WO2014034180A1 - ピストンリング - Google Patents

ピストンリング Download PDF

Info

Publication number
WO2014034180A1
WO2014034180A1 PCT/JP2013/062064 JP2013062064W WO2014034180A1 WO 2014034180 A1 WO2014034180 A1 WO 2014034180A1 JP 2013062064 W JP2013062064 W JP 2013062064W WO 2014034180 A1 WO2014034180 A1 WO 2014034180A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston ring
film
plate
filler
piston
Prior art date
Application number
PCT/JP2013/062064
Other languages
English (en)
French (fr)
Inventor
隼一 佐々木
小野 敬
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to KR1020157014889A priority Critical patent/KR20150070421A/ko
Priority to EP13792848.7A priority patent/EP2733395B1/en
Priority to JP2013537351A priority patent/JP5719031B2/ja
Priority to CN201380001823.XA priority patent/CN103797285B/zh
Priority to KR1020137029695A priority patent/KR20140053880A/ko
Priority to US14/125,310 priority patent/US20150176710A1/en
Publication of WO2014034180A1 publication Critical patent/WO2014034180A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a piston ring, and more particularly to a piston ring for an internal combustion engine.
  • the top ring installed closest to the combustion chamber is slammed into the piston ring groove (ring groove) of the piston made of aluminum alloy etc. by the combustion pressure, and at the same time the ring groove Slide on the surface.
  • the internal combustion engine becomes hot due to the combustion of fuel.
  • the temperature is 200 ° C. or higher, and it is known that the strength of the piston is reduced due to thermal shock or the like.
  • protrusions of about 1 ⁇ m are formed on the surface of the ring groove of the piston at intervals of 0.2 mm. This is due to the lathe machining with a tool. This protrusion is missing or worn by knocking and sliding of the piston ring, and a new aluminum surface is exposed on the ring groove surface. Since the new aluminum surface tends to adhere to the surface of the piston ring made of metal, aluminum adheres to the surface of the piston ring. Hereinafter, this phenomenon is referred to as aluminum adhesion. In high-power engines, the surface of the ring groove tends to be rough, and a new aluminum surface is exposed due to the striking and sliding of the piston ring, and aluminum adhesion is repeated. . When the wear of the ring groove increases, the sealing performance by the piston ring decreases, and the blow-by gas that flows from the combustion chamber into the crank chamber increases. Increasing blowby gas may cause problems such as engine output reduction.
  • Patent Document 1 proposes a method in which a ring groove surface made of an aluminum alloy is subjected to an anodic oxidation treatment (alumite treatment), and a fine material generated by the treatment is filled with a lubricating substance. ing. Since the hard oxide film is formed on the ring groove surface by the anodizing treatment, the aluminum alloy is prevented from falling off and aluminum adhesion is suppressed. However, the cost required for the anodic oxidation treatment for the piston is high, and aluminum oxide has a problem that the running-in performance is poor because it is hard.
  • anodic oxidation treatment alumite treatment
  • Patent Document 2 describes a method of forming a film in which a solid lubricant such as molybdenum disulfide is dispersed in a heat-resistant resin such as polyamide or polyimide on the side surface of the piston ring. Yes.
  • a solid lubricant such as molybdenum disulfide
  • a heat-resistant resin such as polyamide or polyimide
  • Patent Document 3 describes a method of forming a surface film composed of a heat-resistant resin containing copper-based powder on the side surface of the piston ring.
  • Patent Document 3 describes that the addition of copper-based powder can impart wear resistance to the surface film formed on the surface of the piston ring and allow the lubricity of the heat-resistant resin to function over a long period of time. Further, it is described that the piston ring groove can be prevented from being damaged by arranging the copper-based powder in a scaly shape so as to overlap in the thickness direction.
  • An object of the present invention is to solve the above-mentioned problems and provide a piston ring capable of maintaining an excellent aluminum adhesion prevention effect for a long time in a high-power engine.
  • the present inventors have developed a resin-based film containing at least one plate-shaped filler of alumina, silicon carbide, silicon nitride, and boron nitride, the upper surface of the piston ring, and By covering at least one of the lower surfaces, it was found that an excellent aluminum adhesion prevention effect can be maintained for a long time even in a high-power engine, and the present invention has been conceived.
  • the piston ring is a piston ring in which at least one of the upper surface and the lower surface is covered with a resin-based film containing a plate filler, and the plate filler is alumina, silicon carbide , At least one selected from the group consisting of silicon nitride and boron nitride.
  • the upper surface and the lower surface of the piston ring are surfaces disposed in the ring groove on the surface of the piston ring, and are surfaces substantially perpendicular to the outer peripheral surface of the piston ring.
  • the average particle diameter of the plate-like filler is preferably 2 to 20 ⁇ m.
  • the aspect ratio of the plate-like filler is preferably 20 to 200.
  • the content of the plate-like filler is preferably 0.1 to 30% by volume with respect to the resin-based film.
  • the piston ring of the present invention can maintain an excellent aluminum adhesion prevention effect for a long time even in a high output engine.
  • FIG. 3a is a perspective view of an embodiment of the piston ring according to the present invention
  • FIG. 3b is a cross-sectional view of the piston ring shown in FIG. 3a taken along the line bb.
  • the resin film 6 contains a plate-like filler 7.
  • the plate-like filler 7 includes at least one member selected from the group consisting of alumina, silicon carbide, silicon nitride, and boron nitride.
  • the plate-like filler 7 may be made of at least one member selected from the group consisting of alumina, silicon carbide, silicon nitride, and boron nitride.
  • Piston ring base material 8 constituting the piston ring of the present embodiment is repeatedly collided with the ring groove, so that it has predetermined strength and wear resistance. It is desirable to have.
  • Preferable materials include steel, martensitic stainless steel, austenitic stainless steel, high-grade cast iron and the like.
  • a piston ring base material that has been subjected to nitriding treatment for stainless steel and hard chromium plating or electroless nickel plating treatment for cast iron may be used.
  • a phosphate film may be formed on the surface (upper surface and lower surface) of the piston ring base material.
  • the phosphate coating include zinc phosphate, manganese phosphate, and calcium phosphate coatings.
  • a chemical conversion treatment film and an oxide film other than a phosphate film can also be formed.
  • a chemical conversion treatment film cannot be formed on a piston ring having a hard chrome plating film or an electroless nickel plating film formed on the surface. Therefore, it is desirable to remove inorganic dirt and organic dirt from the surface of the piston ring base material in order to ensure adhesion of the film.
  • the resin-based coating that covers the piston ring of the present embodiment is characterized by containing at least one plate-like filler among alumina, silicon carbide, silicon nitride, and boron nitride.
  • collision is repeated between the piston ring and the ring groove surface of the piston at high temperatures due to combustion pressure, and at the same time, the piston ring surface and the ring groove surface slide in the circumferential direction.
  • the hard plate-like fillers are arranged almost in parallel with the film surface, so that the protrusion on the ring groove surface is slid without roughening the ring groove surface of the piston as the counterpart material. Can be worn out in the early stages of movement.
  • This effect is called a smoothing effect. Since the ring groove protrusion disappears early in this manner, the attack force (damage to the ring groove surface) of the piston ring when the ring groove surface collides and slides with the piston ring is greatly reduced. Further, the resin-based film of this embodiment in which a hard and high-strength plate-like filler is dispersed has high strength and excellent wear resistance, and the hard plate-like filler scattered in the resin-based film causes the impact. Since the stress is relieved, the film is maintained over a long period even in a high-power engine.
  • the soft aluminum out of the aluminum alloy on the ring groove surface is selectively worn by sliding contact with the hard plate-like filler in the resin film, and the primary crystal is formed on the ring groove surface. Silicon protrudes. For this reason, contact with aluminum and a piston ring is suppressed, and aluminum adhesion can be prevented effectively.
  • the sliding contact between the hard plate-like filler in the resin-based film and primary silicon is dominant, but the hardness difference between the two is small, and the smooth surface of the resin-based film and the ring groove surface is smooth. They touch each other. Therefore, even under high temperature and high load conditions, wear of both the piston ring and the piston is small, and both ideal sliding surfaces are maintained. For this reason, the piston ring of this embodiment can maintain an excellent aluminum adhesion prevention effect for a long time even in a high-power engine.
  • the “plate shape” is a shape having a long side with respect to the thickness.
  • the plate-like filler is not necessarily required to have a complete flat surface, and may have a shape having a curved surface or unevenness.
  • the above effect can be obtained by dispersing at least one plate-like filler of alumina, silicon carbide, silicon nitride, or boron nitride in the resin film.
  • the use of plate-like alumina makes the effect of preventing aluminum adhesion remarkable.
  • the plate-like filler can also be produced by a known method. A commercial item can also be used as a plate-shaped filler.
  • the plate-like alumina examples include a synthetic plate-like alumina (Seraph) manufactured by Kinsei Matech Co., Ltd., and an alumina filler (Cerasure) manufactured by Kawai Lime Industry Co., Ltd.
  • a synthetic plate-like alumina (Seraph) manufactured by Kinsei Matech Co., Ltd.
  • an alumina filler (Cerasure) manufactured by Kawai Lime Industry Co., Ltd.
  • one kind of plate-like filler may be added to the resin-based film of the present embodiment, but the effect of preventing aluminum adhesion increases depending on the material of the piston that is the counterpart material and the state of the surface of the ring groove. Thus, two or more kinds may be selected and added.
  • the average particle size of the plate-like filler added to the resin-based film covering the piston ring of this embodiment is preferably 2 to 20 ⁇ m.
  • the average particle diameter of the plate-like filler is the average length of the long side.
  • the average particle diameter can be calculated by observing with a scanning electron microscope (SEM). By setting the average particle size of the plate-like filler within the above range, the protrusion on the ring groove surface can be more effectively eliminated. If the average particle size of the plate-like filler is less than 2 ⁇ m, it may be difficult to wear the protrusions in a short time. On the other hand, if it exceeds 20 ⁇ m, the surface of the ring groove may be roughened.
  • the aspect ratio of the plate-like filler added to the resin-based film covering the piston ring of this embodiment is preferably 20 to 200.
  • the aspect ratio of the plate-like filler is the ratio of the long side length to the thickness of the plate-like filler (long side length / thickness).
  • the aspect ratio of the plate-like filler can be calculated by observing the surface and cross section of the film with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the content of the plate-like filler in the resin film is preferably 0.1 to 30% by volume with respect to the entire film.
  • the film can be stably maintained for a long period of time, and an excellent aluminum adhesion prevention effect can be maintained.
  • the content of the plate-like filler is less than 0.1% by volume, it is difficult to wear the protrusions on the ring groove surface in a short time.
  • the content of the plate-like filler exceeds 30% by volume, the ring groove surface may be roughened.
  • the content of the plate-like filler in the resin film can be calculated by observing the surface and cross section of the film with a scanning electron microscope (SEM).
  • solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide, and graphite have been regarded as essential components or desirable components to be added.
  • PTFE polytetrafluoroethylene
  • molybdenum disulfide molybdenum disulfide
  • graphite graphite
  • a heat-resistant polymer having an aromatic ring or aromatic heterocycle in the main chain is preferable, and when the temperature near the piston ring groove reaches 190 ° C. or higher, the glass transition temperature is An amorphous polymer having a temperature of 190 ° C. or higher, or a crystalline polymer or a liquid crystalline polymer having a melting point of 190 ° C. or higher is suitable.
  • phenol polyimide (PI), polyetherimide, polyamideimide (PAI), polysulfone, polyethersulfone, polyarylate, polyphenylene sulfide, polyetheretherketone, aromatic polyester, aromatic polyamide, polybenzo Examples include imidazole (PBI), polybenzoxazole, aromatic polycyanurate, aromatic polythiocyanurate, and aromatic polyguanamine.
  • PI polyimide
  • PAI polyamideimide
  • PBI polybenzoxazole
  • aromatic polycyanurate aromatic polythiocyanurate
  • aromatic polyguanamine aromatic polyguanamine
  • an organic-inorganic hybrid resin in which an inorganic substance such as silica, alumina, titania, zirconia or the like is dispersed at a molecular level, these resins can be further improved in adhesion to the substrate.
  • the resin material is preferably PBI, PI, or PAI having high heat resistance, and PI is more preferable in consideration of the friction coefficient.
  • PI is more preferable in consideration of the friction coefficient.
  • the thickness (one side) of the resin film of the piston ring of this embodiment is preferably 5 to 20 ⁇ m.
  • the thickness of the film exceeds 20 ⁇ m, there is a possibility that a problem may occur when the piston ring is mounted in the ring groove, which is not preferable in terms of cost.
  • the thickness of the resin film is less than 5 ⁇ m, the film thickness after removing the protrusions on the ring groove surface becomes thin, and the abrasion of the film may cause the piston ring base material to be exposed on the surface. It is difficult to maintain the anti-wear effect.
  • the effect of the present embodiment can be obtained by coating a coating on at least one of the upper surface and the lower surface of the piston ring. In particular, by coating the lower surface on which aluminum adhesion easily occurs, excellent aluminum adhesion prevention is achieved. The effect is demonstrated. In order to obtain a better aluminum adhesion prevention effect, it is preferable to coat the upper and lower surfaces of the piston ring.
  • the film forming method of the present embodiment is not particularly limited, and known methods such as spray coating, spin coating, roll coating, dip coating, and printing can be used. However, the printing method is preferable from the viewpoint of suppressing application efficiency and the occurrence of paint unevenness.
  • the method for preparing the coating liquid or ink is not particularly limited.
  • a coating liquid may be prepared by adding a solvent to a liquid in which a plate-like filler is dispersed in a commercially available varnish such as polyimide, and adjusting the viscosity of the liquid to an optimum value.
  • the solvent and additive used for preparing the coating liquid or adjusting the viscosity of the ink are appropriately selected depending on the coating method or the printing method.
  • the dispersion method is not particularly limited, and a known method such as a sand mill, a bead mill, a ball mill, or a roll mill is used. At this time, a dispersant or the like may be added as necessary.
  • the coating liquid After applying the coating liquid to the upper or lower surface of the piston ring or after printing, it is dried and cured.
  • the curing temperature and time are appropriately selected depending on the resin material used.
  • Example 1 A CrN film having a thickness of about 30 ⁇ m was formed on the outer peripheral surface of a piston ring made of low chromium steel by an ion plating method.
  • the obtained piston ring was degreased with alkali and then immersed in an aqueous manganese phosphate solution heated to about 80 ° C. for 5 minutes to form a manganese phosphate film having a thickness of about 2 ⁇ m on the surface other than the outer peripheral surface of the piston ring.
  • a plate-like alumina powder (plate-like filler) having an average particle size of 10 ⁇ m and an aspect ratio of 100 is added as a filler (additive) to a polyimide varnish (RC5057 made by I.S.T., Ltd.), and a stirrer is used.
  • the coating liquid for coating was prepared by passing through a three-roll mill with a minimum roll interval.
  • the addition amount of the plate-like alumina powder was adjusted to 10% by volume with respect to the entire coating.
  • the coating liquid was dried at 100 ° C. for 5 minutes, and further heated in an electric furnace at 300 ° C. for 1 hour.
  • the upper surface and the lower surface of the piston ring were coated with a resin film.
  • the thickness of the resin coating on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 2 To a solution obtained by diluting a polyamideimide resin (Toyobo Co., Ltd. HR13NX) with N-methyl-2-pyrrolidone, plate alumina powder (plate filler) having an average particle size of 10 ⁇ m and an aspect ratio of 100 is added, and a stirrer is added. After sufficiently using and stirring, the coating liquid for coating was prepared by passing through a three-roll mill with a minimum roll interval. Here, the addition amount of the plate-like alumina powder was adjusted to 10% by volume with respect to the entire coating. Using the obtained coating liquid, a resin-based film was formed on the upper and lower surfaces of the same piston ring as in Example 1 by the same method as in Example 1. The film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 3 Except that the plate-like filler was changed from alumina powder to plate-like silicon carbide powder (average particle size: 10 ⁇ m, aspect ratio: 100), resin-based films were formed on the upper and lower surfaces of the piston ring under the same conditions as in Example 1. Formed. The film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 4 Except for using plate-like alumina powder having an average particle diameter of 1 ⁇ m (Example 4), 2 ⁇ m (Example 5), 20 ⁇ m (Example 6), and 30 ⁇ m (Example 7), respectively, as the plate-like filler.
  • a resin film was formed on the upper and lower surfaces of the piston ring under the same conditions as in Example 1. The film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 8 Example except that plate-like alumina powder having an aspect ratio of 10 (Example 8), 20 (Example 9), 200 (Example 10) and 300 (Example 11) was used as the plate-like filler.
  • a resin-based film was formed on the upper and lower surfaces of the piston ring under the same conditions as in 1.
  • the film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 12 Assuming that the volume of the entire coating is 100, the addition amount of the plate-like alumina powder is 0.05% by volume (Example 12), 0.1% by volume (Example 13), 30% by volume (Example 14) and 40%, respectively.
  • a resin-based film was formed on the upper and lower surfaces of the piston ring under the same conditions as in Example 1 except that the volume% (Example 15) was used.
  • the film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 1 A film was formed on the upper and lower surfaces of the piston ring under the same conditions as in Example 1 except that a solid lubricant was used in place of the plate-like alumina powder as an additive.
  • a solid lubricant molybdenum disulfide powder (average particle size 2 ⁇ m) and graphite powder (average particle size 2 ⁇ m) were used, and the amount added was 5% by volume, with the total film volume being 100.
  • the film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 2 A spherical alumina powder having an average particle size of 0.5 ⁇ m is added to a solution obtained by diluting a polyamideimide resin (Toyobo Co., Ltd. HR13NX) with N-methyl-2-pyrrolidone, and after sufficiently stirring with a stirrer, a roll The coating liquid was prepared by passing through a three-roll mill with a minimum interval. Here, the addition amount of the spherical alumina powder was 10% by volume, where the volume of the entire film was 100. Using the obtained coating solution, a film was formed on the same piston ring as in Example 1 by the same method as in Example 1. The film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 3 A film was formed on the upper and lower surfaces of the piston ring under the same conditions as in Example 1 except that the additive was changed from the plate-like alumina powder to the spherical alumina powder having an average particle size of 0.5 ⁇ m.
  • the amount of spherical alumina powder added was 10% by volume, with the total volume of the film being 100.
  • the film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m.
  • Example 4 A film was formed on the upper and lower surfaces of the piston ring under the same conditions as in Example 1 except that the additive material was changed from the plate-like alumina powder to the scaly copper powder having an average particle size of 10 ⁇ m. The amount of the scaly copper powder added was 20% by volume, where the total film volume was 100. The film thickness on the upper and lower surfaces of the piston ring was about 10 ⁇ m. Table 1 shows the conditions for forming the films of Examples 1 to 15 and Comparative Examples 1 to 4.
  • Table 2 shows the results of evaluating the remaining amount of the piston ring film after the unit adhesion test (the thickness of the remaining resin film), the presence or absence of aluminum adhesion on the surface of the piston ring, the wear amount of the piston material, and the surface roughness. Shown in Each evaluation result shown in Table 2 is based on the following criteria.
  • the surface roughness of the piston material the level difference Rk of the core portion of the piston material was calculated based on JISB0633.
  • the surface roughness Rk of the piston material before the unit adhesion test was about 1.0 ⁇ m in all examples and comparative examples.
  • Wear amount (piston material): Less than 0.5 ⁇ m: ⁇ , 0.5 ⁇ m or more to less than 1.0 ⁇ m: ⁇ , 1.0 ⁇ m or more to less than 1.5 ⁇ m: ⁇ , 1.5 ⁇ m or more: ⁇
  • Comparative Example 1 where a piston ring is coated with a film in which molybdenum disulfide and graphite are dispersed in polyimide
  • Comparative Example 2 where a film in which spherical alumina powder is dispersed in polyamideimide is coated in Comparative Example 2
  • a simple adhesion test Later, no resin-based film remained, and abrasion progressed to the underlying manganese phosphate film, and remarkable aluminum adhesion was observed. Further, it was confirmed that the surface of the piston material was not smoothed and the wear was progressing.
  • Comparative Example 3 in which spherical alumina powder is dispersed in polyimide, the generation of aluminum adhesion and wear of the groove are suppressed, and a good state is maintained even after 5 hours of operation, compared with Comparative Examples 1 and 2. I understood it. This is considered to be a synergistic effect by using a hard spherical alumina powder having a smoothing effect on the piston material and a polyimide resin having heat resistance and self-lubricating property.
  • Comparative Example 4 in which the piston ring was coated with a film in which scaly copper powder was dispersed in polyimide, slight aluminum adhesion was observed after the single adhesion test.
  • Example 3 where the piston ring was coated with a coating film in which plate-like silicon carbide was dispersed the occurrence of aluminum adhesion was not observed, the coating film and the piston material were less worn, and the surface of the piston material was smoothed. It had been.
  • the hard plate-like filler has an excellent smoothing effect on the piston material, and by dispersing the hard high-strength plate-like filler, the wear resistance, strength and stress relaxation effect of the film are improved. This is probably due to the fact that
  • Example 1 in which plate-like alumina is scattered, the stress due to the collision with the piston material is easily relieved. For these reasons, it is considered that in Example 1, an ideal sliding state was maintained and aluminum adhesion was prevented.
  • Example 2 using polyamideimide and Example 3 using plate-like silicon carbide the aluminum adhesion prevention effect was clearly improved as compared with Comparative Example 3, but slight aluminum adhesion was observed after 15 hours. It was. From this, it was found that polyimide is more preferable as the resin material, and alumina is more preferable as the plate-like filler.
  • Examples 1 and 4 to 7 in which the average particle diameter of the plate-like alumina powder was changed the occurrence of aluminum adhesion was not observed, and the film was less worn.
  • Examples 1, 5, and 6 in which the average particle diameter of the plate-like alumina powder is in the range of 2 to 20 ⁇ m show a better smoothing effect on the piston material, and the wear amount of the piston material is less than 0.5 ⁇ m. The remaining amount of the resin film was large.
  • Examples 1 and 8 to 11 in which the aspect ratio of the plate-like alumina powder was changed the occurrence of aluminum adhesion was not observed, and the film was less worn.
  • Examples 1, 9, and 10 in which the aspect ratio of the plate-like alumina powder is in the range of 20 to 200 show a better smoothing effect on the piston material, and the wear amount of the piston material is less than 0.5 ⁇ m. There was very little and the residual amount of the resin-type film
  • Examples 1 and 12 to 15 in which the addition amount of the plate-like alumina powder was changed the occurrence of aluminum adhesion was not observed, and the film was less worn.
  • Examples 1, 13, and 14 in which the amount of plate-like alumina powder added is in the range of 0.1 to 30% by volume show a better smoothing effect on the piston material, and the amount of wear of the piston material is 0. It was very small, less than 5 ⁇ m, and the residual amount of the resin film was large. In any of the Examples, it was found that a superior aluminum adhesion prevention effect was obtained in Comparative Example 3 in the simple substance adhesion test over 5 hours.
  • a piston ring capable of maintaining an excellent aluminum adhesion prevention effect for a long time in a high-power engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 高出力のエンジンにおいて、長期にわたり、優れたアルミニウム凝着防止効果を維持できるピストンリングを提供する。本発明に係るピストンリングの一態様は、板状充填材を含有する樹脂系皮膜によって、上面及び下面の少なくとも一方が被覆されたピストンリングであって、板状充填材がアルミナ、炭化ケイ素、窒化ケイ素、窒化ホウ素から選ばれる群の少なくとも1種を含む。

Description

ピストンリング
 本発明は、ピストンリングに関し、さらに詳しくは内燃機関用のピストンリングに関する。
 内燃機関で用いられるピストンリングのうち、燃焼室に最も近いところに設置されるトップリングは、燃焼圧力により、アルミ合金等からなるピストンのピストンリング溝(リング溝)に激しく叩き付けられ、同時にリング溝の表面を摺動する。内燃機関内は、燃料の燃焼により高温となる。ガソリンエンジンのトップリング付近においては、200℃以上となり、熱衝撃等によりピストンの強度低下を引き起こすことが知られている。
 ピストンのリング溝の表面には、図1に示すように約1μmの突起が、0.2mm間隔で形成されている。これはバイトによる旋盤加工によるものである。この突起はピストンリングの叩き(knocking)と摺動により欠落または摩耗し、リング溝表面に新生なアルミ面が露出する。新生なアルミ面は、金属からなるピストンリングの表面に凝着し易いため、アルミニウムがピストンリングの表面に凝着する。以下、この現象をアルミニウム凝着という。高出力エンジンにおいては、リング溝の表面が荒れやすく、ピストンリングの叩きと摺動によりさらに新生なアルミ面が露出し、アルミニウム凝着が繰り返されるため、リング溝の摩耗が急速に進行すると考えられる。リング溝の摩耗が大きくなるとピストンリングによるシール性能が低下し、燃焼ガスが燃焼室からクランク室へ流入するブローバイガスが増加する。ブローバイガスが増加するとエンジンの出力低下等のトラブルを引き起こすおそれがある。
 アルミニウム凝着を防止するためには、従来から、リング溝とピストンリング、特に、トップリングを直接接触させない方法やピストンリングのリング溝に対する攻撃を緩和する方法等が提案されている。
 ピストン側の対策として、特許文献1には、アルミ合金からなるリング溝表面に陽極酸化処理(アルマイト処理)を施し、さらにその処理により生成する微細孔中に潤滑性物質を充填する方法が提案されている。陽極酸化処理により、リング溝表面に硬質な酸化皮膜が形成されるため、アルミニウム合金の脱落が防止され、アルミニウム凝着が抑えられる。しかしながら、ピストンへの陽極酸化処理に要するコストは高く、酸化アルミニウムは、硬質であるため初期なじみ性(running-in performance)が悪いという問題がある。
 一方、ピストンリング側の対策として、耐熱性樹脂のポリアミド、ポリイミド等に、二硫化モリブデン等の固体潤滑剤を分散させた皮膜を、ピストンリング側面に形成する方法が、特許文献2に記載されている。この方法では、皮膜中の固体潤滑剤が劈開し摩耗することにより、皮膜の摩擦係数が低下し、リング溝への攻撃力が緩和され、アルミニウム凝着が抑制される。
 また、特許文献3には、銅系粉末を含有する耐熱樹脂から構成される表面皮膜をピストンリング側面に形成する方法が記載されている。特許文献3では、銅系粉末の添加により、ピストンリング表面に形成された表面皮膜に耐摩耗性を付与し、耐熱樹脂による潤滑性を長期にわたって機能させることができると記載されている。また、銅系粉末の形状を鱗片状として、厚さ方向に重ねるように配置することにより、ピストンリング溝が傷つくことを防止できることが記載されている。
 近年、環境負荷を低減する観点からエンジンの高効率化が進められており、ピストンリングにも、従来よりも高温高負荷な条件下で十分な性能を発揮する耐久性が要求されている。特許文献2の方法では、固体潤滑剤を必須成分として添加しているが、固体潤滑剤は前述の通り、自らが劈開し摩耗することにより、皮膜の摩擦係数を低下させ、リング溝への攻撃力を緩和している。そのため、皮膜の耐摩耗性が低く、長期にわたって、皮膜を維持し、アルミニウム凝着を防止する効果を持続することは困難である。特に、高温高負荷条件下において、皮膜を長期にわたり維持し、上述の効果を得ることは難しい。また、特許文献3の皮膜でも、高温高負荷条件下における耐久性が十分とはいえず、高出力のエンジンにおいて、長期にわたりアルミニウム凝着を防止する効果を維持することはできない。以下、アルミニウム凝着を防止する効果を、「アルミニウム凝着防止効果」と記す。
特開昭63-170546号公報 特開昭62-233458号公報 国際公開公報第2007/099968号
 本発明の目的は、前記問題点を解決し、高出力のエンジンにおいて、長期にわたり、優れたアルミニウム凝着防止効果を維持できるピストンリングを提供することである。
 上記課題に鑑み鋭意研究の結果、本発明者らは、アルミナ、炭化ケイ素、窒化ケイ素、及び窒化ホウ素の中の少なくとも1種の板状充填材を含有する樹脂系皮膜を、ピストンリングの上面及び下面の少なくとも一方に被覆することにより、高出力のエンジンにおいても長期にわたって優れたアルミニウム凝着防止効果を維持できることを見出し、本発明に想到した。すなわち、本発明の一態様に係るピストンリングは、板状充填材を含有する樹脂系皮膜によって、上面及び下面の少なくとも一方が被覆されたピストンリングであって、板状充填材がアルミナ、炭化ケイ素、窒化ケイ素、窒化ホウ素から選ばれる群の少なくとも1種を含む。なお、ピストンリングの上面及び下面とは、ピストンリングの表面においてリング溝内に配置される面であり、ピストンリングの外周面に略垂直な面である。
 上記態様では、板状充填材の平均粒径が、2~20μmであることが好ましい。
 上記態様では、板状充填材のアスペクト比が、20~200であることが好ましい。
 上記態様では、板状充填材の含有量が、樹脂系皮膜に対して0.1~30体積%であることが好ましい。
 本発明のピストンリングは、高出力エンジンにおいても長期にわたり、優れたアルミニウム凝着防止効果を維持できる。
ピストンのピストンリング溝表面の表面粗さを測定した結果を示す図である。 単体凝着試験機の概要を示す断面図である。 図3aは、本発明に係るピストンリングの一実施形態の斜視図であり、図3bは、図3aに示すピストンリングのb-b線断面図である。
 以下に本実施形態のピストンリングについて詳細に説明する。図3a及び図3bに示すように、本実施形態に係るピストンリング3の上面及び下面の少なくとも一方は、樹脂系皮膜6によって被覆されている。樹脂系皮膜6は板状充填材7を含有する。板状充填材7は、アルミナ、炭化ケイ素、窒化ケイ素、窒化ホウ素から選ばれる群の少なくとも1種を含む。板状充填材7は、アルミナ、炭化ケイ素、窒化ケイ素、窒化ホウ素から選ばれる群の少なくとも1種からなっていてもよい。
(1)ピストンリング母材
 本実施形態のピストンリングを構成するピストンリング母材8は、加工性や耐熱性に加え、リング溝との衝突が繰り返されることから、所定の強度や耐摩耗性を有することが望ましい。好ましい材料としては、鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、高級鋳鉄等が挙げられる。また、耐摩耗性を向上させるため、ステンレス鋼では窒化処理、鋳鉄では硬質クロムめっきや無電解ニッケルめっき処理を施したピストンリング母材を用いてもよい。
(2)ピストンリングの下地処理
 本実施形態の樹脂系皮膜とピストンリングとの密着性を向上させるため、ピストンリング母材の表面(上面及び下面)には、リン酸塩皮膜を形成してもよい。リン酸塩皮膜としてはリン酸亜鉛系、リン酸マンガン系、リン酸カルシウム系の皮膜が挙げられる。また、リン酸塩皮膜以外の化成処理皮膜や酸化膜を形成することもできる。表面に硬質クロムめっき皮膜や無電解ニッケルめっき皮膜等が形成されているピストンリングには、化成処理皮膜が形成できない。従って、皮膜の密着性を確保するために無機質の汚れや有機質の汚れをピストンリング母材の表面から除去するのが望ましい。また、表面の粗さ調整を兼ねてブラスト処理をピストンリングに行ってもよい。汚れの除去とブラスト処理の両方を実施してもよい。
(3)皮膜
 本実施形態のピストンリングを被覆する樹脂系皮膜は、アルミナ、炭化ケイ素、窒化ケイ素、窒化ホウ素の中の少なくとも1種の板状充填材を含有することを特徴とする。内燃機関では、高温下、燃焼圧力によりピストンリングと、ピストンのリング溝表面との間で衝突が繰り返され、同時に、ピストンリング表面とリング溝表面は周方向に摺動している。本実施形態の樹脂系皮膜中では、硬質の板状充填材が皮膜表面に対してほぼ平行に配列するため、相手材であるピストンのリング溝表面を荒らすことなく、リング溝表面の突起を摺動の初期段階にて摩滅させることができる。この効果を、平滑化効果という。このようにリング溝の突起が早期に消失することにより、リング溝表面がピストンリングと衝突及び摺動する際のピストンリングの攻撃力(リング溝表面のダメージ)が大幅に低減する。また、硬質高強度の板状充填材が分散された本実施形態の樹脂系皮膜は高強度で耐摩耗性に優れ、樹脂系皮膜中に点在する硬質な板状充填材により、前記衝撃による応力が緩和されるため、高出力エンジンにおいても長期にわたって皮膜が維持される。さらに、突起が消失した後、樹脂系皮膜中の硬質の板状充填材との摺接により、リング溝表面のアルミニウム合金のうち、軟質のアルミニウムが選択的に摩耗し、リング溝表面に初晶シリコンが突出する。このため、アルミニウムとピストンリングとの接触が抑えられ、アルミニウム凝着を効果的に防止することができる。この状態では、樹脂系皮膜中の硬質の板状充填材と初晶シリコンとの摺接が支配的となるが、両者の硬度差は小さく、且つ樹脂系皮膜及びリング溝表面の滑らかな平坦面同士が摺接する。そのため、高温高負荷条件下においても、ピストンリング及びピストンのいずれの摩耗も小さく、両方の理想的な摺動面が維持される。このため、本実施形態のピストンリングでは、高出力エンジンにおいても長期にわたり、優れたアルミニウム凝着防止効果を維持できる。
 本実施形態において「板状」とは、厚さに対して、長辺が大きい形状である。板状充填材は、必ずしも完全な平面を有する必要はなく、曲面や凹凸を有する形状を有してもよい。樹脂系皮膜にアルミナ、炭化ケイ素、窒化ケイ素、窒化ホウ素の中の少なくとも1種の板状充填材を分散させることにより、上記の効果を得ることができる。特に、板状アルミナを用いることにより、アルミニウム凝着防止効果が顕著になる。板状充填材は、公知の方法で製造することもできる。板状充填材として市販品を用いることもできる。板状アルミナとしては、キンセイマテック株式会社製合成板状アルミナ(セラフ)や河合石灰工業株式会社製アルミナ系フィラー(セラシュール)等が挙げられる。また、本実施形態の樹脂系皮膜に添加する板状充填材は1種でもよいが、相手材となるピストンの材料やリング溝の表面の状態などに応じて、アルミニウム凝着防止効果が大きくなるように2種以上を選択して添加してもよい。
 本実施形態のピストンリングに被覆する樹脂系皮膜に添加する板状充填材の平均粒径は、2~20μmであることが好ましい。なお、ここで、板状充填材の平均粒径は、長辺の平均長さである。平均粒径は走査型電子顕微鏡(SEM)にて観察する等により、算出することができる。板状充填材の平均粒径を前記範囲とすることにより、リング溝表面の突起をより効果的に消失させることができる。板状充填材の平均粒径が、2μm未満では、突起を短時間で摩滅させるのが難しくなる可能性がある。一方、20μmを超えるとリング溝の表面に荒れが生じる可能性がある。
 また、本実施形態のピストンリングに被覆する樹脂系皮膜に添加する板状充填材のアスペクト比は、20~200であることが好ましい。なお、板状充填材のアスペクト比とは、板状充填材の厚みに対する長辺長さの比(長辺長さ/厚み)である。板状充填材のアスペクト比は、皮膜の表面及び断面を走査型電子顕微鏡(SEM)にて観察する等により、算出することができる。板状充填材のアスペクト比を前記範囲とすることにより、さらに優れた応力緩和効果が発揮され、ピストン材(リング溝)に対するピストンリングの攻撃力を低減できるとともに、ピストンリングがピストン材から受ける応力を緩和する効果がさらに向上し、長期にわたり皮膜を安定的に維持することができる。板状充填材のアスペクト比が、20未満ではリング溝表面に荒れが生じる可能性がある。一方、アスペクト比が、200を超えると応力緩和効果が小さくなる。
 樹脂系皮膜中の板状充填材の含有量は、皮膜全体に対して0.1~30体積%であることが好ましい。板状充填材の含有量を前記範囲とすることにより、リング溝の表面を荒らすことなく、より短時間でリング溝の表面に存在する突起を摩滅することができ、その後、リング溝の樹脂系皮膜に対する攻撃力を低減することができる。また、板状充填材の含有量を前記範囲とすることにより、樹脂系皮膜の表面に露出する板状充填材の面積が最適化され、リング溝表面との衝突による応力を緩和する効果がさらに向上する。そのため、皮膜がさらに長期にわたり安定して維持され、優れたアルミニウム凝着防止効果を持続できる。板状充填材の含有量が、0.1体積%未満では、リング溝表面の突起を短時間で摩滅することが難しい。一方、板状充填材の含有量が、30体積%を超えるとリング溝表面に荒れが生じる可能性がある。なお、樹脂系皮膜中の板状充填材の含有量は、皮膜の表面及び断面を走査型電子顕微鏡(SEM)観察する等により、算出できる。
 従来のアルミニウム凝着防止用の皮膜では、ポリテトラフルオロエチレン(PTFE)、二硫化モリブデン、グラファイト等の固体潤滑剤が、必須成分、又は、添加するのが望ましい成分とされてきた。しかしながら、本実施形態においては、固体潤滑剤は、添加しないのが好ましく、添加するとしても、皮膜全体の体積に対して、1体積%以下であるのが好ましく、0.8体積%以下であるのがより好ましい。
 本実施形態の皮膜の樹脂材料としては、主鎖に芳香族環や芳香族複素環を有する耐熱性高分子が好ましく、ピストンリング溝付近の温度が190℃以上に達する場合は、ガラス転移温度が190℃以上の非結晶性高分子、もしくは融点が190℃以上の結晶性高分子や液晶性高分子が適している。具体的には、フェノール、ポリイミド(PI)、ポリエーテルイミド、ポリアミドイミド(PAI)、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリフェニレンスルファイド、ポリエーテルエーテルケトン、芳香族ポリエステル、芳香族ポリアミド、ポリベンゾイミダゾール(PBI)、ポリベンゾオキサゾール、芳香族ポリシアヌレート、芳香族ポリチオシアヌレート、芳香族ポリグアナミン等が挙げられる。これらの樹脂材料の1種を用いてもよいが、これらの樹脂材料のうち少なくとも1種類を含む混合物又は複合物として用いてもよい。また、これらの樹脂材料にシリカ、アルミナ、チタニア、ジルコニア等の無機物を分子レベルで分散させた有機-無機ハイブリッド樹脂を用いることで、基材との密着性をさらに向上させることができる。リング溝付近の温度は250℃以上に達するケースもあることから、樹脂材料としては、耐熱性の高いPBI、PI、PAIが好ましく、摩擦係数を考慮するとPIがさらに好ましい。また、コーティング液を作製するためには、有機溶媒に可溶であることが好ましく、ワニスとして市販されているPI、PAIを用いるのが好ましい。市販品としては、PIではU-ワニス-A、U-ワニス-S(宇部興産株式会社製)、HCIシリーズ(日立化成工業株式会社製)、FC-114 ファイン・ポリイミドワニス(ファインケミカルジャパン株式会社製)、H850D(荒川化学工業株式会社製)、RC5057、RC5097、RC5019(株式会社I.S.T製)等が挙げられる。また、PAIではHPCシリーズ(日立化成工業株式会社製)、バイロマックス(東洋紡績株式会社製)が挙げられ、ポリイミド又はポリアミドイミドにシリカをハイブリッドした樹脂では、コンポセランH800、H900シリーズ(荒川化学工業株式会社製)が挙げられる。
 本実施形態のピストンリングの樹脂系皮膜の厚さ(片側)は、5~20μmであることが好ましい。皮膜の厚さが20μmを超えると、ピストンリングをリング溝に装着するとき不具合が生じる可能性があり、コスト的にも好ましくない。樹脂系皮膜の厚さが5μm未満では、リング溝表面の突起除去後の皮膜の厚さが薄くなり、皮膜の摩滅によりピストンリング母材が表面に露出する可能性が生じるため、長期にわたってアルミニウム凝着防止効果を維持することは難しい。また、本実施形態の効果は、ピストンリングの上面及び下面の少なくとも一方の面に皮膜を被覆することにより得られるが、特にアルミニウム凝着が起こりやすい下面に被覆することにより優れたアルミニウム凝着防止効果が発揮される。より優れたアルミニウム凝着防止効果を得るためには、ピストンリングの上面及び下面に被覆するのが好ましい。
(4)皮膜の形成方法
 本実施形態の皮膜の形成方法は、特に限定されず、スプレーコーティング、スピンコーティング、ロールコーティング、ディップコーティング、印刷法等の公知の方法を用いることができる。ただし、塗布効率、塗り斑(paint unevenness)の発生を抑えるという観点から、印刷法が好ましい。コーティング液、又はインクの調製方法は、特に限定されない。例えば市販のポリイミド等のワニスに板状充填材を分散させた液に、必要に応じて溶剤を添加して、液の粘度を最適値に調整することによって、コーティング液を調製してもよい。コーティング液の調製、又はインクの粘度の調整に用いる溶剤や添加剤は、コーティング方法、又は印刷方法により適宜選択される。分散方法は、特に限定されず、サンドミル、ビーズミル、ボールミル、ロールミル等公知の方法が用いられる。この時、必要に応じて分散剤等を適宜添加してもよい。
 コーティング液をピストンリングの上面又は下面に塗布した後、又は印刷後、乾燥し、硬化処理を行う。硬化温度や時間は用いる樹脂材料等により適宜選択される。
 以下、実施例に基づいて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 低クロム鋼で作製したピストンリングの外周面に、イオンプレーティング法により、厚さ約30μmのCrN皮膜を形成した。得られたピストンリングをアルカリ脱脂した後、約80℃に加熱したリン酸マンガン水溶液中に5分間浸漬し、ピストンリングの外周面以外の面に厚さ約2μmのリン酸マンガン皮膜を形成した。ポリイミドワニス(株式会社I.S.T製 RC5057)に、充填材(添加材)として平均粒径10μm、アスペクト比100の板状アルミナ粉末(板状充填材)を添加し、撹拌機を用いて十分に撹拌した後、ロール間隔を最小にした三本ロールミルに通して、皮膜用コーティング液を調製した。ここで、板状アルミナ粉末の添加量は、皮膜全体に対して、10体積%となるように調整した。リン酸マンガン皮膜を形成したピストンリングの上面及び下面に、皮膜用コーティング液をスプレーコーティングした後、100℃で5分間乾燥し、さらに、300℃の電気炉で1時間加熱した。以上の方法により、ピストンリングの上面及び下面を樹脂系皮膜で被覆した。ピストンリングの上面及び下面における樹脂系皮膜の厚さはいずれも約10μmであった。
(実施例2)
 ポリアミドイミド樹脂(東洋紡績株式会社 HR13NX)をN-メチル-2-ピロリドンで希釈した液に、平均粒径10μm、アスペクト比100の板状アルミナ粉末(板状充填材)を添加し、撹拌機を用いて十分に撹拌した後、ロール間隔を最小にした三本ロールミルに通して、皮膜用コーティング液を調製した。ここで、板状アルミナ粉末の添加量は、皮膜全体に対して、10体積%となるように調整した。得られたコーティング液を用いて、実施例1と同様のピストンリングの上面及び下面に、実施例1と同様の方法で、樹脂系皮膜を形成した。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(実施例3)
 板状充填材をアルミナ粉末から板状炭化ケイ素粉末(平均粒径:10μm、アスペクト比:100)に変更した以外は、実施例1と同じ条件下でピストンリングの上面及び下面に樹脂系皮膜を形成した。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(実施例4~7)
 板状充填材として、平均粒径が、それぞれ1μm(実施例4)、2μm(実施例5)、20μm(実施例6)、及び30μm(実施例7)の板状アルミナ粉末を用いた以外は実施例1と同じ条件下でピストンリングの上面及び下面に樹脂系皮膜を形成した。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(実施例8~11)
 板状充填材として、アスペクト比が、それぞれ10(実施例8)、20(実施例9)、200(実施例10)及び300(実施例11)の板状アルミナ粉末を用いた以外は実施例1と同じ条件下でピストンリングの上面及び下面に樹脂系皮膜を形成した。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(実施例12~15)
 皮膜全体の体積を100として、板状アルミナ粉末の添加量をそれぞれ、0.05体積%(実施例12)、0.1体積%(実施例13)、30体積%(実施例14)及び40体積%(実施例15)とした以外は実施例1と同じ条件下で、ピストンリングの上面及び下面に樹脂系皮膜を形成した。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(比較例1)
 添加材として板状アルミナ粉末の代わりに固体潤滑剤を用いたこと以外は実施例1と同じ条件下でピストンリングの上面及び下面に皮膜を形成した。固体潤滑剤としては、二硫化モリブデン粉末(平均粒径2μm)及びグラファイト粉末(平均粒径2μm)を用い、添加量は皮膜全体の体積を100として、それぞれ5体積%とした。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(比較例2)
 ポリアミドイミド樹脂(東洋紡績株式会社 HR13NX)をN-メチル-2-ピロリドンで希釈した液に、平均粒径0.5μmの球状アルミナ粉末を添加し、攪拌機を用いて、十分に撹拌した後、ロール間隔を最小にした三本ロールミルに通し、コーティング液を調製した。ここで、球状アルミナ粉末の添加量は、皮膜全体の体積を100として、10体積%とした。得られたコーティング液を用いて、実施例1と同様のピストンリングに、実施例1と同様の方法で、皮膜を形成した。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(比較例3)
 添加材を板状アルミナ粉末から平均粒径0.5μmの球状アルミナ粉末に変更した以外は実施例1と同じ条件下で、ピストンリングの上面及び下面に皮膜を形成した。球状アルミナ粉末の添加量は、皮膜全体の体積を100として10体積%とした。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。
(比較例4)
 添加材を板状アルミナ粉末から平均粒径10μmの鱗片状銅粉末に変更した以外は実施例1と同じ条件下で、ピストンリング上面及び下面に皮膜を形成した。鱗片状銅粉末の添加量は、皮膜全体の体積を100として20体積%とした。ピストンリングの上面及び下面における皮膜の厚さはいずれも約10μmであった。上記の実施例1~15及び比較例1~4の各皮膜の形成条件を表1に示す。
(単体凝着試験)
 単体凝着試験では、実施例1~15と比較例1~4のピストンリング3を、ガソリンエンジンと同様の環境を擬似的に模した図2に示す単体凝着試験機に装着して、以下の方法により、アルミニウム凝着についての評価を行った。ピストンリング3を、3.0mm/sで回転させながら、アルミニウム合金製のピストン材2(リング溝に相当)を上下に往復運動させ、所定間隔で、面圧5MPaの荷重をピストンリング3にかける単体凝着試験を5時間行った。ここで、ヒーター1と熱電対5を用いて、ピストン材2の温度が250℃±1℃になるように制御し、ピストンリング3に所定間隔で一定量の潤滑油を窒素ガスとともに噴霧した。
 単体凝着試験後のピストンリングの皮膜残存量(残存した樹脂系皮膜の厚さ)、ピストンリングの表面におけるアルミニウム凝着の有無、ピストン材の摩耗量及び表面粗さを評価した結果を表2に示す。表2に示す各評価結果は、以下の判定基準に基づくものである。ピストン材の表面粗さとしては、JISB0633に基づき、ピストン材のコア部のレベル差Rkを算出した。なお、単体凝着試験前のピストン材の表面粗さRkは,全ての実施例及び比較例において約1.0μmであった。
   皮膜残存量(ピストンリング)・・・3μm以上:◎、
1μm以上~3μm未満:○、1μm未満(リン酸マンガン皮膜有り):△、 1μm未満(リン酸マンガン皮膜無し):×
   アルミニウム凝着の有無(ピストンリング)・・・無し:○、
有るが軽微:△、 有り:×
   摩耗量(ピストン材)・・・0.5μm未満:◎、 0.5μm以上~1.0μm未満:○、1.0μm以上~1.5μm未満:△、 1.5μm以上:×
   表面粗さ(ピストン材)・・・0.3μm未満:◎、
0.3μm以上~0.5μm未満:○、0.5μm以上~0.7μm未満:△、 0.7μm以上:×
   総合判定・・・優良:◎、
良好:○、 比較的良好:△、不可:×
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ポリイミドに二硫化モリブデンとグラファイトを分散させた皮膜をピストンリングに被覆した比較例1、及び、ポリアミドイミドに球状アルミナ粉末を分散させた皮膜を被覆したピストンリングに比較例2では、単体凝着試験後には、樹脂系皮膜は全く残存せず、下地のリン酸マンガン皮膜まで摩耗が進行しており、顕著なアルミニウム凝着が認められた。また、ピストン材の表面は平滑化されておらず、摩耗が進行していることが確認された。これに対して、ポリイミドに球状アルミナ粉末を分散させた比較例3では、比較例1及び2より、アルミニウム凝着の発生及び溝の摩耗が抑えられ、5時間運転後も良好な状態を維持することがわかった。これは、ピストン材に対する平滑化効果のある硬質の球状アルミナ粉末と、耐熱性及び自己潤滑性を有するポリイミド樹脂を用いたことによる相乗効果と考えられる。一方、ポリイミドに鱗片状の銅粉末を分散させた皮膜をピストンリングに被覆した比較例4では、単体凝着試験後には、軽微なアルミニウム凝着が認められた。また、ピストンリングの皮膜は殆ど残存しておらず、ピストン材にも摩耗が進行し、表面は平滑化されていないことが確認された。これは、軟質の銅粉末を用いてもピストン材に対する平滑化効果が得られず、かつ硬度及び強度の低い銅粉末では、ピストン材との衝突時の応力緩和効果が低く、銅粉末を含む被膜自体が破損して、皮膜を維持できなかったためと考えられる。
 一方、ポリイミド及びポリアミドイミドにそれぞれ、平均粒径10μm、アスペクト比100の板状アルミナ粉末を皮膜全体に対して10体積%添加した皮膜をピストンリングに被覆した実施例1及び実施例2、ポリイミドに板状炭化ケイ素を分散させた皮膜をピストンリングに被覆した実施例3では、いずれもアルミ凝着の発生は認められず、皮膜の摩耗及びピストン材の摩耗も少なく、ピストン材の表面は平滑化されていた。これは、硬質の板状充填材はピストン材に対する優れた平滑化効果を有し、且つ硬質高強度の板状充填材を分散させることによって、皮膜の耐摩耗性、強度及び応力緩和効果が向上したことによると考えられる。
 実施例1~3及び5時間の単体凝着試験で、アルミニウム凝着が認められなかった比較例3について、さらに10時間単体凝着試験を行った。結果を表2に示す。球状のアルミナ粉末を分散させた比較例3では、アルミニウム凝着が発生したのに対して、板状アルミナ粉末を分散させた実施例1では、15時間後もアルミニウム凝着は認められなかった。実施例1では、板状アルミナが皮膜表面(あるいはピストン材の表面)に対してほぼ平行に配列するため、球状アルミナと初晶シリコンとの摺動に比べ、板状アルミナと初晶シリコンとの摺動における摩擦力の方が小さくなる。また、板状アルミナが点在した実施例1の樹脂皮膜では、ピストン材との衝突による応力が緩和されやすい。これらの理由により、実施例1では、理想的な摺動状態が維持され、アルミニウム凝着が防止された、と考えられる。ポリアミドイミドを用いた実施例2及び板状炭化ケイ素を用いた実施例3では、比較例3よりアルミニウム凝着防止効果は明らかに改善されたが、15時間後には、軽微なアルミニウム凝着が認められた。このことから、樹脂材料としては、ポリイミドがより好ましく、板状充填材としては、アルミナがより好ましいことがわかった。
 板状アルミナ粉末の平均粒径を変えた実施例1及び4~7では、いずれもアルミニウム凝着の発生は認められず、皮膜の摩耗は少なかった。特に、板状アルミナ粉末の平均粒径が2~20μmの範囲である実施例1、5、及び6は、ピストン材に対するより優れた平滑化効果を示し、ピストン材の摩耗量が0.5μm未満と非常に少なく、樹脂系皮膜の残存量が多かった。なお、いずれの実施例においても、5時間を超える単体凝着試験では、比較例3より、優れたアルミニウム凝着防止効果が得られることがわかった。
 板状アルミナ粉末のアスペクト比を変えた実施例1及び8~11では、いずれもアルミニウム凝着の発生は認められず、皮膜の摩耗は少なかった。特に、板状アルミナ粉末のアスペクト比が20~200の範囲である実施例1、9、及び10は、ピストン材に対するより優れた平滑化効果を示し、ピストン材の摩耗量が0.5μm未満と非常に少なく、樹脂系皮膜の残存量が多かった。なお、いずれの実施例においても、5時間を超える単体凝着試験では、比較例3より、優れたアルミニウム凝着防止効果が得られることがわかった。
 板状アルミナ粉末の添加量を変えた実施例1及び12~15では、いずれもアルミニウム凝着の発生は認められず、皮膜の摩耗は少なかった。特に、板状アルミナ粉末の添加量が0.1~30体積%の範囲である実施例1、13、及び14は、ピストン材に対するより優れた平滑化効果を示し、ピストン材の摩耗量が0.5μm未満と非常に少なく、樹脂系皮膜の残存量が多かった。なお、いずれの実施例においても、5時間を超える単体凝着試験では、比較例3より、優れたアルミニウム凝着防止効果が得られることがわかった。
 以上の結果より、板状充填材を含有する樹脂系皮膜を被覆した本実施例のピストンリングでは、長期にわたりアルミニウム凝着防止効果を維持できることが確認された。
 本発明によれば、高出力のエンジンにおいて、長期にわたり、優れたアルミニウム凝着防止効果を維持できるピストンリングが提供される。
1・・・ヒーター
2・・・ピストン材
3・・・ピストンリング
4・・・温度コントローラー
5・・・熱電対

Claims (4)

  1.  板状充填材を含有する樹脂系皮膜によって、上面及び下面の少なくとも一方が被覆されたピストンリングであって、
     前記板状充填材がアルミナ、炭化ケイ素、窒化ケイ素、窒化ホウ素から選ばれる群の少なくとも1種を含むことを特徴とする、
     ピストンリング。
  2.  前記板状充填材の平均粒径が2~20μmであることを特徴とする、
     請求項1に記載のピストンリング。
  3.  前記板状充填材のアスペクト比が20~200であることを特徴とする、
     請求項1又は2に記載のピストンリング。
  4.  前記板状充填材の含有量が樹脂系皮膜に対して0.1~30体積%であることを特徴とする、
     請求項1~3のいずれか一項に記載のピストンリング。
PCT/JP2013/062064 2012-08-28 2013-04-24 ピストンリング WO2014034180A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157014889A KR20150070421A (ko) 2012-08-28 2013-04-24 피스톤 링
EP13792848.7A EP2733395B1 (en) 2012-08-28 2013-04-24 Piston ring
JP2013537351A JP5719031B2 (ja) 2012-08-28 2013-04-24 ピストンリング
CN201380001823.XA CN103797285B (zh) 2012-08-28 2013-04-24 活塞环
KR1020137029695A KR20140053880A (ko) 2012-08-28 2013-04-24 피스톤 링
US14/125,310 US20150176710A1 (en) 2012-08-28 2013-04-24 Piston ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-187105 2012-08-28
JP2012187105 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014034180A1 true WO2014034180A1 (ja) 2014-03-06

Family

ID=50183008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062064 WO2014034180A1 (ja) 2012-08-28 2013-04-24 ピストンリング

Country Status (6)

Country Link
US (1) US20150176710A1 (ja)
EP (1) EP2733395B1 (ja)
JP (2) JP5719031B2 (ja)
KR (2) KR20140053880A (ja)
CN (1) CN103797285B (ja)
WO (1) WO2014034180A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923532B (zh) * 2015-08-10 2020-06-23 日本Itf株式会社 活塞环及发动机
JP6278498B1 (ja) * 2017-05-19 2018-02-14 日本新工芯技株式会社 リング状部材の製造方法及びリング状部材
US11365806B2 (en) 2019-09-09 2022-06-21 Tenneco Inc. Coated piston ring for an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233458A (ja) 1986-03-31 1987-10-13 Riken Corp ピストンリング
JPS63170546A (ja) 1987-01-05 1988-07-14 Fujikura Ltd 内燃機関のピストン
WO2007099968A1 (ja) 2006-02-28 2007-09-07 Nippon Piston Ring Co., Ltd. ピストンリング
JP2010280879A (ja) * 2009-05-01 2010-12-16 Akurosu Kk 摺動部材用被膜組成物
WO2011071049A1 (ja) * 2009-12-08 2011-06-16 株式会社リケン ピストンリング及びピストン装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142781A (en) * 1998-04-22 2000-11-07 Ultradent Products, Inc. Dental instruments for use with dental wedges
JP4151379B2 (ja) * 2002-10-29 2008-09-17 トヨタ自動車株式会社 摺動部材
JP4634093B2 (ja) * 2004-08-09 2011-02-16 アクロス株式会社 摺動部材用組成物
JP5021396B2 (ja) * 2007-08-24 2012-09-05 日本ピストンリング株式会社 ピストンリング
DE102008038636B4 (de) * 2007-08-24 2012-10-25 Nippon Piston Ring Co., Ltd. Kolbenring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233458A (ja) 1986-03-31 1987-10-13 Riken Corp ピストンリング
JPS63170546A (ja) 1987-01-05 1988-07-14 Fujikura Ltd 内燃機関のピストン
WO2007099968A1 (ja) 2006-02-28 2007-09-07 Nippon Piston Ring Co., Ltd. ピストンリング
JP2010280879A (ja) * 2009-05-01 2010-12-16 Akurosu Kk 摺動部材用被膜組成物
WO2011071049A1 (ja) * 2009-12-08 2011-06-16 株式会社リケン ピストンリング及びピストン装置

Also Published As

Publication number Publication date
EP2733395A1 (en) 2014-05-21
EP2733395A4 (en) 2015-09-30
EP2733395B1 (en) 2017-10-04
US20150176710A1 (en) 2015-06-25
JP2014149085A (ja) 2014-08-21
CN103797285A (zh) 2014-05-14
JPWO2014034180A1 (ja) 2016-08-08
JP5719031B2 (ja) 2015-05-13
CN103797285B (zh) 2016-04-06
KR20150070421A (ko) 2015-06-24
KR20140053880A (ko) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5545774B2 (ja) ピストンリング及びピストン装置
JP5391368B2 (ja) ピストンリング
JPWO2008062863A1 (ja) ピストンリング
JP5430777B2 (ja) ピストンリング
JP6973708B2 (ja) 乾性潤滑被膜組成物、及びその乾性潤滑被膜組成物により摺動層を構成した摺動部材
WO2014034180A1 (ja) ピストンリング
JP5479658B1 (ja) ピストンリング
JP2006045463A (ja) 摺動部材用組成物
JP2008128482A (ja) ピストンリング
JP5981013B1 (ja) 内燃機関用ピストンリング
JP4847817B2 (ja) ピストンリング
JP5826958B1 (ja) 内燃機関用ピストンリング
JP2015127560A (ja) 内燃機関用ピストンリング
WO2015056450A1 (ja) 内燃機関用ピストンリング
JP5524432B1 (ja) ピストンリング

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380001823.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013537351

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137029695

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013792848

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013792848

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14125310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE