WO2014038327A1 - 需要家エネルギー管理装置およびシステム - Google Patents

需要家エネルギー管理装置およびシステム Download PDF

Info

Publication number
WO2014038327A1
WO2014038327A1 PCT/JP2013/071032 JP2013071032W WO2014038327A1 WO 2014038327 A1 WO2014038327 A1 WO 2014038327A1 JP 2013071032 W JP2013071032 W JP 2013071032W WO 2014038327 A1 WO2014038327 A1 WO 2014038327A1
Authority
WO
WIPO (PCT)
Prior art keywords
consumer
energy management
power
equipment
equipment operation
Prior art date
Application number
PCT/JP2013/071032
Other languages
English (en)
French (fr)
Inventor
冨田 泰志
俊之 三宅
広考 高橋
渡辺 雅浩
大西 司
諒 江頭
貴文 二上
勝弘 松田
Original Assignee
株式会社日立製作所
東北電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 東北電力株式会社 filed Critical 株式会社日立製作所
Publication of WO2014038327A1 publication Critical patent/WO2014038327A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to an energy management apparatus and system for consumers, and more particularly to a consumer energy management apparatus and system for managing the power supply and demand of each consumer via a network.
  • Patent Document 1 the priority order of customer devices to be operated in the event of a power failure is set in advance, and the priority order is within the range of power that can be supplied by the photovoltaic power generation device PV and the storage battery at the time of a power failure.
  • the priority order is within the range of power that can be supplied by the photovoltaic power generation device PV and the storage battery at the time of a power failure.
  • Patent Document 1 it is possible to preferentially operate a device having a high priority in each time section.
  • the object of the present invention is to set the equipment operation pattern so that the equipment operation needs of consumers are fully satisfied in a situation where the power consumption must be limited to a target value or less during a certain period. It is to provide a system to create.
  • the present invention is a consumer energy management apparatus connected via a network to a power demand management system that calculates a power supply / demand balance in a consumer and determines an operation pattern of load equipment in the consumer.
  • the consumer energy management device includes an input means for inputting a device operation request, which is data in which a demand is associated with a condition relating to a time zone and an operation state that the consumer wants to operate for each load device in the consumer, and power demand.
  • Display means for displaying a corrected equipment operation pattern created in the management system and maximizing the total value of the required degree of satisfaction among the input conditions, and the display means includes the input equipment Among the operation requests, those permitted and rejected are displayed separately on the same screen.
  • the present invention is a consumer energy management system in which a power demand management system and a consumer energy management device installed in a consumer are connected via a network,
  • the consumer energy management device creates and displays a device operation request that is data that associates the requirement level with the conditions related to the time zone and operation state that the customer wants to operate for each load device in the customer,
  • the power demand management system calculates a power supply / demand balance when the customer is operated based on the equipment operation request obtained via the network, and creates a corrected equipment operation pattern
  • the consumer energy management apparatus is characterized in that the corrected equipment operation pattern created in the power demand management system is displayed by distinguishing between permitted and rejected equipment operation requests.
  • the operation of the current device is canceled, so that another device later If it becomes possible to operate multiple devices, if there is a need to prioritize the operation of that device, or if it becomes possible to operate multiple devices by canceling the operation of the current device, that device should be prioritized.
  • the possibility of operation of other equipment is increased. It is possible to adjust the equipment operation pattern so that the equipment operation needs of the consumer who wants to search are satisfied as much as possible.
  • the figure which shows the example of whole structure of a consumer energy management system The figure which shows the example of whole structure of a general electric power system.
  • the figure which shows the input display framework of the consumer terminal EMS The figure which shows the display content of the initial state of the customer terminal EMS.
  • the flowchart which shows the creation process of a consumer apparatus operation pattern.
  • FIG. 2 is a diagram illustrating an example of the overall configuration of a general power system.
  • the power system is a system that supplies power to the consumer R, and supplies the power generated by the power generation facility G to the large-scale consumer R1 via the transmission line L1, the transformer Tr1 installed in the substation, and the high-voltage distribution line L2.
  • the power system is a system that supplies power to the consumer R, and supplies the power generated by the power generation facility G to the large-scale consumer R1 via the transmission line L1, the transformer Tr1 installed in the substation, and the high-voltage distribution line L2.
  • power is supplied at 6000 volts.
  • the voltage is lowered to 100 volts or 200 volts by the transformer Tr2 on the pole installed in the high voltage distribution line L2, and is connected to the low voltage distribution line L3.
  • the low-voltage distribution line L3 is connected to a small-scale consumer R2 (also referred to as a general consumer) such as a general household, and is supplied with power.
  • the present invention can be applied to any consumer, but here, a case where it is applied to a general household will be described.
  • Electric load devices such as air conditioners, televisions, washing machines, dryers, refrigerators, and electric water heaters are installed at the end of these consumers and are supplied with electric power. These are so-called loads.
  • power storage equipment such as a storage battery or a solar power generation device PV may be installed.
  • customer devices these devices installed at the customer end are collectively referred to as customer devices.
  • the load equipment may be referred to as consumer load equipment and the power generation equipment may be referred to as consumer power equipment.
  • FIG. 1 is a diagram showing an example of the overall configuration of a customer energy management system according to the present embodiment.
  • the customer energy management system includes a customer terminal EMS installed in each customer R, a power demand management system (hereinafter referred to as a DSM server) installed in a power supply facility such as a sales office, and the like. It is composed of a communication network NW to be connected.
  • a DSM server power demand management system
  • customer terminal EMS connected to the DSM server constitutes a consumer energy management device alone.
  • the DSM server which is a power demand management system, may be installed for each appropriate unit of the customer R.
  • the customer R connected to the low voltage distribution line L3 stepped down by the pole transformer Tr2 is managed. This will be explained with the example of the target. In this case, it is assumed that three customers R21, R22, and R23 in the region below the x mark in the figure are to be managed, the power usage is restricted by the DSM server, and the demand is adjusted.
  • Consumers R21, R22, and R23 include solar power generation device PV, storage battery B, and electric vehicle charging device EV in R21 as consumer power generation equipment in addition to consumer load equipment, and solar power generation in R22 and R23.
  • the apparatus PV and the storage battery B are provided.
  • the consumer's photovoltaic power generation device PV and the storage battery B serve as a power supply source in the region.
  • the photovoltaic power generator PV generates power according to the weather conditions, and the storage battery B supplies the power shortage of the power generated by the photovoltaic power generator PV among the power consumption of the electrical load equipment. It is controlled and discharged under the constraints of the remaining charge and performance.
  • the electric vehicle charging device EV can be a load or a power source depending on its operation.
  • the DSM server which is a power demand management system installed in the power supply side facility, and the consumer terminal EMS installed in each consumer function in cooperation with each other, Demand adjustment is performed to reduce the amount of electricity used by customers in emergencies such as disasters.
  • demand adjustment is performed to suppress the amount of power used within the range of the total power supply amount including the power generation amount of the consumer power generation equipment.
  • the present invention can be applied to either case, but here, a case where a power generation device in a consumer is provided will be mainly described. And this consumer shall aim at operating within the range of the power supply capacity by the power generation equipment in a consumer.
  • each consumer uses the consumer terminal EMS installed in the consumer to use the power usage plan date. Enter the desired usage plan for the load equipment in the customer.
  • the use plan of the load equipment in the consumer desired by the consumer is adjusted including the judgment of the DSM server, and is set as the use plan of the load equipment in the consumer determined on the power use plan date.
  • the customer terminal EMS performs management of energy usage and control of each consumer device (customer load device, consumer power generation device) according to the usage plan of the consumer load device determined on the power usage plan date. Specifically, a customer equipment operation plan pattern is received from the DSM server, and a control signal for changing the operating state is transmitted to each consumer equipment so as to realize this. It is also possible to consider a form in which the consumer equipment operation plan pattern is only displayed on the UI (User Interface) screen of the consumer terminal EMS, and the consumer refers to this to manually change the equipment settings.
  • UI User Interface
  • the DSM server proposes a new usage plan for in-consumer load equipment in consideration of the power supply / demand status in the consumer in response to the usage plan for in-consumer load equipment desired by the customer.
  • the DSM server functions to maintain a total supply and demand balance of the generated power of the photovoltaic power generation device PV in the target area, the discharge power of the storage battery, and the power consumption of the load equipment in the consumer.
  • it functions to maximize the power usage needs (convenience and comfort) of consumers in the target area.
  • the DSM server formulates a plan for adjusting the operating state of the load device in the customer's consumer, and distributes it to each customer terminal EMS as a customer device operation plan pattern.
  • the customer terminal EMS realizes the above function in cooperation with the DSM server.
  • the customer terminal EMS can input and display the usage plan of the load device in the customer, and is the basis for the judgment in the DSM server. It is necessary to display various information (for example, the relationship between power supply and demand).
  • the customer terminal EMS that matches the purpose is configured as an input display terminal having a UI screen as shown in FIG. 3, for example.
  • the customer terminal EMS as an example is divided into upper and lower areas, and the upper area is a usage plan input display field W1 for the load equipment in the consumer, and the lower part is a power supply and demand display field.
  • the usage plan input display column W1 is further subdivided into a plurality of columns, and is composed of a customer ID display column W11, a consumer load device display column W12, and a time-based usage plan input display column W13 from the left side.
  • the power supply / demand display column W2 in the lower area is subdivided into a plurality of columns, and is composed of a general display column W21, a supply / demand balance display column W22, and a power amount display column by time zone W23 from the left side.
  • the initial state refers to a state immediately before a consumer's housekeeper inputs a desired use plan of the load equipment in the consumer on the power use plan date (here, for example, July 1). .
  • the customer ID display field W11 displays that this customer is R21, the degree of conformity, the set number of points, and the display box B1 for displaying the number of points.
  • the fitness, the number of set points, and the number of points will be described later.
  • the plurality of small columns constituting the consumer load device display column W12 indicate that the consumer load device is, for example, an air conditioner, an electric water heater, or a refrigerator, and the degree of conformity and the total demand for each consumer load device.
  • Display boxes B21, B22, and B23 are displayed individually from the top. The total request level will be described later.
  • the screen can be moved appropriately by scrolling or the like to be displayed. For each item of load equipment in the consumer, the usage plan for every 30 minutes is input and displayed in the adjacent usage schedule input display column W13 for each time zone, but at this stage, it is still input and displayed. Absent.
  • a display box B3 for displaying the fitness, the set number of points, and the total frame is displayed as a total (TOTAL) in the total display column W21 on the left side.
  • the total frame will be described later.
  • each of the plurality of small columns constituting the supply / demand balance display column W22 items of photovoltaic power generation PV, storage battery remaining amount, demand load, and supply / demand balance are displayed. For these items, the power value for each 30-minute interval is displayed as a bar graph in the adjacent power amount display column W23 for each time zone, but is not displayed at this stage.
  • the consumer equipment on the planned power usage date requested by the consumer is 1 hour from 6:00 to 7:00 in the morning (display A) and 3 hours from 12:00 to 15:00 in the morning.
  • Display B The user wants to use. I would like to operate the electric water heater for one hour from 6:00 to 7:00 in the morning (display C) and the refrigerator all day (display E). In addition, it is also possible to make a conditional request that the user wants to use at least 2 hours out of 3 hours from 12:00 to 15:00 in the daytime.
  • the customer terminal EMS is provided with a UI screen such as a touch panel as a means for inputting or displaying, and can display, erase, set length, input various characters and numerical values, and display necessary icons. It is supposed to be. Although this means is not particularly limited, the functions that the customer terminal EMS should have for input and display will be described later.
  • FIG. 6 shows specific examples of the icons A to E on the use plan input screen input by the consumer in FIG.
  • the icons A to E indicate the length of time that the operation is desired, and the icons A and C indicate that the driver desires to drive for 1 hour in this time zone.
  • “Min” of icons B and E means the minimum driving time for which driving is desired. However, since the length of icon B ranges from 3 o'clock to 12 o'clock from 3 o'clock, at least of these 3 hours It means that you want to drive for 2 hours.
  • the icon E means 24 hours, so it means that you want to drive all day.
  • the icon D is temporarily displayed during this time period.
  • each icon for example, 8 for icon A, 3 for icon B, and 10 for icon C are input.
  • This numerical value in the window is the degree of demand for each consumer device, and the higher the numerical value, the higher the demand for using this consumer device.
  • the use of a refrigerator with a numerical value of 10 throughout the day and the use of an electric water heater at 6 o'clock is higher than other appliances in the consumer, indicating the necessity of use.
  • “Cold” of icon B, “Storage” of icon D, and “On” of icon E are the operation states (operation modes) of the devices in each consumer, and mean cooling operation, heat storage operation, and operation state On, respectively.
  • the icon B “28” means that the set temperature of the air conditioner is 28 degrees.
  • the “input” and “Fix” icons will be described later.
  • the usage plan of the load device in the consumer desired on the power usage plan date input in this way is the power demand management system (DSM server) installed in the power supply side facility such as a sales office via the communication network NW. ).
  • DSM server power demand management system
  • 1 includes a data management unit 34, a customer equipment operation planning unit 32, a customer terminal EMS communication unit 33, an input / output unit 30, and an overall control unit 31.
  • the data management unit 34 is composed of a database DB that holds various data for effective formulation of a customer equipment operation plan.
  • the main databases are device operation pattern data DB1, device operation request data DB2, request fitness data DB3, supply and demand balance data DB4, supply capability prediction data DB5, consumer load device power consumption data DB6, weather prediction data DB7, device characteristics This is the data DB 8, and the data management unit 34 manages these data.
  • the device operation pattern data DB1 is data that gives the change contents of the operation state of each customer device at each time within the target period. In particular, changes that can be performed from the outside of the customer's equipment are targeted.
  • the power source On and the power source Off are provided for the television, the power source On and the power source Off are provided for the refrigerator, and the washing machine has a power changing means only by the power source On and the power Off.
  • FIG. 1 An example of the device operation pattern data DB1 is shown in FIG. This equipment operation pattern is created for each customer ID. For example, in the case of the customer R21, the change contents of the operating state for each consumer device used here are summarized in time series.
  • a refrigerator as a consumer device, this operates all day as shown in FIG. Therefore, for example, when described in units of 30 minutes, the operation mode is set to On at any time.
  • the air conditioner will be used for 1 hour from 6:00 to 7:00 in the morning and 3 hours from 12:00 to 15:00 in the morning in the plan of FIG. For this reason, as the stored contents of this time zone, the operation mode is cooling and the set temperature is stored as 28 degrees. There is no information on the change contents other than the time zone, which means that the air conditioner is stopped. Note that the set temperature of the air conditioner is 28 degrees is a part of the items included in the setting items by the customer terminal EMS and set by the householder.
  • the operation mode of the electric water heater is On at midnight until 6 am. Although not shown in FIG. 5, it is also stored that the television is used from 12:00 to 15:00.
  • This data is information input by each customer via the customer terminal EMS and is registered in the DSM server.
  • the data model of the equipment operation request data DB2 is an important element as a means for capturing customer needs into the power demand management system (DSM server).
  • the device operation request data DB2 is a bundle of a plurality of single request data. That is, when the usage plan for each consumer device is single request data, the device operation request data DB2 is a summary of the usage plans of all the consumer devices for this consumer for 24 hours.
  • each single request data is information described in the use plan input display field W13 for each time zone for the small column for each column in the consumer load device display field W12 in FIG. , Consumer equipment, target period, operating conditions, operating time, and request data.
  • the information on the operating conditions and the degree of request is information that is entered in characters or numerical values in part of the icons AE in FIG. 5, and is information that is set by the customer.
  • the operating condition is to set the set temperature of the air conditioner to 28 ° C.
  • the required level is a numerical expression of the degree of desire to use the consumer load device. For example, if the required level of air conditioner is 3 and the required level of TV is 1, it means that even if you endure the TV, you want to use the air conditioner.
  • FIG. 8 shows a specific example of the device operation request data DB 2 that summarizes the usage plans of the load devices in the customer input as shown in FIG.
  • the details of the description contents (single request data) of each column in the example of FIG. 8 can be easily understood from the above description and FIG. Here is a reference explanation of matters that can be read from this database. By registering as in the example of FIG. 8, the following request can be expressed.
  • the degree of request is 10, which indicates that the constant operation of the refrigerator has higher needs than other load devices in the consumer.
  • Single request No.2 I would like to operate the air conditioner at a set temperature of 28 ° C or lower from 12:00 to 15:00 on the planned power use date (7/1). However, the degree of request is 3, indicating that the priority is relatively low.
  • the demand for an electric water heater is as high as that of a refrigerator, but it is not enough for continuous operation at midnight.
  • the operating time zone expresses a requirement that it can be determined with priority given to the operation of equipment such as a refrigerator and that there is room for adjustment.
  • This combination expresses a request to operate the heat storage operation for a minimum of 1 hour and 2 hours if there is a surplus power between 0:00 and 6:00 on the planned power use date (7/1).
  • Fig. 9 shows a specific example of the required fitness data DB3.
  • the requirement fitness data DB3 is data that gives an evaluation value of the degree to which the device operation pattern data DB1 satisfies the device operation request data DB2.
  • the equipment operation pattern data DB1 is obtained and output so that the required conformity is as large as possible.
  • Requirement conformity data DB3 is composed of conformity for each consumer device and total adaptability.
  • the degree of conformance for each device is extracted from the individual device operation request data (single request data) in the device operation request data DB 2 that satisfies the device operation pattern data, and the required level is aggregated for each customer device. It is the total value.
  • FIG. 9 shows an example of the requirement conformity regarding the device operation request data DB2 in FIG. 4 of the device operation pattern DB1 in FIG.
  • the degree of conformity in the specific case for the customer R1 is as follows.
  • Refrigerator is always in operation from 0:00 to 24:00, so the fitness is “10” as it is. Since the air conditioner is operated for 4 hours from 6:00 to 7:00 and from 12:00 to 15:00, the conformity is the sum of the numerical values “3” and “8” of the request, and the conformance is “11”.
  • the electric water heater operates for 1.5 hours of heat storage operation from 0:00 to 7:00, so the fitness is “10” as it is. Since the television operates for 3 hours from 12:00 to 15:00, the fitness is “1” as it is. For this reason, the total value is the total value “32” of the fitness.
  • This is data that gives a change pattern of PV power generation output, storage battery charge / discharge power, and power consumption of consumer equipment.
  • An equipment operation pattern in which the supply-demand balance ⁇ 0 is an infeasible solution as a planning problem. Actually, the protection device of each device and breaker operates and a power failure occurs.
  • Supplied power forecast data DB5 is used in the supply and demand balance data creation in the supply and demand balance data DB4.
  • the weather characteristic data of the power generation output of the photovoltaic power generation device PV is managed in advance and calculated by applying weather prediction data acquired from the outside, or the power generation output prediction value itself is calculated by an operator or an external system. Give from.
  • the in-consumer load device power consumption prediction data DB6 is used in the supply and demand balance data creation in the supply and demand balance data DB4. Characteristic data of power consumption (meteorological characteristics, characteristics at startup, partial load characteristics at various operation settings, etc.) of each consumer's load equipment are managed in advance, and weather forecast data DB7 and equipment operation pattern data DB1 acquired from the outside Calculate by applying.
  • the weather forecast data DB 7 is data for managing predicted values of weather conditions (weather, solar radiation intensity, temperature, humidity, etc.) that affect the power generation output of the solar power generation device PV and the power consumption of consumer equipment. Obtain from the operator or external system.
  • the device characteristic data DB 8 is data in which device characteristic data that affects the power generation output of the solar power generation device PV, the charge / discharge power of the storage battery, and the power consumption of the load device in the consumer is managed in advance.
  • the 1 uses the weather forecast data DB7, the power generation forecast data DB6 of the solar power generation device PV, the equipment operation request data DB2, the equipment characteristic data DB8, etc., and the equipment operation pattern DB1 of the consumer equipment. Create
  • the processing in the customer equipment operation planning unit 32 can be roughly divided into three stages.
  • the first stage is the acquisition of the plan condition data, and the weather forecast data DB7, the power generation forecast data DB5 of the photovoltaic power generation device PV, the equipment operation request data DB2, and the equipment characteristic data DB8 are obtained from the data management unit 34 within the planning target period. To do.
  • the second stage is the creation of customer equipment operation patterns.
  • the third stage is the output of the equipment operation pattern plan result, and the created equipment operation pattern is output and stored in the data management unit 34.
  • the surplus supply capacity may be used by other customers.
  • the supply surplus capacity may be returned to this consumer, and a new plan may be proposed in a direction that permits operation of other load devices in the customer other than the initial plan.
  • step S100 a pattern (referred to as an initial plan P1) when the customer desires and all the inputted customer requests are accepted is created. For example, patterns are prepared for 24 hours at intervals of 30 minutes.
  • step S101 the processing time zone is set to the initial state t0.
  • the demand is load equipment in the consumer, and the supply is a storage battery and solar power generation.
  • the balance between supply and demand is confirmed by calculating the difference in size for each processing time zone every 30 minutes over 24 hours.
  • step S102 for calculating the supply and demand balance first, the power consumption of the load device in the consumer in the time zone is calculated. This calculates the power consumption of the said time slot
  • step S103 the generated power in the same time zone is obtained. This is obtained by referring to the remaining amount of the storage battery and calculating the supply amount by the photovoltaic power generation PV from the supply power prediction data DB5.
  • step S104 the supply and demand balance for the time period is calculated according to equation (1), and the supply and demand balance at time t is calculated.
  • Supply-demand balance (t) Total generated power (t)-Total consumed power (t) (1)
  • the total amount of generated power (t) includes the amount of power generated by photovoltaic PV. Has been.
  • the amount of power generated by the photovoltaic power generation PV reflects the prediction result of the supply power prediction data DB5. Since the amount of power generated by solar PV PV cannot contribute at night, the amount of discharge of the storage battery is the supply amount.
  • step S104 the storage battery charging power and the storage battery discharging power in the time zone t are further calculated by the equations (2) and (3), and the supply and demand is calculated by the equation (4) reflecting the difference. It is good to have the balance updated.
  • step S105 If it is determined in step S105 that the supply-demand balance (t) ⁇ 0 and the supply-demand balance is not established in time zone t, the process moves to step S107, and the load equipment in the customer operating in this time zone is stopped. Again, try to determine the result of equation (4).
  • step S107 it is determined whether there are one or more consumer load devices operating during this time period. If there is only one consumer load device operating in this time zone, it is determined in step S108 that this consumer load device is not used in that time zone, and the flow returns to step S102 to calculate the supply-demand balance again.
  • the correction plan P2 is corrected device operation pattern data, which is a corrected device operation pattern.
  • step S107 If it is determined in step S107 that there are a plurality of devices that are operating, the device that has the minimum degree of fitness that is reduced by stopping is selected according to the following concept. This device selection process is executed in step S109.
  • the request level per 30 minutes is calculated for each device operation request as follows. Case 1 is a case where the minimum operation time is not interrupted due to a stop, and Case 2 is a case where the minimum operation time is interrupted due to a stop.
  • RQITEM 30i is the request rate per 30 minutes for the device operation request i
  • RQITEMi is set to the device operation request i
  • the request rate is set to TNUMi is the device operation request i
  • the number of 30-minute increments of the operation time zone is set to MINOTi
  • Formula (5) is implemented as the minimum operation time set in the device operation request i.
  • equation (6) is implemented.
  • RQITEM30i RQITEMi ⁇ TNUMi ⁇ MINOTi (6)
  • the RQITEM 30i selects the smallest device operation request i. When there are a plurality of candidates, the one with the later registration order is selected with priority.
  • the operation of the selected device operation request i is stopped at the time or a certain time before that time. Furthermore, if the remaining charge of the storage battery sticks to the upper limit due to the stoppage of the device before that time, the stop is canceled.
  • the supply-demand balance at that time is still negative, add a device that stops in the same way. If all the devices at that time are stopped, the supply-demand balance at that time will be 0 or more unless the supply-demand balance before that time is negative. Balance can be 0 or more.
  • step S105 when power supply is secured in all time zones, the process proceeds to step S110, and a new device operation pattern in which power supply is ensured is recorded in the device operation pattern data DB1.
  • the new equipment operation pattern is sent to the customer R21 as a correction plan and displayed on the customer terminal EMS.
  • FIG. 11 shows an example of a UI screen that reflects the correction plan finally proposed from the DSM server.
  • the determination result of the DSM server is mainly reflected in the power supply / demand display column W2 in the lower area.
  • the power value for each 30-minute interval is displayed as a bar graph in the hourly power amount display column W23 for each item of the photovoltaic power generation PV, storage battery remaining amount, demand load, and supply / demand balance constituting the supply / demand balance display column W22. .
  • the amount of power generated by photovoltaic PV increases after 6 o'clock and peaks during the daytime, and the demand load increases after 12 o'clock using the 6 o'clock range and the air conditioner.
  • the remaining amount of the storage battery covers the morning water heater load as a night load, recovers by receiving charging by the photovoltaic power generation PV in the no-load state in the morning, and prepares for the peak load in the afternoon.
  • the supply and demand balance for each time zone fluctuates positive and negative each time, but it has been verified that the supply and demand balance is ensured as a total by charging and discharging the storage battery.
  • the use plan of the load device within the customer determined by the DSM server is reflected in the load device display column W12 within the customer.
  • the contents of correction cover not only the shortening of the operation time of the load equipment in the customer and the change of the operation state or the change of the operation temperature, but also the change of the time zone.
  • a temporary display for the electric water heater is shown as a final display.
  • FIGS. 5 and 6 at the planning stage it was intended to use 2 hours in an appropriate time zone from night to early morning, so what was temporarily displayed at the position until 6:30 is 6:00 in FIG. Display based on the confirmed information for 2 hours until.
  • the customer terminal EMS has the following functions and roles including input and display in order to realize the above functions in cooperation with the DSM server. In order to achieve these functions, functions to be performed by the input / output unit 30 of the DSM server are also included.
  • the input / output unit 30 in FIG. 1 includes a device operation pattern data DB1, a device operation request data DB2, a request fitness data DB3, a demand-and-supply balance data DB4, a supply capability prediction data DB5, a consumer load device power consumption prediction data DB6, a weather. Input and display of each data of prediction data DB7 and apparatus characteristic data DB8 are performed.
  • the input / output unit 30 includes a user interface for input display of the customer terminal EMS illustrated in FIG. 11 and includes the following configuration. This is hereinafter referred to as intelligent & interactive UI, or simply IIUI.
  • the following functions are provided as means for setting request contents in the customer terminal EMS.
  • the width of the request frame in the time axis direction is set in accordance with the time zone in which the consumer load device is to be operated, and is adjusted by dragging the left and right vertical lines of each frame. Set values such as operating conditions, minimum operating time, request level, etc. by pull-down settings or by clicking the input button and entering them in the sub dialog.
  • the following functions are provided as means for setting the total required frequency frame (number of points) for each customer in the customer terminal EMS.
  • the DSM server operator sets the number of points as the total required frequency frame for each customer.
  • the number of set points for the load equipment in the customer is displayed by totaling the values input in each request frame.
  • the number of set points for the customer is displayed by totaling the set points for each load device in the customer. If the number of points set for each consumer exceeds the number of points for that customer, an error message is displayed.
  • the following functions are provided as interactive linked display means for request input and plan results in the customer terminal EMS.
  • the following functions are provided as a supply and demand balance display means in the customer terminal EMS.
  • the graph shows the total supply in the target area and the balance of supply and demand for each customer based on the equipment operation pattern of the plan result.
  • the following functions are provided as means for adjusting the plan results in the customer terminal EMS.
  • the request level for that request frame is converted into a large number of constants internally determined in advance and reflected in the plan calculation. After that, by executing the plan, an equipment operation plan is formulated on the assumption of the fixed request frame. By this means, if the device operation request is rejected, it is possible to specify compulsory permission so as to always permit the device operation request.
  • the following functions are provided as intelligent plan support means in the customer terminal EMS.
  • the request that is to be rejected when it is fixed is displayed in a blinking manner or the like.
  • the rejected red request frames those that have a small decrease in fitness when they are fixed are distinguished and displayed by flashing blue.
  • the request frame is displayed by default in the time zone where the usage frequency is high or the general use time zone of the load device in the consumer from the past setting status for each consumer.
  • the rejected device operation request is forcibly permitted, the device operation request that will be rejected instead is displayed in a distinguishable manner.
  • the rejected device operation request that has the least influence when the forced permissible designation is specified is displayed in a distinguishable manner.
  • the customer terminal EMS has the following functions as means for setting the power source of the customer and the usage form of the storage battery.
  • the communication unit of the customer terminal EMS acquires the device operation pattern data from the data management unit 34 and distributes it to the customer terminal EMS of each customer R via the communication network NW.
  • the screen of the input / output unit UI is distributed to the display means of each customer terminal EMS via the communication network NW.
  • the customer terminal EMS performs device operation state change processing at each time according to the received device operation pattern data. Further, the received IIUI data is output to the display means, the operation of the customer is accepted, and the operation information is transmitted to the input / output unit via the communication network and the customer terminal EMS communication unit. That is, each consumer operates the IIUI of the input / output unit of the remote DSM server on the screen of the consumer terminal EMS.
  • the device power consumption characteristic data, the storage battery characteristic data, the PV power generation device PV power generation prediction data, and the weather prediction data are described as an example. May be given to.
  • customer terminal EMS may be realized independently or as a part of customer equipment such as a solar power generation device PV or a storage battery.
  • the plan is proposed based on the same idea for consumers who want to keep the total amount of power within a predetermined range.
  • it can be applied and used by calculating the supply and demand balance and proposing a revised plan.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • R Customer, G: Power generation equipment, L1: Transmission line, Tr1: Transformer installed in substation, L2: High-voltage distribution line, R1: Large-scale customer, Tr2: Transformer on pole, L3: Low-voltage distribution line , DSM: DSM server, NW: communication network, EMS customer terminal, W1: use plan input display column of load device in customer, W11: customer ID display column, W12: load device display column in customer W, W13: time Use plan input display field by band, W2: Power supply / demand display field, W21: General display field, W22: Supply / demand balance display field, W23: Electric energy display field by time zone, B21, B22, B23: Display box, PV: Sun Photovoltaic generator, EV: Electric car

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一定の期間に電力消費量を目標以下に制限せざるを得ない状況下において、需要家の機器稼働ニーズを最大限満足するように機器稼働パターンを作成する。需要家が機器毎に稼働させたい時間帯や稼働状態に関する条件とその要求度を対応付けるデータである機器稼働要求を入力し、満足される条件の要求度の合計値が最大となるように作成された機器稼働パターンを表示し、機器稼働パターンによって、許容されたものと棄却されたものを同一画面上に区別して表示し、機器稼働パターンによる対象需要家の需給バランスの変化パターンを同一画面上に表示し、棄却された機器稼働要求を必ず許容するように強制許容指定し、棄却された機器稼働要求を強制許容指定した場合に、代わりに棄却されることになる機器稼働要求を区別表示し、強制許容指定したときの影響が最も少ない、棄却された機器稼働要求を区別表示し、機器稼働要求の入力時に、各機器毎に当該需要家の過去の機器稼働状況で利用頻度の高い時間帯に、あるいは機器の一般的な利用時間帯にデフォルト設定する。

Description

需要家エネルギー管理装置およびシステム
 本発明は,需要家を対象にしたエネルギー管理装置およびシステムに係り、特にネットワークを介して各需要家の電力需給を管理する需要家エネルギー管理装置およびシステムに関する。
 需給逼迫や災害など電力使用制限時に、太陽光発電(以下、太陽光発電装置PVという)や蓄電池を設置している需要家や地域では、これらを電力供給源として活用し、さらに需要家内負荷機器の使い方を調整して、優先度の高い需要家内負荷機器への電力供給をできるだけ確保することへのニーズが高まっている。
 しかし、需要家内の太陽光発電装置PVの発電出力を電力供給源として自給自足的に利用する場合や,電力系統運用上需要家の電力利用を抑制しようとする場合に,気象状況によっては太陽光発電装置PVの発電出力が低下し,需要家の電力利用のニーズを全て満たせない,つまり,需要家が稼働させようとした機器の一部を停止させざるを得ない状況が発生する可能性もある。
 これに対して,特許文献1には,停電時に稼働させる需要家の機器の優先順位を予め設定しておき,停電時には太陽光発電装置PVと蓄電池で供給できる電力量の範囲で,優先順位が高い機器を優先して稼働させ,また,優先度の高い機器ほど電力供給許容時間を長く設定するシステムに関する記述がある。これにより,停電時の需要家の利便性や快適性を向上させることができる。
特開2011-83088号公報
 特許文献1によれば、各時刻断面において優先順位が高い機器を優先して稼働させることができる。
 しかし、需要家において、現在時点でのある機器の稼働を取りやめることで、後々の別の機器の稼働が可能になるなら、そちらを優先して稼働させたいというニーズや、現在時点でのある機器の稼働を取りやめることで、別の複数の機器の稼働が可能になるなら、そちらを優先して稼働させたいというニーズや、単純な稼働/停止の調整だけでなく、ある機器の運転に一定の制約、例えば、空調の設定温度緩和などを許容することで、他の機器の稼働の可能性を探りたいというニーズを考慮した機器稼働調整はできない。
 以上のことから本発明の目的は、一定の期間に、電力消費量を目標以下に制限せざるを得ない状況下において、需要家の機器稼働ニーズを最大限満足するように、機器稼働パターンを作成するシステムを提供することにある。
 前記した課題を解決するため、本発明は、需要家における電力需給バランスを計算して需要家内負荷機器の稼働パターンを定める電力需要管理システムにネットワークを介して接続された需要家エネルギー管理装置であって、
 需要家エネルギー管理装置は、需要家が需要家内負荷機器毎に稼働させたい時間帯や稼働状態に関する条件と、その要求度を対応付けたデータである機器稼働要求を入力する入力手段と、電力需要管理システムにおいて作成された、入力された条件のうち満足される条件の要求度の合計値を最大とする修正機器稼働パターンを表示する表示手段とを備え、かつ表示手段には、入力された機器稼働要求のうち、許容されたものと棄却されたものを同一画面上に区別して表示されることを特徴とする。
 また前記した課題を解決するため、本発明は、電力需要管理システムと、需要家に設置された需要家エネルギー管理装置がネットワークを介して接続された需要家エネルギー管理システムであって、
 需要家エネルギー管理装置は、当該需要家において需要家内負荷機器毎に稼働させたい時間帯や稼働状態に関する条件と、その要求度を対応付けたデータである機器稼働要求を作成して表示し、
 電力需要管理システムは、ネットワークを介して得られた機器稼働要求に基づいて当該需要家の運転を実施した時の電力需給バランスを計算するとともに、修正機器稼働パターンを作成し、
 需要家エネルギー管理装置は、電力需要管理システムにおいて作成された修正機器稼働パターンを、機器稼働要求のうち、許容されたものと棄却されたものを区別して表示することを特徴とする。
 なお,本発明のその他の特徴は,発明を実施するための形態の欄で詳細に説明する。
 本発明によれば、一定の期間に、電力消費量を目標以下に制限せざるを得ない状況下において、需要家の機器稼働ニーズを最大限満足するように、機器稼働パターンを作成するシステムを提供することができる。
 なお、本発明の実施例によれば、一定の期間に、電力消費量を目標以下に制限せざるを得ない状況下において、現在時点である機器の稼働を取りやめることで、後々の別の機器の稼働が可能になるなら、そちらを優先して稼働させたいというニーズや、現在時点である機器の稼働を取りやめることで、別の複数の機器の稼働が可能になるなら、そちらを優先して稼働させたいというニーズや、単純な稼働/停止の調整だけでなく、ある機器の運転に一定の制約、例えば、空調の設定温度緩和などを許容することで、他の機器の稼働の可能性を探りたいという需要家の機器稼働ニーズに対して、これを最大限満足するように、機器稼働パターンを調整することが可能になる。
需要家エネルギー管理システムの全体構成例を示す図。 一般的な電力システムの全体構成例を示す図。 需要家端末EMSの入力表示枠組みを示す図。 需要家端末EMSの初期状態の表示内容を示す図。 需要家端末EMSの需要家入力後の使用計画入力段階の表示内容を示す図。 使用計画入力画面のアイコンの具体的事例を示す図。 機器稼働パターンデータDB1の一例を示す図。 機器稼働要求データDB2の具体的な一例を示す図。 要求適合度データDB3の具体事例を示す図。 需要家機器稼働パターンの作成処理を示すフローチャート。 需要家端末EMSの最終的に表示された表示内容を示す図。
 本発明を実施するための形態について、適宜図面を参照しながら詳細に説明する。
 図2は、一般的な電力システムの全体構成例を示す図である。
 電力システムは、電力を需要家Rに供給するシステムであり、発電設備Gで発電した電力を送電線L1、変電所設置の変圧器Tr1,高圧配電線L2を介して大規模需要家R1に供給する。大規模需要家R1としては一般にはビル、工場、スーパー、学校などがあり、多くの場合に6000ボルトにて給電される。
 これに対し高圧配電線L2に設置された柱上の変圧器Tr2により、100ボルトあるいは200ボルトに降圧して低圧配電線L3に接続している。低圧配電線L3には一般家庭などの小規模需要家R2(一般需要家ともいう)が接続され、電力が供給されている。
 本発明は、いずれの需要家にも適用可能であるが、ここでは一般家庭に適用した事例で説明する。これらの需要家端には、エアコン,テレビ,洗濯機,乾燥機,冷蔵庫,電気給湯器などの電気負荷機器が設置され、電力の供給を受けている。これらは、いわゆる負荷である。
 これに対し、需要家端には、蓄電池、また,太陽光発電装置PVなどの発電設備機器も設置されることがある。以下では,これら需要家端に設置されている機器を需要家機器と総称するものとする。なお、需要家機器のうち負荷設備を需要家内負荷機器、発電設備を需要家内発電機器と称することがある。
 図1は,本実施形態の需要家エネルギー管理システムの全体構成例を示す図である。需要家エネルギー管理システムは、各需要家Rに設置された需要家端末EMS、例えば営業所などの電力供給側施設内に設置された電力需要管理システム(以下DSMサーバという)、およびこれらの間を接続する通信ネットワークNWで構成される。
 なおDSMサーバに接続された需要家端末EMSは、単体で需要家エネルギー管理装置を構成している。
 電力需要管理システムであるDSMサーバは、需要家Rの適宜の単位ごとに設置されればよいが、ここでは柱上変圧器Tr2により降圧された低圧配電線L3に接続された需要家Rを管理の対象とした事例で説明する。この場合には、図中の×印以下の地域の3件の需要家R21,R22,R23を管理の対象とし、DSMサーバで電力使用制限を行い、その需要調整を行うものとする。
 需要家R21,R22,R23は、需要家内負荷機器の他に需要家内発電機器として、R21では太陽光発電装置PV、蓄電池B、電気自動車充電装置EVを備えており、R22とR23では太陽光発電装置PVと蓄電池Bを備えている。需要家の太陽光発電装置PVや蓄電池Bは、地域内の電力供給源となる。太陽光発電装置PVは気象状況等に応じて成り行きで発電し,蓄電池Bは,電気負荷機器の消費電力のうち,太陽光発電装置PVの発電電力で不足する電力を供給するように,蓄電池の充電残量や性能の制約のもとで制御され放電する。なお、電気自動車充電装置EVは、その運用次第で負荷にも電源にもなり得る。
 本発明の需要家エネルギー管理システムでは、電力供給側施設内に設置された電力需要管理システムであるDSMサーバと、各需要家に設置された需要家端末EMSとが協同して機能することにより、災害など緊急時に需要家における電力使用量抑制のための需要調整を行う。需要家が発電設備を持つ場合も考えられるが、その場合は、需要家発電設備の発電量も含めたトータルの電力供給量の範囲内に電力使用量抑制する需要調整を行うことになる。
本発明はいずれの場合にも適用が可能であるが、ここでは需要家内発電機器を持つ場合を主体に説明していく。かつこの需要家は需要家内発電機器による電力供給容量の範囲内で運用することを目的とするものとする。
 DSMサーバと、需要家端末EMSとが協同して機能する本発明の需要家エネルギー管理システムでは、最初に各需要家は、需要家内に設置された需要家端末EMSを用いて、電力使用計画日における希望する需要家内負荷機器の使用計画を入力する。
 この場合に、需要家内負荷の中には、医療機器などのクリティカルな機器を利用するなど,所有する機器の違いや稼働ニーズには違いがあることが想定される。そのため、使用計画では需要家内負荷ごとの希望する使用時間帯のほかに、需要家内負荷の使用が不可欠であることの優先度の高さなどの情報もあわせて入力される。
 需要家が希望する需要家内負荷機器の使用計画は、DSMサーバの判断を含めて調整され、電力使用計画日における決定された需要家内負荷機器の使用計画とされる。
 需要家端末EMSは、電力使用計画日における決定された需要家内負荷機器の使用計画に従い,エネルギー使用状況の管理や各需要家機器(需要家内負荷機器、需要家内発電機器)の制御を行う。具体的には、DSMサーバから需要家機器稼働計画パターンを受信し,これを実現するように,各需要家機器に稼働状態を変更する制御信号を送信する。なお,需要家機器稼働計画パターンを需要家端末EMSのUI(User Interface)画面上に表示するのみとし,需要家がこれを参照して,機器の設定変更を手動で行う形態も考えられる。
 需要家が希望する需要家内負荷機器の使用計画に対して、DSMサーバは需要家内における電力需給状態を考慮した新たな需要家内負荷機器の使用計画を提案する。具体的には、DSMサーバは、対象地域内の太陽光発電装置PVの発電電力,蓄電池の放電電力,需要家内負荷機器の消費電力のトータルの需給バランスを維持するように機能する。かつ対象地域内の需要家の電力利用のニーズ(利便性や快適性)を最大限実現するように機能する。DSMサーバは、上記観点から需要家の需要家内負荷機器の稼働状態を調整する計画を策定し,需要家機器稼働計画パターンとして各需要家端末EMSに配信する。
 需要家内負荷機器の稼働状態の調整手法としては,シンプルな起動/停止の切り替えのほか,空調間欠運転,照明間引き点灯,さらには空調設定温度調整などによる部分負荷運転調整など,複数の手法が考えられる。30分等周期的に計画パターンを更新し,各需要家端末EMSに配信する。
 需要家端末EMSは、DSMサーバと協同して上記機能を実現するものであり、このために需要家内負荷機器の使用計画の入力と表示を行うことができ、かつDSMサーバにおける判断の根拠となっている各種情報(例えば電力需給の関係)が表示されるものである必要がある。
 係る目的に合致する需要家端末EMSは、例えば図3に示すようなUI画面を備えた入力表示端末として構成される。一例の需要家端末EMSは、上下に領域分割されており、上部領域が需要家内負荷機器の使用計画入力表示欄W1,下部が電力需給表示欄とされている。使用計画入力表示欄W1はさらに複数欄に細分されており、左側から需要家ID表示欄W11,需要家内負荷機器表示欄W12,時間帯別使用計画入力表示欄W13で構成されている。
 また下部領域の電力需給表示欄W2も複数欄に細分されており、左側から総合表示欄W21,需給バランス表示欄W22、時間帯別電力量表示欄W23で構成されている。
 さらに各欄Wの具体的な入力表示例を述べる。まず、初期状態の表示内容について図4で説明する。ここで初期状態とは、需要家の家人が、電力使用計画日(ここでは、例えば7月1日とする)における希望する需要家内負荷機器の使用計画を、入力する直前の状態を言っている。
 この初期状態において、需要家ID表示欄W11にはこの需要家がR21であること、及び適合度と、設定点数と、持ち点数を表示するための表示箱B1とが表示されている。
なお、適合度と、設定点数と、持ち点数について後述する。
 需要家内負荷機器表示欄W12を構成する複数の小欄には、需要家内負荷機器が例えばエアコン、電気給湯器、冷蔵庫であること、及び需要家内負荷機器ごとに適合度と,総要求度を表示するための表示箱B21、B22,B23が上段から個別に表示されている。
なお、総要求度について後述する。また需要家内負荷機器が他にも存在する場合には、適宜スクロールなどにより画面移動して、入力表示することができる。なおこれらの需要家内負荷機器の各項目については、隣接する時間帯別使用計画入力表示欄W13に30分間隔ごとの使用計画が入力、表示されるが、この段階でははまだ入力、表示されていない。
 下部領域の電力需給表示欄W2についてみると、左側の総合表示欄W21には総合(TOTAL)として、適合度と、設定点数と、総枠を表示するための表示箱B3が表示されている。なお、総枠について後述する。
 需給バランス表示欄W22を構成する複数の小欄には、太陽光発電PV,蓄電池残量、需要負荷及び需給バランスの各項目が表示されている。これらの項目については隣接する時間帯別電力量表示欄W23に30分間隔ごとの電力値が棒グラフ表示されるが、この段階では表示されていない。
 このように初期状態では、枠組みと、入力、表示項目のみが表示されている。次に需要家が希望する需要家内負荷機器の使用計画を、需要家の家人が入力した後の使用計画入力段階の画面の一例を、図5を用いて説明する。
 この場合の需要家の家人が要望する電力使用計画日の需要家機器は、エアコンについて朝の6時から7時までの1時間(表示A)と、昼の12時から15時までの3時間(表示B)使用したいというものである。また電気給湯器について、朝の6時から7時までの1時間(表示C)、冷蔵庫については、終日稼働(表示E)したい。なお、昼の12時から15時までの3時間のうち、少なくとも2時間は使用したいという条件付きの要望とすることも可能である。
 以上は需要家の家人の要望による計画の入力であるが、家人の意図とは別に入力されるものがある。例えば、この需要家は電気給湯器を使用するため、夜間の深夜電力利用による電気給湯器負荷が生じている。これは朝の早い時間帯のいずれかの2時間(表示D)として、図5上に反映される。なおこの状態では、表示Dは確定した時間帯ではないので、とりあえず早朝の時間帯として6時半までの2時間の時間帯に仮表示させている。
 需要家端末EMSは、上記入力または表示のための手段として例えばタッチパネルなどのUI画面を備えており、必要なアイコンの表示、消去、長さの設定、各種文字、数値の入力、表示などが可能なものとされている。この手段については、特に限定されないが、需要家端末EMSが入力、表示のために備えるべき機能について、後述する。
 図6は、図5において需要家の家人が入力した使用計画入力画面のアイコンA乃至Eの具体的事例を示している。アイコンA乃至Eは、その長さが稼働を希望する時間長さを表しており、アイコンA,Cはこの時間帯の1時間の運転希望を意味している。アイコンB,Eの「min」は運転を希望する最低運転時間を意味しているが、アイコンBではその長さが12時から15時の3時間に及ぶことから、この3時間のうちの少なくとも2時間の運転を希望していることを意味する。アイコンEでは、24時間とされているので終日運転希望を意味する。アイコンDは、とりあえずこの時間帯に仮表示されている。
 各アイコンの内部に設けられた小窓には、例えばアイコンAでは8、アイコンBでは3、アイコンCでは10が入力されている。この窓内数値は、各需要家内機器の要求度であり、数値が高いほどこの需要家内機器の使用の要求が高いことを意味している。数値が10である冷蔵庫の終日使用と、6時台の電気給湯器の使用が、他の各需要家内機器に比べて高く、使用が不可欠であることの大きさを表している。
 さらにアイコン内の小窓には、表示スペースが許される限りにおいて、多くの情報が表示されている。アイコンBの「冷」、アイコンDの「蓄」、アイコンEの「On」は各需要家内機器の運転状態(運転モード)であり、それぞれ冷房運転、蓄熱運転、運転状態Onを意味している。アイコンBの「28」は、エアコンの設定温度が28度であることを意味する。なお、アイコンの「入力」、「Fix」について後述する。
 このようにして入力された電力使用計画日の希望する需要家内負荷機器の使用計画は、通信ネットワークNWを介して例えば営業所などの電力供給側施設内に設置された電力需要管理システム(DSMサーバ)に伝送される。以下、図1に戻り、DSMサーバについて説明する。
 図1のDSMサーバは、データ管理部34、需要家機器稼働計画部32、需要家端末EMS通信部33、入出力部30、全体制御部31で構成される。
 このうちデータ管理部34は、需要家機器稼働計画の効果的な策定のために各種のデータを保持するデータベースDBで構成されている。主要なデータベースは、機器稼働パターンデータDB1、機器稼働要求データDB2、要求適合度データDB3、需給バランスデータDB4、供給力予測データDB5、需要家内負荷機器消費電力データDB6、気象予測データDB7、機器特性データDB8であり、データ管理部34はこれらのデータを管理する。
 以下、主要なデータベースについて事例を挙げて説明する。まず、機器稼働パターンデータDB1は,対象期間内各時刻における各需要家機器の稼働状態の変更内容を与えるデータである。特に,需要家機器の外部から実行可能な変更が対象である。
 ここでまず「稼働状態の変更内容」について説明すると、これは電気機器によって異なる。例えば、エアコンであれば、電源On,電源Off,運転モード切替,設定温度変更などが稼働状態の変更内容に該当し、これらの変更によりエアコンが消費する電力量が変更される。電気給湯器であれば、電源On,電源Off,蓄熱運転の起動や停止,運転モード切替などが稼働状態の変更内容に該当し、これらの変更により電気給湯器が消費する電力量が変更される。乾燥機であれば、電源On,電源Off,運転モード切替などがある。
 これに対し、単純に電源のOn,Offによるしか変更内容を備えないものもある。例えば、テレビについては、電源On,電源Offなど、冷蔵庫については、電源On,電源Offなど、洗濯機については、電源On,電源Offなどでしか電力変更の手段を有しない。
 機器稼働パターンデータDB1の一例を図7に示す。この機器稼働パターンは、需要家ID毎に作成されている。例えば需要家R21の場合、ここで使用する需要家機器ごとの稼働状態の変更内容を、時系列的に纏めている。
 図7において、需要家機器として例えば冷蔵庫に着目すると、これは図5にも示したように終日運転を行う。従って、例えば30分単位で記述すると、いずれの時刻でも運転モードがOnにされている。
 エアコンは、図5の計画では朝の6時から7時までの1時間と、昼の12時から15時までの3時間使用する。このため、この時間帯の記憶内容としては、運転モードが冷房であり、設定温度が28度と記憶されている。当該時間帯以外には変更内容の情報はなく、エアコンが停止されていることを意味している。なお、エアコンの設定温度が28度であることは、需要家端末EMSによる設定項目の中に含まれて、家人による設定がなされた事項の一部である。
 電気給湯器は、朝6時までの深夜に運転モードがOnとされている。なお図5には示していないが、テレビが12時から15時までの間使用されることも記憶されている。
 次にデータ管理部34内の機器稼働要求データDB2について説明する。これは,各需要家がどの需要家機器をどの時間帯にどのくらいの要求度で稼働させたいかを与えるデータである。このデータは、各需要家が需要家端末EMSを介して入力した情報であり,DSMサーバに登録されたものである。
 機器稼働要求データDB2のデータモデルは,需要家のニーズを電力需要管理システム(DSMサーバ)内に取り込む手段として重要な要素になる。機器稼働要求データDB2は,複数の単要求データを束ねたものである。つまり、需要家機器ごとの使用計画を単要求データとするとき,この需要家についての全ての需要家機器の使用計画を24時間分纏めたものが機器稼働要求データDB2である。
 このように、個々の単要求データは,図5の需要家内負荷機器表示欄W12の一列ごとの小欄について,時間帯別使用計画入力表示欄W13に記述した情報であり、それぞれは需要家ID,需要家機器,対象期間,稼働条件,稼働時間,要求度を対応付けるデータである。
 なお、稼働条件や要求度の情報は、図5のアイコンA-Eの一部に文字あるいは数値入力された情報であり、需要家において設定する情報である。このうち例えば稼働条件は、エアコンの設定温度を28度にすることなどであり、要求度はこの需要家内負荷機器を使用したい希望の度合いの大きさを数値表現したものである。例えばエアコンの要求度を3、テレビの要求度を1としたときには、テレビを我慢してもエアコンを使用したいということを意味している。
 図8は、図5のようにして入力された需要家内負荷機器の使用計画を纏めた機器稼働要求デー
タDB2の具体的な一例を示している。図8の事例の各列の記述内容(単要求データ)の詳細については、今までの説明及び図8から容易に理解できることなのでその説明を省略する。ここでは、このデータベースから読み解くことができる事項について参考的に解説しておく。図8の例のように登録することで,下記の要求を表現することができる。
 単要求No1:要求度が10であり、このことから冷蔵庫の常時稼働は、他の需要家内負荷機器に比してそのニーズが高いことを表現している。
 単要求No2:エアコンを,電力使用計画日(7/1)の12時~15時の間,設定温度28℃以下で冷房運転させたい。ただし要求度が3であり、優先度は比較的低いことを表現している。
 単要求No2&3:この組合せにより,電力使用計画日(7/1)の12時~15時の間,テレビとエアコンの両方を稼働させたいが,同時稼働が難しいならエアコンを優先したいという要求を表現している。
 単要求No4:電気給湯器の要求度は冷蔵庫と同等に高いが,深夜に連続運転をするほどのものでもない。稼働時間帯は,冷蔵庫などの機器の稼働を優先して決定可で,調整の余地ありという要求を表現している。
 単要求No4&5:この組合せにより,電気給湯器の蓄熱運転を0時~6時の間に1時間稼働させられる状況であれば,6時~7時の間はエアコンを優先して稼働させたいという要求を表現している。
 単要求No4&6:この組合せにより,電力使用計画日(7/1)の0時~6時の間に蓄熱運転を最低1時間,余力があれば2時間稼働させたいという要求を表現している。
 単要求No7:任意の用途に使用できる電力を、どの程度確保しておくかを設定している。
 図9に要求適合度データDB3の具体事例を示している。要求適合度データDB3は,機器稼働パターンデータDB1が機器稼働要求データDB2を満たしている度合いの評価値を与えるデータである。需要家機器稼働計画では,この要求適合度ができるだけ大きくなるように機器稼働パターンデータDB1を求めて出力する。
 要求適合度データDB3は,需要家機器別の適合度とトータルの適合度で構成する。機器別の適合度は,機器稼働要求データDB2の個々の機器稼働要求データ(単要求データ)のうち,機器稼働パターンデータを満足しているものを抽出し,その要求度を需要家機器別に集計し合計した値である。図7の機器稼働パターンDB1の図4の機器稼働要求データDB2に関する要求適合度の例を図9に示す。需要家R1についての具体事例での適合度は下記の状況である。
 冷蔵庫は、0時~24時に常時稼働なので,適合度は要求度の数値そのままに「10」。エアコンは、6時~7時と12時~15時で4時間稼働なので,適合度は要求度の数値「3」と「8」の合計であり、適合度は「11」とする。電気給湯器は、0時~7時に1.5時間蓄熱運転稼働なので,適合度は要求度の数値そのままに「10」。テレビは、12時~15時に3時間稼働なので,適合度は要求度の数値そのままに「1」。このため、トータルでは、上記の適合度の合計値「32」とされる。
 図1に戻り、データ管理部34の需給バランスデータDB4は,個々の機器稼働パターンデータDB1で機器稼働させた場合の,需給バランス(=供給力トータル-消費電力トータル),及び,太陽光発電装置PVの発電出力,蓄電池の充放電電力,需要家内負荷機器の消費電力の変化パターンを与えるデータである。需給バランス<0となる機器稼働パターンは,計画問題として実行不可能解である。実際には,各機器やブレーカの保護装置が動作して停電が発生することになる。
 需給バランスの考え方の一例を図5の計画の4時から6時までの状態で説明する。この場合に供給力トータルとしては蓄電池の蓄電容量のみであり、夜間のため太陽光発電装置PVの発電出力は期待できない。他方、消費電力トータルとしては、電気給湯器の蓄熱運転が対象である。
 このバランス計算では、太陽光発電装置PVの発電出力が立ち上がる例えば8時まで、蓄電池の蓄電容量のみで供給可能であることを確認する。同様の需給バランス確認は、他の時間帯についても計画された全ての需要家内負荷機器と、全ての需要家内発電機器とを対象として実行される。
 なお、需給バランス<0となる機器稼働パターンが存在する場合には、需要家からの提案計画が実行できないことになるので、DSMサーバから修正計画が提示されることになる。
 供給力予測データDB5は、需給バランスデータDB4における需給バランスデータ作成で利用される。具体的には太陽光発電装置PVの発電出力の気象特性データを予め管理しておき,外部から取得する気象予測データをあてはめて計算するか,あるいは,発電出力予測値自体を運用者や外部システムから与える。
 需要家内負荷機器消費電力予測データDB6は、需給バランスデータDB4における需給バランスデータ作成で利用する。各需要家内負荷機器の消費電力の特性データ(気象特性,起動時特性,各種運用設定での部分負荷特性など)を予め管理しておき,外部から取得する気象予測データDB7や機器稼働パターンデータDB1をあてはめて計算する。
 気象予測データDB7は、太陽光発電装置PVの発電出力や需要家内負荷機器の消費電力に影響を与える気象条件(天候,日射強度,気温,湿度など)の予測値を管理するデータである。運用者や外部システムから取得する。
 機器特性データDB8は、太陽光発電装置PVの発電出力,蓄電池の充放電電力,需要家内負荷機器の消費電力に影響を与える機器特性データを予め管理しておくデータである。太陽光発電装置PVの定格出力や気象特性,蓄電池の充電容量や充放電電力上限や効率,需要家内負荷機器の定格電力や気象特性や起動時特性や各種運用設定での部分負荷特性などである。
 図1の需要家機器稼働計画部32では、気象予測データDB7、太陽光発電装置PVの発電予測データDB6、機器稼働要求データDB2、機器特性データDB8などを用いて需要家機器の機器稼働パターンDB1を作成する。
 需要家機器稼働計画部32における処理は、大きく3段階に分けることができる。
 第1段階は計画条件データの取得であり、計画対象期間内の気象予測データDB7、太陽光発電装置PVの発電予測データDB5、機器稼働要求データDB2、機器特性データDB8をデータ管理部34から取得する。
 第2段階は需要家機器稼働パターンの作成である。第3段階は機器稼働パターン計画結果の出力であり、作成された機器稼働パターンを出力し、データ管理部34に格納する。
 以下、需要家機器稼働計画部32の中核である第2段階の需要家機器稼働パターンの作成処理について説明する。
 なお需要家機器稼働パターンの作成処理を実行するに際し、複数の機器稼働要求があり、これらは相互に制約を与える。このため,単純に要求度の高いものから順番に稼働時間を設定していくのでは,必ずしもトータルの適合度としては最大にならないケースもあり得る。
 そのため、具体事例では、ノウハウに基づく戦略ルールベース方式のほか,GAやタブーサーチ等のヒューリスティクス方式の適用などが考えられる。ここでは、戦略ルールベースとして下記のロジックを説明する。
 需要家機器稼働パターンの作成処理では、詳細を図10に沿って説明するが、その概略は以下のように行うものである。まず需要家要求をすべて受け入れた時のパターンを作成する。登録されている機器稼働要求の全てについて,稼働時間帯を全て稼働とするパターンを作成する。パターンは例えば30分間隔で24時間分準備する。
 次に各時刻の需給バランスをチェックする。その結果、24時間分についていずれの時刻でも供給が需要を上回ることが確認できる場合には、当初計画P1を最終案P2として提示する。
 なお、この場合に供給余力は、他の需要家で活用することも考えられる。
あるいは、供給余力をこの需要家に還元して、初期計画以外の他の需要家内負荷機器の稼働を許可する方向の新たな計画を提案することでもよい。
 対象期間の始端時刻から順に各時刻の需給バランスをチェックした結果,需給バランスが負の場合,すなわち供給力が不足する場合には,当該時刻またはそれ以前に稼働する需要家内負荷機器を1つ停止させる。当該時刻以前も含めて対象にするのは,地域内に蓄電池があり,当該時刻以前に機器稼働を停止させることで,蓄電池の充電残量が増加し,当該時刻の需給バランス改善が期待できるためである。
 需要家機器稼働パターンの作成処理の詳細を図10に沿って説明する。まずステップS100では、需要家が希望し、入力した需要家要求をすべて受け入れた時のパターン(初期計画P1という)を作成する。パターンは例えば30分間隔で24時間分準備する。
 次にステップS101では処理時間帯を初期状態のt0に設定する。なお、以降において需給バランスを計算するにあたり、需要は需要家内負荷機器であり、供給は蓄電池及び太陽光発電である。30分ごとの処理時間帯別の大きさの差を24時間にわたって計算することで、需給バランスを確認する。
 需給バランス計算のためにステップS102では、まず当該時間帯での需要家内負荷機器の消費電力の計算を行う。これは、機器稼働パターンDB1の当該時間帯の稼働状況に基づいて,機器特性データDB8を参照し,当該時間帯の消費電力を計算する。
 ステップS103では、同時間帯の発電電力を求める。これは、蓄電池残量を参照し、かつ供給力予測データDB5から太陽光発電PVによる供給量を計算して求める。
 ステップS104では、当該時間帯の需給バランスの計算を(1)式により実行し,時刻tの需給バランスを計算する。
[数1]
需給バランス(t)=発電電力トータル(t)-消費電力トータル(t)・・・・(1) ここで(1)式において発電電力トータル(t)には太陽光発電PVによる発電量が加味されている。太陽光発電PVによる発電量は、供給力予測データDB5の予測結果反映したものである。なお夜間には太陽光発電PVによる発電量は貢献しえないので、蓄電池の放電量が供給量となる。
 なお需給バランスを計算するにあたり、この計算は時間帯ごとの計算を繰り返し実行することになる。このため、次の時間帯の計算のためには、当該時間帯での蓄電池の運用結果を次の時間帯での蓄電池残量に反映させておく必要がある。このため、ステップS104での需給計算では、さらに(2)式と(3)式により,時間帯tでの蓄電池充電電力と蓄電池放電電力を計算し,この差分を反映した(4)式により需給バランスを更新させておくのがよい。
[数2]
蓄電池放電電力(t)=Min{Max{-需給バランス(t),0},許容放電電力(t)}・・・・(2)
[数3]
蓄電池充電電力(t)=Min{Max{ 需給バランス(t),0},許容充電電力(t)}・・・・(3)
[数4]
需給バランス(t)=需給バランス(t)+蓄電池放電電力(t)-蓄電池充電電力(t)・・・・(4)
 ステップS105において、(4)式の結果を判断する。この時間帯での供給が需要を上回る場合には、ステップS106において時間帯を更新し、次の時間帯についてステップS102から再度実行する。
 ステップS105の判断において、需給バランス(t)<0となり,時間帯tでは需給バランス不成立である場合には、ステップS107側に移り、この時間帯に稼働している需要家内負荷機器を停止して、再度(4)式の結果を判断してみる。
 具体的には、ステップS107でこの時間帯に稼働している需要家内負荷機器が1台か複数台かを判断する。この時間帯に稼働している需要家内負荷機器が1台である場合には、ステップS108においてこの需要家内負荷機器を当該時間帯に使用しないものとしてステップS102に戻り、再度需給バランスを計算する。
 なお、この需要家内負荷機器を当該時間帯に使用しないものとして再計算した結果も需給バランス不成立である場合には、今度は時間帯を遡って「需要家内負荷機器を前回時間帯に使用しない」ものとして、条件が合致するまで再計算を継続することになる。
 条件に合致しないという状態は、機器稼働パターンデータDB1に反映され、最終的に初期計画P1とは相違する修正計画P2として需要家に提案されることは言うまでもない。修正計画P2は修正された機器稼働パターンデータであり、これは修正機器稼働パターンである。
 ステップS107の判断で、稼働している機器が複数ある場合には,停止によって減少する適合度が最小となるものを,以下の考え方に従って選択する。この機器選択処理は、ステップS109で実行される。
 稼働機器複数の場合の機器選択処理の一例では、各機器稼働要求について,次のようにケース分けして30分あたりの要求度を計算する。ケース1は、停止によって最小稼働時間を割り込まない場合であり、ケース2は停止によって最小稼働時間を割り込む場合である。
 前者の場合、RQITEM30iを機器稼働要求iの30分あたりの要求度、RQITEMiを機器稼働要求iに設定の要求度、TNUMiを機器稼働要求iに設定の稼働時間帯の30分刻み数、MINOTiを機器稼働要求iに設定の最小稼働時間として、(5)式を実施する。
[数5]
RQITEM30i=RQITEMi÷TNUMi・・・・(5)
 後者の場合、(6)式を実施する。
[数6]
RQITEM30i=RQITEMi÷TNUMi×MINOTi・・・・(6)
 以上の演算により求めた数値について、RQITEM30iが最小の機器稼働要求iを選択する。複数の候補がある場合には登録順が後のものを優先に選択する。
 また、選択された機器稼働要求iの機器について,当該時刻またはそれ以前のある時刻の稼働を停止する。さらに、当該時刻より前の機器稼働停止によって,蓄電池の充電残量が上限に張り付く場合には,その停止はキャンセルする。
 なお、当該時刻の需給バランスが依然として負の場合には,同様の考え方で停止する機器を追加する。当該時刻の全ての機器を停止させれば,当該時刻の前の需給バランスが負でない限りは,当該時刻の需給バランスは0以上になるので,必要な数の機器を追加停止させることで必ず需給バランスを0以上にできる。
 対象期間の始端時刻から順に終端時刻まで,上記の調整を行う。この結果、ステップS105において、全ての時間帯での電力供給が確保された場合には、ステップS110に移り、電力供給が確保された新しい機器稼働パターンを機器稼働パターンデータDB1に記録する。新しい機器稼働パターンは、修正計画として需要家R21に送られ、需要家端末EMSに表示される。図11は、最終的にDSMサーバから提案された修正計画を反映したUI画面の一例を示している。
 修正画面では主に、下部領域の電力需給表示欄W2にDSMサーバの判断結果が反映されている。需給バランス表示欄W22を構成する太陽光発電PV,蓄電池残量、需要負荷及び需給バランスの項目ごとの時間帯別電力量表示欄W23には、30分間隔ごとの電力値が棒グラフ表示されている。
 これによれば、太陽光発電PVによる発電量は6時過ぎから増大して、昼間にピークとなり、需要負荷は6時台とエアコンを使用する12時過ぎに大きくなる。蓄電池残量は夜間の負荷として、朝方の給湯器負荷を賄い、午前中の無負荷状態で太陽光発電PVによる充電を受けて回復し、午後のピーク負荷に備える。この結果、時間帯ごとの需給バランスは、その都度正負に変動しているが、蓄電池充放電によりトータルとして需給バランスが確保されることが検証されたものである。
 また修正画面では、DSMサーバにより定められた需要家内負荷機器の使用計画が需要家内負荷機器表示欄W12に反映されている。修正内容は、需要家内負荷機器の運転時間短縮や、時間帯変更ばかりではなく、運転状態の変更あるいは運転温度の変更といった事項に及ぶ。
 また図11の修正画面では、電気給湯器についての仮表示が確定表示として示されている。計画段階の図5、図6では夜間から早朝までの適宜の時間帯の2時間使用したいということであったので、6時半までの位置に仮表示させていたものを、図11では6時までの2時間の確定した情報に基づく表示をしている。
 需要家端末EMSは、DSMサーバと協同して上記機能を実現するために、入力、表示を含め以下の機能や役割を有している。これらの機能達成のためには、DSMサーバの入出力部30が行うべき機能も含まれる。
 まず図1の入出力部30は、機器稼働パターンデータDB1、機器稼働要求データDB2、要求適合度データDB3、需給バランスデータDB4、供給力予測データDB5、需要家内負荷機器消費電力予測データDB6、気象予測データDB7、機器特性データDB8の各データの入力と表示を行う。
 また、入出力部30は、図11に示す需要家端末EMSの入力表示のためのユーザインタフェースを備え、下記の構成を備える。これを以下、インテリジェント&インタラクティブUI、または単にIIUIという。
 需要家端末EMSにおける要求内容の設定手段として、以下の機能を備えている。
 計画対象期間(時間帯別使用計画入力表示欄W13)の空白部分をクリックして,要求枠(A乃至D)を新規追加作成する。要求枠の時間軸方向の幅は、当該需要家内負荷機器を稼働させたい時間帯に応じて設定するが、各枠の左右の縦線をドラッグしてこれを調整する。稼働条件、最小稼働時間、要求度などの設定値はプルダウン設定,もしくは入力ボタンをクリックしてサブダイアログで入力する。
 需要家端末EMSにおける需要家毎の総要求度数枠(持ち点数)の設定手段として、以下の機能を備えている。
 DSMサーバ運用者にて,各需要家の総要求度数枠として持ち点数を設定する。需要家内負荷機器の設定点数は,各要求枠に入力した値を集計して表示する。需要家の設定点数は,各需要家内負荷機器の設定点数を集計して表示する。各需要家の設定点数が当該需要家の持ち点数を超過する場合には、エラーメッセージが表示する。
 需要家端末EMSにおける要求入力と計画結果のインタラクティブ連動表示手段として、以下の機能を備えている。
 要求設定ボタンをクリックすると,画面上で登録した内容を,機器稼働要求データに出力する。計画実行ボタンをクリックすると,出力された機器稼働要求データファイルに基づいて,機器稼働計画を策定し,その結果の稼働パターンを同じ画面上に表示する。各要求枠は,要求入力時点は全て白,計画実行後は,稼働とされたものは青,棄却されたものは赤で区別表示する。各需要家内負荷機器,需要家について,適合度を計算して表示する。
 需要家端末EMSにおける需給バランス表示手段として、以下の機能を備えている。
 計画結果の機器稼働パターンによる対象地域内トータルや需要家毎の需給バランスをグラフ表示する。
 需要家端末EMSにおける計画結果の調整手段として、以下の機能を備えている。
 棄却された赤の要求枠について,Fixボタンをクリックすると,その要求枠の要求度を内部的に事前に定める定数倍で大きく換算して計画計算に反映する。その後,計画実行することで,Fixした要求枠を前提として,機器稼働計画を策定する。この手段により、機器稼働要求が仮に棄却された場合に、この機器稼働要求を必ず許容するように強制許容を指定することが可能である。
 需要家端末EMSにおけるインテリジェント計画支援手段として、以下の機能を備えている。
 棄却された赤の要求枠をクリックすると,それをFixしたときに棄却することになる要求を赤点滅等で区別表示する。棄却された赤の要求枠のうち,それをFixしたときに適合度の減少量が小さいものを青点滅等で区別表示する。需要家内負荷機器登録すると,需要家毎の過去の設定状況から利用頻度の高い時間帯に,あるいは需要家内負荷機器の一般的な利用時間帯に,要求枠をデフォルト表示する。これにより、棄却された機器稼働要求を強制許容した場合に、代わりに棄却されることになる機器稼働要求を区別表示する。
また、強制許容指定したときの影響が最も少ない、棄却された機器稼働要求を区別表示する。
 需要家端末EMSにおける需要家の電源や蓄電池の利用形態の設定手段として、以下の機能を備えている。
 需要家の電源や蓄電池を地域内で供用するかどうかをフラグ設定する。
 なお、上記以外にも需要家端末EMSの通信部は、機器稼働パターンデータをデータ管理部34から取得し、通信ネットワークNWを介して、各需要家Rの需要家端末EMSに配信する。また、入出力部UIの画面を通信ネットワークNWを介して各需要家端末EMSの表示手段に配信する。
 需要家端末EMSは、受信した機器稼働パターンデータに従って、各時刻の機器稼働状態変更の処理を行う。また、受信したIIUIのデータを表示手段に出力し、当該需要家の操作を受け付け、その操作情報を通信ネットワーク、需要家端末EMS通信部を介して、入出力部に送信する。すなわち、各需要家は、需要家端末EMSの画面上で遠隔のDSMサーバの入出力部のIIUIの操作を行う。
 なお以上の説明では,機器電力消費特性データ,蓄電池特性データ,太陽光発電装置PV発電予測データ,気象予測データを運用者が入力する形態を例として記述したが,これらは,他システムからDSMサーバに与えられるとしても良い。
 また、需要家が複数の場合について説明したが、需要家が1件の場合にも自然にかつ容易に縮退して実現されることは明らかである。需要家が1件の場合には、上記DSMの機能が、需要家1件の機能として縮退して、需要家端末EMSに一体化して実装される。
 また、需要家端末EMSは独立して実現するか、太陽光発電装置PVや蓄電池など、需要家機器の一部として実現しても良いことは明らかである。
 さらに太陽光発電装置PVや蓄電池などを備えない需要家であっても、1日の総電力量を所定内に収めたい意向の需要家に対しても同様の考えに基づいて提案された計画に対して需給バランスを計算し、修正計画の提案を行う形で応用利用することが可能である。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明しているものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、またある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の一部について、他の構成の追加、削除、置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。また、上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリやハードディスク、SSD(Solid State Drive)などの記録装置、またはICカード、SDカード、DVDなどの記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際にはほとんどすべての構成が相互に接続されていると考えてもよい。
R:需要家,G:発電設備,L1:送電線,Tr1:変電所設置の変圧器,L2:高圧配電線,R1:大規模需要家,Tr2:柱上の変圧器,L3:低圧配電線,DSM:DSMサーバ,NW:通信ネットワーク,EMS需要家端末,W1:需要家内負荷機器の使用計画入力表示欄,W11:需要家ID表示欄,W12:需要家内負荷機器表示欄W,W13:時間帯別使用計画入力表示欄,W2:電力需給表示欄,W21:総合表示欄,W22:需給バランス表示欄,W23:時間帯別電力量表示欄,B21、B22,B23:表示箱,PV:太陽光発電装置,EV:電気自動車

Claims (11)

  1.  需要家における電力需給バランスを計算して需要家内負荷機器の稼働パターンを定める電力需要管理システムにネットワークを介して接続された需要家エネルギー管理装置であって、
     需要家エネルギー管理装置は、需要家が需要家内負荷機器毎に稼働させたい時間帯や稼働状態に関する条件と、その要求度を対応付けたデータである機器稼働要求を入力する入力手段と、前記電力需要管理システムにおいて作成された、前記入力された条件のうち満足される条件の要求度の合計値を最大とする修正機器稼働パターンを表示する表示手段とを備え、
    かつ前記表示手段には、入力された機器稼働要求のうち、許容されたものと棄却されたものを同一画面上に区別して表示されることを特徴とする需要家エネルギー管理装置。
  2.  請求項1に記載の需要家エネルギー管理装置において、
     前記表示手段には、前記修正機器稼働パターンによる対象需要家の需給バランスの変化パターンが同一画面上に表示されていることを特徴とする需要家エネルギー管理装置。
  3.  請求項1に記載の需要家エネルギー管理装置において、
     前記入力手段には、機器稼働要求が仮に棄却された場合に、この機器稼働要求を必ず許容するように強制許容を指定する手段を備えることを特徴とする需要家エネルギー管理装置。
  4.  請求項3に記載の需要家エネルギー管理装置において、
     前記表示手段には、前記棄却された機器稼働要求を強制許容した場合に、代わりに棄却されることになる機器稼働要求を区別表示する手段を備えることを特徴とする需要家エネルギー管理装置。
  5.  請求項3に記載の需要家エネルギー管理装置において、
     前記表示手段には、強制許容指定したときの影響が最も少ない、棄却された機器稼働要求を区別表示する手段を備えることを特徴とする、需要家エネルギー管理装置。
  6.  請求項1に記載の需要家エネルギー管理装置において、
     前記入力手段には、機器稼働要求の入力時に、各機器に当該需要家の過去の機器稼働状況で利用頻度の高い時間帯に、あるいは、機器の一般的な利用時間帯にデフォルト設定する手段を備えることを特徴とする需要家エネルギー管理装置。
  7.  電力需要管理システムと、需要家に設置された需要家エネルギー管理装置がネットワークを介して接続された需要家エネルギー管理システムであって、
     前記需要家エネルギー管理装置は、当該需要家において需要家内負荷機器毎に稼働させたい時間帯や稼働状態に関する条件と、その要求度を対応付けたデータである機器稼働要求を作成して表示し、
     前記電力需要管理システムは、前記ネットワークを介して得られた前記機器稼働要求に基づいて当該需要家の運転を実施した時の電力需給バランスを計算するとともに、修正機器稼働パターンを作成し、
     前記需要家エネルギー管理装置は、前記電力需要管理システムにおいて作成された前記修正機器稼働パターンを、前記機器稼働要求のうち、許容されたものと棄却されたものを区別して表示することを特徴とする需要家エネルギー管理システム。
  8.  請求項7記載の需要家エネルギー管理システムにおいて、
     前記電力需要管理システムは、前記機器稼働要求のうち満足される条件の要求度の合計値を最大とする修正機器稼働パターンを与えることを特徴とする需要家エネルギー管理システム。
  9.  請求項7に記載の需要家エネルギー管理システムにおいて、
    前記需要家エネルギー管理装置を設置した需要家は太陽光発電装置および蓄電池を備えており、前記電力需要管理システムは前記太陽光発電装置および蓄電池を電力供給源とする電力需給バランス計算を実施して修正機器稼働パターンを与えることを特徴とする需要家エネルギー管理システム。
  10.  請求項7に記載の需要家エネルギー管理システムにおいて、
    前記需要家エネルギー管理装置を設置した需要家は所定期間内の電力使用量が制限されており、前記電力需要管理システムは前記所定期間内の電力使用量を順守する電力需給バランス計算を実施して修正機器稼働パターンを与えることを特徴とする需要家エネルギー管理システム。
  11.  請求項7に記載の需要家エネルギー管理システムにおいて、
    前記需要家エネルギー管理装置は、修正機器稼働パターンに従い、当該需要家の需要家内負荷機器の運転を実行することを特徴とする需要家エネルギー管理システム。
PCT/JP2013/071032 2012-09-10 2013-08-02 需要家エネルギー管理装置およびシステム WO2014038327A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-198075 2012-09-10
JP2012198075A JP5926156B2 (ja) 2012-09-10 2012-09-10 需要家エネルギー管理装置およびシステム

Publications (1)

Publication Number Publication Date
WO2014038327A1 true WO2014038327A1 (ja) 2014-03-13

Family

ID=50236944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071032 WO2014038327A1 (ja) 2012-09-10 2013-08-02 需要家エネルギー管理装置およびシステム

Country Status (2)

Country Link
JP (1) JP5926156B2 (ja)
WO (1) WO2014038327A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823085B1 (ja) * 2015-01-27 2015-11-25 三菱電機株式会社 給湯機運転管理装置、給湯機運転管理システムおよび給湯機運転管理方法
JP2017530687A (ja) * 2014-09-08 2017-10-12 イー・ギア・エルエルシー グリッドに結合された実時間適応分散間欠電力
US12113357B2 (en) 2021-03-22 2024-10-08 Ricoh Company, Ltd. Control server, tracking system, communication method, and non-transitory recording medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234264B2 (ja) * 2014-02-14 2017-11-22 株式会社日立製作所 電力需要調整システム、電力需要調整方法、および電力需要調整装置
WO2016067469A1 (ja) * 2014-10-31 2016-05-06 三菱電機株式会社 電気機器管理装置、電気機器管理方法、電気機器管理システム及びプログラム
JP2016163488A (ja) * 2015-03-04 2016-09-05 株式会社東芝 電力制御装置、電力制御方法、及び電力制御プログラム
JP6653153B2 (ja) * 2015-10-01 2020-02-26 株式会社日立製作所 電力需要調整計画管理装置
JP6909962B2 (ja) * 2017-04-28 2021-07-28 パナソニックIpマネジメント株式会社 情報表示方法、情報表示システム、および情報表示プログラム
JP7550545B2 (ja) 2020-06-23 2024-09-13 関西電力株式会社 充放電管理システム
JPWO2023228264A1 (ja) * 2022-05-24 2023-11-30

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032658A (ja) * 1998-07-13 2000-01-28 Hitachi Ltd 電力設備の状況に適応する負荷制御装置を備えた電力系統
JP2002369383A (ja) * 2001-06-06 2002-12-20 Hitachi Ltd 家電機器の制御装置
JP2007295680A (ja) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd 負荷制御装置
JP2008289276A (ja) * 2007-05-17 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> 機器制御装置、機器制御システムおよび機器制御方法
JP2010270997A (ja) * 2009-05-22 2010-12-02 Chugoku Electric Power Co Inc:The 深夜電力機器制御システム及び深夜電力機器制御方法
JP2012130167A (ja) * 2010-12-16 2012-07-05 Sharp Corp エネルギ管理方法、及びエネルギ管理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032658A (ja) * 1998-07-13 2000-01-28 Hitachi Ltd 電力設備の状況に適応する負荷制御装置を備えた電力系統
JP2002369383A (ja) * 2001-06-06 2002-12-20 Hitachi Ltd 家電機器の制御装置
JP2007295680A (ja) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd 負荷制御装置
JP2008289276A (ja) * 2007-05-17 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> 機器制御装置、機器制御システムおよび機器制御方法
JP2010270997A (ja) * 2009-05-22 2010-12-02 Chugoku Electric Power Co Inc:The 深夜電力機器制御システム及び深夜電力機器制御方法
JP2012130167A (ja) * 2010-12-16 2012-07-05 Sharp Corp エネルギ管理方法、及びエネルギ管理システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530687A (ja) * 2014-09-08 2017-10-12 イー・ギア・エルエルシー グリッドに結合された実時間適応分散間欠電力
EP3191907A4 (en) * 2014-09-08 2018-08-01 Gear Llc E Grid tied, real time adaptive, distributed intermittent power
JP5823085B1 (ja) * 2015-01-27 2015-11-25 三菱電機株式会社 給湯機運転管理装置、給湯機運転管理システムおよび給湯機運転管理方法
WO2016120995A1 (ja) * 2015-01-27 2016-08-04 三菱電機株式会社 給湯機運転管理装置、給湯機運転管理システムおよび給湯機運転管理方法
GB2547398A (en) * 2015-01-27 2017-08-16 Mitsubishi Electric Corp Water heater operation management device, water heater operation management system, and water heater operation management method
GB2547398B (en) * 2015-01-27 2020-06-17 Mitsubishi Electric Corp Water heater operation management device, water heater operation management system, and water heater operation management method
US12113357B2 (en) 2021-03-22 2024-10-08 Ricoh Company, Ltd. Control server, tracking system, communication method, and non-transitory recording medium

Also Published As

Publication number Publication date
JP2014054123A (ja) 2014-03-20
JP5926156B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5926156B2 (ja) 需要家エネルギー管理装置およびシステム
Arun et al. Intelligent residential energy management system for dynamic demand response in smart buildings
Panda et al. Residential Demand Side Management model, optimization and future perspective: A review
Eid et al. Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design
US9310792B2 (en) Scheduling and modeling the operation of controllable and non-controllable electronic devices
Najafi-Ghalelou et al. Heating and power hub models for robust performance of smart building using information gap decision theory
Cui et al. Residential appliances direct load control in real-time using cooperative game
JP4806059B2 (ja) エネルギー管理システムおよびエネルギー管理方法
JP6114532B2 (ja) エネルギー管理システム
EP2487768B1 (en) Electric device and power management apparatus for changing demand response (DR) control level
WO2013128953A1 (ja) 蓄電蓄熱最適化装置、最適化方法及び最適化プログラム
US20140316599A1 (en) Consumer energy management system and consumer energy management method
WO2014034391A1 (ja) エネルギー管理システム、サーバ、エネルギー管理方法および記憶媒体
US20150058061A1 (en) Zonal energy management and optimization systems for smart grids applications
JP5861100B2 (ja) 省エネルギー化提案システム、省エネルギー化提案方法
Lee et al. Optimal power management for nanogrids based on technical information of electric appliances
JP6965747B2 (ja) 情報処理装置、情報処理方法、およびプログラム
JP5768097B2 (ja) 情報処理装置及びサービス提供方法
Dao et al. Intensive quadratic programming approach for home energy management systems with power utility requirements
JP2012178935A (ja) 系統電力管理システム
JP5568660B1 (ja) 節電支援システム、節電支援方法、および節電支援プログラム
Lotfi et al. Coordinated operation of electric vehicle parking lots and smart homes as a virtual power plant
JP2015133782A (ja) 電力需給制御装置及び電力需給制御方法
Kim et al. Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control
Duan et al. Integrated scheduling of generation and demand shifting in day‐ahead electricity market

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836017

Country of ref document: EP

Kind code of ref document: A1