and method for treating surface of sheet glass - Google Patents

Apparatus and method for treating surface of sheet glass Download PDF

Info

Publication number
JP2013212965A
JP2013212965A JP2012084930A JP2012084930A JP2013212965A JP 2013212965 A JP2013212965 A JP 2013212965A JP 2012084930 A JP2012084930 A JP 2012084930A JP 2012084930 A JP2012084930 A JP 2012084930A JP 2013212965 A JP2013212965 A JP 2013212965A
Authority
JP
Japan
Prior art keywords
surface treatment
treatment
glass
back surface
vaporized gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012084930A
Other languages
Japanese (ja)
Inventor
Yoshiharu Sotoma
喜春 外間
Yasuhiro Matsumoto
保弘 松本
Hiroki Nakatsuka
弘樹 中塚
Masaru Honda
大 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012084930A priority Critical patent/JP2013212965A/en
Publication of JP2013212965A publication Critical patent/JP2013212965A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute simply surface treatments of an end face and a rear surface of a sheet glass, and to execute inexpensively a series of surface treatments by reducing minimally the used amount of a treatment liquid at that time.SOLUTION: When applying surface treatment by a treatment liquid onto an end face Ga by supplying the treatment liquid onto the end face Ga of a sheet glass G, vaporized gas of the treatment liquid generated when supplying the treatment liquid onto the end face Ga is guided to the rear surface Gb side of the sheet glass G, to thereby apply surface treatment onto the rear surface Gb by the vaporized gas.

Description

本発明は、板状ガラスの表面処理装置及び表面処理方法に関し、特に、板状ガラスの端面並びに裏面に対して表面処理を施すための装置及び方法に関する。   The present invention relates to a sheet glass surface treatment apparatus and a surface treatment method, and more particularly, to an apparatus and method for performing a surface treatment on an end surface and a back surface of a sheet glass.

周知のように、近年における画像表示装置は、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、有機ELディスプレイ(OLED)などに代表されるフラットパネルディスプレイ(以下、単にFPDという)が主流となっている。これらのFPDについては軽量化が推進されていることから、FPDに使用されるガラス基板についても薄板化に対する要求が高まっている。   As is well known, image display devices in recent years are flat panel displays (hereinafter simply referred to as FPDs) represented by liquid crystal displays (LCDs), plasma displays (PDPs), field emission displays (FEDs), organic EL displays (OLEDs) and the like. Is the mainstream. Since weight reduction is promoted about these FPD, the request | requirement with respect to thickness reduction is also increasing about the glass substrate used for FPD.

上述したガラス基板は、例えば各種ダウンドロー法に代表される板状ガラスの成形方法により帯状に成形した板状ガラス(帯状板ガラス)を所定の寸法に切断し、切断した板状ガラスの幅方向(帯状板ガラスの表裏面に平行で、かつ長手方向に直交する向きをいう。以下、同じ。)両端部分をさらに切断した後、必要に応じて、各切断面に研磨加工を施す等により得られる。   The glass substrate mentioned above cut | disconnects the plate-shaped glass (band-shaped plate glass) shape | molded by the strip shape by the shaping | molding method of the plate-shaped glass represented by various downdraw methods, for example to the predetermined dimension, and the width direction ( This refers to the direction parallel to the front and back surfaces of the belt-shaped plate glass and perpendicular to the longitudinal direction, hereinafter the same.) After further cutting both end portions, it is obtained by subjecting each cut surface to a polishing process, if necessary.

ところで、この種のガラス基板を製造するに際しては、その製造過程における静電気の帯電が問題となることがある。すなわち、絶縁体であるガラスは非常に帯電し易い性質を有しており、ガラス基板の製造工程において、例えば金属や絶縁体からなる載置台にガラス基板を載置し所定の加工を施す際、ガラス基板と載置台との接触剥離により剥離したガラス基板が帯電することがある(これを、剥離帯電と呼ぶことがある。)。帯電したガラス基板に導電性の物体が近づくと放電が生じ、この放電によって、ガラス基板の表面上に形成された各種素子や電子回路を構成する電極線の破損、あるいはガラス基板自体の破損を招くおそれがある(これらを、絶縁破壊又は静電破壊と呼ぶことがある。)。また、帯電したガラス基板は載置台に貼り付き易く、これを無理やり引き剥がすことでガラス基板の破損を招くおそれもある。これらは当然に表示不良の原因となるため、極力回避すべき事項である。   By the way, when this type of glass substrate is manufactured, electrostatic charging in the manufacturing process may be a problem. That is, the glass that is an insulator has a property that is very easily charged, and in the manufacturing process of the glass substrate, for example, when the glass substrate is placed on a mounting table made of metal or an insulator and subjected to predetermined processing, The glass substrate peeled off by contact peeling between the glass substrate and the mounting table may be charged (this may be referred to as peeling charging). When a conductive object approaches the charged glass substrate, a discharge occurs, and this discharge causes damage to various elements formed on the surface of the glass substrate and electrode wires constituting the electronic circuit, or damage to the glass substrate itself. There are fears (sometimes referred to as dielectric breakdown or electrostatic breakdown). Further, the charged glass substrate is likely to stick to the mounting table, and there is a possibility that the glass substrate may be damaged by forcibly peeling it off. Since these naturally cause display defects, they should be avoided as much as possible.

この点、例えば下記特許文献1には、ガラス基板の裏面に薬液を供給することで裏面に化学処理を施し、これにより上記裏面を粗面化する方法が提案されている。ガラス基板と載置台との接触面積が大きいほど剥離した際の帯電量が増大する傾向にあることから、載置台の載置面と接触するガラス基板の裏面を粗面化することで、ガラス基板と載置台との接触面積を減少させて、剥離時の帯電抑制を図っている。また、接触面(裏面)が平滑なガラス基板ほど載置面の如き平滑面に貼り付き易い点に鑑み、上述のように、ガラス基板の裏面を粗面化することで、載置面に貼り付き難くして、これにより剥離時のガラス基板の破損防止を図っている。   In this regard, for example, Patent Document 1 below proposes a method in which a chemical treatment is performed on the back surface by supplying a chemical solution to the back surface of the glass substrate, thereby roughening the back surface. The larger the contact area between the glass substrate and the mounting table, the greater the amount of charge when peeling, so the glass substrate can be roughened by roughening the back surface of the glass substrate in contact with the mounting surface of the mounting table. The contact area between the surface and the mounting table is reduced to suppress charging during peeling. Further, in view of the fact that a glass substrate having a smooth contact surface (back surface) is more likely to stick to a smooth surface such as a mounting surface, as described above, the glass substrate is affixed to the mounting surface by roughening the back surface. This prevents the glass substrate from being damaged during peeling.

特開2010−275167号公報JP 2010-275167 A 特開2007−51017号公報JP 2007-51017 A

一方で、この種のガラス基板においては、製造過程における変形の影響が問題となる。すなわち、ガラス基板がその製造工程において局所的に撓む等の変形を生じることで、ガラス基板の破損が懸念される。この種の破損は、ガラス基板の端面部に存在する微小な凹凸をはじめ、キズやカケ、マイクロクラックなどの微小な欠陥を起点として生じる可能性が高いことから、例えば上記端面を平滑化することで、これら微小な凹凸や欠陥を除去して、端面部の曲げ強度を向上させることが可能と考えられる。   On the other hand, in this type of glass substrate, the influence of deformation in the manufacturing process becomes a problem. That is, there is a concern that the glass substrate is damaged due to deformation such as local bending of the glass substrate in the manufacturing process. This type of breakage is likely to occur starting from minute defects such as scratches, scratches, and microcracks, as well as minute irregularities present on the end surface of the glass substrate. Thus, it is considered possible to improve the bending strength of the end face by removing these minute irregularities and defects.

ここで、上記特許文献2には、ガラス基板の端面に薬液を塗布することで端面に化学処理を施す方法であって、この処理により上記端面の微小凹部内に存在するガラス粉や研磨粉などの異物を薬液で溶かし又は洗い流して、端面及び表裏面の清浄度を向上させる技術が記載されている。よって、例えば上記特許文献2に記載の処理方法を用い、使用する薬液の種類や濃度を調整することで、ガラス粉等の溶解のみならず、端面の最表層部も溶解して当該端面を平滑化することも可能と考えられる。   Here, the above-mentioned Patent Document 2 is a method in which a chemical treatment is applied to the end face by applying a chemical solution to the end face of the glass substrate, and the glass powder, polishing powder, etc. existing in the minute recesses of the end face by this treatment. A technique for improving the cleanliness of the end surface and the front and back surfaces by dissolving or washing away the foreign matter with a chemical solution is described. Therefore, for example, by using the treatment method described in Patent Document 2 and adjusting the type and concentration of the chemical solution to be used, not only the dissolution of glass powder and the like but also the outermost surface layer portion of the end surface is dissolved to smooth the end surface. It is also possible to make it.

従って、上述した帯電抑制と変形による破損防止を共に図りたい場合には、上記特許文献1に記載の方法と特許文献2に記載の方法とを組み合せて、ガラス基板の裏面と端面とにそれぞれ薬液等による化学処理を施すようにすればよいようにも思われる。しかしながら、これでは、端面に薬液を塗布するための設備に加えて、裏面を薬液に供給するための設備を別に設ける必要があり、設備コストの高騰を招く。また、別々の設備を用いて表面処理を施す結果、作業スペースや工数の増加を招くため、必ずしも生産性の面で適切とは言えない。   Therefore, when both the above-described charging suppression and damage prevention due to deformation are desired, the chemical solution is applied to the back surface and the end surface of the glass substrate by combining the method described in Patent Document 1 and the method described in Patent Document 2, respectively. It seems to be sufficient to apply a chemical treatment such as for example. However, in this case, in addition to the equipment for applying the chemical liquid to the end face, it is necessary to provide another equipment for supplying the back surface to the chemical liquid, resulting in an increase in equipment cost. In addition, as a result of performing the surface treatment using separate equipment, the work space and the number of man-hours are increased, so that it is not necessarily appropriate in terms of productivity.

また、この種の表面処理に使用される処理液(薬液)は、一般に、非常に極性が高く(強酸性など)毒劇物に指定される類の成分を含む処理液が使用されることも少なくない。そのため、安全面や衛生面の観点からも、又加工コストの観点からも、薬液の使用量を極力少なくしつつ、上記端面の平滑化と上記裏面の粗面化を適切に図るための手法が望まれる。   In addition, a treatment solution (chemical solution) used for this type of surface treatment is generally a treatment solution containing a component that is very polar (strongly acidic, etc.) and is designated as a poisonous and deleterious substance. Not a few. Therefore, from the viewpoint of safety and hygiene, and also from the viewpoint of processing cost, there is a technique for appropriately smoothing the end face and roughening the back face while minimizing the amount of chemical used. desired.

以上の事情に鑑み、表面処理による板状ガラスの端面及び裏面に対する表面処理を簡便に実施すると共に、その際の処理液の使用量を極力少なくすることで、上述の表面処理を低コストに実施することを、本発明により解決すべき技術的課題とする。   In view of the above circumstances, the surface treatment on the end surface and the back surface of the sheet glass by the surface treatment is simply performed, and the above surface treatment is performed at a low cost by minimizing the amount of treatment liquid used at that time. This is a technical problem to be solved by the present invention.

前記課題の解決は、本発明に係る板状ガラスの表面処理方法により達成される。すなわち、この表面処理方法は、板状ガラスの端面に処理液を供給することで端面に処理液による表面処理を施す板状ガラスの表面処理方法において、端面に処理液を供給する際に発生する処理液の気化ガスを板状ガラスの裏面側に誘導することで、裏面に気化ガスによる表面処理を施す点をもって特徴付けられる(請求項7)。   The solution of the above-mentioned problem is achieved by the surface treatment method for sheet glass according to the present invention. That is, this surface treatment method occurs when supplying a treatment liquid to the end face in a surface treatment method for a plate glass in which a treatment liquid is supplied to the end face of the plate glass to perform a surface treatment with the treatment liquid on the end face. By inducing the vaporized gas of the treatment liquid to the back side of the plate-like glass, the surface is treated with vaporized gas on the back side (claim 7).

このように、本発明は、板状ガラスの端面に対して処理液を供給した際に発生する処理液の気化ガスに着目し、これを用いて板状ガラスの裏面に表面処理を施すようにしたことを特徴とするものである。すなわち、本発明では、端面に供給される処理液の気化ガスにより、板状ガラスの表面処理を施すようにしたので、端面に処理液を供給する際に発生する処理液の気化ガスを有効に利用して裏面の表面処理を施すことができる。よって、裏面に処理液を供給する手段を別途設ける必要がなく、またそのための工程を新たに設けずに済む。もちろん、裏面に処理液を供給して表面処理を施す場合と比べて、格段に処理液の使用量を減らすことができるので、経済的である。また、本発明では、端面に供給した処理液の気化ガスを裏面側に誘導することで裏面に表面処理を施すようにしたので、端面と裏面に表面処理を施しつつも、板状ガラスの表面が、実質的な表面処理となる程度に処理液の気化ガスに曝される事態を防ぐことができる。従って、裏面を適度に粗面化して帯電を抑制または防止することができると共に、表面においては表面処理直前(例えば成形時)の面粗さを維持して、高い表面精度を確保することが可能となる。   As described above, the present invention focuses on the vaporized gas of the processing liquid generated when the processing liquid is supplied to the end surface of the sheet glass, and uses this to perform surface treatment on the back surface of the sheet glass. It is characterized by that. That is, in the present invention, since the surface treatment of the glass sheet is performed by the vaporized gas of the processing liquid supplied to the end face, the vaporized gas of the processing liquid generated when the processing liquid is supplied to the end face is effectively used. By utilizing this, the back surface can be treated. Therefore, it is not necessary to separately provide a means for supplying the processing liquid to the back surface, and it is not necessary to newly provide a process for that purpose. Of course, compared to the case where the surface treatment is performed by supplying the treatment liquid to the back surface, the amount of the treatment liquid used can be significantly reduced, which is economical. Further, in the present invention, the surface treatment is performed on the back surface by inducing the vaporized gas of the processing liquid supplied to the end surface to the back surface side, so that the surface of the sheet glass is subjected to the surface treatment on the end surface and the back surface. However, it is possible to prevent a situation where the liquid is exposed to the vaporized gas of the treatment liquid to such an extent that the surface treatment is substantially performed. Therefore, the back surface can be appropriately roughened to suppress or prevent electrification, and the surface can be maintained with surface roughness immediately before the surface treatment (for example, during molding) to ensure high surface accuracy. It becomes.

さらに、本発明によれば、板状ガラスの端面に対しては処理液による表面処理を施すと共に、板状ガラスの裏面に対しては処理液の気化ガスによる表面処理を施すようにした。これにより、端面においては、処理液供給部から供給された処理液で微小な凹凸や異物が溶解し、また、微小凹部内に保持されていたガラス粉などの異物が洗い流される。よって、端面を平滑化することができる。また、裏面においては、処理液の気化ガスに裏面が曝されることで当該裏面の表面処理が施されるので、供給面積が比較的大きな裏面であっても万遍なく気化状態の処理液を供給することができ、均一な表面処理を施すことができる。従って、要求される表面性状が互いに異なる端面と裏面とに、それぞれ適正な表面処理を施すことができ、1度の表面処理でもって端面の平滑化と裏面の粗面化とを同時に達成することが可能となる。   Furthermore, according to the present invention, the end surface of the sheet glass is subjected to a surface treatment with a treatment liquid, and the rear surface of the sheet glass is subjected to a surface treatment with a vaporized gas of the treatment liquid. Thereby, on the end face, minute irregularities and foreign matters are dissolved by the treatment liquid supplied from the treatment liquid supply unit, and foreign matters such as glass powder held in the minute depressions are washed away. Therefore, the end face can be smoothed. Moreover, since the back surface is subjected to surface treatment by exposing the back surface to the vaporized gas of the processing liquid on the back surface, even if the back surface has a relatively large supply area, the vaporized processing solution is uniformly distributed. It can be supplied and a uniform surface treatment can be applied. Therefore, it is possible to perform appropriate surface treatment on the end surface and the back surface, which require different surface properties, respectively, and to achieve smoothing of the end surface and roughening of the back surface by one surface treatment at the same time. Is possible.

また、本発明に係る表面処理方法は、表面処理の前後で、裏面の表面粗さRa[nm]が0.1nm以上でかつ1.8nm以下の範囲で向上するように、気化ガスによる裏面への表面処理条件を設定するものであってもよい(請求項8)。   Moreover, the surface treatment method according to the present invention is applied to the back surface by the vaporized gas so that the surface roughness Ra [nm] of the back surface is improved in the range of 0.1 nm or more and 1.8 nm or less before and after the surface treatment. The surface treatment conditions may be set (claim 8).

本発明に係る表面処理方法は、板状ガラスの裏面を粗面化することで製造工程における帯電、特に剥離帯電を防止するものであり、仮に帯電したとしてもその際の帯電量が実質的に問題ないレベル(言い換えると、帯電後にイオナイザ等で除電する必要がないレベル)に留めることを図ったものである。この場合、帯電量が実質的に問題ないレベルに留まり得る程度を、この種の板状ガラスにおける標準的な表面処理前の裏面の表面粗さRaの大きさを踏まえて、表面処理の前後における裏面の表面粗さRaの向上度合いで表すと、Ra≧0.1nmとなる。よって、表面処理の前後で、裏面の表面粗さRa[nm]が0.1nm以上でかつ1.8nm以下の範囲で向上するように、気化ガスによる裏面への表面処理条件を定めることで、表面処理以後の製造工程において、板状ガラスが実質的に問題となるレベルの帯電を生じる事態を回避することが可能となる。気化ガスによる裏面の表面処理条件としては、例えば処理液の濃度や温度、雰囲気温度、又は後述する板状ガラスの搬送速度や排気量などが影響因子として挙げられる。従って、これらの影響因子を適切な値に調整することで、表面処理の前後における板状ガラスの裏面の表面粗さRaの向上度合いを上記範囲に制御することが可能となる。   The surface treatment method according to the present invention prevents charging in the manufacturing process, particularly peeling charging, by roughening the back surface of the sheet glass, and even if it is charged, the charge amount at that time is substantially reduced. This is intended to keep at a problem-free level (in other words, a level at which it is not necessary to remove electricity with an ionizer after charging). In this case, the degree to which the amount of charge can remain at a level that is not substantially problematic is determined before and after the surface treatment, based on the size of the surface roughness Ra of the back surface before the standard surface treatment in this type of sheet glass. When expressed by the degree of improvement of the surface roughness Ra of the back surface, Ra ≧ 0.1 nm. Therefore, by setting the surface treatment conditions on the back surface with the vaporized gas so that the surface roughness Ra [nm] of the back surface is improved in the range of 0.1 nm or more and 1.8 nm or less before and after the surface treatment, In the manufacturing process after the surface treatment, it is possible to avoid a situation in which the sheet-like glass generates a level of charge that is substantially a problem. Examples of the surface treatment conditions on the back surface with the vaporized gas include the concentration and temperature of the treatment liquid, the atmospheric temperature, or the conveyance speed and exhaust amount of plate glass described later as influence factors. Therefore, by adjusting these influencing factors to appropriate values, the degree of improvement in the surface roughness Ra of the back surface of the sheet glass before and after the surface treatment can be controlled within the above range.

また、前記課題の解決は、本発明に係る板状ガラスの表面処理装置によっても達成される。すなわち、この表面処理装置は、板状ガラスの端面に処理液を供給する処理液供給部を備えた板状ガラスの表面処理装置において、処理液供給部の周囲を覆うと共に、板状ガラスの裏面を覆うケーシング部と、処理液供給部から端面に供給される処理液の気化により発生した処理液の気化ガスをケーシング部と裏面との隙間に誘導する誘導手段とをさらに具備する点をもって特徴付けられる(請求項1)。   Moreover, the solution of the above-mentioned problem is also achieved by the surface treatment apparatus for sheet glass according to the present invention. That is, this surface treatment apparatus is a plate-like glass surface treatment apparatus that includes a treatment liquid supply unit that supplies a treatment liquid to the end surface of the plate glass, and covers the periphery of the treatment liquid supply unit and the back surface of the plate glass. Characterized in that it further comprises a casing portion that covers the casing, and a guiding means that guides the vaporized gas of the processing liquid generated by vaporization of the processing liquid supplied to the end surface from the processing liquid supply portion into the gap between the casing portion and the back surface. (Claim 1).

この表面処理装置によれば、既に述べた本発明に係る表面処理方法と同様に、板状ガラスの端面に供給される処理液の気化ガスにより、板状ガラスの裏面に表面処理が施されるので、端面に処理液を供給する際に発生する処理液の気化ガスを有効に利用して裏面に表面処理を施すことができる。よって、裏面に処理液を供給する手段を別途設ける必要がなく、またそのための工程を新たに設けずに済む。もちろん、裏面に処理液を供給して表面処理を施す場合と比べて、格段に処理液の使用量を減らすことができるので、経済的である。さらに、本発明では、端面に供給した処理液の気化ガスをケーシング部と裏面との隙間に誘導することで裏面に表面処理を施すようにしたので、板状ガラスの端面と裏面に表面処理を施しつつも、板状ガラスの表面が、実質的な表面処理となる程度に処理液の気化ガスに曝される事態を防ぐことができる。従って、裏面を適度に粗面化して帯電を抑制または防止することができると共に、表面においては表面処理直前の面粗さを維持して、高い表面精度を確保することが可能となる。   According to this surface treatment apparatus, similarly to the surface treatment method according to the present invention described above, the surface treatment is performed on the back surface of the sheet glass by the vaporized gas of the treatment liquid supplied to the end surface of the sheet glass. Therefore, the surface treatment can be performed on the back surface by effectively using the vaporized gas of the treatment liquid generated when the treatment liquid is supplied to the end face. Therefore, it is not necessary to separately provide a means for supplying the processing liquid to the back surface, and it is not necessary to newly provide a process for that purpose. Of course, compared to the case where the surface treatment is performed by supplying the treatment liquid to the back surface, the amount of the treatment liquid used can be significantly reduced, which is economical. Furthermore, in the present invention, since the vapor treatment gas supplied to the end surface is guided to the gap between the casing portion and the back surface, the surface treatment is performed on the back surface. While being applied, it is possible to prevent the surface of the sheet glass from being exposed to the vaporized gas of the treatment liquid to such an extent that the surface of the plate glass is substantially treated. Therefore, the back surface can be appropriately roughened to suppress or prevent electrification, and the surface can be maintained with the surface roughness just before the surface treatment to ensure high surface accuracy.

さらに、本発明に係る表面処理装置によれば、板状ガラスの端面に対しては処理液による表面処理を施すと共に、板状ガラスの裏面に対しては処理液の気化ガスによる表面処理を施すようにした。これにより、端面においては、処理液供給部から供給された処理液で微小な凹凸や異物が溶解し、また、微小凹部内に保持されていたガラス粉などの異物が洗い流される。よって、端面を平滑化することができる。また、裏面においては、処理液の気化ガスに裏面が曝されることで当該裏面の表面処理が施されるので、供給面積が比較的大きな裏面であっても万遍なく気化状態の処理液を供給することができ、均一な表面処理を施すことができる。従って、要求される表面性状が互いに異なる端面と裏面とに、それぞれ適正な表面処理を施すことができ、1度の表面処理でもって端面の平滑化と裏面の粗面化とを同時に達成することが可能となる。また、ケーシング部と裏面との間に隙間を形成し、この隙間に気化ガスを誘導するようにしたので、処理液の気化ガスが拡散することなく裏面に供給される。よって、表面処理可能なガス濃度を確保して、適切な表面処理を裏面に施すことができる。   Furthermore, according to the surface treatment apparatus according to the present invention, the end surface of the sheet glass is subjected to a surface treatment with the treatment liquid, and the rear surface of the sheet glass is subjected to a surface treatment with a vaporized gas of the treatment liquid. I did it. Thereby, on the end face, minute irregularities and foreign matters are dissolved by the treatment liquid supplied from the treatment liquid supply unit, and foreign matters such as glass powder held in the minute depressions are washed away. Therefore, the end face can be smoothed. Moreover, since the back surface is subjected to surface treatment by exposing the back surface to the vaporized gas of the processing liquid on the back surface, even if the back surface has a relatively large supply area, the vaporized processing solution is uniformly distributed. It can be supplied and a uniform surface treatment can be applied. Therefore, it is possible to perform appropriate surface treatment on the end surface and the back surface, which require different surface properties, and to achieve smoothing of the end surface and roughening of the back surface by one surface treatment at the same time. Is possible. In addition, since a gap is formed between the casing portion and the back surface, and the vaporized gas is induced in the gap, the vaporized gas of the processing liquid is supplied to the back surface without diffusing. Therefore, it is possible to ensure a gas concentration capable of surface treatment and to perform an appropriate surface treatment on the back surface.

また、本発明に係る表面処理装置は、誘導手段が、上記隙間とケーシング部の外側空間とを連通する連通路と、連通路に接続され、隙間に誘導された気化ガスをケーシング部の外側空間に排出する排気装置とを有するものであってもよい(請求項2)。   Further, in the surface treatment apparatus according to the present invention, the guiding means communicates the gap and the outer space of the casing part, and the vaporized gas connected to the communicating path and guided to the gap is transferred to the outer space of the casing part. It is also possible to have an exhaust device that discharges the gas.

この構成によれば、処理液の気化ガスをケーシング部と板状ガラスの裏面との隙間に誘導しつつ、当該誘導して裏面に表面処理を施した後の気化ガスをケーシング部の外側空間に排出(排気)することができる。このように排気を行うことで、処理液の気化ガスがケーシング部と裏面との隙間に留まることなく流動し、途切れることなく上記隙間に誘導されることになるので、気化ガスによる裏面の表面処理を一定の条件で連続的に実施することが可能となる。   According to this configuration, the vaporized gas of the treatment liquid is guided to the gap between the casing portion and the back surface of the sheet glass, and the vaporized gas after being guided and subjected to the surface treatment on the back surface is introduced into the outer space of the casing portion. It can be discharged (exhaust). By exhausting in this way, the vaporized gas of the treatment liquid flows without staying in the gap between the casing part and the back surface, and is guided to the gap without interruption, so the surface treatment of the back surface with the vaporized gas Can be carried out continuously under certain conditions.

また、本発明に係る表面処理装置は、ケーシング部が、板状ガラスの表面と対向する箇所に第一の開口部を有するものであってもよい(請求項3)。   Moreover, the surface treatment apparatus which concerns on this invention may have a 1st opening part in the location where a casing part opposes the surface of sheet glass (Claim 3).

この構成によれば、誘導手段により処理液の気化ガスをケーシング部と裏面との隙間に誘導した際、板状ガラスの表面と対向する箇所に設けた第一の開口部を介して外気(ケーシング部の外側空間に存在する気体)をケーシング部と裏面との隙間に引き込む向きの流れを発生させることができる。よって、この流れにより、端面に供給した際に発生する処理液の気化ガスが板状ガラスの表面側に流動する事態を効果的に抑制することができる。   According to this configuration, when the vaporized gas of the processing liquid is guided to the gap between the casing portion and the back surface by the guiding means, the outside air (the casing) is provided via the first opening provided at a location facing the surface of the plate glass. Gas in the outer space of the part) can be generated in a direction in which the gas is drawn into the gap between the casing part and the back surface. Therefore, this flow can effectively suppress a situation in which the vaporized gas of the processing liquid generated when supplied to the end face flows to the surface side of the sheet glass.

また、本発明に係る表面処理装置は、ケーシング部と板状ガラスの裏面との隙間の幅寸法を可変可能に構成したものであってもよい(請求項5)。   Moreover, the surface treatment apparatus according to the present invention may be configured such that the width dimension of the gap between the casing portion and the back surface of the sheet glass can be varied (Claim 5).

上記構成によれば、裏面が処理液の気化ガスに曝される空間となるケーシング部と裏面との隙間の容積を調整することができる。上記隙間の容積があまりに大きいと、この隙間に誘導されて流れ込んだ気化ガスが拡散し、その濃度が低下するおそれがあるが、上述のように、上記隙間の幅寸法を可変可能とすることで、この隙間の容積を所望の表面処理レベルに見合った適切な大きさに調整することができる。よって、裏面に対する表面処理のレベルを調節して、処理後の裏面の表面粗さを制御することができる。特に、上記隙間の幅寸法は、端面の表面処理レベルにはあまり影響せず、主として裏面の表面処理レベルに影響を及ぼす。よって、上述のように隙間容積を調整することで、端面の表面処理とは切り離して裏面の表面処理レベルを制御することが可能となる。   According to the said structure, the volume of the clearance gap between the casing part used as the space where a back surface is exposed to the vaporization gas of a process liquid, and a back surface can be adjusted. If the volume of the gap is too large, the vaporized gas that has been guided to flow into the gap may diffuse and its concentration may decrease, but as described above, by making the width dimension of the gap variable. The volume of the gap can be adjusted to an appropriate size corresponding to a desired surface treatment level. Therefore, the surface roughness of the back surface after processing can be controlled by adjusting the level of the surface treatment for the back surface. In particular, the width dimension of the gap does not significantly affect the surface treatment level of the end surface, and mainly affects the surface treatment level of the back surface. Therefore, by adjusting the gap volume as described above, the surface treatment level of the back surface can be controlled separately from the surface treatment of the end surface.

また、上記と同様の観点から、本発明に係る表面処理装置に係る誘導手段が上記排気装置を有する場合、排気装置は、気化ガスの単位時間当りの排気量を調整可能に構成したものであってもよい(請求項6)。   Further, from the same viewpoint as described above, when the guiding means according to the surface treatment apparatus of the present invention includes the exhaust device, the exhaust device is configured to be capable of adjusting the exhaust amount per unit time of the vaporized gas. (Claim 6).

上記構成によれば、板状ガラスの裏面が処理液の気化ガスに曝される時間、すなわち気化ガスにより表面処理が施される時間を調整することができるので、裏面に対する表面処理のレベルを制御することができる。特に、裏面が気化ガスに曝される時間は、上記隙間幅寸法と同様、端面の表面処理レベルにはあまり影響せず、主として裏面の表面処理レベルに影響を及ぼす。よって、この手段によっても端面の表面処理とは切り離して裏面の表面処理レベルを制御することが可能となる。   According to the above configuration, it is possible to adjust the time during which the back surface of the sheet glass is exposed to the vaporized gas of the processing liquid, that is, the time during which the surface treatment is performed by the vaporized gas, so the level of the surface treatment on the back surface is controlled. can do. In particular, the time during which the back surface is exposed to the vaporized gas does not significantly affect the surface treatment level of the end surface, as with the gap width dimension, but mainly affects the surface treatment level of the back surface. Therefore, it is possible to control the surface treatment level of the back surface separately from the surface treatment of the end surface by this means.

また、本発明に係る表面処理装置は、板状ガラスが所定方向に搬送される場合において、処理液供給部が、板状ガラスの幅方向両側に配設され、ケーシング部が、双方の処理液供給部の周囲及び板状ガラスの裏面を覆うと共に、板状ガラスとその搬送方向で対向する箇所に第二の開口部を有するものであってもよい(請求項4)。なお、ここでいう「幅方向」とは、板状ガラスの搬送方向に直交し、かつ表裏面に沿った向きをいうものとする。   Further, in the surface treatment apparatus according to the present invention, when the sheet glass is conveyed in a predetermined direction, the treatment liquid supply units are disposed on both sides in the width direction of the sheet glass, and the casing unit is disposed on both treatment liquids. While covering the circumference | surroundings of a supply part and the back surface of plate glass, it may have a 2nd opening part in the location which opposes plate glass in the conveyance direction (Claim 4). Here, the “width direction” refers to a direction orthogonal to the conveying direction of the sheet glass and along the front and back surfaces.

この構成によれば、処理液による端面の表面処理と共に、処理液の気化ガスによる裏面の表面処理を、インライン(搬送ライン)上で同時に実施することができる。また、板状ガラスの搬送速度を調整することで、端面が処理液供給部から処理液の供給を受ける時間及び上記供給時に発生する処理液の気化ガスに裏面が曝される時間を調節することができる。よって、端面及び裏面に対する表面処理レベルを容易に制御することが可能となる。   According to this configuration, the surface treatment of the back surface with the vaporized gas of the treatment liquid can be simultaneously performed on the inline (conveyance line) together with the surface treatment of the end face with the treatment liquid. In addition, by adjusting the conveyance speed of the glass sheet, the time when the end surface receives supply of the processing liquid from the processing liquid supply unit and the time when the back surface is exposed to the vaporized gas of the processing liquid generated during the supply are adjusted. Can do. Therefore, it is possible to easily control the surface treatment level for the end face and the back face.

また、以上の説明に係る表面処理方法により得られる板状ガラスとして、例えば端面及び裏面に表面処理が施されたガラス基板であって、板厚T[mm]が0.5mm以下、裏面の表面粗さRa[nm]が0.3nm以上でかつ2.0nm以下、及び端面に沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、50×(0.7/T)2MPaを超えかつ200×(0.7/T)2MPa未満であるガラス基板を提供することができる(請求項9)。 Moreover, as a plate-like glass obtained by the surface treatment method according to the above description, for example, a glass substrate having a surface treatment applied to the end surface and the back surface, the plate thickness T [mm] is 0.5 mm or less, the back surface The roughness Ra [nm] is 0.3 nm or more and 2.0 nm or less, and the bending stress σ [MPa] at the time of bending deformation along the end surface is 50 × (0.7 / T) 2 A glass substrate that exceeds MPa and is less than 200 × (0.7 / T) 2 MPa can be provided (claim 9).

あるいは、以上の説明に係る表面処理方法により得られる板状ガラスとして、例えば端面及び裏面に表面処理が施された帯状板ガラスであって、板厚T[mm]が0.2mm以下、裏面の表面粗さRa[nm]が0.3nm以上でかつ2.0nm以下、及び板状ガラスのヤング率をE[MPa]とした場合において端面に沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、2.5×(E×T)/152.4[MPa]を超えかつ2.5×(E×T)/25.4MPa未満である帯状板ガラスを提供することができる(請求項10)。   Alternatively, as the plate-like glass obtained by the surface treatment method according to the above description, for example, a strip-like plate glass having a surface treatment applied to the end face and the back face, the plate thickness T [mm] is 0.2 mm or less, and the back face surface Bending stress at break σ when bending deformation along the end face occurs when the roughness Ra [nm] is 0.3 nm or more and 2.0 nm or less, and the Young's modulus of the sheet glass is E [MPa]. It is possible to provide a strip-shaped plate glass having [MPa] exceeding 2.5 × (E × T) /152.4 [MPa] and less than 2.5 × (E × T) /25.4 MPa (claimed) Item 10).

以上に述べたように、本発明によれば、表面処理による板状ガラスの端面及び裏面に対する表面処理を簡便に実施すると共に、その際の処理液の使用量を極力少なくすることで、上述の表面処理を低コストに実施することが可能となる。   As described above, according to the present invention, the surface treatment for the end surface and the back surface of the sheet glass by the surface treatment is simply performed, and the amount of the treatment liquid used at that time is reduced as much as possible, thereby Surface treatment can be performed at low cost.

本発明の一実施形態に係る板状ガラスの表面処理装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the surface treatment apparatus of the sheet glass which concerns on one Embodiment of this invention. 図1に示す表面処理装置の正面図である。It is a front view of the surface treatment apparatus shown in FIG. 図1に示す表面処理装置を図2と同方向から見た要部断面図である。It is principal part sectional drawing which looked at the surface treatment apparatus shown in FIG. 1 from the same direction as FIG. 図1に示す表面処理装置の平面図である。It is a top view of the surface treatment apparatus shown in FIG. 図1に示す表面処理装置の側面図である。It is a side view of the surface treatment apparatus shown in FIG. 本発明に係る表面処理装置を用いた表面処理の一例を説明するための要部断面図であって、端面に処理液を供給した際に発生する処理液の気化ガスの流れを説明するための要部断面図である。It is principal part sectional drawing for demonstrating an example of the surface treatment using the surface treatment apparatus which concerns on this invention, Comprising: It is for demonstrating the flow of the vaporization gas of the process liquid generated when a process liquid is supplied to an end surface It is principal part sectional drawing. 本発明の他の実施形態に係る板状ガラスの表面処理装置の平面図である。It is a top view of the surface treatment apparatus of the sheet glass concerning other embodiments of the present invention. 本発明の他の実施形態に係る板状ガラスの表面処理装置の正面図である。It is a front view of the surface treatment apparatus of the sheet glass concerning other embodiments of the present invention. 帯状板ガラスの端面及び裏面に対して本発明に係る表面処理を施す場合の一例を示す表面処理装置の側面図である。It is a side view of the surface treatment apparatus which shows an example in the case of performing the surface treatment which concerns on this invention with respect to the end surface and back surface of strip | belt-shaped plate glass.

以下、本発明の一実施形態を図1〜図6を参照して説明する。なお、本実施形態では、板状ガラスとして、成形した帯状板ガラスから所定の寸法に切り出したガラス基板の端面並びに裏面に表面処理を施す場合を例にとって説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a case will be described as an example in which surface treatment is performed on the end surface and the back surface of a glass substrate cut out to a predetermined size from a formed strip-shaped plate glass as the plate-shaped glass.

図1は、本発明の一実施形態に係る板状ガラスの表面処理装置10の斜視図を示している。図1に示すように、この表面処理装置10は、ガラス基板Gの端面Gaに処理液を供給する処理液供給部11と、処理液供給部11の周囲を覆うと共にガラス基板Gの裏面Gbを覆うケーシング部12と、処理液供給部11から端面Gaに供給された処理液の気化により発生した処理液の気化ガスをケーシング部12と裏面Gbとの隙間13(後述する図3を参照)に誘導する誘導手段14とを具備する。この実施形態では、表面処理装置10は、例えば図2以下に示すチャンバー15内に収容された状態で、搬送ローラ16を含むインライン上に配置される。   FIG. 1: has shown the perspective view of the surface treatment apparatus 10 of the sheet glass which concerns on one Embodiment of this invention. As shown in FIG. 1, the surface treatment apparatus 10 covers a periphery of the processing liquid supply unit 11 that supplies a processing liquid to the end surface Ga of the glass substrate G, and a back surface Gb of the glass substrate G. The casing part 12 to be covered and the vaporized gas of the processing liquid generated by the vaporization of the processing liquid supplied from the processing liquid supply part 11 to the end face Ga are put into a gap 13 between the casing part 12 and the back surface Gb (see FIG. 3 described later). Guidance means 14 for guiding. In this embodiment, the surface treatment apparatus 10 is disposed on an in-line including the conveyance roller 16 in a state accommodated in, for example, a chamber 15 shown in FIG.

ここで、表面処理の対象となるガラス基板Gには、例えばオーバーフローダウンドロー法に代表されるダウンドロー法や、フロート法などの公知の手段により帯状に成形することができ、帯状に成形した板状ガラス(帯状板ガラス)を所定の長手方向寸法に切断した後、必要に応じて二辺もしくは四辺の研磨加工を施したものが用いられる。   Here, the glass substrate G to be subjected to the surface treatment can be formed into a band shape by a known means such as a down draw method typified by an overflow down draw method or a float method. After the glass sheet (band-shaped plate glass) is cut into a predetermined longitudinal dimension, two or four sides are polished as necessary.

また、ガラス基板Gの組成面についても特に限定されないが、例えば実質的にアルカリ金属酸化物を含有しないもの(いわゆる「無アルカリガラス基板」)が好適に使用される。ここで、「実質的にアルカリ金属酸化物を含有しない」とは、ガラス組成中のアルカリ金属酸化物の含有量が1000ppm以下のことをいうものとする。   Further, the composition surface of the glass substrate G is not particularly limited. For example, a glass substrate that does not substantially contain an alkali metal oxide (so-called “non-alkali glass substrate”) is preferably used. Here, “substantially no alkali metal oxide” means that the content of alkali metal oxide in the glass composition is 1000 ppm or less.

処理液供給部11は、この実施形態では、図1に示すように、搬送されるガラス基板Gの幅方向両側に配設される。ここで、処理液供給部11は、例えば処理液を含浸させたスポンジゴム製のローラ17と、ローラ17に処理液を供給可能な処理液の貯溜タンク18(図2を参照)と、貯溜タンク18から処理液を吸上げてローラ17に供給するポンプ(図示は省略)とで構成することができる。この場合、各ローラ17は、ガラス基板Gの搬送に伴い、表面処理の対象となる幅方向の各端面Gaと接触することで、含浸させた処理液を端面Gaに塗布可能な幅方向位置に配置される。なお、ローラ17としては、スポンジゴム製の他、発泡ポリウレタンや発泡ポリエチレンなどの発泡樹脂で形成したもの等、処理液を含浸可能な構造を採り得る材料で形成することが可能である。もちろん、端面Gaに処理液を塗布可能な限りにおいて、例えばブラシ、ハケなどの他の塗布手段を採用することも可能である。あるいは、ガラス基板Gの表面Gcへの処理液の飛散を抑制可能な手段を併設可能であるならば、ノズルを設けたスプレー手段などを採用することも可能である。   In this embodiment, the processing liquid supply unit 11 is disposed on both sides in the width direction of the glass substrate G to be conveyed, as shown in FIG. Here, the processing liquid supply unit 11 includes, for example, a sponge rubber roller 17 impregnated with the processing liquid, a processing liquid storage tank 18 (see FIG. 2) capable of supplying the processing liquid to the roller 17, and a storage tank. A pump (not shown) that sucks the processing liquid from 18 and supplies it to the roller 17 can be used. In this case, each roller 17 comes into contact with each end face Ga in the width direction to be surface-treated as the glass substrate G is transported, so that the impregnated processing liquid can be applied to the end face Ga in the width direction position. Be placed. The roller 17 may be made of a material that can have a structure that can be impregnated with a treatment liquid, such as a foam rubber, as well as a foamed resin such as foamed polyurethane or foamed polyethylene. Of course, as long as the treatment liquid can be applied to the end face Ga, other application means such as a brush and a brush can be employed. Alternatively, if a means capable of suppressing the dispersion of the processing liquid onto the surface Gc of the glass substrate G can be provided, a spray means provided with a nozzle can be employed.

また、処理液供給部11から端面Gaに供給可能な処理液としては、酸性、アルカリ性の別なく適当な薬液を使用でき、例えばより短時間でのガラス粉等の溶解や除去を図る場合には、アルカリ性溶液よりもエッチング能力が高い酸性溶液を使用することが可能である。具体的には、HF(フッ酸)、HN4F(フッ化アンモニウム)、HNO4、H2SO4、HCl、H22を1種又は複数種混合したものを使用可能な酸性溶液の例として挙げることができる。また、これらフッ化物溶液の濃度は、3重量%以上でかつ40重量%以下の範囲にあることが好ましい。上述した処理液は、例えばその濃度や温度を調整された状態で、貯溜タンク18からローラ17に吸上げられて、又はローラ17に滴下されてその内部に含浸された状態で、ガラス基板Gの端面Gaに供給される。 In addition, as a treatment liquid that can be supplied from the treatment liquid supply unit 11 to the end face Ga, an appropriate chemical solution can be used regardless of whether it is acidic or alkaline. For example, when melting or removing glass powder or the like in a shorter time is desired. It is possible to use an acidic solution having a higher etching ability than an alkaline solution. Specifically, an acidic solution that can be used is a mixture of one or more of HF (hydrofluoric acid), HN 4 F (ammonium fluoride), HNO 4 , H 2 SO 4 , HCl, H 2 O 2 . As an example. Moreover, it is preferable that the density | concentration of these fluoride solutions exists in the range of 3 weight% or more and 40 weight% or less. The above-described treatment liquid is, for example, sucked by the roller 17 from the storage tank 18 or dropped into the roller 17 and impregnated inside the glass substrate G with its concentration and temperature adjusted. Supplied to the end face Ga.

ケーシング部12は、この実施形態では、処理液供給部11を構成するローラ17の周囲(端面及び外周面)を覆う一対のローラケーシング部19と、これら一対のローラケーシング部19と連続し、ローラ17と端面Gaとが接触した状態でガラス基板Gの裏面Gbとの間に所定寸法の隙間13を形成する板状の底部20とで構成される。ここで、ローラ17は駆動可能に構成されている。また、ケーシング部12は、図4に示すように、ローラ17がガラス基板Gの端面Gaに接触した状態においてガラス基板Gの表面Gcと対向する箇所に第一の開口部21を有しており、この際、ガラス基板Gの端面Gaを含む端部がローラケーシング部19で覆われるようになっている。また、このケーシング部12は、図2に示すように、搬送ローラ16上を搬送されるガラス基板Gとその搬送方向で対向する箇所に第二の開口部22を有しており、これにより、インライン上における表面処理装置10へのガラス基板Gの円滑な搬入及び搬出を可能としている。   In this embodiment, the casing portion 12 is connected to a pair of roller casing portions 19 that cover the periphery (end surface and outer peripheral surface) of the roller 17 that constitutes the processing liquid supply portion 11, and the pair of roller casing portions 19. 17 and a plate-like bottom portion 20 that forms a gap 13 having a predetermined dimension between the glass substrate G and the back surface Gb in a state where the end surface Ga is in contact with the glass substrate G. Here, the roller 17 is configured to be drivable. Moreover, the casing part 12 has the 1st opening part 21 in the location which opposes the surface Gc of the glass substrate G in the state which the roller 17 contacted the end surface Ga of the glass substrate G, as shown in FIG. At this time, the end portion including the end face Ga of the glass substrate G is covered with the roller casing portion 19. Moreover, as shown in FIG. 2, this casing part 12 has the 2nd opening part 22 in the location which opposes the glass substrate G conveyed on the conveyance roller 16, and its conveyance direction, thereby, The glass substrate G can be smoothly carried in and out of the surface treatment apparatus 10 on the in-line.

また、この実施形態では、図1〜図3に示すように、底部20の搬送方向両端に側部23が立設されており、ローラ17がガラス基板Gの端面Gaに接触した状態では、これら一対の側部23と底部20、及びガラス基板Gの裏面Gbとで、概ね周囲を覆った状態の隙間13が形成されるようになっている。この側部23は、隙間13の幅寸法によっては省略することも可能である。なお、この際、例えば底部20をローラケーシング部19に対して上下方向に相対移動可能に構成することで、あるいは、底部20を含むケーシング部12全体をローラ17に対して上下方向に相対移動可能に構成することで、隙間13の幅寸法を可変可能に構成してもよい。   Moreover, in this embodiment, as shown in FIGS. 1-3, the side part 23 is standingly arranged in the conveyance direction both ends of the bottom part 20, and these are in the state which the roller 17 contacted the end surface Ga of the glass substrate G. The pair of side portions 23, the bottom portion 20, and the back surface Gb of the glass substrate G form a gap 13 that substantially covers the periphery. The side portion 23 may be omitted depending on the width dimension of the gap 13. At this time, for example, the bottom portion 20 is configured to be movable relative to the roller casing portion 19 in the vertical direction, or the entire casing portion 12 including the bottom portion 20 can be moved relative to the roller 17 in the vertical direction. By configuring as above, the width dimension of the gap 13 may be variable.

誘導手段14は、隙間13とケーシング部12の外側空間とを連通する連通路24と、連通路24に接続され、隙間13に誘導された処理液の気化ガスをケーシング部12の外側空間に排出する排気装置25とを有する。この実施形態では、連通路24は、ケーシング部12の底部20の幅方向中央に開口形成されており、これにより、排気装置25による排気作用で、隙間13にその幅方向両側から誘導(流入)される気化ガスの流量を隙間13全域にわたって極力均一化している。また、排気装置25は、この実施形態では、チャンバー15の側壁部に設けられ、隙間13に誘導された処理液の気化ガスを連通路24を介してチャンバー15の外側空間に排出するようになっている。また、チャンバー15の天部には吸気部26が設けられており、排気装置25によりケーシング部12内の気体(処理液の気化ガスなど)がチャンバー15の外側空間に排出された際、チャンバー15内部へ外気を取り込むことで、負圧の発生を抑制するようにしている。また、この実施形態では、ケーシング部12のうち、ガラス基板Gの表面Gcと対向する箇所に第一の開口部21を設けているので、排気装置25により隙間13の気体をチャンバー15外に排出することで、吸気部26を介してチャンバー15内に取り込まれた外気が第一の開口部21を介して隙間13へと流れ込む気体の流れが形成される。よって、例えば排気装置25を、気化ガスの単位時間当りの排気量を調整可能に構成することで、隙間13における処理液の気化ガスの流量を制御可能となる。また、上述のように第一の開口部21を介して隙間13へと流れ込む気体の流れを形成することで、処理液の気化ガスがガラス基板Gの表面Gcと接触する事態を防止している。   The guiding means 14 is connected to the communication path 24 that communicates the gap 13 and the outer space of the casing part 12, and is connected to the communication path 24, and discharges the vaporized gas of the processing liquid guided to the gap 13 to the outer space of the casing part 12. And an exhaust device 25. In this embodiment, the communication passage 24 is formed to open at the center in the width direction of the bottom portion 20 of the casing portion 12, thereby guiding (inflowing) the gap 13 from both sides in the width direction by the exhaust action of the exhaust device 25. The flow rate of the vaporized gas is made as uniform as possible over the entire gap 13. Further, in this embodiment, the exhaust device 25 is provided on the side wall portion of the chamber 15, and discharges the vaporized gas of the processing liquid guided to the gap 13 to the outer space of the chamber 15 through the communication path 24. ing. In addition, an air intake portion 26 is provided at the top of the chamber 15, and when the gas in the casing portion 12 (e.g., vaporized gas of the processing liquid) is discharged to the outer space of the chamber 15 by the exhaust device 25, the chamber 15. By taking outside air into the interior, the generation of negative pressure is suppressed. In this embodiment, since the first opening 21 is provided in the casing portion 12 at a location facing the surface Gc of the glass substrate G, the gas in the gap 13 is discharged out of the chamber 15 by the exhaust device 25. As a result, a gas flow is formed in which the outside air taken into the chamber 15 via the intake portion 26 flows into the gap 13 via the first opening 21. Therefore, for example, by configuring the exhaust device 25 so that the exhaust amount per unit time of the vaporized gas can be adjusted, the flow rate of the vaporized gas of the processing liquid in the gap 13 can be controlled. Further, as described above, the gas flow flowing into the gap 13 through the first opening 21 is formed, thereby preventing the vaporized gas of the processing liquid from coming into contact with the surface Gc of the glass substrate G. .

以下、上記構成の表面処理装置10を用いたガラス基板Gの表面処理方法について説明する。   Hereinafter, the surface treatment method of the glass substrate G using the surface treatment apparatus 10 having the above configuration will be described.

まず、図4及び図5に示すように、搬送ローラ16によりガラス基板Gをチャンバー15内に搬送し、チャンバー15内に配設した処理液供給部11のローラ17を回転駆動させながらガラス基板Gの端面Gaと接触させることで、ローラ17に含浸させた処理液を端面Gaに塗布する。これにより、端面Gaに対してその搬送方向前方端から連続的に処理液が塗布され、当該処理液による端面Gaの表面処理が施される。また、この際、ローラ17から端面Gaに供給された処理液の一部が気化することで、端面Gaの周囲に処理液の気化ガスが発生する。この気化ガスを、排気装置25によりケーシング部12の底部20とガラス基板Gの裏面Gbとの隙間13に誘導することで、裏面Gbを上記処理液の気化ガスに曝す。これにより、裏面Gbがその搬送方向前方端から連続的に処理液の気化ガスに曝され、当該気化ガスによる裏面Gbの表面処理が施される。   First, as shown in FIGS. 4 and 5, the glass substrate G is transported into the chamber 15 by the transport roller 16, and the glass substrate G is rotated while the roller 17 of the processing liquid supply unit 11 disposed in the chamber 15 is rotationally driven. Then, the treatment liquid impregnated in the roller 17 is applied to the end face Ga. As a result, the treatment liquid is continuously applied to the end face Ga from the front end in the transport direction, and the surface treatment of the end face Ga with the treatment liquid is performed. At this time, a part of the processing liquid supplied from the roller 17 to the end face Ga is vaporized, so that a vaporized gas of the processing liquid is generated around the end face Ga. The vaporized gas is guided to the gap 13 between the bottom portion 20 of the casing portion 12 and the back surface Gb of the glass substrate G by the exhaust device 25, so that the back surface Gb is exposed to the vaporized gas of the processing liquid. Thereby, the back surface Gb is continuously exposed to the vaporized gas of the processing liquid from the front end in the transport direction, and the surface treatment of the back surface Gb with the vaporized gas is performed.

なお、この際、上記表面処理の前後で、裏面Gbの表面粗さRa[nm]が0.1nm以上でかつ1.8nm以下の範囲で向上(ここでは粗面化)するように、より好ましくは0.1nm以上でかつ0.8nm以下の範囲で向上するように、気化ガスによる裏面Gbへの表面処理条件が設定される。あるいは、上記表面処理後のガラス基板Gにおいて、端面Gaに沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、50×(0.7/T)2MPaを超えかつ200×(0.7/T)2MPa未満となるように、処理液による端面Gaへの表面処理条件が設定される。ここで、例えば端面Ga及び裏面Gbに対する表面処理条件は、上述した処理液の濃度や温度を調整する他、雰囲気温度(チャンバー15内の温度)やガラス基板Gの搬送速度を調整することによって適宜設定される。また、主に裏面Gbに対する表面処理条件は、上述した隙間13の幅寸法や排気装置25による気化ガスの単位時間当りの排気量を調整することによって適宜設定される。 In this case, it is more preferable that the surface roughness Ra [nm] of the back surface Gb is improved in the range of 0.1 nm or more and 1.8 nm or less (roughening here) before and after the surface treatment. The surface treatment conditions for the back surface Gb with the vaporized gas are set so that is improved in the range of 0.1 nm or more and 0.8 nm or less. Alternatively, in the glass substrate G after the surface treatment, the bending stress σ [MPa] at the time of bending deformation along the end face Ga exceeds 50 × (0.7 / T) 2 MPa and is 200 ×. Surface treatment conditions for the end face Ga by the treatment liquid are set so as to be less than (0.7 / T) 2 MPa. Here, for example, the surface treatment conditions for the end face Ga and the back face Gb are appropriately adjusted not only by adjusting the concentration and temperature of the treatment liquid described above, but also by adjusting the atmospheric temperature (temperature in the chamber 15) and the conveyance speed of the glass substrate G. Is set. Further, the surface treatment condition for the back surface Gb is appropriately set by adjusting the width dimension of the gap 13 and the exhaust amount per unit time of the vaporized gas by the exhaust device 25.

上述のようにして一連の表面処理が施されたガラス基板Gは、例えば板厚T[mm]が0.5mm以下、裏面Gbの表面粗さRa[nm]が0.3nm以上でかつ2.0nm以下、及び端面Gaに沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、50×(0.7/T)2MPaを超えかつ200×(0.7/T)2MPa未満を示す。 The glass substrate G subjected to a series of surface treatments as described above has, for example, a plate thickness T [mm] of 0.5 mm or less, a surface roughness Ra [nm] of the back surface Gb of 0.3 nm or more, and 2. The bending stress at break σ [MPa] when bending deformation along 0 mm or less and along the end face Ga exceeds 50 × (0.7 / T) 2 MPa and 200 × (0.7 / T) 2 Less than MPa.

このように、本発明では、ガラス基板Gの端面Gaに対しては処理液を供給するようにしたので、ガラス基板Gの端面Gaにおいては、ローラ17から供給された処理液で微小な凹凸や異物が溶解し、また微小凹部内に保持されていたガラス粉などの異物が洗い流される。従って、端面Gaを平滑化することができる。また、ケーシング部12でローラ17の周囲とガラス基板Gの裏面Gbとを覆うようにし、かつ誘導手段14により、ローラ17から端面Gaに供給される処理液の気化により発生した処理液の気化ガスをケーシング部12と裏面Gbとの隙間13に誘導するようにした。これにより、処理液の気化ガスに裏面Gbが曝されることで当該裏面Gbの表面処理が施される。よって、裏面Gbの全域にわたって万遍なく気化状態の処理液を供給することができ、均一な表面処理を施すことができる。また、ケーシング部12と裏面Gbとの間に隙間13を形成し、この隙間13に気化ガスを誘導するようにしたので、処理液の気化ガスが拡散することなく裏面Gbに供給される。よって、表面処理可能なガス濃度を確保して、適切な表面処理を裏面Gbに施すことができる。加えて、本発明では、端面Gaに処理液を供給する際に発生する処理液の気化ガスを有効に利用して裏面Gbに表面処理を施すようにしたので、裏面Gbに処理液を供給する手段を別途設ける必要がなく、またそのための工程を新たに設けずに済む。もちろん、裏面Gbに処理液を供給して表面処理を施す場合と比べて、格段に処理液の使用量を減らすことができるので、経済的である。   As described above, in the present invention, the processing liquid is supplied to the end surface Ga of the glass substrate G. Therefore, the end surface Ga of the glass substrate G has a minute unevenness or the like with the processing liquid supplied from the roller 17. Foreign matters are dissolved, and foreign matters such as glass powder held in the minute recesses are washed away. Therefore, the end face Ga can be smoothed. The casing 12 covers the periphery of the roller 17 and the back surface Gb of the glass substrate G, and the vaporization gas of the processing liquid generated by the vaporization of the processing liquid supplied from the roller 17 to the end face Ga by the guiding means 14. Is guided to the gap 13 between the casing portion 12 and the back surface Gb. Thereby, the surface treatment of the back surface Gb is performed by exposing the back surface Gb to the vaporized gas of the processing liquid. Therefore, the treatment liquid in a vaporized state can be supplied uniformly over the entire back surface Gb, and uniform surface treatment can be performed. Further, since the gap 13 is formed between the casing portion 12 and the back surface Gb, and the vaporized gas is guided into the gap 13, the vaporized gas of the processing liquid is supplied to the back surface Gb without being diffused. Therefore, it is possible to ensure a gas concentration capable of surface treatment and to perform an appropriate surface treatment on the back surface Gb. In addition, in the present invention, since the back surface Gb is subjected to the surface treatment by effectively using the vaporized gas of the processing liquid generated when the processing liquid is supplied to the end face Ga, the processing liquid is supplied to the back surface Gb. There is no need to provide a separate means, and a new process is not required. Of course, compared with the case where the surface treatment is performed by supplying the treatment liquid to the back surface Gb, the amount of treatment liquid used can be significantly reduced, which is economical.

さらに、本発明では、端面Gaに供給した処理液の気化ガスをケーシング部12と裏面Gbとの隙間13に誘導することで裏面Gbに表面処理を施すようにしたので、ガラス基板Gの端面Gaと裏面Gbに表面処理を施しつつも、ガラス基板Gの表面Gcが、実質的な表面処理となる程度に処理液の気化ガスに曝される事態を防ぐことができる。従って、裏面Gbを適度に粗面化して帯電を抑制または防止することができると共に、表面Gcにおいては表面処理直前の面粗さを維持して、高い表面精度を確保することが可能となる。   Furthermore, in the present invention, since the vapor treatment gas supplied to the end face Ga is guided to the gap 13 between the casing portion 12 and the back face Gb to perform the surface treatment on the back face Gb, the end face Ga of the glass substrate G is used. While the surface treatment is applied to the back surface Gb, it is possible to prevent the surface Gc of the glass substrate G from being exposed to the vaporized gas of the treatment liquid to such an extent that the surface treatment is substantially performed. Therefore, the back surface Gb can be appropriately roughened to suppress or prevent charging, and the surface Gc can maintain high surface accuracy by maintaining the surface roughness immediately before the surface treatment.

特に、この実施形態では、ローラ17及びローラ17と接する端面Gaを含むガラス基板Gの幅方向端部をローラケーシング部19で覆うようにしたので、ローラ17と端面Gaとの接触部で発生した処理液の気化ガスを漏れなく隙間13に誘導することができる。また、ケーシング部12のうち、ガラス基板Gの表面Gcと対向する箇所に第一の開口部21を設けることで、排気装置25により処理液の気化ガスを隙間13に誘導した際、第一の開口部21及びローラ17と端面Gaとの接触部を介して外気を隙間13に引き込む向きの流れを発生させることができる。よって、この流れにより、端面Gaに供給した際に発生する処理液の気化ガスがガラス基板Gの表面Gc側に流動する事態を効果的に抑制することができる。   In particular, in this embodiment, the width direction end portion of the glass substrate G including the roller 17 and the end surface Ga in contact with the roller 17 is covered with the roller casing portion 19, and thus the contact portion between the roller 17 and the end surface Ga is generated. The vaporized gas of the treatment liquid can be guided to the gap 13 without leakage. Further, by providing the first opening 21 at a location facing the surface Gc of the glass substrate G in the casing portion 12, when the gas for the treatment liquid is guided to the gap 13 by the exhaust device 25, the first opening 21 is provided. A flow in a direction that draws outside air into the gap 13 can be generated through the opening 21 and the contact portion between the roller 17 and the end face Ga. Therefore, this flow can effectively suppress a situation in which the vaporized gas of the processing liquid generated when supplied to the end face Ga flows toward the surface Gc of the glass substrate G.

また、この実施形態では、処理液を含浸させたローラ17の周囲(端面及び外周面)をローラケーシング部19で覆うと共に、このローラケーシング部19と連続する底部20でもってガラス基板Gの裏面Gbとの間に所定幅寸法の隙間13を形成するようにしたので、ローラ17と端面Gaとの接触部だけでなく、ローラ17に含浸させた処理液がローラ17の表面(端面及び外周面)で気化することで生じる処理液の気化ガスについても漏れなく有効に利用して、底部20と裏面Gbとの隙間13に誘導することができる。よって、気化ガスによる裏面Gbの表面処理をより効果的に行うことができる。また、このことによっても気化ガスの表面Gc側への流動をより効果的に抑制することができる。   Further, in this embodiment, the periphery (end surface and outer peripheral surface) of the roller 17 impregnated with the processing liquid is covered with the roller casing portion 19, and the back surface Gb of the glass substrate G with the bottom portion 20 continuous with the roller casing portion 19. Since the gap 13 having a predetermined width is formed between the surface of the roller 17 and the treatment liquid impregnated in the roller 17 (end surface and outer peripheral surface) as well as the contact portion between the roller 17 and the end surface Ga. The vaporized gas of the treatment liquid generated by vaporization can be effectively used without leakage and guided to the gap 13 between the bottom 20 and the back surface Gb. Therefore, the surface treatment of the back surface Gb with vaporized gas can be performed more effectively. This also makes it possible to more effectively suppress the flow of the vaporized gas toward the surface Gc.

以上、本発明の一実施形態を説明したが、本発明に係る表面処理装置又は表面処理方法は、当然に本発明の範囲内において任意の形態を採ることができる。   Although one embodiment of the present invention has been described above, the surface treatment apparatus or the surface treatment method according to the present invention can naturally take any form within the scope of the present invention.

例えば上記実施形態では、チャンバー15の内部に、一対の処理液供給部11(ローラ17)を具備した板状ガラスの表面処理装置10を配設した場合を例示したが、もちろんこれ以外の構成を採ることも可能である。図7はその一例を示すもので、同図に係る板状ガラスの表面処理装置10は、一対の処理液供給部11とケーシング部12、及び誘導手段14を、ガラス基板Gの搬送方向に沿って複数列に配設してなる。この場合、まず搬送ラインの上流側(図7でいえば右側)に配設した一対の処理液供給部11と一対の処理液供給部11とケーシング部12、及び誘導手段14とによって、上述の如く、ガラス基板Gの端面Gaに処理液による表面処理が施されると共に、裏面Gbに処理液の気化ガスによる表面処理が施される。このようにして端面Gaと裏面Gbとに表面処理が施されたガラス基板Gはさらに下流側(図7でいえば左側)に配設した一対の処理液供給部11と一対の処理液供給部11とケーシング部12、及び誘導手段14とによって、上述の如く、処理液による端面Gaへの表面処理を受けると共に、処理液の気化ガスによる裏面Gbへの表面処理を受ける。従って、1個のチャンバー15内において、端面Gaと裏面Gb共に複数回の表面処理を施すことができるので、ガラス基板Gの搬送速度を落とさずとも必要十分な表面処理を端面Ga及び裏面Gbに施すことが可能となる。   For example, in the above-described embodiment, the case where the plate-like glass surface treatment apparatus 10 including the pair of treatment liquid supply units 11 (rollers 17) is disposed inside the chamber 15 is illustrated. It is also possible to take. FIG. 7 shows an example, and a sheet glass surface treatment apparatus 10 according to the same drawing shows a pair of treatment liquid supply unit 11, casing unit 12, and guiding means 14 along the conveyance direction of glass substrate G. Arranged in a plurality of rows. In this case, first, the pair of processing liquid supply units 11, the pair of processing liquid supply units 11, the casing unit 12, and the guiding unit 14 arranged on the upstream side (right side in FIG. 7) As described above, the end surface Ga of the glass substrate G is subjected to the surface treatment with the treatment liquid, and the back surface Gb is subjected to the surface treatment with the vaporized gas of the treatment liquid. In this way, the glass substrate G on which the end surface Ga and the back surface Gb are subjected to the surface treatment is further provided with a pair of processing liquid supply units 11 and a pair of processing liquid supply units arranged on the downstream side (left side in FIG. 7). 11, the casing portion 12, and the guiding means 14 receive the surface treatment on the end face Ga with the treatment liquid and the surface treatment on the back surface Gb with the vaporized gas of the treatment liquid as described above. Accordingly, both the end face Ga and the back face Gb can be subjected to surface treatment a plurality of times in one chamber 15, so that necessary and sufficient surface treatment can be applied to the end face Ga and the back face Gb without reducing the conveyance speed of the glass substrate G. Can be applied.

また、上記実施形態では、板状ガラスの表面処理方法として、処理液供給部11の周囲を覆うと共にガラス基板Gの裏面Gbを覆うケーシング部12を設けて、このケーシング部12と裏面Gbとの間に所定幅寸法の隙間13を設け、この隙間13に処理液の気化ガスを誘導する場合を説明したが、もちろんケーシング部12以外で裏面Gbとの間に隙間13を形成するようにしても構わない。図8はその一例を示すもので、同図に係る表面処理装置10は主に、板状の隙間形成部27をガラス基板Gの裏面Gbと対向する箇所に配置してなるもので、一対の処理液供給部11(ローラ17)とガラス基板Gの端面Gaとが接触した状態において、隙間形成部27と裏面Gbとの間に所定幅寸法の隙間13を形成可能に構成される。また、幅方向端部を除くガラス基板Gの表面Gcと一対の処理液供給部11(ローラ17)との間には一対の仕切り28が配設されており、ローラ17と端面Gaとの接触部ないしローラ17の周囲に生じた処理液の気化ガスがガラス基板Gの表面Gc(の品質保証面)側に流れ込む事態を抑制可能としている。また、この図示例では、隙間形成部27の幅方向中央に搬送方向に延びるスリット29が形成されると共に、このスリット29の下方に排気装置25が配設されている。これにより、ローラ17から端面Gaに処理液を供給する際に生じる処理液の気化ガスを隙間形成部27と裏面Gbとの隙間13に誘導して、誘導した気化ガスによる裏面Gbの表面処理を実施可能としている。   Moreover, in the said embodiment, the casing part 12 which covers the circumference | surroundings of the process liquid supply part 11 and covers the back surface Gb of the glass substrate G as a surface treatment method of plate glass is provided, and this casing part 12 and back surface Gb A case has been described in which a gap 13 having a predetermined width is provided between them, and the vaporized gas of the processing liquid is induced in the gap 13. Of course, the gap 13 may be formed between the back surface Gb other than the casing portion 12. I do not care. FIG. 8 shows an example, and the surface treatment apparatus 10 according to FIG. 8 is mainly formed by arranging a plate-shaped gap forming portion 27 at a position facing the back surface Gb of the glass substrate G. In a state where the processing liquid supply unit 11 (roller 17) and the end face Ga of the glass substrate G are in contact with each other, a gap 13 having a predetermined width can be formed between the gap forming part 27 and the back surface Gb. In addition, a pair of partitions 28 are disposed between the surface Gc of the glass substrate G excluding the end portion in the width direction and the pair of processing liquid supply units 11 (rollers 17), and contact between the rollers 17 and the end surface Ga. It is possible to suppress a situation in which the vaporized gas of the processing liquid generated around the part or the roller 17 flows into the surface Gc (quality assurance surface) side of the glass substrate G. In the illustrated example, a slit 29 extending in the transport direction is formed at the center of the gap forming portion 27 in the width direction, and an exhaust device 25 is disposed below the slit 29. Thereby, the vaporized gas of the processing liquid generated when the processing liquid is supplied from the roller 17 to the end face Ga is guided to the gap 13 between the gap forming portion 27 and the back surface Gb, and the surface treatment of the back surface Gb with the induced vaporized gas is performed. Implementation is possible.

なお、上記実施形態では、ガラス基板Gの長辺となる端面Gaに対して処理液による表面処理を施した場合を説明したが、もちろんこれに限る必要はない。例えば、長辺側の端面Gaに対して処理液による表面処理を施した後、ガラス基板Gを90度反転させて、ガラス基板Gの短辺側の端面Gd(図1等を参照)に対して上述した処理液による表面処理を施すようにしてもよい。また、この際、長辺側の端面Gaと短辺側の端面Gdの何れか一方の表面処理のときのみ本発明に係る表面処理(処理液の気化ガスによる表面処理)を裏面Gbに施すようにしてもよいし、双方の端面Ga,Gdの表面処理の際に上記気化ガスによる表面処理を裏面Gbに施すようにしてもよい。   In the above-described embodiment, the case where the end surface Ga which is the long side of the glass substrate G is subjected to the surface treatment with the treatment liquid has been described. However, the present invention is not limited to this. For example, after the surface treatment with the treatment liquid is performed on the end surface Ga on the long side, the glass substrate G is inverted by 90 degrees to the end surface Gd on the short side of the glass substrate G (see FIG. 1 and the like). The surface treatment with the above-described treatment liquid may be performed. Further, at this time, the surface treatment (surface treatment with the vaporized gas of the treatment liquid) according to the present invention is performed on the back surface Gb only during the surface treatment of either one of the end surface Ga on the long side and the end surface Gd on the short side. Alternatively, the surface treatment with the vaporized gas may be performed on the back surface Gb during the surface treatment of both end faces Ga and Gd.

また、以上の説明では、帯状板ガラスから切り出したガラス基板Gの端面Ga及び裏面Gbに対して所定の表面処理を施す場合を説明したが、もちろん帯状板ガラスの端面及び裏面に本発明を適用することも可能である。図9はその一例を示すもので、同図に示す表面処理装置10は、帯状に成形して幅方向に切断した後、その長手方向一端又は両端を巻き取ったガラスフィルムGF(図9では両端を巻き取る場合(ロール・ツー・ロールの場合)を例示している)の端面Ga及び裏面Gbに対して本発明に係る表面処理を実施可能な位置に配設されている。よって、例えばこの状態から一方のガラスフィルムロールGRにガラスフィルムGFを巻き取る動作を行い、その際に搬送ローラ16上を巻き取り方向に移動するガラスフィルムGFの端面Gaに対して、一対の処理液供給部11とケーシング部12、及び誘導手段14とによる表面処理を施す。これにより、巻き取り動作中のガラスフィルムGFの端面Gaに処理液による表面処理を施すと共に、裏面Gbに処理液の気化ガスによる表面処理を施すことができる。   Moreover, although the above description demonstrated the case where predetermined surface treatment was performed with respect to the end surface Ga and back surface Gb of the glass substrate G cut out from the strip-shaped plate glass, of course, this invention is applied to the end surface and back surface of a strip-shaped plate glass. Is also possible. FIG. 9 shows an example. The surface treatment apparatus 10 shown in FIG. 9 is a glass film GF (one end or both ends in FIG. The end surface Ga and the back surface Gb are illustrated at positions where the surface treatment according to the present invention can be performed. Therefore, for example, an operation of winding the glass film GF on one glass film roll GR from this state is performed, and a pair of treatments is performed on the end surface Ga of the glass film GF moving in the winding direction on the conveying roller 16 at that time. Surface treatment is performed by the liquid supply part 11, the casing part 12, and the guiding means 14. Thereby, the surface treatment with the treatment liquid can be performed on the end surface Ga of the glass film GF during the winding operation, and the surface treatment with the vaporized gas of the treatment liquid can be performed on the back surface Gb.

なお、この際、上記表面処理の前後で、ガラスフィルムGFの裏面Gbの表面粗さRa[nm]が0.1nm以上でかつ1.8nm以下の範囲で向上(粗面化)するように、より好ましくは0.1nm以上でかつ0.8nm以下の範囲で向上するように、気化ガスによる裏面Gbへの表面処理条件が設定される。あるいは、上記表面処理後のガラスフィルムGFにおいて、ガラスフィルムGFのヤング率をE[MPa]とした場合において端面Gaに沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、2.5×(E×T)/152.4[MPa]を超えかつ2.5×(E×T)/25.4MPa未満となるように、処理液による端面Gaへの表面処理条件が設定される。   At this time, before and after the surface treatment, the surface roughness Ra [nm] of the back surface Gb of the glass film GF is improved (roughened) in the range of 0.1 nm to 1.8 nm. More preferably, the surface treatment conditions for the back surface Gb with the vaporized gas are set so as to improve within a range of 0.1 nm or more and 0.8 nm or less. Alternatively, in the glass film GF after the surface treatment, when the Young's modulus of the glass film GF is E [MPa], the bending stress σ [MPa] at the time of bending deformation along the end face Ga is 2 The surface treatment conditions for the end face Ga by the treatment liquid are set so as to exceed 0.5 × (E × T) /152.4 [MPa] and less than 2.5 × (E × T) /25.4 MPa. The

また、上述のようにして一連の表面処理が施されたガラスフィルムGFは、例えば板厚T[mm]が0.2mm以下、裏面Gbの表面粗さRa[nm]が0.3nm以上でかつ2.0nm以下、及びガラスフィルムGFのヤング率をE[MPa]とした場合において端面Gaに沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、2.5×(E×T)/152.4[MPa]を超えかつ2.5×(E×T)/25.4MPa未満を示す。   The glass film GF subjected to a series of surface treatments as described above has, for example, a plate thickness T [mm] of 0.2 mm or less and a surface roughness Ra [nm] of the back surface Gb of 0.3 nm or more and The bending stress σ [MPa] at the time of bending deformation along the end face Ga when the Young's modulus of the glass film GF is 2.0 [nm] or less is 2.5 × (E × T) /152.4 [MPa] is exceeded and less than 2.5 × (E × T) /25.4 MPa.

形態(ガラス基板、ガラスフィルム)及び厚みの異なる5種類の板状ガラス(実施例1〜5)を用意し、本発明の図1に示す表面処理装置を用いて端面及び裏面に表面処理を施した後、裏面の表面粗さと、端面に沿った曲げ変形を生じた際の破壊時曲げ応力を測定した。また、比較例として、本発明に係る表面処理を施していない、あるいは端面のみに表面処理を施した6種類の板状ガラスを用意し、実施例と同様、裏面の表面粗さと端面に沿った曲げ変形による破壊を生じた際の曲げ応力を測定した。以下、各実施例及び比較例の詳細を説明する。
(実施例1)
帯状に成形し、所定のサイズ(730×920×0.5t 単位:mm)に切り出した後、端面に研削面取りを施した無アルカリガラス基板の端面に、後述する処理液を含浸したスポンジ状のローラ(ウレタンゴム製)に接触させながら、ガラス基板を搬送させることで、端面に処理液による表面処理を施した。また、連通路としての排気ダクトの一端をケーシング部に開口接続すると共に他端を排気装置に接続してなる誘導手段を設けることで、ケーシング部内の気体(処理液の気化ガス)をチャンバー外部に排気可能とし、これにより処理液を端面に供給する際に発生する処理液の気化ガスを裏面とケーシング部との隙間に誘導して、裏面に処理液の気化ガスによる表面処理を施した。この際、処理液には、液温30℃、濃度10wt%に調整したフッ酸(HF)水溶液を使用した。また、この処理液をローラに1ml/1minの速度で滴下供給することで、ローラに接触した端面に常に処理液が塗布可能とした。また、ガラス基板の裏面とケーシング部との隙間に関し、その幅寸法を10mm、その搬送方向寸法(図1で言えば側部23の対向間隔)を100mmとして、処理液の気化ガスによる裏面の表面処理を実施した。以上の作業(表面処理)を、雰囲気温度25℃、排気量0.5m3/min、及びガラス基板の搬送速度1m/minの条件下で実施した。
(実施例2)
実施例1と比べて厚みのみ異なる(0.3t)無アルカリガラス基板の端面に処理液による表面処理を施すと共に、裏面に処理液の気化ガスによる表面処理を施した。表面処理条件は、ガラス基板の搬送速度を0.5m/minとした以外は、実施例1と同じである。
(実施例3)
帯状に成形し、炭酸ガスレーザーにて切断した後、ロール状に巻き取った無アルカリガラスフィルム(500×0.05t 単位:mm)の端面に処理液による表面処理を施すと共に、裏面に処理液の気化ガスによる表面処理を施した。表面処理条件は実施例1と同じである。
(実施例4)
実施例3と比べて厚みのみ異なる(0.2t)無アルカリガラスフィルムの端面に処理液による表面処理を施すと共に、裏面に処理液の気化ガスによる表面処理を施した。表面処理条件は、ガラスフィルムの搬送速度(巻き取り速度)を0.5m/minとした以外は、実施例1と同じである。
(実施例5)
実施例4と同一の無アルカリガラスフィルムの端面に処理液による表面処理を施すと共に、裏面に処理液の気化ガスによる表面処理を施した。表面処理条件は、ガラスフィルムの搬送速度を1.5m/minとした以外は、実施例1と同じである。
(比較例1)
実施例1と比べて厚みのみ異なる(0.7t)無アルカリガラス基板を形成し、端面及び裏面に表面処理を施すことなしに、上述の表面粗さ及び破壊時曲げ応力の測定を行った。
(比較例2)
実施例1と同一の無アルカリガラス基板を形成し、端面及び裏面に表面処理を施すことなしに、上述の表面粗さ及び破壊時曲げ応力の測定を行った。
(比較例3)
実施例1と同一の無アルカリガラス基板を形成し、ケーシング部と誘導手段とを設けないこと以外は実施例1と同一構成の表面処理装置を用いて、端面のみに処理液による表面処理を施した。表面処理条件は、排気量を1.0m3/minとした以外は、実施例1と同じである。
(比較例4)
実施例3と同一の無アルカリガラスフィルムを形成し、端面及び裏面に表面処理を施すことなしに、上述の表面粗さ及び破壊時曲げ応力の測定を行った。
(比較例5)
実施例4と同一の無アルカリガラスフィルムを形成し、端面及び裏面に表面処理を施すことなしに、上述の表面粗さ及び破壊時曲げ応力の測定を行った。
(比較例6)
実施例3と同一の無アルカリガラスフィルムを形成し、比較例3と同一の設備を用いて、端面のみに処理液による表面処理を施した。表面処理条件は比較例3と同じである。
Five types of glass sheets (Examples 1 to 5) having different forms (glass substrates and glass films) and thicknesses are prepared, and surface treatment is performed on the end surface and the back surface using the surface treatment apparatus shown in FIG. 1 of the present invention. After that, the surface roughness of the back surface and the bending stress at breakage when bending deformation along the end surface occurred were measured. In addition, as a comparative example, six types of plate-like glasses that were not subjected to the surface treatment according to the present invention or were subjected to a surface treatment only on the end surface were prepared. The bending stress at the time of fracture due to bending deformation was measured. Hereinafter, details of each example and comparative example will be described.
Example 1
After forming into a strip shape and cutting out to a predetermined size (730 × 920 × 0.5 t unit: mm), the end surface of the alkali-free glass substrate whose end surface is ground and chamfered is impregnated with a treatment liquid described later. The glass substrate was conveyed while being in contact with a roller (made of urethane rubber), whereby the end surface was subjected to a surface treatment with a treatment liquid. Also, by providing a guiding means having one end of an exhaust duct as a communication passage connected to the casing portion and the other end connected to an exhaust device, the gas in the casing portion (vaporized gas of the processing liquid) is brought out of the chamber. It was possible to evacuate, whereby the vaporized gas of the processing liquid generated when the processing liquid was supplied to the end surface was guided to the gap between the back surface and the casing part, and the back surface was subjected to surface treatment with the vaporized gas of the processing liquid. At this time, a hydrofluoric acid (HF) aqueous solution adjusted to a liquid temperature of 30 ° C. and a concentration of 10 wt% was used as the treatment liquid. In addition, the treatment liquid can be always applied to the end surface in contact with the roller by dropping and supplying the treatment liquid to the roller at a rate of 1 ml / 1 min. Further, regarding the gap between the back surface of the glass substrate and the casing part, the width dimension is 10 mm, the transport direction dimension (opposite distance of the side part 23 in FIG. 1) is 100 mm, and the back surface by the vaporized gas of the processing liquid Processing was carried out. The above operation (surface treatment) was performed under the conditions of an atmospheric temperature of 25 ° C., a displacement of 0.5 m 3 / min, and a glass substrate transfer speed of 1 m / min.
(Example 2)
The end surface of the alkali-free glass substrate which differs only in thickness compared to Example 1 (0.3 t) was subjected to a surface treatment with a treatment liquid, and the back surface was subjected to a surface treatment with a vaporized gas of the treatment liquid. The surface treatment conditions are the same as those in Example 1 except that the conveyance speed of the glass substrate is set to 0.5 m / min.
(Example 3)
After forming into a strip shape and cutting with a carbon dioxide laser, the end surface of a non-alkali glass film (500 × 0.05 t unit: mm) wound up in a roll shape is subjected to surface treatment with a treatment solution, and the treatment solution is applied to the back surface. The surface treatment was performed using the vaporized gas. The surface treatment conditions are the same as in Example 1.
Example 4
The end surface of the alkali-free glass film that differs only in thickness compared to Example 3 (0.2 t) was subjected to a surface treatment with a treatment liquid, and the back surface was subjected to a surface treatment with a vaporized gas of the treatment liquid. The surface treatment conditions are the same as those in Example 1 except that the conveyance speed (winding speed) of the glass film is 0.5 m / min.
(Example 5)
The end surface of the same alkali-free glass film as in Example 4 was subjected to a surface treatment with a treatment liquid, and the back surface was subjected to a surface treatment with a vaporized gas of the treatment liquid. The surface treatment conditions are the same as in Example 1 except that the glass film conveyance speed is 1.5 m / min.
(Comparative Example 1)
An alkali-free glass substrate having a thickness different from that of Example 1 (0.7 t) was formed, and the surface roughness and the bending stress at break were measured without subjecting the end surface and the back surface to surface treatment.
(Comparative Example 2)
The same alkali-free glass substrate as in Example 1 was formed, and the surface roughness and the bending stress at break were measured without subjecting the end surface and the back surface to surface treatment.
(Comparative Example 3)
A surface treatment apparatus having the same configuration as in Example 1 is used except that the same alkali-free glass substrate as in Example 1 is formed and the casing part and the guiding means are not provided, and only the end surface is subjected to surface treatment with the treatment liquid. did. The surface treatment conditions are the same as in Example 1 except that the displacement is 1.0 m 3 / min.
(Comparative Example 4)
The same alkali-free glass film as in Example 3 was formed, and the surface roughness and the bending stress at break were measured without subjecting the end surface and the back surface to surface treatment.
(Comparative Example 5)
The same alkali-free glass film as in Example 4 was formed, and the surface roughness and the bending stress at break were measured without subjecting the end surface and the back surface to surface treatment.
(Comparative Example 6)
The same alkali-free glass film as in Example 3 was formed, and using the same equipment as in Comparative Example 3, only the end surface was subjected to surface treatment with the treatment liquid. The surface treatment conditions are the same as in Comparative Example 3.

また、上述のようにして得られた各試験片(実施例1〜5、比較例1〜6)に対する、端面に沿った曲げ変形を生じた際の破壊時曲げ応力の測定試験を以下の条件で実施した。各試験片についてN=20(回)の測定試験を実施した。
(ガラス基板の場合)
処理液による表面処理を施した端面を長辺とする15×60の短冊状試験片を切り出し、この短冊状試験片の裏面をスパン45mmで支持した状態で、表面の長手方向中央に0.5mm/minのストローク荷重を負荷し(3点曲げ)、破壊(破断)を生じた時点の荷重を測定することで、破壊時の曲げ応力を算出した。この際の破壊時曲げ応力σ[MPa]は、試験片の幅寸法をB[mm]、破壊時の測定荷重をP[N]、試験片の厚み寸法をh[mm]、試験片の支持スパンをL[mm]としたとき、以下の数式:σ=3×P×L/2×B×h2 から算出される。
(ガラスフィルムの場合)
一対の板状治具で、折り返した状態のガラスフィルムを挟み込んだ状態で、当該一対の板状治具の対向面間隔を50mm/minの割合で狭めていき、破壊を生じた時点の対向面間隔を測定することで、破壊時の曲げ応力を算出した。この際の破壊時曲げ応力σ[MPa]は、試験片のヤング率をE[MPa]、試験片の厚み寸法をT[mm]、破壊時の対向面間隔をD[mm]としたとき、以下の数式:σ=1.198×(E×T)/(D−T) から算出される。
Moreover, the measurement test of the bending stress at the time of the bending deformation along the end surface with respect to each test piece (Examples 1 to 5 and Comparative Examples 1 to 6) obtained as described above was performed under the following conditions. It carried out in. Each test piece was subjected to a measurement test of N = 20 (times).
(In the case of glass substrate)
A 15 × 60 strip-shaped test piece having an end surface subjected to surface treatment with a treatment liquid as a long side is cut out, and the back surface of the strip-shaped test piece is supported by a span of 45 mm. The bending stress at the time of breakage was calculated by applying a stroke load of / min (3 point bending) and measuring the load at the time when the breakage (breakage) occurred. In this case, the bending stress at break σ [MPa] is B [mm] for the width of the test piece, P [N] for the measurement load at break, h [mm] for the thickness of the test piece, and support for the test piece. When the span is L [mm], it is calculated from the following formula: σ = 3 × P × L / 2 × B × h 2 .
(In the case of glass film)
With the pair of plate-shaped jigs sandwiching the folded glass film, the distance between the opposed surfaces of the pair of plate-shaped jigs is reduced at a rate of 50 mm / min. The bending stress at the time of fracture was calculated by measuring the interval. The bending stress at break σ [MPa] at this time is that the Young's modulus of the test piece is E [MPa], the thickness dimension of the test piece is T [mm], and the distance between opposing surfaces at the time of break is D [mm] It is calculated from the following formula: σ = 1.198 × (E × T) / (DT).

ガラス基板の場合の試験結果を表1に、ガラスフィルムの場合の試験結果を表2にそれぞれ示す。

Figure 2013212965
Figure 2013212965
Table 1 shows the test results for the glass substrate, and Table 2 shows the test results for the glass film.
Figure 2013212965
Figure 2013212965

まず、ガラス基板の場合において、端面に何らの表面処理を施さなかった場合(比較例1,2)、十分な破壊時曲げ応力が得られないことがわかる。また、この曲げ応力が、厚み寸法の2乗に比例して低下することもわかる。また、端面に処理液による表面処理を施した場合であっても、処理液を供給する際に発生する処理液の気化ガスをガラス基板の裏面側に誘導していない場合(比較例3)には、気化ガスがチャンバー内に充満して、裏面だけでなく表面についても粗面化されることがわかる。これに対して、本発明に係る表面処理を施した場合(実施例1,2)、端面が平滑化されることで所要の破壊時曲げ応力が得られることがわかる。また、表面の表面粗さを維持しつつも裏面を粗面化できることがわかる。   First, in the case of a glass substrate, it can be seen that when no surface treatment is applied to the end face (Comparative Examples 1 and 2), sufficient bending stress at break cannot be obtained. It can also be seen that this bending stress decreases in proportion to the square of the thickness dimension. Further, even when the end surface is subjected to a surface treatment with a treatment liquid, when the vaporized gas of the treatment liquid generated when the treatment liquid is supplied is not guided to the back side of the glass substrate (Comparative Example 3). It can be seen that the vaporized gas fills the chamber and is roughened not only on the back surface but also on the front surface. On the other hand, when the surface treatment according to the present invention is performed (Examples 1 and 2), it is understood that the required bending stress at break can be obtained by smoothing the end face. Moreover, it turns out that a back surface can be roughened, maintaining the surface roughness of a surface.

また、ガラスフィルムの場合において、端面に何らの表面処理を施さなかった場合(比較例4,5)、十分な破壊時曲げ応力(この場合は、アプリケーション適用時に要求される長期的な強度)が得られないことがわかる。また、端面に処理液による表面処理を施した場合であっても、処理液を供給する際に発生する処理液の気化ガスをガラスフィルムの裏面側に誘導していない場合(比較例6)には、気化ガスがチャンバー内に充満して、裏面だけでなく表面についても粗面化されることがわかる。これに対して、本発明に係る表面処理を施した場合(実施例3,4)においては、端面が平滑化されることで所要の破壊時曲げ応力が得られることがわかる。また、表面の表面粗さを維持しつつも裏面を粗面化できることがわかる。また、ガラス基板の搬送速度、言い換えると端面及び裏面の表面処理速度を高めた場合(実施例5)であっても、必要最小限の破壊時曲げ応力が得られることがわかる。よって、この場合、使用する処理液の量を大幅に減らしつつも、適切な表面処理を施し得ることがわかる。   Moreover, in the case of a glass film, when no surface treatment is applied to the end face (Comparative Examples 4 and 5), sufficient bending stress at break (in this case, long-term strength required at the time of application application) It turns out that it cannot be obtained. Further, even when the end surface is subjected to a surface treatment with the treatment liquid, when the vaporized gas of the treatment liquid generated when the treatment liquid is supplied is not guided to the back side of the glass film (Comparative Example 6). It can be seen that the vaporized gas fills the chamber and is roughened not only on the back surface but also on the front surface. On the other hand, in the case where the surface treatment according to the present invention is performed (Examples 3 and 4), it is understood that the required bending stress at breakage can be obtained by smoothing the end face. Moreover, it turns out that a back surface can be roughened, maintaining the surface roughness of a surface. It can also be seen that the minimum necessary bending stress at break can be obtained even when the glass substrate transport speed, in other words, the surface treatment speed of the end face and the back face is increased (Example 5). Therefore, in this case, it can be seen that an appropriate surface treatment can be performed while greatly reducing the amount of the treatment liquid to be used.

10 表面処理装置
11 処理液供給部
12 ケーシング部
13 隙間
14 誘導手段
15 チャンバー
16 搬送ローラ
17 ローラ
18 貯溜タンク
19 ローラケーシング部
20 底部
21,22 開口部
23 側部
24 連通路
25 排気装置
26 吸気部
27 隙間形成部
28 仕切り
29 スリット
G ガラス基板
Ga,Gd 端面
Gb 裏面
Gc 表面
GF ガラスフィルム
GR ガラスフィルムロール
DESCRIPTION OF SYMBOLS 10 Surface treatment apparatus 11 Process liquid supply part 12 Casing part 13 Crevice 14 Guidance means 15 Chamber 16 Conveyance roller 17 Roller 18 Storage tank 19 Roller casing part 20 Bottom part 21, 22 Opening part 23 Side part 24 Communication path 25 Exhaust device 26 Intake part 27 Gap formation part 28 Partition 29 Slit G Glass substrate Ga, Gd End surface Gb Back surface Gc Surface GF Glass film GR Glass film roll

Claims (10)

板状ガラスの端面に処理液を供給する処理液供給部を備えた板状ガラスの表面処理装置において、
前記処理液供給部の周囲を覆うと共に、前記板状ガラスの裏面を覆うケーシング部と、
前記処理液供給部から前記端面に供給される前記処理液の気化により発生した前記処理液の気化ガスを前記ケーシング部と前記裏面との隙間に誘導する誘導手段とをさらに具備することを特徴とする板状ガラスの表面処理装置。
In the sheet glass surface treatment apparatus provided with the treatment liquid supply unit for supplying the treatment liquid to the end surface of the sheet glass,
A casing portion that covers the periphery of the processing liquid supply unit and covers the back surface of the plate glass,
The apparatus further comprises guiding means for guiding the vaporized gas of the processing liquid generated by vaporization of the processing liquid supplied from the processing liquid supply unit to the end surface into the gap between the casing and the back surface. Sheet glass surface treatment equipment.
前記誘導手段は、前記隙間と前記ケーシング部の外側空間とを連通する連通路と、該連通路に接続され、前記隙間に誘導された前記気化ガスを前記ケーシング部の外側空間に排出する排気装置とを有する請求項1に記載の板状ガラスの表面処理装置。   The guiding means communicates the gap and the outer space of the casing part, and the exhaust device is connected to the communicating path and discharges the vaporized gas induced in the gap to the outer space of the casing part. The surface treatment apparatus of the sheet glass of Claim 1 which has these. 前記ケーシング部は、前記板状ガラスの表面と対向する箇所に第一の開口部を有する請求項1又は2に記載の板状ガラスの表面処理装置。   The surface treatment apparatus for plate glass according to claim 1, wherein the casing portion has a first opening at a position facing the surface of the plate glass. 前記板状ガラスは所定方向に搬送され、
前記処理液供給部は、前記板状ガラスの幅方向両側に配設され、
前記ケーシング部は、前記双方の処理液供給部の周囲及び前記板状ガラスの裏面を覆うと共に、前記板状ガラスを搬送方向に通過可能な第二の開口部を有する請求項1〜3の何れかに記載の板状ガラスの表面処理装置。
The plate glass is conveyed in a predetermined direction,
The treatment liquid supply unit is disposed on both sides in the width direction of the plate glass,
The casing according to any one of claims 1 to 3, further comprising a second opening that covers the periphery of both of the processing liquid supply units and the back surface of the sheet glass and is capable of passing the sheet glass in the transport direction. A sheet glass surface treatment apparatus according to claim 1.
前記隙間の幅寸法を可変可能に構成されている請求項1〜4の何れかに記載の板状ガラスの表面処理装置。   The surface treatment apparatus for sheet glass according to any one of claims 1 to 4, wherein the width dimension of the gap is configured to be variable. 前記排気装置は、前記気化ガスの単位時間当りの排気量を調整可能に構成されている請求項2に記載の板状ガラスの表面処理装置。   The surface treatment apparatus for plate glass according to claim 2, wherein the exhaust device is configured to be capable of adjusting an exhaust amount per unit time of the vaporized gas. 板状ガラスの端面に処理液を供給することで前記端面に前記処理液による表面処理を施す板状ガラスの表面処理方法において、
前記端面に前記処理液を供給する際に発生する前記処理液の気化ガスを前記板状ガラスの裏面側に誘導することで、前記裏面に前記気化ガスによる表面処理を施すことを特徴とする板状ガラスの表面処理方法。
In the surface treatment method of the plate glass, which performs surface treatment with the treatment liquid on the end face by supplying the treatment liquid to the end face of the plate glass,
A plate characterized in that a surface treatment with the vaporized gas is performed on the back surface by guiding the vaporized gas of the processing liquid generated when the processing liquid is supplied to the end surface to the back surface side of the plate glass. For surface treatment of glassy glass.
前記表面処理の前後で、前記裏面の表面粗さRa[nm]が0.1nm以上でかつ1.8nm以下の範囲で向上するように、前記気化ガスによる前記裏面への表面処理条件を設定する請求項7に記載の板状ガラスの表面処理方法。   Before and after the surface treatment, conditions for surface treatment of the back surface with the vaporized gas are set so that the surface roughness Ra [nm] of the back surface is improved in a range of 0.1 nm to 1.8 nm. The surface treatment method of the sheet glass of Claim 7. 請求項7又は8に記載の表面処理方法により、前記端面及び前記裏面に表面処理が施されたガラス基板であって、
板厚T[mm]が0.5mm以下、
前記裏面の表面粗さRa[nm]が0.3nm以上でかつ2.0nm以下、及び
前記端面に沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、50×(0.7/T)2MPaを超えかつ200×(0.7/T)2MPa未満であることを特徴とするガラス基板。
A glass substrate having a surface treatment applied to the end surface and the back surface by the surface treatment method according to claim 7 or 8,
Plate thickness T [mm] is 0.5 mm or less,
The surface roughness Ra [nm] of the back surface is 0.3 nm or more and 2.0 nm or less, and the bending stress σ [MPa] at the time of bending deformation along the end surface is 50 × (0. 7 / T) exceed 2 MPa and 200 × (0.7 / T) glass substrate and less than 2 MPa.
請求項7又は8に記載の表面処理方法により、前記端面及び前記裏面に表面処理が施された帯状板ガラスであって、
板厚T[mm]が0.2mm以下、
前記裏面の表面粗さRa[nm]が0.3nm以上でかつ2.0nm以下、及び
前記板状ガラスのヤング率をE[MPa]とした場合において前記端面に沿った曲げ変形を生じた際の破壊時曲げ応力σ[MPa]が、2.5×(E×T)/152.4[MPa]を超えかつ2.5×(E×T)/25.4MPa未満であることを特徴とする帯状板ガラス。
A strip-shaped plate glass having a surface treatment applied to the end surface and the back surface by the surface treatment method according to claim 7 or 8,
Plate thickness T [mm] is 0.2 mm or less,
When the surface roughness Ra [nm] of the back surface is 0.3 nm or more and 2.0 nm or less, and when the Young's modulus of the sheet glass is E [MPa], bending deformation occurs along the end surface The bending stress at break σ [MPa] is more than 2.5 × (E × T) /152.4 [MPa] and less than 2.5 × (E × T) /25.4 MPa. Strip glass sheet.
JP2012084930A 2012-04-03 2012-04-03 Apparatus and method for treating surface of sheet glass Pending JP2013212965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084930A JP2013212965A (en) 2012-04-03 2012-04-03 Apparatus and method for treating surface of sheet glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084930A JP2013212965A (en) 2012-04-03 2012-04-03 Apparatus and method for treating surface of sheet glass

Publications (1)

Publication Number Publication Date
JP2013212965A true JP2013212965A (en) 2013-10-17

Family

ID=49586625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084930A Pending JP2013212965A (en) 2012-04-03 2012-04-03 Apparatus and method for treating surface of sheet glass

Country Status (1)

Country Link
JP (1) JP2013212965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018052805A (en) * 2016-09-21 2018-04-05 旭硝子株式会社 Glass sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018052805A (en) * 2016-09-21 2018-04-05 旭硝子株式会社 Glass sheet

Similar Documents

Publication Publication Date Title
JP6048817B2 (en) Sheet glass surface treatment apparatus and surface treatment method
JP5617556B2 (en) Strip glass film cleaving apparatus and strip glass film cleaving method
US8312741B2 (en) Cleaving method for a glass film
US10322961B2 (en) Electrostatically pinned glass roll, methods and apparatus for making
CN106233433B (en) Etaching device, engraving method, the manufacturing method of substrate and substrate
KR101543832B1 (en) Glass substrate and glass substrate production method
US11117824B2 (en) Method and device for producing band-shaped glass film
JP2013212965A (en) Apparatus and method for treating surface of sheet glass
JP6629557B2 (en) Glass substrate manufacturing equipment
JP4785210B2 (en) Substrate transfer device
US10261371B2 (en) Method for manufacturing glass substrate, glass substrate, and panel for display
JP2017066002A (en) Method for producing glass substrate for display, and apparatus for producing glass substrate for display
JP2015202997A (en) Substrate, substrate production system, peeling device, substrate production method and peeling method
JP6870617B2 (en) Display glass substrate and its manufacturing method
JP7045647B2 (en) Glass substrate
KR101543831B1 (en) Glass substrate and glass substrate production method
JP6270176B2 (en) Sheet glass surface treatment apparatus and surface treatment method
JP2017066001A (en) Method for producing glass substrate for display, and apparatus for producing glass substrate for display
KR20200019693A (en) Glass substrate surface treatment method
CN214937037U (en) Glass plate manufacturing device
JP2017071516A (en) Manufacturing method of glass substrate
KR101159208B1 (en) Film transfer system
JP2014231222A (en) Glass film laminate and method of producing electronic device
JP2020047820A (en) Float transportation device
JP2017154903A (en) Apparatus for surface treatment of glass substrate and method for producing glass substrate