WO2014036702A1 - 一类新型含氮配体金属钌络合物及其制备方法和用途 - Google Patents

一类新型含氮配体金属钌络合物及其制备方法和用途 Download PDF

Info

Publication number
WO2014036702A1
WO2014036702A1 PCT/CN2012/081037 CN2012081037W WO2014036702A1 WO 2014036702 A1 WO2014036702 A1 WO 2014036702A1 CN 2012081037 W CN2012081037 W CN 2012081037W WO 2014036702 A1 WO2014036702 A1 WO 2014036702A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ligand
metal ruthenium
nitrogen
hydrogen
Prior art date
Application number
PCT/CN2012/081037
Other languages
English (en)
French (fr)
Inventor
山多夫·克里斯蒂安·A
徐亮
铂尔马特·帕特里克
沃克·阿什利
Original Assignee
中山奕安泰医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山奕安泰医药科技有限公司 filed Critical 中山奕安泰医药科技有限公司
Priority to CN201280014922.7A priority Critical patent/CN103889995B/zh
Priority to PCT/CN2012/081037 priority patent/WO2014036702A1/zh
Publication of WO2014036702A1 publication Critical patent/WO2014036702A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium

Definitions

  • Novel nitrogen-containing ligand metal ruthenium complex, preparation method and use thereof
  • the invention relates to a novel class of phosphine-containing, nitrogen-containing ligand metal ruthenium complexes, a preparation method thereof and use thereof.
  • the complex can be used to catalyze asymmetric hydrogenation and transfer hydrogenation, especially for asymmetric catalytic hydrogenation of ketone compounds.
  • Asymmetric catalytic hydrogenation is a hot spot in the current asymmetric synthesis field [Ohkuma, T.; Kitamura, ⁇ ; Noryori, R. (1999) Asymmetric Hydrogenation.
  • Catalytic Asymmetric Synthesis 2nd Ed. (Ed.: Ojima, I) Wiley-VCH, New York, 2000]
  • the Handbook of Homogeneous Hydrogenation (Ed. : de Vries, J. G" Elsevier, C. J) Wiley-VCH: Weinheim, 2007; Vol. 1-3.] It has been increasingly used in industrial production [Asymmetric Catalysis on Industrial Scale (Ed.: B laser, H.-U.; Schmidt). Wiley-VCH, Weinheim, 2004].
  • Chiral alcohols are important intermediates in the pharmaceutical, pesticide and fine chemical industries.
  • the asymmetric hydrogenation of ketones is one of the most effective methods for the preparation of chiral alcohols.
  • a breakthrough in the asymmetric catalytic hydrogenation of ketones was achieved by the Noyori group, who used the concept of metal-ligand bifunctional peripheral activation to prepare a structure of trans-[RuCl 2 (phosphane) (l, 2-diamine).
  • Noyori Group designed a new ruthenium agent, RuCl 2 (a-picolylamine), which can be efficiently and highly mapped by changing the diamine ligand to NH 2 -N(sp 2 ) bis-nitrogen ligand.
  • RuCl 2 a-picolylamine
  • a new structure of transition metal was synthesized by further studying the NH 2 -N(sp 2 ) structure of the diazo ligand transition metal complex [Sandoval, C. A, Li Yuehui. WO 2009149670 Al, 2009]
  • the complex is capable of efficiently catalyzing the hydrogenation reaction of the aromatic ketone in an aprotic solvent such as toluene or THF or a protic solvent such as isopropyl alcohol.
  • aprotic solvent such as toluene or THF
  • a protic solvent such as isopropyl alcohol.
  • hydrogenation catalysts currently activated by bifunctional peripheral activation are only catalytically active in protic solvents. Summary of the invention
  • Object of the present invention is to provide a new class of structures with a phosphine containing ligands, with NH 2 -N (sp 2) a transition metal complex structure wherein a nitrogen ligand, in particular ruthenium complexes.
  • Another object of the present invention is to provide a process for the preparation of the above transition metal complex.
  • Transition metal complexes Can be used in asymmetric catalytic hydrogenation reactions.
  • ketones, acetophenones and derivatives thereof for the steric hindrance of the alpha position, ketones of the aryl or unsaturated alkyl group, diaryl ketones and the like, and the tert-butyl group at the ⁇ -position Asymmetric catalytic hydrogenation or asymmetric transfer of ketones, ketones with a hetero atomic group, ⁇ -fluorene, fluorenyl-dimethylamino- ⁇ -acetophenone and its derivatives and other aryl-alkyl ketones Hydrogenation reaction.
  • the transition metal complex of the present invention can be subjected to asymmetric catalytic hydrogenation in a protic solvent, an aprotic solvent or a mixed solvent.
  • the total structural formula (I) of the metal ruthenium complex according to the present invention is: [RuL m L' XY] , wherein X and Y may be the same or different.
  • X may be chlorine, bromine, iodine or hydrogen, and Y may be chlorine, bromine, iodine or BH 4 .
  • L is a phosphine ligand selected from the following structures:
  • R 7 R 8 P a bidentate phosphine ligand of the formula R 7 R 8 P wherein R 4 is a chiral or achiral organic hydrocarbon group; R 5 , R 6 , R 7 , R 8 may be the same or different An aliphatic hydrocarbon or aromatic group of 1 to 10 carbon atoms;
  • the phosphine ligand is two identical monodentate phosphine ligands selected from the above 1); when m is
  • the phosphine ligand is selected from the bidentate phosphine ligands in 2) above;
  • R 7 R 8 , R 4 may be selected from, but not limited to, the following structures:
  • R 9 and R 1G may be the same or different.
  • R 9 , R 1G may be hydrogen or a hydrocarbon group of 1 to 12 carbon atoms.
  • the bidentate nitrogen ligand II-V may have an R configuration or an S configuration when having a chiral center, and may have an (R, R) configuration or a & configuration when having two chiral centers.
  • the hydrocarbon group of 1 to 12 carbon atoms may be methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, t-butyl, cyclopentyl, cyclohexyl, cycloheptyl, 9 phenyl, alkyl substituted benzyl.
  • - - Rl is a cyclic hydrocarbon group, it may be a propylene group or a butylene group.
  • R 11 , R 12 , R 13 may be hydrogen or an alkyl, aryl or arylalkyl group of 1 to 12 carbon atoms; the aliphatic hydrocarbon group is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, cyclopropane Base, n-butyl, tert-butyl, cyclopentyl, cyclohexyl, cycloheptyl; aromatic hydrocarbon is selected from phenyl, substituted phenyl; arylalkyl is selected from benzyl, alkyl substituted benzyl.
  • Z may be NH or 0.
  • A may be independently hydrogen, an alkyl group of 1 to 8 carbon atoms, an alkoxy group, an aryl group, a halogen atom, a nitro group, an amino group, or a sulfonic acid group.
  • n is an integer of 1 to 4, which is equal to the number of carbon atoms of the unsubstituted aromatic ring.
  • the above alkyl group of 1 to 8 carbon atoms is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, tert-butyl, cyclopentyl, cyclohexyl, cycloheptyl, and fluorine.
  • the above alkoxy group of 1 to 8 carbon atoms is selected from the group consisting of a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a t-butoxy group, and a n-butoxy group;
  • the aryl group of ⁇ 8 carbon atoms is selected from the group consisting of phenyl, substituted phenyl, benzyl, substituted benzyl.
  • the bidentate nitrogen-containing ligand can be conveniently obtained by an organic synthesis method.
  • the metal ruthenium complex structure formula (I) can be further described as follows:
  • the complex may be in the cis or trans configuration and P represents a phosphine ligand coordinated to the metal ruthenium (Ru), as defined above.
  • Phosphine ligands in the present invention include, but are not limited to, triphenylphosphine, BINAP, and bisphosphine analogs having a dinaphthyl or substituted dinaphthyl group, BIPHEP, and bisphosphine analogs having a diphenyl or substituted diphenyl group, JOSIPHOS and bisphosphine analogs with ferrocene or substituted ferrocene results, DIPAMP, DIOP, PPM, BDPP, DuPhos, TangPhos, TunePhos, SegPhos, ChiraPhos, SkewPhos, PhanePhos, Norphos, DuanPhos, Cn-TunePhos, etc.'
  • Structural formula Representative of a bidentate nitrogen ligand selected from structural formula II, III, IV or V, wherein R 9 , R 10 , ⁇ are as defined above.
  • X may be chlorine, bromine, iodine or hydrogen, and hydrazine may be chlorine, bromine, iodine or hydrazine 4 .
  • the complex (I) can be prepared in an organic solvent at a reaction temperature of 20 ° C to 120 ° C, from a metal ruthenium compound, a diazo ligand or a mononitrogen ligand, a bisphosphine ligand or a single
  • the phosphine ligand reaction is obtained in 0.5 to 20 hours, wherein the molar ratio of the metal ruthenium compound, the diazo ligand or the mononitrogen ligand, the bisphosphine ligand or the monophosphine ligand is 1: 1 ⁇ 3: 1 ⁇ 5.
  • the molar ratio of the metal ruthenium compound, the diazo ligand, and the monophosphine ligand is 1:1 to 3:3 to 5, and it is recommended to be 1:2:4;
  • the molar ratio of the metal ruthenium compound, the bisazo ligand, and the bisphosphine ligand is 1:1 to 3:1 to 3, and 1:2:2 is recommended.
  • the metal ruthenium compound is a halide of Ru or a derivative thereof such as RuX 2 (PPh 3 ) 3 , RuX 3 , wherein X is chlorine, bromine or iodine.
  • the preparation process of the metal ruthenium complex can be specifically expressed by the following reaction formula:
  • the organic solvent used in the method of the present invention may be benzene, toluene, xylene, trimethylbenzene, acetonitrile, diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, chloroform, dichloromethane, methanol, ethanol, isopropyl Alcohol, hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethylacetamide, dimethyl sulfoxide, hydrazine-methylpyrrolidone, and the like.
  • the metal ruthenium complex and the nitrogen-containing ligand synthesis method of the present invention can be used for catalyzing asymmetric hydrogenation reaction, especially for the ⁇ -position being an aryl or unsaturated alkyl ketone, a diaryl ketone and Analogs, tert-butanyl ketone, ketone having a hetero atom group at the ⁇ -position, ⁇ -fluorene, ⁇ -dimethylamino- ⁇ -acetophenone and derivatives thereof, and other aryl-alkyl ketone compounds Catalytic asymmetric hydrogenation.
  • the metal complex can be prepared in situ. detailed description
  • the preparation method is the same as in the second embodiment (
  • the preparation method was the same as in Example 2.
  • the gas was transferred to the glass reactor under argon gas protection; firstly, high-purity hydrogen gas was introduced to lOatm, then hydrogen gas was carefully released, and the gas-gassing was repeated three times. Finally, the hydrogen gas was charged to 8 atm and maintained, and the mixture was rapidly stirred at 25 ° C for 11 hours. , monitoring the consumption of 3 ⁇ 4; reaching the preset reaction time, releasing the hydrogen in the reaction vessel, filtering the reaction solution through a silica gel column, and distilling off the solvent under reduced pressure.
  • the product 1-phenylethanol conversion and ee values were determined by chiral GC column and the absolute configuration of the product was determined by polarimetry.
  • a 1.0 mL pre-dried 100 mL glass reactor with a magnetic stirrer was charged with 1.0 mg (0.01 mmol) of catalyst 8 and 7.5 mg (0.067 mmol) of i-BuOK; After at least 5 min, argon was exchanged for 3 times; in a Schlenk tube pre-dried at 120 °C, 150 mg (1 mmol) of 4,-methoxyphenylethanone and 3.0 mL of freshly distilled toluene, argon were added. After gas degassing for 5 min, it was transferred to a glass reactor under argon gas protection; firstly, high-purity hydrogen gas was introduced to lOatm and then hydrogen gas was carefully released.
  • Example 14 Asymmetric catalytic hydrogenation of 3,-bromophenyl ethyl ketone
  • a 1.0 mL pre-dried 100 mL glass reactor with a magnetic stirrer was charged with 1.0 mg (0.01 mmol) of catalyst 8 and 7.5 mg (0.067 mmol) of i-BuOK; After at least 5 min, argon gas was introduced for replacement, and repeated 3 times; in a Schlenk tube pre-dried at 120 ° C, O. lmL 3,-bromophenyl ethyl ketone and 3.0 mL of freshly steamed toluene, argon were added.
  • Example 16 Asymmetric catalytic hydrogenation of 2,-chlorodiphenyl ketone
  • a 1.0 mL pre-dried 100 mL glass reactor with a magnetic stirrer was charged with 1.0 mg (0.01 mmol) of catalyst 8 and 7.5 mg (0.067 mmol) of i-BuOK; After at least 5 min, argon gas was substituted for 3 times; in a Schlenk tube pre-dried at 120 °C, 0.12 mL (1 mmol) of pinacolone and 3.0 mL of freshly distilled toluene were added, and argon gas was degassed for 5 min.
  • the solvent used in the above asymmetric hydrogenation reaction may be one of the following or a mixture thereof: benzene, toluene, xylene, trimethylbenzene, tetrahydrofuran, dichloromethane, diethyl ether, methanol, ethanol, isopropanol, n-propanol, Butanol, isobutanol, tert-butanol, acetonitrile, ethylene glycol, chloroform, dimethyl sulfoxide, N-methylpyrrolidine, hydrazine, hydrazine-dimethylformamide, and the like.
  • the base used may be one of the following or a mixture thereof: sodium hydroxide, potassium hydroxide, tert-butoxide, sodium t-butoxide, lithium t-butoxide, cesium tert-butoxide, cesium carbonate, sodium carbonate, potassium carbonate, Sodium bicarbonate, potassium bicarbonate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, potassium fluoride, sodium hydride, potassium hydride, calcium hydride, triethylamine, diisopropylethylamine, tetramethylethylene Amine, hydrazine, hydrazine-dimethylaniline, hydrazine, hydrazine-diethylaniline, 1,4-diazabicyclo[2,2,2]octane (DABCO), diazabicyclododecane (DBU), 1 , 4- 2 Methylpiperazine, 1-methylpiperidine, 1-methylpyrrole, quinoline or
  • the reaction can withstand a small amount of water.
  • the substrate involved in the reaction may be an aromatic ketone containing a hetero atom.
  • the reaction may be carried out for a period of from 0.1 to 48 hours, and the hydrogen pressure may be from 1 to 80 atm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及新型含膦、氮配体金属钌络合物及其制备方法和用途。本发明提供具新结构的含有膦配体、具NH2-N(sp2)结构特征的氮配体的过渡金属络合物,金属钌络合物的总结构式(I)为:[RuLmL'ΧΥ],其中X和Υ可以相同也可以不同。X可以是氯、溴、碘或氢,Υ可以是氯、溴、碘或ΒH4;本发明还提供了上述过渡金属络合物的制备方法及应用。本发明所述的金属钌络合物及含氮配体合成方法简便,可以用于催化不对称氢化反应,尤其应用于α位是芳基或不饱和烷基酮、二芳基酮及其类似物、α位为叔丁烷基酮、α位为杂原子基团的酮、β-Ν,Ν-二曱氨基-α苯乙酮及其衍生物和其它芳基-烷基酮类化合物的催化不对称氢化反应。上述金属钌络合物应用于酮的催化氢化时,该金属络合物可以原位制备。

Description

一类新型含氮配体金属钌络合物及其制备方法和用途
技术领域
本发明涉及一类新型含膦、 氮配体金属钌络合物及其制备方法和用途。 具
NH2-N(sp2)结构特征的双氮配体与过渡金属钌配位形成双膦双氮配体过渡金属 说
络合物, 可以用于催化不对称氢化反应和转移氢化反应, 尤其是用于酮类化合 物的不对称催化氢化反应。 书
背景技术
不对称催化氢化反应是当前不对称合成领域中的热点 [Ohkuma, T.; Kitamura, Μ·; Noryori, R. (1999) Asymmetric Hydrogenation. In: Catalytic Asymmetric Synthesis, 2nd Ed. (Ed.: Ojima, I) Wiley-VCH, New York, 2000] , [The Handbook of Homogeneous Hydrogenation (Ed. : de Vries, J. G" Elsevier, C. J) Wiley-VCH: Weinheim, 2007; Vol. 1-3.] , 目前已经越来越多地被应用于工业生产 [Asymmetric Catalysis on Industrial Scale (Ed.: B laser, H.-U.; Schmidt). Wiley-VCH, Weinheim, 2004]。
手性醇类化合物是制药、 农药和精细化工等行业中重要的中间体, 其中酮 类化合物的不对称氢化反应是制备手性醇的最有效方法之一。 不对称催化氢化 还原酮的一个突破性进展是 Noyori小组实现的,他们运用金属-配体双功能外围 活化的概念, 制备了一种结构为 trans-[RuCl2(phosphane)(l,2-diamine)]的络合物, 在碱 (如 -BuOK或 KOH)的存在下, 可高效、 高对映选择性地催化酮类底物的不 对称氢 4匕反应 [Noyori, R.; Takeshi, 0.; Hirohito, O.Shohei, Η·; Takao, I. J. Am. Chem. Soc. 1995, 117, 2675] , [Noyori, R.; Ohkuma, T.; Douce, H.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. R; Ikariya, T" Angew. Chem. Int. Ed. 1998, 37, 1703]。 由于催化剂对底物的普适性较差, 人们设计和合成了许 多手性双膦配体并在酮类化合物的不对称氢化反应中取得非常好的结果 [Jing, W.; Hua, C; Waihim, K.; Rongwei, G.; Zhongyuan, Z.; Chihung, Y.; Chan, S. C, J. Chem. Soc. 2002, 67, 7908] , [ Jing, W.; Jian, X.; Rongwei, G; Chihung, Y.; Chan, S. C" Chem. Eur. J. 2003, 9, 2963] , [Jian, H. X.; Xin, L. W.; Fu, Y.; Shuo, F. Z.; Bao, M. R; Hai, F. D.; Zhou, Q. L. J. Am. Chem . Soc. 2003. 125, 4404] , [Mark, J.; William, H.; Daniela, H.; Christophe, M.; Antonio, Z. G. Org. Lett. 2000, 26, 4173]。
而最近 Noyori小组设计一种新的催^匕剂 RuCl2(phosphane)(a-picolylamine), 通过改变双胺配体为 NH2-N(sp2)双氮配体, 可高效、 高对映选择性地催化 α位 是大位阻叔烷基的酮的氢化生成手性叔烷基甲醇 [Ohkuma, T.; Sandoval, C. A.; Srinivasan, R.; Lin, Q.; Wei, Y.; Muniz, K.; Noyori R. J. Am. Chem. Soc. 2005, 127, 8288.] , 这是可以高效催化氢化这一类特殊底物的催化剂 [Ohkuma, T.; Sandoval, C. A.; Noyori, R. WO 2006046508 Al, 2006]。 值得一提的是, 手性叔烷基甲醇可 用于生产手性表面活性剂等重要的化合物, 而使用传统的双膦双氮 Ru催化剂 RuCl2(tolbinap)(dpen)组合催化这一反应时,反应产率和对映选择性均低于 20%。
通过对 NH2-N(sp2)结构特征的双氮配体过渡金属络合物进一步研究 [Sandoval, C. A, Li Yuehui. WO 2009149670 Al, 2009] , 合成了一种新结构的过渡 金属络合物, 且其在甲苯、 THF 等非质子性溶剂或异丙醇等质子性溶剂中均能 高效地催化芳香酮的氢化反应。 而目前通过双功能外围活化作用的氢化催化剂 只在质子性溶剂中具有催化活性。 发明内容
本发明的目的是提供一类具新结构的含有膦配体、 具 NH2-N(sp2)结构特征 的氮配体的过渡金属络合物, 尤其是金属钌络合物。
本发明的另一目的是提供上述过渡金属络合物的制备方法。
本发明的目的还将提供上述过渡金属络合物的应用。 该类过渡金属络合物 可以用于不对称催化氢化反应。 尤其是用于 α位大位阻的酮、 苯乙酮及其衍生 物, α位是芳基或不饱和烷基的酮,二芳基酮及其类似物, α位为叔丁烷基的酮、 α位为杂原子基团的酮、 β-Ν,Ν-二甲氨基 -α苯乙酮及其衍生物和其它芳基 -烷基 酮类化合物的不对称催化氢化反应或不对称转移氢化反应。
本发明的过渡金属络合物可以在质子性溶剂、 非质子性溶剂或者混合溶剂 中进行不对称催化氢化反应。
本发明所涉及的金属钌络合物的总结构式( I )为: [RuLmL' XY] , 其中 X 和 Y可以相同也可以不同。 X可以是氯、 溴、 碘或氢, Y可以是氯、 溴、 碘或 BH4
L为膦配体, 选自以下结构:
1) 通式为 ί^ίΛ^ Ρ的单齿膦配体, 其中 R1, ^2, !^ 可以相同也可以不同, 为 1 ~ 6个碳原子的脂肪烃或 6 ~ 12个碳原子的芳香烃基团;
R5R6P
/
R4
2) 通式为 R7R8P的双齿膦配体, 其中 R4 为手性或非手性的有机碳氢基团; R5, R6, R7, R8可以相同也可以不同, 为 1 ~ 10个碳原子的脂肪烃或芳香性基 团;
当 m为 2时, 膦配体为两个相同的选自上述 1 ) 中的单齿膦配体; 当 m为
1时, 膦配体选自上述 2 ) 中的双齿膦配体;
R5R6P
/
R4
进一步地, 对于双齿膦配体结构 R7R8 , R4可选自但不局限于以下结构:
Figure imgf000005_0001
Figure imgf000005_0002
II III iv v
R9 , R1G可以相同也可以不同。 R9 , R1G可以是氢或 1 ~ 12个碳原子的烃基。 所述的双齿氮配体 II-V具有一个手性中心时可以是 R构型或 S构型,具有两个手性 中心时可以是 (R,R)构型或 (& 构型。 上述 1 ~ 12个碳原子的烃基可以是甲基、 乙 基、 正丙基、 异丙基、 环丙基、 正丁基、 叔丁基、 环戊基、 环己基、 环庚基、 9 苯基、 、 烷基取代的苄基。 当 '、、- -Rl为环烃基时, 可以是亚丙基或亚丁基。
R11 , R12, R13可以是氢或 1 ~ 12个碳原子的烷基、 芳基、 芳基烷基; 脂肪烃基选 自甲基、 乙基、 正丙基、 异丙基、 环丙基、 正丁基、 叔丁基、 环戊基、 环己基、 环庚基; 芳香烃选自苯基、 取代苯基; 芳基烷基选自苄基、 烷基取代的苄基。
当双齿氮配体选自结构 ΠΙ时, Z可以是 NH, 也可以是 0。
A可以单独为氢, 1 ~ 8个碳原子的烷基、 烷氧基、 芳基、 卤素原子、 硝基、 氨基、 磺酸基。 n为 1 ~ 4的整数, 等于未取代的芳香环的碳原子数。 上述 1 ~ 8个 碳原子的烷基选自甲基、 乙基、 正丙基、 异丙基、 环丙基、 正丁基、 叔丁基、 环戊基、 环己基、 环庚基、 氟甲基、 三氟甲基; 上述 1 ~ 8个碳原子的烷氧基选 自甲氧基、 乙氧基、 丙氧基、 异丙氧基、 叔丁氧基、 正丁氧基; 上述 1 ~ 8个碳 原子的芳基选自苯基、 取代苯基、 苄基、 取代苄基。
所述的双齿含氮配体可以比较方便地通过有机合成方法获得。
所述的金属钌络合物结构式( I )还进一步可以描述如下:
Figure imgf000006_0001
在所有结构式中, 络合物可以是顺式 或反式 构型, P代表与金属 钌 (Ru ) 配位的膦配体, 定义如前所述。 本发明中的膦配体包括但不限于三苯 基膦、 BINAP及具有二萘基或取代二萘基的双膦类似物、 BIPHEP及具有二苯 基或取代二苯基的双膦类似物、 JOSIPHOS及具有二茂铁或取代二茂铁结果的双 膦类似物、 DIPAMP, DIOP, PPM, BDPP, DuPhos, TangPhos, TunePhos, SegPhos, ChiraPhos , SkewPhos , PhanePhos , Norphos , DuanPhos , Cn-TunePhos等 '
结构式
Figure imgf000007_0001
代表双齿氮配体, 选自结构式 II、 III、 IV或 V, 其 中 R9, R10, Ζ的定义如前所述。 X可以是氯、 溴、 碘或氢, Υ可以是氯、 溴、 碘或 ΒΗ4
所述的络合物( I )的制备可以在有机溶剂中和反应温度为 20°C~120°C下, 由金属钌化合物、 双氮配体或单氮配体、 双膦配体或单膦配体反应 0.5~20小时 获得, 其中, 金属钌化合物、 双氮配体或单氮配体、 双膦配体或单膦配体的摩 尔比为 1: 1 ~3: 1 ~5。 当采用双氮和单膦配体时, 金属钌化合物、 双氮配体、 单膦配体的摩尔比为 1: 1 ~3: 3~5, 推荐 1: 2: 4; 当采用双氮和双膦配体时, 金属钌化合物、 双氮配体、 双膦配体的摩尔比为 1: 1 ~3: 1 ~3, 推荐 1: 2: 2。 所述的金属钌化合物是 Ru的卤化物或其衍生物, 如 RuX2(PPh3)3, RuX3, 其中 X为氯、 溴或碘。
所述的金属钌络合物的制备过程可具体地由下面的反应式表示:
Figure imgf000007_0002
Figure imgf000008_0001
(Z=NH或 O) 上述金属钌络合物制备过程中, 当 Y为 B¾时, 反应式如下:
Figure imgf000008_0002
上述反应式中, P、 z和 R R1*3的定义如前所述。
本发明所述的方法中使用的有机溶剂可以是苯、 甲苯、 二甲苯、 三甲苯、 乙腈、 乙醚、 四氢呋喃、 乙二醇二甲醚、 三氯甲烷、 二氯甲烷、 甲醇、 乙醇、 异丙醇、 Ν,Ν-二甲基甲酰胺、 Ν,Ν-二甲基乙酰胺、 二甲基亚砜、 Ν-甲基吡咯烷 酮等。
本发明所述的金属钌络合物及含氮配体合成方法筒便, 可以用于催化不对 称氢化反应, 尤其应用于 α位是芳基或不饱和烷基酮、 二芳基酮及其类似物、 α 位为叔丁烷基酮、 α位为杂原子基团的酮、 β-Ν,Ν-二甲氨基 -α苯乙酮及其衍生物 和其它芳基 -烷基酮类化合物的催化不对称氢化反应。 上述金属钌络合物应用 于酮的催化氢化时, 该金属络合物可以原位制备。 具体实施方式
通过以下实施例有助于进一步理解本发明, 但并不限制本发明的内容。
使用 C2对称的双膦配体 (DIOP , BINAP , MeO-BIPHEP , SEGPHOS , PhanePHOS , DIPAMP , DuPHOS , BDPP , TunePHOS , CHIRAPHOS , PPM , PYRPHOS)制备络合物的方法以化合物 [RuCl2(C6H6)] 、 RuCl2(PPh3)3 和 trans-RuCl2(NBD)(py)2作为起始原料, 制备工艺参考文献 [Noyori, R.; Takeshi, 0.; Hirohito, O.Shohei, Η·; Takao, I. J. Am. Chem. Soc. 1995, 117, 2675; Akotsi, O. M.; Metera, K.; Reid, R. D.; McDonald, R.; Bergens, S. H. Chirality 2000, 12, 514-522]„ 使用(^对称的双膦配体 (JosiPHOS, WalPHOS, MandyPHOS) 制备络合物的方法 以化合物 RuCl2(PPh3)3为起始原料, 而 RuCl2(PPh3)3可以比较方便地以 RuCl3水 合物和 PPh3制备得到 [Steohenson, T. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1966, 28, 945-956]。 上述络合物的制备方法参考文献 [Baratta, W.; Ballico, M.; Chelucci, G; Siega, K.; Rigo, P. Angew. Chem. Int. Ed. 2008, 47, 4362-4365]。 所有的合成反 应均在氩气保护下进行, 所有溶剂使用前均经重蒸。 具体以络合物 (8-15)的制备 进行了比较详细的描述, 但并不限制本发明的内容。
Figure imgf000010_0001
yyy(ppp),,,〇5sdeosoede3dooae DI¾4Biihnlhhinmthl22imthllixln-----= yy(ppp)p, ,Nbsdeosoba BIAP22iihnlhhin 11inhthl---=- - 在氩气保护下, 将 [RuCl2(C6¾)]2 8.2mg (0.0164mmol)和 CS)-SEGPHOS 20mg (0.0328mmol)悬浮在 2ml经氩气脱气处理的 DMF中, 100 °C下搅拌 1小时; 在 50 °C、真空除去溶剂,得到褐色固体;然后,加入 β-bimaH 5.3mg(0.0328mmol) 和 2.6ml氩气脱气处理的 DCM (二氯甲烷) -甲醇混合溶剂(DCM:甲醇 =10:3) ,再加入 Et3N 9.9mg(0.0984mmol) , 氩气保护下室温搅拌 12小时; 真空除去溶剂, 加入 3ml DCM , 过滤; 滤液减压蒸傭浓缩至约 0.5ml,再加入 3ml正己烷沉淀, 过滤, 3mL乙醚洗涤两次,真空干燥,得到产物 23.3mg (产率 76%)。 31P NMR (121MHz, CDC13): δ 55.4 ppm (d, J(P, P)= 36.1Hz), 40.7 ppm (d, J(P, Ρ)=35·9Ηζ)。
实施例 2 反式 -RuCW & -DIOP^I^IO-ACHC-Oxazole] [C¾RR)-9]的制备
Figure imgf000011_0001
在氩气保护下, 将 [RuCl2(C6¾)]2 8.2mg (0.0164mmol)和 (& -DIOP 16.4mg (0.0328mmol)悬浮在 2ml经氩气脱气处理的 DMF中, 100 °C下搅拌 1小时; 在 50°C、 真空除去溶剂, 得到褐色固体; 然后, 加入(R,R)-ACHC-Oxazole 5.3mg(0.0328mmol) 和 2.6ml经氩气脱气处理的 DCM-甲醇混合溶剂(DCM:甲醇 =10:3) , 再加入 Et3N 9.9mg(0.0984mmol) , 氩气保护下室温搅拌 12小时; 真空除 去溶剂, 加入 3ml DCM , 过滤; 滤液减压蒸傭浓缩至约 0.5ml, 再加入 3ml正 己烷沉淀, 过滤, 3mL乙醚洗涤两次, 真空干燥, 得到产物 20.9mg (产率 71%)。 31P NMR (121MHz, CDC13, 20 °C ) δ 40.7 ppm (d, V(P,P)=42.6 Hz), 28.6 ppm (d, V(P,P)=42.6Hz)„
实施例 3 反式 -RuCl2[(R)-SEGPHOS][CS Me-P-bimaH] [(R^-IO]的制备 ( ?)-SEGPHOS + [RuCl2(C6H6)]2
Figure imgf000012_0001
在氩气保护下, 将 [RuCl2(C6H6)]2 8.2mg(0.0164mmol)和 (R)-SEGPHOS 20mg (0.0328mmol)悬浮在 2ml经氩气脱气处理的 DMF中, 100 °C下搅拌 1小时; 在 50°C、 真空除去溶剂 , 得到褐色固体; 然后, 加入 CS)-Me-P-bimaH 5.3mg(0.0328mmol) 和 2.6ml经氩气脱气处理的 DCM-甲醇混合溶剂(DCM:甲醇 =10:3) , 再加入 Et3N 9.9mg(0.0984mmol) , 氩气保护下室温搅拌 12小时; 真空除 去溶剂, 加入 3ml DCM , 过滤; 滤液减压蒸傭浓缩至约 0.5ml, 再加入 3ml正 己烷沉淀, 过滤, 3mL乙醚洗涤两次, 真空干燥, 得到产物 26.4mg (产率 83%)。 31P NMR (121MHz, CDC13, 20 °C ): δ 49.58 ppm (d, J=38.7 Hz), 47.32 ppm (d,
Figure imgf000012_0002
实施例 4 反式 -RuCl2[CS)-MeO-BIPHEP][0S)-Bn-P-bimaH] [(& -11]的制备
(5)-MeO-BIPHEP + [RuCl2(C6H6)]
Figure imgf000012_0003
在氩气保护下, 将 [RuCl2(C6H6)]2 8.2mg(0.0164mmol)和( -MeO-BIPHEP 19.1mg (0.0328mmol)悬浮在 2ml经氩气脱气处理的 DMF中, 100 °C下搅拌 1小 时; 在 50°C、 真空除去溶剂, 得到褐色固体; 然后, 加入 OS Bn-P-bimaH 7.8mg(0.0328mmol) 和 2.6ml经氩气脱气处理的 DCM-甲醇混合溶剂(DCM:甲醇 =10:3), 再加入 Et3N 9.9mg(0.0984mmol), 氩气保护下室温搅拌 12小时; 真空除 去溶剂, 加入 3ml DCM, 过滤; 滤液减压蒸傭浓缩至约 0.5ml, 再加入 3ml正 己烷沉淀, 过滤, 3mL乙醚洗涤两次, 真空干燥, 得到产物 28.7mg (产率 88%)。 31P NMR (121MHz, CDC13, 20 °C ) δ 48.42 ppm (d, J=29.7Hz), 46.18 ppm (d, J=29.7Hz)。
实施例 5 顺式 -RuC & -DIOP D-P-bimaH [O -l2]的制备
Figure imgf000013_0001
在氩气保护下, 将 [RuCl2(C6H6)]2 8.2mg (0.0164mmol)和 (& -DIOP 16.4mg (0.0328mmol)悬浮在 2ml经氩气脱气处理的 DMF中, 100 °C下搅拌 1小时; 在 50°C、真空除去溶剂,得到褐色固体; 然后,加入 D-P-bimaH 5.8mg(0.0328mmol) 和 2.6ml经氩气脱气处理的 DCM-甲醇混合溶剂(DCM:甲醇 =10:3), 再加入 Et3N 9.9mg(0.0984mmol), 氩气保护下室温搅拌 15 小时; 真空除去溶剂, 加入 3ml DCM,过滤;滤液减压蒸傭浓缩至约 0.5ml,再加入 3ml正己烷沉淀,过滤, 3mL 乙醚洗涤两次,真空干燥,得到产物 21.1 mg (产率 74%)„31P NMR (121 MHz, CDC13: 20 °C) δ 55.76 ppm (d, J(P,P)=42.3 Hz), δ 54.3 ppm (d, J(P,P)=41.1 Hz), δ 53.0 ppm (d, J(P,P)=42.3 Hz), δ 29.0 ppm (d, J(P,P)=42.3 Hz), 33.3 ppm (d, J(P,P)=42.3 Hz), 31.0 ppm (d, V(P,P)=43.6 Hz)。 实施例 6 反式 -RuCW & -DIOP l R ACPC-Imidazole] [C &RR)-13]的制备
C¾S)-DIOP + [RuCl2(C6H6)]2
Figure imgf000014_0001
(SS,RR)-13
在氩气保护下, 将 [RuCl2(C6H6)]2 8.2mg (0.0164mmol)和 (& -DIOP 16.4mg (0.0328mmol)悬浮在 2ml经氩气脱气处理的 DMF中, 100 °C下搅拌 1小时; 在 50°C、 真空除去溶剂, 得到褐色固体; 然后, 加入(R,R)-ACHC-Oxazole 5.3mg(0.0328mmol) 和 2.6ml经氩气脱气处理的 DCM-甲醇混合溶剂(DCM:甲醇 =10:3), 再加入 Et3N9.9mg(0.0984mmol), 氩气保护下室温搅拌 12小时; 真空除 去溶剂, 加入 3ml DCM, 过滤; 滤液减压蒸傭浓缩至约 0.5ml, 再加入 3ml正 己烷沉淀, 过滤, 3mL乙醚洗涤两次, 真空干燥, 得到产物 20.4mg (产率 70%)。 31P NMR (121MHz, CDC13, 20 °C) δ 40.9 ppm (d, V(P,P)=42.6 Hz), 28.4 ppm (d, V(P,P)=42.6Hz)„
实施例 7 反式 -RuC & -DIOP l R ACHC-Imidazole] [C &RR)-14]的制备
Figure imgf000014_0002
(SS,RR)-14
制备方法同实施例 2(
产率 81%。 31PNMR (121MHz, CDC13, 20 °C) δ (ppm) 42.6, 27.8, 实施例 8 反式 -RuCW & -DIOP] [(R)-Z-Pr-P-BIMAH] [0 &R)-15]的制备
Figure imgf000015_0001
制备方法同实施例 2。
产率 75%。 31P NMR (121MHz, CDC13, 20 °C) δ (ppm) 40.5, 28· 1。 催化不对称氢化反应
实施例 9 苯基乙酮的不对称氢化( I )
在氩气保护下, 在一个具有磁力搅拌子的经 120°C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOlmmol) 络合物 0S 8及 7.5mg(0.067mmol) -BuOK; 抽真 空至少 5min后通入氩气进行置换, 重复 3次; 在一个经 120°C预干燥的 Schlenk 管中加入 0.12mL(lmmol)苯基乙酮和 3.0mL新蒸馏的甲苯, 氩气鼓泡脱气 5min 后在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 lOatm然后小心地释放氢 气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 11小时, 监控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液经硅胶 柱过滤, 减压蒸馏除去溶剂。 通过手性 GC柱进行产物 1-苯基乙醇转化率和 ee 值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对映体过 量值为 97.6%, 转化率 91.3%, 绝对构型为 S构型。 lR NMR (300MHz, CDC13) δ 7.38-7.25 (m, 芳氢, 5H), 4.87 (q, J=6.6 Hz, 1H), 2.03 (br, 1H), 1.48 (d, J= 6.6Hz, 3H); 气相色普: BETA-DEX™ 120 熔融硅胶毛细管柱(d^0.25m, 0.25mm i.d.x30m, Supelco):尸 =100.3kPa; 进样口温度 250°C ; 检测器温度 300°C ; 氮载气 流速 1.0mL/min; 柱温 =125 °C ; (R)-异构体保留时间 =14.7min; CS 异构体保留时 间 =15.2 min。
实施例 10 苯基乙酮的不对称氢化( II )
在氩气保护下, 在一个具有磁力搅拌子的经 120 °C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOl mmol) 络合物 0 &RR)-13及 7.5mg(0.067mmol) i-BuOK; 抽真空至少 5min后通入氩气进行置换, 重复 3 次; 在一个经 120 °C预干燥的 Schlenk管中加入 0.12mL(lmmol)苯基乙酮和 3.0mL新蒸馏的甲苯, 氩气鼓泡脱 气 5min后在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 lOatm然后小心地 释放氢气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 20 小时, 监控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液 经硅胶柱过滤, 减压蒸馏除去溶剂。 通过手性 GC柱进行产物 1-苯基乙醇转化 率和 ee值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对 映体过量值为 96% ,转化率 99.5% ,绝对构型为 S构型。 NMR (300MHz, CDC13) δ 7.38-7.25 (m, 芳氢, 5H), 4.87 (q, J=6.6 Hz, 1H), 2.03 (br, 1H), 1.48 (d, J= 6.6Hz, 3H); 气相色普: BETA-DEX™ 120 熔融硅胶毛细管柱(d^0.25m, 0.25mm i.d. x30m, Supelco):尸 =100.3kPa; 进样口温度 250 °C ; 检测器温度 300 °C ; 氮载气 流速 1.0mL/min; 柱温 =125 °C ; (R)-异构体保留时间 =14.7min; CS 异构体保留时 间 =15.2 min。
实施例 11 苯基乙酮的不对称氢化( III )
在氩气保护下, 在一个具有磁力搅拌子的经 120 °C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOl mmol) 络合物 0 &RR)-14及 7.5mg(0.067mmol) i-BuOK; 抽真空至少 5min后通入氩气进行置换, 重复 3 次; 在一个经 120 °C预干燥的 Schlenk管中加入 0.12mL(lmmol)苯基乙酮和 3.0mL新蒸馏的甲苯, 氩气鼓泡脱 气 5min后在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 lOatm然后小心地 释放氢气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 18 小时, 监控 H2的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液 经硅胶柱过滤, 减压蒸馏除去溶剂。 通过手性 GC柱进行产物 1-苯基乙醇转化 率和 ee值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对 映体过量值为 96% ,转化率 99.7% ,绝对构型为 S构型。 NMR (300MHz, CDC13) δ 7.38-7.25 (m, 芳氢, 5H), 4.87 (q, J=6.6Hz, 1H), 2.03 (br, 1H), 1.48 (d, J= 6.6Hz, 3H); 气相色普: BETA-DEX™ 120 熔融硅胶毛细管柱(d^0.25m, 0.25mm i.d. x30m, Supelco):尸 =100.3kPa; 进样口温度 250 °C ; 检测器温度 300 °C ; 氮载气 流速 1.0mL/min; 柱温 =125 °C ; (R)-异构体保留时间 =14.7min; CS 异构体保留时 间 =15.2 min。
实施例 12 苯基乙酮的不对称氢化( IV )
在氩气保护下, 在一个具有磁力搅拌子的经 120 °C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOlmmol) 络合物 0 &R)-15及 7.5mg(0.067mmol) i-BuOK; 抽真空至少 5min后通入氩气进行置换, 重复 3 次; 在一个经 120 °C预干燥的 Schlenk管中加入 0.12mL(lmmol)苯基乙酮和 3.0mL新蒸馏的甲苯, 氩气鼓泡脱 气 5min后在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 lOatm然后小心地 释放氢气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 7 小时, 监控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液 经硅胶柱过滤, 减压蒸馏除去溶剂。 通过手性 GC柱进行产物 1-苯基乙醇转化 率和 ee值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对 映体过量值为 96.9% ,转化率 100% ,绝对构型为 ^构型。1 H NMR (300MHz, CDC13) δ 7.38-7.25 (m, 芳氢, 5H), 4.87 (q, J=6.6 Hz, 1H), 2.03 (br, 1H), 1.48 (d, J= 6.6Hz, 3H); 气相色普: BETA-DEX™ 120 熔融硅胶毛细管柱(d^0.25m, 0.25mm i.d. x30m, Supelco):尸 =100.3kPa; 进样口温度 250 °C ; 检测器温度 300 °C ; 氮载气 流速 1.0mL/min; 柱温 =125 °C ; (R)-异构体保留时间 =14.7min; CS 异构体保留时 间 =15.2 min。 实施例 13 4,-甲氧基苯基乙酮的不对称催化氢化
在氩气保护下, 在一个具有磁力搅拌子的经 120 °C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOl mmol)催化剂 8及 7.5mg(0.067mmol) i-BuOK; 抽真空至 少 5min后通入氩气进行置换, 重复 3次; 在一个经 120 °C预干燥的 Schlenk管 中加入 150mg(lmmol) 4,-甲氧基苯基乙酮和 3.0mL新蒸馏的甲苯, 氩气鼓泡脱 气 5min后在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 lOatm然后小心地 释放氢气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 14 小时, 监控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液 经硅胶柱过滤, 减压蒸馏除去溶剂。 通过手性 GC柱进行产物 1-苯基乙醇转化 率和 ee值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对 映体过量值为 94.8% ,转化率 99% ,绝对构型为 ^构型。1!! NMR (300MHz, CDC13) δ 7.31 (m, 芳氢, 5H), 4.87 (q, J=6.6 Hz, 1H), 2.03 (br, 1H), 1.48 (d, J= 6.6Hz, 3H); 气相色普: BETA-DEX™ 120 熔融硅胶毛细管柱 (df=0.25m, 0.25mm i.d. 30m, Supelco): ^lOOJkPa; 进样口温度 250 °C; 检测器温度 300 °C; 氮载气流速 0.8mL/min; 柱温 =140°C ; (R)-异构体保留时间 =27min; 0S 异构体保留时间 =27.8 min„
实施例 14 3,-溴代苯基乙酮的不对称催化氢化
在氩气保护下, 在一个具有磁力搅拌子的经 120 °C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOl mmol)催化剂 8及 7.5mg(0.067mmol) i-BuOK; 抽真空至 少 5min后通入氩气进行置换, 重复 3次; 在一个经 120 °C预干燥的 Schlenk管 中加入 O. lmL 3,-溴代苯基乙酮和 3.0mL新蒸傭的甲苯, 氩气鼓泡脱气 5min后 在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 l Oatm然后小心地释放氢气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 12小时, 监控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液经硅胶柱过 滤, 减压蒸傭除去溶剂。 通过手性 GC柱进行产物 3,-溴代苯基乙醇转化率和 ee 值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对映体过 量值为 98.5%, 转化率 99.5%, 绝对构型为 S构型。 NMR (300MHz, CDC13) δ 7.52 (s, 1Η), 7.41-7.37 (m, 1H), 7.29-7.17 (m, 2H), 4.87 (q, J=6.6 Hz, 1H), 2.20 (br, 1H), 1.50 (d, J= 6.6Hz, 3H); 气相色谱: BETA-DEX™ 120熔融硅胶毛细管柱 (d^0.25m, 0.25mm i.d.x30m, Supelco):尸 =100.3kPa; 进样口温度 250 °C ; 检测器 温度 300°C ;氮载气流速 l . lmL/min;柱温 =150°C ; (R)-异构体保留时间 =18.9min; CS 异构体保留时间 =19.3 min。
实施例 15 2,-甲基苯基乙酮的不对称催化氢化
在氩气保护下, 在一个具有磁力搅拌子的经 120°C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOlmmol)催化剂 8及 7.5mg(0.067mmol) i-BuOK; 抽真空至 少 5min后通入氩气进行置换, 重复 3次; 在一个经 120°C预干燥的 Schlenk管 中加入 O. l lmL 2,-甲基苯基乙酮和 3.0mL新蒸傭的甲苯, 氩气鼓泡脱气 5min后 在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 lOatm然后小心地释放氢气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 18小时, 监控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液经硅胶柱过 滤, 减压蒸傭除去溶剂。 通过手性 GC柱进行产物 2,-甲基苯基乙醇转化率和 ee 值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对映体过 量值为 94.3%, 转化率 87.6%, 绝对构型为 S构型。 lR NMR (300MHz, CDC13) δ 7.50 (d, J= 7.8Hz, 1H), 7.29-7.24 (m, 2H), 6.09 (q, J=6.6 Hz, 1H), 2.32(s, 1H), 2.11(br, 1H), 1.44 (d, J= 6.6Hz, 3H); 气相色谱: BETA-DEX™ 120熔融硅胶毛细 管柱 (df=0.25m, 0.25mm i.d.x30m, Supelco): ^100.3kPa; 进样口温度 250 °C ; 检 测器温度 300 °C ; 氮载气流速 1.0mL/min; 柱温 =135 °C ; (R)-异构体保留时间 =14.2min; 0S 异构体保留时间 =15.8 min。
实施例 16 2,-氯代二苯基甲酮的不对称催化氢化
在氩气保护下, 在一个具有磁力搅拌子的经 120°C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOlmmol)催化剂 8及 7.5mg(0.067mmol) i-BuOK; 抽真空至 少 5min后通入氩气进行置换, 重复 3次; 在一个经 120 °C预干燥的 Schlenk管 中加入 210mg 2,-氯代二苯基甲酮和 3.0mL新蒸馏的甲苯, 氩气鼓泡脱气 5min 后在氩气保护下转入玻璃反应釜; 先通入高纯氢气至 lOatm然后小心地释放氢 气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 8小时, 监 控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 反应液经硅胶柱 过滤, 减压蒸傭除去溶剂。 通过手性 GC柱进行产物 2,-氯代二苯基甲醇转化率 和 ee值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对映 体过量值为 92.5% ,转化率 91.1 % ,绝对构型为 R构型。 NMR (300MHz, CDC13) δ 7.58 (d, J= 7.5Hz, 1H), 7.39-7.17 (m, 8H), 6.19(s, 1H), 2.50(br, 1H); 高效液相色 谱 (Chiralcel OD-H柱):检测波长 λ =254ηιη; 流动相,环己烷 :2-丙醇 =93 :7;室温; 流速 1.0mL/min; (R)-异构体保留时间 =8.5min; CS 异构体保留时间 =10.2 min。 实施例 17 频哪酮的不对称催化氢化
在氩气保护下, 在一个具有磁力搅拌子的经 120 °C预干燥的 lOOmL玻璃反 应釜内加入 l .Omg(O.OOl mmol)催化剂 8及 7.5mg(0.067mmol) i-BuOK; 抽真空至 少 5min后通入氩气进行置换, 重复 3次; 在一个经 120 °C预干燥的 Schlenk管 中加入 0.12mL (lmmol)频哪酮和 3.0mL新蒸馏的甲苯,氩气鼓泡脱气 5min后在 氩气保护下转入玻璃反应釜; 先通入高纯氢气至 l Oatm然后小心地释放氢气, 驰气-充气重复三次, 最后充氢气至 8atm并维持, 25 °C快速搅拌 8小时, 监控 ¾的消耗量; 达到预设的反应时间, 释放反应釜内的氢气, 猝灭反应; 通过手 性 GC柱进行产物频哪醇转化率和 ee值的检测,产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对映体过量值为 95.3% , 转化率 82% , 绝对构型为 R 构型。 气相色普: BETA-DEX™ 120 熔融硅胶毛细管柱(d^0.25m, 0.25mm i.d. x30m, Supelco):尸 =100.3kPa; 进样口温度 250 °C ; 检测器温度 300 °C ; 氮载气 流速 0.2mL/min; 柱温 =50 V; (R)-异构体保留时间 =22.7min; CS 异构体保留时间 =24.0 min。 催化不对称转移氢化反应
实施例 18 苯基乙酮的不对称转移氢化
在氩气保护下, 在一个具有磁力搅拌子的经 120°C预干燥的 20mL Schlenk 管内加入 l .Omg(O.OOlmmol)催化剂 8及 7.5mg(0.067mmol) i-BuOK; 抽真空至少 5min后通入氩气进行置换, 重复 3次; 在另一个经 120°C预干燥的 Schlenk管中 加入 0.12mL(lmmol)苯基乙酮和 3.0mL新蒸馏的异丙醇, 氩气鼓泡脱气 5min后 在氩气保护下转入上述 20mL Schlenk管内; 80 °C下搅拌 12小时;反应液经硅胶 柱过滤, 减压蒸馏除去溶剂。 通过手性 GC柱进行产物 1-苯基乙醇转化率和 ee 值的检测, 产物的绝对构型由旋光仪确定。 经气相色谱分析, 产物的对映体过 量值为 94.7% , 转化率 93% , 绝对构型为 S构型。 NMR (300MHz, CDC13) δ 7.38-7.25 (m, 芳氢, 5H), 4.87 (q, J=6.6 Hz, 1H), 2.03 (br, 1H), 1.48 (d, J= 6.6Hz, 3H); 气相色普: BETA-DEX™ 120 熔融硅胶毛细管柱(d^0.25m, 0.25mm i.d. x30m, Supelco):尸 =100.3kPa; 进样口温度 250 °C ; 检测器温度 300 °C ; 氮载气 流速 1.0mL/min; 柱温 =120 °C ; (R)-异构体保留时间 =14.7min; CS 异构体保留时 间 =15.2 min。
对上述不对称氢化反应的说明:
上述不对称氢化反应中所用的溶剂可以是以下的一种或其混合: 苯、 甲苯、 二甲苯、 三甲苯、 四氢呋喃、 二氯甲烷、 乙醚、 甲醇、 乙醇、 异丙醇、 正丙醇、 正丁醇、 异丁醇、 叔丁醇、 乙腈、 乙二醇二甲迷、 氯仿、 二甲基亚砜、 N-甲基 吡咯烷、 Ν,Ν-二甲基甲酰胺等。
所用的碱可以是以下的一种或其混合: 氢氧化钠、 氢氧化钾、 叔丁醇盐、 叔丁醇钠、 叔丁醇锂、 叔丁醇铯、 碳酸铯、 碳酸钠、 碳酸钾、 碳酸氢钠、 碳酸 氢钾、 磷酸钾、 磷酸氢钾、 磷酸二氢钾、 氟化钾、 氢化钠、 氢化钾、 氢化钙、 三乙胺、 二异丙基乙基胺、 四甲基乙二胺、 Ν, Ν-二甲基苯胺、 Ν, Ν-二乙基苯 胺、 1 , 4-二氮杂二环 [2, 2, 2]辛烷 (DABCO)、 二氮杂二环十二烷 (DBU)、 1 , 4-二 甲基哌嗪、 1-甲基哌啶、 1-甲基吡咯、 喹啉或吡啶等。
所述的反应可以耐受少量的水。
所述的反应可以耐受含有某些特定官能团如酯键 [-C(=0)0-]、 氨基 (-ΐ 化合物。
所述的反应中涉及的底物可以是含杂原子的芳香酮。
所述的反应的时间可以为 0.1-48小时, 氢气的压力可以为 l-80atm。

Claims

权 利 要 求 书
1.一类新型含氮配体金属钌络合物, 总结构式( I )为: [RuLmL' XY] , 其 中 X和 Y可以相同也可以不同。 X可以是氯、 溴、 碘或氢, Y可以是氯、 溴、 碘或 B¾。
L为膦配体, 选自以下结构:
1) 通式为 Ι^Ι^Ι^Ρ的单齿膦配体, 其中 R^ R^ R3 可以相同也可以不同, 为
1 ~ 6个碳原子的脂肪烃或 6 ~ 12个碳原子的芳香烃基团;
R5R6P
/
R4
2) 通式为 R7R8P的双齿膦配体, 其中 R4 为手性或非手性的有机碳氢基团; R5, R6, R7, R8可以相同也可以不同, 为 1 ~ 10个碳原子的脂肪烃或芳香性基 团;
当 m为 2时, 膦配体为两个相同的选自上述 1 ) 中的单齿膦配体; 当 m为 1时, 膦配体选自上述 2 ) 中的双齿膦配体;
L'为双齿氮配体, 选自以下结构 II~V):
Figure imgf000023_0001
II III iv v
R9, R1Q可以相同也可以不同。 R9, R1Q可以是氢或 1 ~ 12个碳原子的烃基。 所述的双齿氮配体 II- V具有一个手性中心时可以是 构型或 S构型,具有两个手性 中心时可以是 构型或 (& 5)构型。 上述 1 ~ 12个碳原子的烃基可以是曱基、 乙 基、 正丙基、 异丙基、 环丙基、 正丁基、 叔丁基、 环戊基、 环己基、 环庚基、 ,,--R9— 苯基、 苄基、 烷基取代的苄基。 当 --RI为环烃基结构时, 可以是亚丙基或亚 丁基。 R11 , R12, R13可以是氢或 1 ~ 12个碳原子的烷基、 芳基、 芳基烷基; 脂肪 烃基选自曱基、 乙基、 正丙基、 异丙基、 环丙基、 正丁基、 叔丁基、 环戊基、 环己基、 环庚基; 芳香烃选自苯基、 取代苯基; 芳基烷基选自苄基、 烷基取代 的苄基。
当双齿氮配体选自结构 ΠΙ时, Z可以是 NH, 也可以是 0。
A可以单独为氢, 1 ~ 8个碳原子的烷基、 烷氧基、 芳基、 卤素原子、 硝基、 氨基、 磺酸基。 n为 1 ~ 4的整数, 等于未取代的芳香环的碳原子数。 上述 1 ~ 8个 碳原子的烷基选自曱基、 乙基、 正丙基、 异丙基、 环丙基、 正丁基、 叔丁基、 环戊基、 环己基、 环庚基、 氟曱基、 三氟曱基; 上述 1 ~ 8个碳原子的烷氧基选 自曱氧基、 乙氧基、 丙氧基、 异丙氧基、 叔丁氧基、 正丁氧基; 上述 1 ~ 8个碳 原子的芳基选自苯基、 取代苯基、 苄基、 取代苄基。
2.如权利要求 1所述的一类新型含氮配体金属钌络合物, 在所有结构式中, 络合物可以是顺式 或反式 (iraw 构型。
3.如权利要求 1所述的一类新型含氮配体金属钌络合物, 具有结构式(VI): [RuL2L' XY] ,
L为单膦配体, 选自权利要求 1中的 1 ); L'为双齿氮配体, 结构式为 Π - V; X可以是氯、 溴、 碘或氢, Y可以是氯、 溴、 碘、 氢或 B¾; X、 Y可以 形成顺式或反式的过渡金属络合物。
4.如权利要求 1所述的一类新型含氮配体金属钌络合物, 具有结构式(VII): [RuLL' XY] ,
L为双膦配体, 选自权利要求 1中的 2), 双膦配体可以是手性的, 也可以 是非手性的, 手性双齿膦配体选自如下膦配体: 具有联萘环或取代联萘环的 BINAP及其同系物; 具有联苯骨架的 BIPHEP及其同系物; 具有二茂铁骨架或 取代二茂铁的 JOSIPHOS及其同系物,以及 DIPAMP, DIOP, Duphos, Tangphos, Tunephos , Segphos, Chiraphos , Skewphos , Phanephos , Norphos, DuanPhos; L'为双齿氮配体, 结构式为 Π -V ; X可以是氯、 溴、 碘或氢, Υ可以是氯、 溴、 碘、 氢或 Β¾; X、 Υ可以形成顺式或反式的过渡金属络合物。
5.如权利要求 1 所述的一类新型含氮配体金属钌络合物的制备方法, 在反 应温度 20°C-120°C下, 由过渡金属化合物、 双氮配体、 双膦配体或单膦配体有 机溶剂中反应 0.5 20小时获得。 过渡金属钌化合物、 双氮配体、 双膦配体或单 膦配体的摩尔比为 1: 1 -3: 1 ~5。
6.如权利要求 5 所述的一类新型含氮配体金属钌络合物的制备方法, 其特 征是所述的过渡金属钌化合物是 [RuX2(C6H6)]2、 RuX3或 RuCl2(PPh3)3, 所述的 X 是 Cl、 Br或 I。
7.如权利要求 5 所述的一类新型含氮配体金属钌络合物的制备方法, 其特 征为当釆用单膦配体时,过渡金属钌化合物、双氮配体、单膦配体的摩尔比为 1: 1 ~3: 1 ~5。 优选为 1: 2: 4。
8.如权利要求 5 所述的一类新型含氮配体金属钌络合物的制备方法, 其特 征为当釆用双膦配体时,过渡金属钌化合物、双氮配体、双膦配体的摩尔比为 1: 1 ~3: 1 ~3。 优选为 1: 2: 2。
9.如权利要求 1 所述的一类新型含氮配体金属钌络合物的用途是用于催化 不对称转移氢化反应或不对称氢化反应。 其特征是所述的过渡金属钌络合物用 于 α位大位阻的酮、 苯乙酮及其衍生物, α位是芳基或不饱和烷基的酮, 二芳基 酮及其类似物, α位为叔丁烷基的酮、 α位为杂原子基团的酮、 β-Ν,Ν-二曱氨基 -α 苯乙酮及其衍生物和其它芳基 -烷基酮类化合物的不对称氢化反应或不对称转 移氢化反应。
10. 如权利要求 9所述的一类新型含氮配体金属钌络合物的用途, 不对称 转移氢化反应或不对称氢化反应所用的溶剂是质子或非质子溶剂或其混合。 质 子溶剂可以为曱醇、 乙醇、 异丙醇、 正丙醇、 正丁醇、 异丁醇、 叔丁醇等; 非 质子溶剂可以为苯、 曱苯、 二曱苯、 三曱苯、 四氢呋喃、 二氯曱烷、 乙醚、 乙 腈、 乙二醇二曱迷、 氯仿、 二曱基亚砜、 Ν -曱基吡咯烷酮等。
PCT/CN2012/081037 2012-09-06 2012-09-06 一类新型含氮配体金属钌络合物及其制备方法和用途 WO2014036702A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280014922.7A CN103889995B (zh) 2012-09-06 2012-09-06 一类新型含氮配体金属钌络合物及其制备方法和用途
PCT/CN2012/081037 WO2014036702A1 (zh) 2012-09-06 2012-09-06 一类新型含氮配体金属钌络合物及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/081037 WO2014036702A1 (zh) 2012-09-06 2012-09-06 一类新型含氮配体金属钌络合物及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2014036702A1 true WO2014036702A1 (zh) 2014-03-13

Family

ID=50236450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081037 WO2014036702A1 (zh) 2012-09-06 2012-09-06 一类新型含氮配体金属钌络合物及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN103889995B (zh)
WO (1) WO2014036702A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294545A (zh) * 2015-11-23 2016-02-03 中山奕安泰医药科技有限公司 一种孟鲁斯特纳手性醇中间体的制备方法
CN105330517A (zh) * 2015-11-23 2016-02-17 中山奕安泰医药科技有限公司 一种合成3,5-双三氟甲基苯乙醇的方法
CN105348173A (zh) * 2015-12-02 2016-02-24 中山奕安泰医药科技有限公司 不对称催化氢化法合成阿维巴坦中间体5的方法
JP2017128559A (ja) * 2016-01-15 2017-07-27 日本曹達株式会社 ルテニウム錯体の製造方法
CN107827812A (zh) * 2017-11-23 2018-03-23 中山奕安泰医药科技有限公司 一种苯磺酸贝他斯汀中间体的手性合成方法
CN107868077A (zh) * 2017-11-23 2018-04-03 中山奕安泰医药科技有限公司 一种(s)‑3‑甲基氨基‑1‑(噻吩‑2‑基)丙醇的合成方法
WO2019100785A1 (zh) * 2017-11-23 2019-05-31 中山奕安泰医药科技有限公司 一种克里唑替尼中间体的合成工艺
CN111269147A (zh) * 2020-01-14 2020-06-12 浙江工业大学 一种手性膦氮膦配体与手性金属有机配位络合物及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813621A1 (en) * 2004-10-25 2007-08-01 Nagoya Industrial Science Research Institute Ruthenium complex and process for producing tert-alkyl alcohol therewith
US20100113722A1 (en) * 2007-09-20 2010-05-06 Ben-Gurion University Of The Negev Research And Development Authority Sulfur chelated ruthenium compounds useful as olefin metathesis catalysts
CN102083843A (zh) * 2008-06-13 2011-06-01 中山奕安泰医药科技有限公司 含氮配体的钌金属络合物及其制备方法和应用
CN102417523A (zh) * 2010-09-27 2012-04-18 中山奕安泰医药科技有限公司 一种含氮杂环配体过渡金属络合物及其制备和催化应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813621A1 (en) * 2004-10-25 2007-08-01 Nagoya Industrial Science Research Institute Ruthenium complex and process for producing tert-alkyl alcohol therewith
US20100113722A1 (en) * 2007-09-20 2010-05-06 Ben-Gurion University Of The Negev Research And Development Authority Sulfur chelated ruthenium compounds useful as olefin metathesis catalysts
CN102083843A (zh) * 2008-06-13 2011-06-01 中山奕安泰医药科技有限公司 含氮配体的钌金属络合物及其制备方法和应用
CN102417523A (zh) * 2010-09-27 2012-04-18 中山奕安泰医药科技有限公司 一种含氮杂环配体过渡金属络合物及其制备和催化应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294545A (zh) * 2015-11-23 2016-02-03 中山奕安泰医药科技有限公司 一种孟鲁斯特纳手性醇中间体的制备方法
CN105330517A (zh) * 2015-11-23 2016-02-17 中山奕安泰医药科技有限公司 一种合成3,5-双三氟甲基苯乙醇的方法
CN105348173A (zh) * 2015-12-02 2016-02-24 中山奕安泰医药科技有限公司 不对称催化氢化法合成阿维巴坦中间体5的方法
JP2017128559A (ja) * 2016-01-15 2017-07-27 日本曹達株式会社 ルテニウム錯体の製造方法
CN107827812A (zh) * 2017-11-23 2018-03-23 中山奕安泰医药科技有限公司 一种苯磺酸贝他斯汀中间体的手性合成方法
CN107868077A (zh) * 2017-11-23 2018-04-03 中山奕安泰医药科技有限公司 一种(s)‑3‑甲基氨基‑1‑(噻吩‑2‑基)丙醇的合成方法
WO2019100785A1 (zh) * 2017-11-23 2019-05-31 中山奕安泰医药科技有限公司 一种克里唑替尼中间体的合成工艺
CN111269147A (zh) * 2020-01-14 2020-06-12 浙江工业大学 一种手性膦氮膦配体与手性金属有机配位络合物及应用

Also Published As

Publication number Publication date
CN103889995B (zh) 2016-06-08
CN103889995A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2014036702A1 (zh) 一类新型含氮配体金属钌络合物及其制备方法和用途
CN101328191B (zh) 一类含氮配体过渡金属络合物、合成方法及其用途
Qiu et al. A new class of versatile chiral-bridged atropisomeric diphosphine ligands: remarkably efficient ligand syntheses and their applications in highly enantioselective hydrogenation reactions
CN108774271B (zh) 一种基于二茂铁骨架的手性氮氮膦三齿配体及其应用
CN102153589B (zh) 一种亚胺的不对称加氢催化剂及其合成方法和应用
JP5685071B2 (ja) 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
EP0918781B1 (en) Asymmetric synthesis catalyzed by transition metal complexes with cyclic chiral phosphine ligands
CN105732725B (zh) 一种手性三齿氮膦氧配体及其相关配体在不对称催化反应中的应用
Kloetzing et al. Ferrocenyl-QUINAP: a planar chiral P, N-ligand for palladium-catalyzed allylic substitution reactions
JPH11189600A (ja) ルテニウム錯体とこれを触媒とするアルコール化合物 の製造方法
Nie et al. Asymmetric hydrogenation of aromatic ketones using an iridium (I) catalyst containing ferrocene-based P–N–N tridentate ligands
Karamé et al. New ruthenium catalysts containing chiral Schiff bases for the asymmetric hydrogenation of acetophenone
CN1331874C (zh) 过渡金属络合物、合成方法及其用途
KR100384411B1 (ko) 키랄리간드인헤테로방향족디포스핀
CN108929345A (zh) 手性二茂铁双膦配体及其制备方法和应用
Zhang et al. A comparison of the asymmetric hydrogenation catalyzed by rhodium complexes containing chiral ligands with a binaphthyl unit and those with a 5, 5′, 6, 6′, 7, 7′, 8, 8′-octahydro-binaphthyl unit
Korff et al. Preparation of chiral triarylphosphines by Pd-catalysed asymmetric P–C cross-coupling
WO2012041215A1 (zh) 一种新型含氮杂环配体过渡金属络合物及其制备、催化应用
Albert et al. Optically active palladacycles containing imines derived from 1-(1-naphthyl) ethylamine: new resolving agents for P-chiral phosphines
Imamoto et al. Optically active 1, 1′-di-tert-butyl-2, 2′-dibenzophosphetenyl: a highly strained P-stereogenic diphosphine ligand
CA2382779A1 (en) Chiral ligands, transition-metal complexes thereof and uses thereof in asymmetric reactions
Ma et al. A New Phosphine‐Amine‐Oxazoline Ligand for Ru‐Catalyzed Asymmetric Hydrogenation of N‐Phosphinylimines
WO2012137460A1 (ja) 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
CN101323630A (zh) 一种过渡金属络合物、合成方法及其用途
Derrien et al. Asymmetric hydrogenation reactions mediated by a new class of bicyclic bisphosphinites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884190

Country of ref document: EP

Kind code of ref document: A1