WO2014034144A1 - 光信号処理装置 - Google Patents

光信号処理装置 Download PDF

Info

Publication number
WO2014034144A1
WO2014034144A1 PCT/JP2013/005156 JP2013005156W WO2014034144A1 WO 2014034144 A1 WO2014034144 A1 WO 2014034144A1 JP 2013005156 W JP2013005156 W JP 2013005156W WO 2014034144 A1 WO2014034144 A1 WO 2014034144A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength selective
output port
input
selective switch
port
Prior art date
Application number
PCT/JP2013/005156
Other languages
English (en)
French (fr)
Inventor
雄一 樋口
山口 城治
葉玉 恒一
石井 雄三
鈴木 賢哉
和則 妹尾
武司 河合
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2014532811A priority Critical patent/JP6068478B2/ja
Priority to US14/417,709 priority patent/US9645321B2/en
Priority to CN201380045794.7A priority patent/CN104603671B/zh
Publication of WO2014034144A1 publication Critical patent/WO2014034144A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to an optical signal processing apparatus.
  • WDM Widelength Division Multiplexing
  • one optical signal corresponds to one wavelength
  • wavelength multiplexing is performed for transmission.
  • WDM Widelength Division Multiplexing
  • an optical switch that switches a path without converting an optical signal into an electric signal or the like has been spotlighted.
  • a wavelength selective switch for example, see Patent Document 1
  • WSS wavelength selective switch
  • the wavelength selective switch shown in FIG. 1 includes a fiber array 001, a microlens array 002, a condenser lens 003, a cylindrical lens 004, a first main lens 005, a diffraction grating 006, a second main lens 007, and a MEMS mirror array 008. It has a configuration in which they are arranged along the z direction in this order.
  • the fiber array 001 is configured by arranging a plurality of optical fibers in the y direction, and is divided into an input port for emitting input light and an output port for receiving output light.
  • one input port 0011 and four output ports 0012 are provided.
  • the microlens array 002 is arranged in the same y direction as the fiber array 001, and on the output side of the input port of the fiber array 001 and on the input side of the output port, each microlens faces each optical fiber of the corresponding fiber array 001 Arranged as.
  • Each microlens of the microlens array 002 shapes the beam shape emitted from the corresponding input / output port of each optical fiber of the fiber array 001 and converts it into collimated light.
  • the condenser lens 003 crosses chief rays at a certain point 009 (hereinafter referred to as A point) in the light emitted from each fiber.
  • a point a certain point 009
  • the distance between the focusing lens 003 and the point A 009 is the same as the focal length of the focusing lens 003.
  • the cylindrical lens 004 forms the beam shape at the point A 009 into an elliptical beam.
  • the first main lens 005, the second main lens 007, and the diffraction grating 006 constitute a 4f optical system.
  • the distance between the point A and the first main lens is the same as the focal length f1 of the first main lens, and the distance between the second main lens and the MEMS mirror is the focal length f2 of the second main lens It is the same. Since the 4f optical system is configured, the beam shape formed at the point A 009 is projected on the MEMS mirror 008.
  • the beam diameter projected onto the MEMS mirror 008 at this time is expanded or reduced to the focal length ratio f2 / f1 times the beam diameter at the point A.
  • the diffraction grating 006 separates the wavelength-multiplexed signal light for each wavelength.
  • the signal light separated for each wavelength is irradiated to the corresponding MEMS mirror via the second main lens 007.
  • the MEMS mirror 008 includes a plurality of mirror elements, and the straight lines passing through the centers of the mirror elements of the MEMS mirror 008 are arranged along the x-axis direction. Such a MEMS mirror 008 is disposed at the focal position of the second main lens in a state where the main surface of each mirror element is opposed to the second main lens.
  • the MEMS mirror 008 changes the chief ray of each emitted signal light into an angle ⁇ x, reflects it, and selects an output port to be incident. Since each mirror element of the MEMS mirror 008 rotates around the x axis orthogonal to the wavelength separation axis z axis, the incident angle at the point A 009 is changed by changing the emission angle by rotation.
  • the wavelength selective switch can select the output port 0012 on which the chief ray is incident.
  • the wavelength selective switch can switch the output port for each wavelength by changing the emission angle of the MEMS mirror assigned for each signal light.
  • FIG. 2 is a configuration diagram describing a wavelength selective switch unit in a case where two wavelength selective switches (WSS) are mounted in one node.
  • the optical signal that has entered the node 200 is demultiplexed by the wavelength selective switch 201, and divided into the signal flowing to the next wavelength selective switch 202 and the signal flowing to the receivers 203-1 and 203-2.
  • the next wavelength selective switch 202 multiplexes the signal flowing from the previous wavelength selective switch 201 and the signal light from the transmitters 204-1 and 204-2, and outputs the signal light from the node 200.
  • nodes In addition to wavelength selective switches, nodes generally have optical components such as an optical monitor, an optical amplifier, and an optical coupler mounted thereon, and also have functions such as failure detection, optical quality compensation, and optical quality deterioration detection.
  • FIG. 3 shows the node configuration when the number of routes is four. It is a node configuration that can switch each signal wavelength to an arbitrary route. At this time, eight wavelength selective switches are mounted. Although the number of routes is four, the number of routes may be any number, and as the number of routes increases, the number of wavelength selective switches used increases.
  • the size of the node is increased, and the cost of the node is increased by the number of wavelength selective switches and the like. Therefore, common parts are shared among a plurality of wavelength selective switches, etc. If the parts capable of functional integration can be manufactured as one part, the size of each device in the node is reduced and the cost is reduced. be able to.
  • the present invention provides the arrangement of input / output ports and the arrangement of optical systems necessary for sharing a part of optical components of a plurality of wavelength selective switches.
  • the present invention provides an input / output port production means capable of accurately mounting the input / output port which is increased by mounting a plurality of wavelength selective switches.
  • the present invention further provides a means for integrating node functions at the input / output port of the wavelength selective switch to reduce the size of the in-node device.
  • the wavelength selective switch array comprises at least one input port for inputting light, at least one output port for receiving light from the input port, and at least a beam shape of light incident from the input port.
  • One light-collecting element, at least one dispersive element for dispersing light incident from the input port for each wavelength, light for each wavelength dispersed in the dispersive element, for each wavelength to the output port A wavelength selective switch array comprising n wavelength selective switches having at least one wavefront control element to be reflected on the same substrate, wherein at least one of the light collecting element, the dispersive element and the wavefront control element is used.
  • the n wavelength selective switches can be shared.
  • n wavelength selective switches of the present invention can share the at least one light collecting element.
  • the principal ray of each wavelength of light entering and exiting the input port and the output port intersects at one point on the wavefront control element in the same wavelength selective switch.
  • the different wavelength selective switches may not intersect on the wavefront control element.
  • the input port and the output port are arranged in a circular arc centering on one point on the wavefront control element in the same wavelength selective switch, and between different wavelength selective switches Can be arranged on different arcs centered on different points on the wavefront control element.
  • the angles of chief rays entering and exiting the input port and the output port can be different between the different wavelength selective switches.
  • the input port and the output port are arranged such that the incident and output angles of the chief ray become parallel in the same wavelength selective switch, and the chief ray between different wavelength selective switches It can be arranged such that the incident and exit angles of are non-parallel.
  • the principal ray of each wavelength of light entering and exiting the input port and the output port intersects at one point outside the wavefront control element in the same wavelength selective switch. Also, one point outside the wavefront control element can be different between the different wavelength selective switches.
  • the input port and the output port can be arranged such that the incident and output angles of the chief ray are different in the same wavelength selective switch.
  • the input port and the output port are disposed such that the incident and outgoing angles of the chief ray are parallel in the same wavelength selective switch, and the chief ray is arranged by at least one lens. It can be arranged such that the incident and exit angles of the chief ray become nonparallel between different wavelength selective switches.
  • the input port and the output port, or the input port and the output port and at least one of the light collecting element, the dispersive element and the wavefront control element may be planar lightwave circuits. It can be made.
  • the size and cost increase of the node device can be reduced.
  • FIG. 7 is a diagram showing nodes when the number of routes of the wavelength selective switch described in Patent Document 1 is four. It is a figure showing a 1st embodiment of a wavelength selective switch concerning the present invention. It is a figure showing a 1st embodiment of a wavelength selective switch concerning the present invention. It is a figure which shows the example which integrated the input port array and microlens array of 1st embodiment of the wavelength selective switch which concern on this invention in PLC. It is a figure which shows 2nd Embodiment of the wavelength selective switch which concerns on this invention.
  • FIG. 17 is a view showing details of a planar lightwave circuit of the wavelength selective switch shown in FIGS. 16A and 16B.
  • Embodiment 1 The wavelength selective switch array 4100 of the first embodiment is shown in FIGS. 4A and 4B.
  • the wavelength selective switch array 4100 in FIGS. 4A and 4B includes an input / output port array group 4101, a microlens array group 4102, a dispersive element 4103, a condenser lens 4104, and a reflective wavefront control element 4105.
  • the wavelength selective switch array of the present invention comprises a plurality of input / output port arrays, and a plurality of optical input / output ports are provided in each input / output port array.
  • FIG. 4A is a wavelength selective switch array as viewed from the wavelength dispersion direction orthogonal to the port direction
  • FIG. 4B is a port direction sectional view of the wavelength selective switch array.
  • the input / output port array group 4101 is configured by arranging a plurality of optical fibers in a line, and is divided into an input port for emitting input light and an output port for receiving output light.
  • a first input / output port array 4101a a first input / output port array 4101a
  • a second input / output port array 4101b a second input / output port array 4101b
  • two input / output port arrays are provided.
  • the first input / output port array 4101a is provided with one input port 4101a-1 and two output ports 4101a-2 and 3.
  • the second input / output port array 4101 b is provided with one input port 4101 b-1 and two output ports 4101 b-2 and 3.
  • the microlens array 4102 is arranged in the same direction as the input / output port array group 4101, and an input / output port array group in which each microlens corresponds to the output side of the input port of the input / output port array 4101 group and the input side of the output port. It is arranged to face each of the optical fibers 4101.
  • Each microlens of the microlens array 4102 shapes the beam shape emitted from the corresponding input / output port 4101a-1 to 4101a-3, 4101b-1 to 4101b-3 of each optical fiber of the fiber array, and converts it into collimated light Do.
  • the dispersive element 4103 splits the light irradiated from each of the input ports 4101 a-1 and 4101 b-1 of the input / output port array group 4101 for each wavelength, and divides the light into wavefronts through the condenser lens 4104.
  • the control element 4105 is irradiated.
  • an example of the dispersive element 4103 is a diffraction grating, it is not limited thereto.
  • the condenser lens 4104 is a cylindrical lens and has an effect of changing the shape of the beam irradiated to the wavefront control element 4105. By reducing the beam diameter in the wavelength demultiplexing direction on the wavefront control element 4105, the transmission band of the signal light can be broadened.
  • the reflection type wavefront control element 4105 changes the emission angle by wavefront control to reflect the emitted principal rays, and selects an output port on which the principal rays are incident.
  • the wavefront control elements 4105 are configured to be arranged in a line in the wavelength dispersion direction with respect to the input / output port array of each wavelength selective switch, and are disposed on at least one or more substrates. Since the light beam divided by the dispersive element 4103 differs in the irradiation position of the principal ray of the wavefront control element 4105 for each wavelength, the plurality of wavefront control elements 4105 arranged on the substrate independently change the emission angle.
  • the output port 4101a-2 or 4101a-3, or 4101b-2 or 4101b-3 can be selected for each wavelength by changing the emission angle.
  • the wavefront control element 4105 is provided with a reflective surface, and is disposed in a state where the reflective surface is opposed to the condenser lens.
  • the reflective surface of the reflective wavefront control element 4105 is supported rotatably in a direction perpendicular to the axis of the wavelength dispersion direction, that is, around the axis of the wavelength dispersion direction.
  • the output port (4101a-2 or 3, 4101b-2 or 3) to which the chief ray is incident can be selected.
  • the light beam incident on the wavefront control element 4105 is not limited to a parallel beam, and may be a condensed beam or a diverging beam.
  • LCOS Liquid Crystal on Silicon
  • MEMS Micro-Electro-Mechanical Systems
  • liquid crystal panel DMD (Digital Micromirror Device), or the like
  • DMD Digital Micromirror Device
  • the reflected light direction can be changed, and can be coupled to another port 4101a-3.
  • the output port to be coupled may be the same 4101a-1 as the input port, in which case a circulator is added to separate the output light.
  • the optical system is designed such that the principal ray of each wavelength of the beam input and output from the same input / output port array, ie, the first input / output port array 4101a, intersects at the same point 4106a on the wavefront control element 4105 As a result, high coupling efficiency can be secured.
  • the same port switching operation is realized also for the second input / output port array 4101 b. That is, the light emitted from one port 4101 b-1 of the second input / output port array 4101 b passes through the corresponding micro lens 4102 b-1 of the second micro lens array 4102 b, the dispersion element 4103, and the condenser lens 4104.
  • the wavefront control element 4105 is irradiated. The light irradiated to the wavefront control element 4105 is reflected by changing the emission angle by wavefront control, passes through the condenser lens 4104 and the dispersion element 4103 again, and then the microlenses 4102 b-2 in the second microlens array 4102 b.
  • the reflected light direction can be changed and can be coupled to another port 4101b-3.
  • the principal ray of each wavelength of the beam input / output from the same input / output port array, that is, the second input / output port array 4101 b is identical on the wavefront control element 4105
  • the optical system is designed to intersect at point 4106 b of
  • the condensing point 4106 b related to the second input / output port array 4101 b is located at a position different from the condensing point 4106 a related to the first input / output port array 4101 a.
  • the fibers connected to the first input / output port array 4101a are arranged on an arc centered on the point 4106a and connected to the second input / output port array 4101a The fibers are arranged on an arc centered at 4106 b.
  • the beam electric field profile of the light emitted from the input port on the wavefront control element 4105 is corrected by E 0
  • the beam electric field profile of the light assumed to be emitted from any output port is corrected by the wavefront control element 4 1 If the phase to be
  • s is the area on the wavefront control element 4105 surface.
  • the beam electric field profiles of the light emitted from the input and output ports of the input and output port array group 4101 have the same Gaussian shape.
  • the intensity distribution of the beam profile emitted from the input / output port is close on the wavefront control element 4105, and the phase of the beam profile of the light emitted from the input / output port is made to coincide with the phase H of the wavefront control element If it can be done, the coupling efficiency will be high.
  • a node provided with a wavelength selective switch array according to the present invention is configured to include a plurality of wavelength selective switches (two in the present embodiment), at least a plurality of input / output port arrays and a microlens array exist. Therefore, in order to be compactly mounted, high density arrangement is required, and high mounting accuracy is required. Therefore, as shown in FIG. 5, the input / output port array and the microlens array are integrated in a planar lightwave circuit (PLC) using a photolithographic technique, thereby achieving high mask accuracy. A highly accurate arrangement can be realized.
  • FIG. 5 shows an input / output port array group 4201 and a microlens array group 4202.
  • the input / output port array group 4201 corresponds to the input / output port array group 4101 in FIG. 5, and the microlens array group 4202 corresponds to the microlens array group 4102.
  • the light emitted from one port 4201a-1 of the first input / output port array 4201a passes through the corresponding micro lens 4202a-1 of the first micro lens array 4202a, and the dispersion elements 4103 and after shown in FIGS. 4A and 4B. It is emitted to the optical system.
  • the light returned from the dispersive element 4103 passes through the microlenses 4202a-2 in the first microlens array 4202a and is coupled to the ports 4201a-2 in the first input / output port array 4201a.
  • FIG. 5 illustrates the configuration in which the input / output port array group 4201 and the microlens array group 4202 are manufactured by PLC, but only the input / output port array group (4101a and 4101b) is manufactured by PLC It is also possible to integrate some of the optical components other than the wavefront control element 4105 into the PLC.
  • the input / output ports and the microlens array can be integrated into the PLC by dividing each input / output port array, and the PLCs can be prepared as many as the number of wavelength selective switches.
  • the PLC substrates corresponding to the respective wavelength selective switches may be arranged in parallel to one another or at an appropriate angle to one another. With such a three-dimensional arrangement, it is easy to increase the port density and increase the number of ports in a compact manner.
  • wavelength selective switch a functional element such as light branching, light merging, switches, light receiving elements, and gratings.
  • the principal ray condensing position of each wavelength selective switch of the input / output port array group 4101 is changed, and the ports are arranged on a circular arc centering on the condensing position, so that the switch group can be simplified.
  • Multiple configurations are possible.
  • the dispersive element 4103 a plurality of wavelength selective switches can be configured.
  • mounting errors can be reduced by fabricating the port with a planar lightwave circuit, and additional functions can be easily mounted.
  • the port is a fiber, but a fiber and a microlens array may be combined to form a port.
  • FIGS. 6A and 6B A wavelength selective switch array 6100 according to a second embodiment is shown in FIGS. 6A and 6B.
  • 6A and 6B each include an input / output port array group 6101, a microlens array group 6102, a condenser lens 6103, a dispersive element 6104, a cylindrical lens 6105, and a reflective wavefront control element 4106.
  • the wavelength selective switch of the present invention comprises a plurality of input / output port arrays, and a plurality of optical input / output ports are provided in each input / output port array.
  • two wavelength selective switches are configured on the same substrate.
  • FIG. 6A is a wavelength selective switch array as viewed from the wavelength dispersion direction orthogonal to the port direction
  • FIG. 6B is a port direction sectional view of the wavelength selective switch array.
  • the I / O port array group 6101 is the same as the I / O port array group 4101 of the first embodiment shown in FIGS. 4A and 4B and the micro lens array group 6102 except for the micro lens array group 4102 except for the arrangement method. is there. Further, the reflective wavefront control element 6106 is the same as the reflective wavefront control element 4105.
  • the dispersive element 6104 splits the light irradiated from each of the input ports 6101a-1 and 6101b-1 of the input / output port array group 6101 for each wavelength, and controls the wavefront of the split light through the cylindrical lens 6105.
  • the element 6106 is irradiated.
  • the condenser lens 6103 and the cylindrical lens 6105 have an effect of changing the shape of the beam irradiated to the wavefront control element.
  • By reducing the beam diameter in the wavelength demultiplexing direction on the wavefront control element it is possible to widen the transmission band of the signal light.
  • by increasing the beam shape in the port switching direction it is possible to reduce the emission angle required for switching.
  • the light emitted from one port 6101a-1 of the first input / output port array 6101a corresponds to the corresponding microlens 6102a-1, condenser lens 6103, dispersive element 6104, cylindrical lens 6105 of the first microlens array 6102a.
  • the wavefront control element 6106 is irradiated as it is.
  • the light emitted to the wavefront control element 6106 is reflected by changing the emission angle by wavefront control, passes through the cylindrical lens 6105, the dispersion element 6104, and the condenser lens 6103 again, and then the microlenses in the first microlens array 6102a 6102a-2 and couple to port 6101a-2 in the first input / output port array 6101a.
  • Condenser lens 6103 has a function to parallelize light of an arbitrary angle intersecting at the same point 6107a on the wavefront control element on the input / output port surface, and the ports in the same group are arranged in parallel .
  • the output port to be coupled may be the same 6101a-1 as the input port, in which case a circulator is added to separate the output light.
  • the optical system is designed such that the principal ray of each wavelength of the beam input and output from the same input / output port array, ie, the first input / output port array 6101a, intersects at the same point 6107a on the wavefront control element 6106 As a result, high coupling efficiency can be secured.
  • the same port switching operation is realized also for the second input / output port array 6101 b. That is, light emitted from one port 6101b-1 of the second input / output port group 6101b is transmitted to the corresponding microlens 6102b-1 of the second microlens array 6102b, the condenser lens 6103, the dispersive element 6104, and the cylindrical lens It passes through 6105 and is irradiated to the wavefront control element 6106. The light irradiated to the wavefront control element 6106 is reflected by changing the emission angle by wavefront control, passes through the cylindrical lens 6105, the dispersion element 6104, and the condenser lens 6103 again, and then the microlenses in the second microlens array 6102b.
  • the reflected light direction can be changed and can be coupled to another port 6101b-3.
  • the principal rays for each wavelength of the beam input / output from the same input / output port array, that is, the first input / output port array 6101 b are identical on the wavefront control element 6106.
  • the optical system is designed to intersect at point 6107 b of
  • the coupling efficiency is high if the overlap between the input and output beams is large and the phases are aligned. That is, for coupling to ports belonging to the same group to be connected, beams can be designed to overlap and be in phase to selectively enhance coupling efficiency. On the other hand, for coupling to ports belonging to different groups, the beams can be designed not to overlap to suppress crosstalk.
  • the principal ray input / output angle of each wavelength selective switch of the input / output port array group 6101 is changed, and fibers connected to the input / output port of each wavelength selective switch are arranged in parallel, resulting in a simple configuration.
  • a plurality of wavelength selective switches can be configured.
  • a plurality of wavelength selective switches can be configured.
  • mounting errors can be reduced by fabricating the port with a planar lightwave circuit, and additional functions can be easily mounted.
  • FIGS. 7A and 7B each include an input / output port array group 7101, a micro lens array group 7102, a condenser lens 7103, a dispersion element 7104, a cylindrical lens 7105, and a reflective wavefront control element 7106.
  • the wavelength selective switch array of the present invention comprises a plurality of input / output port arrays, and a plurality of optical input / output ports are provided in each input / output port array.
  • FIG. 7A is a wavelength dispersion direction orthogonal to the port direction
  • FIG. 7B is a cross-sectional view in the port direction.
  • the I / O port array group 7101 is the same as the I / O port array group 4101 of the first embodiment shown in FIGS. 4A and 4B and the micro lens array group 7102 except for the micro lens array group 4102 except for the arrangement method. is there.
  • the reflective wavefront control element 7106 is the same as the reflective wavefront control element 4105.
  • the dispersive element 7104 separates the light emitted from each of the input ports 7101a-1 and 7101b-1 of the input / output port array group 7101 through the condenser lens 7103 for each wavelength, and divides the light into a cylindrical shape.
  • the wavefront control element 7106 is irradiated via the lens 7105.
  • the condensing lens 7103 and the cylindrical lens 7105 have an effect of changing the shape of the beam irradiated to the wavefront control element 7106.
  • the transmission band of the signal light can be broadened.
  • by increasing the beam shape in the port switching direction it is possible to reduce the emission angle required for switching.
  • the light emitted from one port 7101a-1 of the first input / output port array 7101a corresponds to the corresponding microlens 7102a-1, the condenser lens 7103, the dispersion element 7104, and the cylindrical lens 7105 of the first microlens array 7102a.
  • the wavefront control element 7106 is irradiated as it is.
  • the light emitted to the wavefront control element 7106 is reflected by changing the emission angle by wavefront control, passes through the cylindrical lens 7105, the dispersion element 7104, and the condenser lens 7103 again, and then the microlenses in the first microlens array 7102a.
  • the condenser lens 7103 has the function of causing light of an arbitrary angle intersecting at the same point 7108a on the wavefront control element to intersect at one point 7107a on the surface other than the wavefront control element, and the same input / output port array That is, the first input / output port array 7101a input / output port 7101a is arranged on an arc centered on 7107a.
  • the one point 7107a may be realized by an imaginary point on the extension of the chief ray.
  • the optical system is designed such that the principal ray of each wavelength of the beam input and output from the same input / output port array, that is, the first input / output port array 7101a intersects at the same point 7106a on the wavefront control element 7106 As a result, high coupling efficiency can be secured.
  • the same port switching operation is realized also for the second input / output port array 7101 b. That is, light emitted from one port 7101 b-1 of the second input / output port array 7101 b is transmitted to the corresponding microlens 7102 b-1 of the second microlens array 7102 b, the condenser lens 7103 dispersive element 7104, and the cylindrical lens 7105. , And the wavefront control element 7106 is irradiated. The light emitted to the wavefront control element 7106 is reflected by changing the emission angle by wavefront control, passes through the cylindrical lens 7105, the dispersion element 7104, and the condenser lens 7103 again, and then the microlenses in the second microlens array 7102b.
  • the reflected light direction can be changed and can be coupled to another port 7101b-3.
  • the principal rays for each wavelength of the beam input / output from the same input / output port array, that is, the second input / output port array 7101 b are identical on the wavefront control element 7106.
  • the optical system is designed to intersect at the point 7108b and to intersect at the same point 7107b on the surface outside the wavefront control element.
  • the fibers connected to the first input / output port array 7101a are arranged on an arc centered on the point 7107a, and the fibers connected to the second input / output port array 7101b are centered on 7107b.
  • the condensing point 7107a is also arranged on a different location from the condensing point 7107b.
  • the principal ray condensing position of each wavelength selective switch of the input / output port array group 7101 is changed, ports are arranged on a circular arc centering on the condensing position 7107, and wavefront control of the point 7107 is performed by a condensing lens.
  • a plurality of switch groups can be configured with a simple configuration.
  • a plurality of wavelength selective switches can be configured.
  • mounting errors can be reduced by fabricating the port with a planar lightwave circuit, and additional functions can be easily mounted.
  • the wavelength selective switch array 8100 of the fourth embodiment is shown in FIGS. 8A and 8B.
  • 8A and 8B each include an input / output port array group 8101, a microlens array group 8102, a cylindrical lens 8103, a dispersion element 8104, a condenser lens 8105, and a reflection type wavefront control element 8106.
  • a plurality of light input / output ports are provided, and in the present example, three light input / output ports are illustrated.
  • FIG. 8A is a wavelength dispersion direction orthogonal to the port direction
  • FIG. 8B is a cross-sectional view in the port direction.
  • the input / output port array group 8101 is the same as the input / output port array group 4101 of the first embodiment shown in FIGS. 4A and 4B and the micro lens array group 8102 except for the micro lens array group 4102 except for the arrangement method. is there.
  • the reflective wavefront control element 8106 is the same as the reflective wavefront control element 4105.
  • the dispersive element 8104 separates the light emitted from each of the input ports 8101 a-1 and 8101 b-1 of the input / output port array group 8101 via the cylindrical lens 8103 for each wavelength, and collects the separated light
  • the wavefront control element 8106 is irradiated via the lens 8105.
  • the cylindrical lens 8103 and the condenser lens 8105 have an effect of changing the shape of the beam irradiated to the wavefront control element 8106.
  • By reducing the beam diameter in the wavelength demultiplexing direction on the wavefront control element it is possible to widen the transmission band of the signal light.
  • by increasing the beam shape in the port switching direction it is possible to reduce the emission angle required for switching.
  • the light emitted from one port 8101a-1 of the first input / output port array 8101a corresponds to the corresponding microlens 8102a-1, cylindrical lens 8103, dispersive element 8104 and condenser lens 8105 of the first microlens array 8102a.
  • the wavefront control element 8106 is irradiated as it is.
  • the light emitted to the wavefront control element 8106 is reflected by changing the emission angle by wavefront control, passes through the condenser lens 8105, the dispersion element 8104, and the cylindrical lens 8103 again, and then the microlenses in the first microlens array 8102a. It passes through 8102a-2 and is coupled to port 8101a-2 in the first input / output port array 8101a.
  • the reflected light direction can be changed and can be coupled to another port 8101a-3.
  • the cylindrical lens 8103 and the condenser lens 8105 have the function of causing light of an arbitrary angle intersecting at the same point 8108a on the wavefront control element to intersect at one point 8107a on the surface other than the wavefront control element, and the same wavelength is selected
  • the input / output port array 8101a in the switch is arranged on an arc centered on the point 8107a.
  • the one point 8107a may be realized by an imaginary point on the extension of the chief ray.
  • the optical system is designed such that the principal ray of each wavelength of the beam input and output from the same input / output port array, ie, the first input / output port array 8101a, intersects at the same point 8106a on the wavefront control element 8106 As a result, high coupling efficiency can be secured.
  • the same port switching operation is realized also for the second input / output port array 8101 b. That is, light emitted from one port 8101 b-1 of the second input / output port array 8101 b is transmitted to the corresponding microlens 8102 b-1 of the second microlens array 8102 b, cylindrical lens 8103 dispersive element 8104, condenser lens 8105. And the wavefront control element 8106 is irradiated. The light emitted to the wavefront control element 8106 is reflected by changing the emission angle by wavefront control, passes through the condenser lens 8105, the dispersion element 8104, and the cylindrical lens 8103 again, and then the microlenses in the second microlens array 8102b.
  • the reflected light direction can be changed and can be coupled to another port 8101b-3.
  • the principal ray for each wavelength of the beam entering / output from the same input / output port array, ie, the first input / output port array 8101b is on the wavefront control element 8106,
  • the optical system is designed to intersect at the same point 8108 b and intersect at the same point 8107 b on the surface outside the wavefront control element.
  • the fibers connected to the first input / output port array 8101a are arranged on an arc centered on the point 8107a, and the fibers connected to the second input / output port array 8101b are centered on the point 8107b.
  • the light condensing point 8107 a is also arranged at a position different from the light condensing point 8107 b.
  • the principal ray condensing position of each wavelength selective switch of the input / output port array group 8101 is changed, ports are arranged on a circular arc centering on the condensing position 8107, and wavefront control of the point 8107 is performed by a condensing lens.
  • a plurality of switch groups can be configured with a simple configuration.
  • a plurality of wavelength selective switches can be configured.
  • mounting errors can be reduced by fabricating the port with a planar lightwave circuit, and additional functions can be easily mounted.
  • the wavelength selective switch array 9100 of the fifth embodiment is shown in FIGS. 9A and 9B.
  • 9A and 9B each include an input / output port array group 9101, a microlens array group 9102, a cylindrical lens 9103, a cylindrical lens 9104, a condenser lens 9105, a dispersion element 9106, a condenser lens 9107, and a reflective wavefront control element 9108.
  • a plurality of optical input / output ports are provided in each wavelength selective switch, and in the present example, three optical input / output ports are illustrated.
  • FIG. 9A is a wavelength dispersion direction orthogonal to the port direction
  • FIG. 9B is a cross-sectional view in the port direction.
  • the I / O port array group 9101 is the same as the I / O port array group 4101 of the first embodiment shown in FIGS. 4A and 4B and the micro lens array group 9102 except for the micro lens array group 4102 except for the arrangement method. is there.
  • the reflective wavefront control element 9108 is the same as the reflective wavefront control element 4105.
  • the dispersive element 9106 splits the light irradiated from the respective input ports 9101 a-1 and 9101 b-1 of the input / output port array group 9101 through the cylindrical lenses 9103 and 9104 and the condenser lens 9105 for each wavelength, and divides the light.
  • the waved light is irradiated to the wavefront control element 9108 through the condenser lens 9107.
  • the cylindrical lens 9103 and the cylindrical lens 9104 have an effect of changing the beam shape irradiated to the intersection 9109.
  • the beam shape at the intersection 9109 is projected onto the wavefront control element 9108 by the focusing lens 9105 and the focusing lens 9107.
  • the light emitted from one port 9101a-1 of the first input / output port array 9101a is transmitted to the corresponding microlens 9102a-1, cylindrical lens 9103, cylindrical lens 9104, condenser lens 9105, and the like of the first microlens array 9102a.
  • the wavefront control element 9108 is irradiated through the dispersive element 9106 and the condenser lens 9107.
  • the light irradiated to the wavefront control element 9108 is reflected by changing the emission angle by wavefront control, passes through the condenser lens 9107, the dispersion element 9106, the condenser lens 9105, the cylindrical lens 9104 and the cylindrical lens 9103 again, and then the first Through micro lens 9102 a-2 in micro lens array 9102 a, and is coupled to port 9101 a-2 in first input / output port array 9101 a.
  • the reflected light direction can be changed and can be coupled to another port 9101a-3.
  • the condensing lens 9105 and the condensing lens 9107 have the function of causing light of an arbitrary angle intersecting at the same point 9110a on the wavefront control element to intersect at one point 9109a on the surface other than the wavefront control element.
  • the cylindrical lens 9103 has an effect of converting parallel light from light of an arbitrary angle crossing at one point 9109a on the surface outside the wavefront control element, and the input / output port 9102a is arranged in parallel.
  • the optical system is designed such that the principal ray of each wavelength of the beam input and output from the same input / output port array, that is, the second input / output port array 9101a intersects the same point 9110a on the wavefront control element 9108 As a result, high coupling efficiency can be secured.
  • the same port switching operation is realized also for the second input / output port array 9101 b. That is, light emitted from one port 9101b-1 of the second input / output port array 9101b is transmitted to the corresponding microlens 9102b-1, cylindrical lens 9103, cylindrical lens 9104, and condenser lens of the second microlens array 9102b. The light is irradiated to the wavefront control element 9108 through the light source 9105, the dispersive element 9106, and the condenser lens 9107.
  • the light irradiated to the wavefront control element 9108 is reflected by changing the emission angle by wavefront control, passes through the condenser lens 9107, the dispersion element 9106, the condenser lens 9105, the cylindrical lens 9104, and the cylindrical lens 9103 again, and then the second Through the micro lens 9102 b-2 in the micro lens array 9102 b, and is coupled to the port 9101 b-2 in the second input / output port array 9101 b.
  • the reflected light direction can be changed and can be coupled to another port 9101b-3.
  • the principal ray for each wavelength of the beam input / output from the same input / output port array, ie, the second input / output port array 9101b, is on the wavefront control element 9108
  • the optical system is designed to intersect at the same point 9110 b and intersect at the same point 9109 b on the surface outside the wavefront control element.
  • the fibers connected to the first input / output port array 9101a are arranged in parallel, and the fibers connected to the second input / output port array 9101b are arranged in parallel, but the first input / output
  • the fiber arrangement angles of the port array 9101a and the second input / output port array 9101b are changed. Since chief rays at different angles are condensed at different positions by the cylindrical lens 9103, the condensing points 9109a and 9109b are disposed at different positions, and the condensing point 9107a is also disposed at a different position from the condensing point 9107b. .
  • the beams can be designed to overlap and be in phase to selectively enhance coupling efficiency.
  • the beams can be designed so as not to overlap to suppress crosstalk.
  • the principal ray emission angle of each wavelength selective switch of the input / output port array group 9101 is changed, the condensing position 9109 by the cylindrical lens 9103 is changed, and the point 9109 is on the wavefront control element 9108 by the condensing lenses 9105 and 9107.
  • a plurality of switch groups can be configured with a simple configuration.
  • a plurality of wavelength selective switches can be configured.
  • mounting errors can be reduced by fabricating the port with a planar lightwave circuit, and additional functions can be easily mounted.
  • the wavelength selective switch array 10100 of the sixth embodiment is shown in FIGS. 10A and 10B.
  • 10A and 10B are composed of an input / output port array group 10101, a microlens array group 10102, a cylindrical lens 10103, a cylindrical lens 10104, a condenser lens 10105, a dispersion element 10106, a condenser lens 10107, and a wavefront control element 10108. .
  • FIG. 10A is a wavelength dispersion direction orthogonal to the port direction
  • FIG. 10B is a cross-sectional view in the port direction.
  • the number of input / output port arrays is three.
  • the number of wavelength selective switches is described as two in the above embodiment, the number of wavelength selective switches may be two or more.
  • FIG. 11 shows a configuration in which the input / output port array group 11101 and the optical function circuit 11102 are manufactured by PLC.
  • the first input / output port array 11101a corresponds to the first input / output port array 4201a in FIGS. 4A and 4B
  • the second input / output port array 11101b corresponds to the second input / output port array 4201b.
  • the optical function circuit 11102 optically connected to each input / output port of the input / output port array group 11101 is configured by integrating functional elements such as light branching, light merging, a switch, a light receiving element, and a grating.
  • optical function circuit 11102 By integrating the functional elements into the input / output port array group, functional components to be added to the ROADM can be taken into the WSS, and therefore, miniaturization as a node component is expected. Specific functional circuits of the optical function circuit 11102 will be described in the eighth and subsequent embodiments.
  • FIG. 12 shows optical waveguide arrays 12101a and 12101b, optical couplers 12102a-1 to 12102a-3, 12102b-1 to 12102b-3, and photodiodes 12103a-1 to 12103a-3 and 12103b-1 to 12103b-3. .
  • This is a configuration in which a light intensity monitor is mounted on an input / output port.
  • the input ports are 12101a-1 and 12101b-1, and are divided into light toward the WSS and light toward the photodiodes 12103a-1 and 12103b-1, respectively, by the optical couplers 12102a-1 and 12102b-1.
  • the light traveling from the input port 12101a-1 to the WSS returns to the output port 12101a-2 or 12101a-3 through the optical system.
  • the output port also has optical couplers 12102a-2 and 12102a-3, and the output light is divided into light directed to the photodiodes 12103a-2 and 12103a-3 and light to be output.
  • the light entering from the input port 12101b-1 passes through the optical system in the same manner as 12101a-1, and is output from the output port 12101b-2 or 12101b-3. Since light split by the optical coupler and directed to the photodiode is received, light intensity measurement becomes possible. Since the light intensity measurement can confirm whether the light intensity as set is output to the output port, failure detection is possible. As described above, by integrating the WSS failure detection monitor into the input / output unit of the WSS, it is possible to realize a small-size, optical component capable of detecting a failure.
  • the Drop type WSS having one input port has been described, but the same effect can be obtained with an Add type WSS having a plurality of input ports.
  • FIG. 13 shows optical waveguide arrays 13101a and 13101b, optical couplers 13102a and 13102b, AWG (Arrayed waveguide gratings) 13103a and 13103b, and photodiode arrays 13104a and 13104b.
  • This is a configuration in which a wavelength monitor is mounted on the input port.
  • the input ports are 13101a-1 and 13101b-1 and divided into light toward the WSS and light toward the AWGs 13103a and 13103b by the optical couplers 13102a and 13102b, respectively.
  • the light traveling from the input port 13101a-1 to the WSS returns to the output port 13101a-2 or 13101a-3 through the optical system.
  • the light entering from the input port 13101b-1 passes through the optical system in the same manner as 13101a-1, and is output from the output port 13101b-2 or 13101b-3.
  • the light that is split by the optical coupler and travels to the AWG is split for each wavelength, and each wavelength is received by the respective photodiode. For this reason, the light intensity for every wavelength is attained.
  • the WSS can control the output value of each wavelength.
  • by integrating the wavelength monitor into the WSS I / O unit it is possible to realize a small-sized optical component for a node capable of output control or failure detection.
  • FIG. 14 The optical function circuit unit 14100 of the input / output port of the wavelength selective switch array of the tenth embodiment is shown in FIG. FIG. 14 is composed of optical waveguide arrays 14101a and 14101b and Mach-Zehnder interferometer arrays 14102a and 14102b, and phase shifters 14103a and 14103b are attached to the Mach-Zehnder interferometer arrays 14102a and 14102b.
  • This is a configuration in which a VOA (variable optical attenuator) is implemented on an input / output port.
  • the input ports are 14101a-1 and 14101b-1 and pass through the Mach-Zehnder interferometer to the optical system.
  • the Mach-Zehnder interferometer 14102a-1 can change the light intensity directed to the optical system by adjusting the phase shifters 14103a-1-1 and 14103a-1-2.
  • each of the Mach-Zehnder interferometers 14102a-2, 14102a-3, 14102b-2, and 14102b-3 also has its own phase shifters 14103a-2-1 to 14103a-3-2 and 14103b-2-1 to 14103b-3-2.
  • the light intensity transmitted can be changed by the adjustment of.
  • the light intensity of the input / output port can be adjusted collectively by the VOA function.
  • VOA the light intensity of the input / output port
  • FIG. 15 The optical function circuit unit 15100 of the input / output port of the wavelength selective switch array of the eleventh embodiment is shown in FIG.
  • FIG. 15 is composed of optical waveguide arrays 15101a and 15101b, Mach-Zehnder interferometer arrays 15102a and 15102b, photodiodes 15104a, 15104b, 15105a and 15105b, and phase shifters 15103a and 15103b are attached to the Mach-Zehnder interferometer arrays 15102a and 15102b. It is done.
  • This is a configuration in which an optical switch and a power monitor are mounted on an input / output port.
  • the input ports are 15101a-1 and 15101b-1 and pass through the Mach-Zehnder interferometer to the optical system.
  • the light from the input port 15101a-1 passes through the optical system and then returns to the output port 15101a-2 or 15101a-3.
  • the light entering from the input port 15101b-1 passes through the optical system in the same manner as 15101a-1, and is output from the output port 15101b-2 or 15101b-3.
  • the Mach-Zehnder interferometer 15102a-1 has an optical switch function that allows the light direction to be selected as the optical waveguide 15101a-1 or the photodiode 15104a-1 by adjusting the phase shifters 15103a-1-1 and 15103a-1-2. ing.
  • the respective Mach-Zehnder interferometers 15102 a and 15102 b can similarly switch the light input / output to / from the port and the light directed to the monitor by adjusting the respective phase shifter groups 15103 a and 15103 b.
  • This function makes it possible to monitor the light intensity periodically by the optical switch.
  • the optical switch and the monitor into the input / output unit of the WSS, it is possible to realize a small-sized and periodic optical component capable of monitoring the light intensity.
  • FIGS. 16A and 16B The wavelength selective switch array 16100 of the twelfth embodiment is shown in FIGS. 16A and 16B.
  • 16A and 16B each include a planar lightwave circuit 16101, a collimating cylindrical lens 16102, a cylindrical lens 16103, a dispersive element 16104, a condenser lens 16105, and a reflective wavefront control element 16106.
  • Details of the planar lightwave circuit 16101 are shown in FIG.
  • FIG. 17 is composed of optical waveguide arrays 17101a and 17101b, slab waveguides 17102a and 17102b, and arrayed waveguides 17103a and 17103b.
  • the individual lengths of the arrayed waveguides are all designed to be equal, so that no phase difference occurs between the individual waveguides constituting the arrayed waveguides.
  • the input ports are 17101a-1 and 17101b-1 and pass through the slab waveguide and the arrayed waveguide to the optical system.
  • a plurality of light input / output ports are provided, and in the present example, three light input / output ports are illustrated.
  • FIG. 16A is a wavelength dispersion direction orthogonal to the port direction
  • FIG. 16B is a cross-sectional view in the port direction.
  • the fourth embodiment is the same as the fourth embodiment shown in FIGS. 8A and 8B except that the microlens array 8102 is integrated in the planar lightwave circuit 16101.
  • the reflective wavefront control element 16106 is identical to the reflective wavefront control element 8106.
  • the dispersive element 16104 separates the light emitted from the input ports 17101a-1 and 17101b-1 of the input / output port array group 16101 via the cylindrical lens 16103 for each wavelength, and collects the separated light
  • the wavefront control element 16106 is irradiated via the lens 16105.
  • the cylindrical lens 16103 and the condenser lens 16105 have an effect of changing the shape of the beam irradiated to the wavefront control element 16106.
  • By reducing the beam diameter in the wavelength demultiplexing direction on the wavefront control element it is possible to widen the transmission band of the signal light.
  • by increasing the beam shape in the port switching direction it is possible to reduce the emission angle required for switching.
  • the light propagating through one port 17101a-1 of the first input / output port array 17101a propagates while spreading in the port direction while being confined in the substrate thickness direction by the first slab waveguide 17102a.
  • the light is coupled to arrayed waveguide 17103a.
  • the arrayed waveguides are all arranged at the same length, and therefore, they are directed to the end of the arrayed waveguide 17103a while maintaining the phase information of the slab waveguide 17102a.
  • the phase of light emitted from each of the arrayed waveguides is aligned at the end face, and as a result, it is emitted as a plane wave in the port direction .
  • the emitted light is adjusted to collimated light in the wavelength demultiplexing axis direction by the collimating cylindrical lens 16102, and then is irradiated to the wavefront control element 16106 through the cylindrical lens 16103, the dispersing element 16104, and the condensing lens 16105.
  • the light irradiated to the wavefront control element 16106 is reflected by changing the emission angle by wavefront control, passes through the condenser lens 16105, the dispersion element 16104, the cylindrical lens 16103, and the collimating cylindrical lens 16102 again, and then the first arrayed waveguide It passes 17103 a and the first slab waveguide 17102 a.
  • the light whose reflection angle is changed by the wavefront control element propagates in a direction toward the port in the first slab waveguide 17102 a according to the inclination and propagates, and the port in the first input / output port array 17101 a It binds to 17101a-2.
  • the reflected light direction can be changed and can be coupled to another port 17101a-3.
  • the cylindrical lens 16103 and the condenser lens 16105 have the function of causing light of an arbitrary angle intersecting at the same point 16108a on the wavefront control element to intersect at one point 16107a on the surface other than the wavefront control element,
  • Each input / output port of the output port array 17101a is arranged on an arc centered on 17104a.
  • Point 17104a may be implemented by an imaginary point on the extension of the chief ray. Since the optical system is designed so that the principal ray of each wavelength of the beam entering and exiting from the same input / output port array 17101a intersects at the same point 16108a on the wavefront control element 16106, high coupling efficiency is achieved. It can be secured.
  • the same port switching operation is realized also for the second input / output port array 17101 b.
  • design and selection are made so that the beams overlap and the phases are aligned. Coupling efficiency can be increased.
  • the beams can be designed so as not to overlap to suppress crosstalk.
  • the input / output port array and the microlens array are integrated on a planar optical waveguide using a photolithographic technique to realize high-precision placement and mounting according to high mask accuracy. It is possible to reduce errors and easily implement additional functions.
  • the beam diameter in the port direction of the beam focused on the wavefront control element 16106 is determined by the relative refractive index and thickness of the embedded waveguide layer, so adjustment of the aspect ratio is realized by adjusting the beam diameter in the port direction.
  • the diameter w port of the beam direction of the beam emitted from the planar lightwave circuit 16101 at this time can be expressed by the following equation.
  • Equation 2 ⁇ represents the wavelength of the signal light, f slab represents the length of the slab waveguide, and w I / O represents the beam diameter in the port direction entering the slab waveguide. According to Equation 2, the beam diameter in the port direction can be enlarged in proportion to the length f slab of the slab waveguide.
  • a configuration employing a beam expander, an anamorphic prism pair, etc. is generally used.
  • a configuration employing a beam expander, an anamorphic prism pair, etc. increases the cost of the new member and the burden of alignment adjustment.
  • the configuration of this embodiment in which the anamorphic prism pair and the optical system for polarization diversity are integrated in one planar lightwave circuit 16101 is very effective in reducing the cost of the members and the burden of alignment adjustment. Bring great effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の波長選択スイッチは、ノード内に実装される複数個の波長選択スイッチや光部品の構成部品を共通化、集積化してノード装置のサイズ、コストの増加分を減らすことができる。本発明の波長選択スイッチは、光を入力する少なくとも一つの入力ポートと、前記入力ポートからの光を受光する少なくとも一つの出力ポートと、前記入力ポートから入射した光のビーム形状を変化させる少なくとも一つの集光素子と、前記入力ポートから入射した光を波長ごとに分散させる少なくとも一つの分散素子と、前記分散素子において分散された前記波長ごとの光を、波長ごとに前記出力ポートに対して反射させる少なくとも一つの波面制御素子と、を有し、上記波長選択スイッチを同一基板上にn個構成する際に、少なくとも一つの上記構成要素をn個間で共通することを特徴とする。

Description

光信号処理装置
 本発明は光信号処理装置に関するものである。
 近年、光通信の分野では、1つの波長に1つの光信号を対応させ、波長多重して伝送するWDM(Wavelength Division Multiplexing)技術により、一本の光ファイバにより大容量の光伝送を行うことが実現されている。このような光通信技術の発展に伴って、光信号を電気信号等に変換することなく経路を切り替える光スイッチが脚光を浴びている。なかでも、数十もの波長から任意の波長を選択して複数の出力ファイバのうちの何れかへ出力可能な波長選択スイッチ(例えば、特許文献1参照)が提案されている。この波長選択スイッチ(WSS:Wavelength Selective Switch)の一例を図1に示す。
 図1に示す波長選択スイッチは、ファイバアレイ001と、マイクロレンズアレイ002と、集光レンズ003、シリンドリカルレンズ004、第一主レンズ005、回折格子006、第二主レンズ007、MEMSミラーアレイ008を備えており、これらがこの順番でz方向に沿って配列した構成を有する。
 ファイバアレイ001は、複数の光ファイバをy方向に配列して構成され、入力光を出射する入力ポートと、出力光を受光する出力ポートとに分けられる。図1の例においては、1つの入力ポート0011と、4つの出力ポート0012とが設けられている。マイクロレンズアレイ002は、ファイバアレイ001と同じくy方向に配列され、ファイバアレイ001の入力ポートの出力側及び出力ポートの入力側に、各マイクロレンズが対応するファイバアレイ001の各光ファイバと対向するように配置される。マイクロレンズアレイ002の各マイクロレンズは、ファイバアレイ001の各光ファイバの対応する入出力ポートから出射したビーム形状を整形し、コリメート光に変換する。
 集光レンズ003は、各ファイバから出射した光をある一点009(以下A点)にて主光線を交差させるものである。集光レンズ003と、A点009との距離は、集光レンズ003の焦点距離と同一である。シリンドリカルレンズ004は、A点009におけるビーム形状を、楕円ビームに形成するものである。
 第一主レンズ005と、第二主レンズ007と、回折格子006とは、4f光学系を構成する。A点と第一主レンズとの間の距離は、第一主レンズの焦点距離f1と同一であり、第二主レンズとMEMSミラーとの間の距離は、第二主レンズの焦点距離f2と同一である。4f光学系を構成しているため、A点009で形成されたビーム形状が、MEMSミラー008上に投影される。このときのMEMSミラー008上に投影されたビーム径は、A点におけるビーム径に対し、焦点距離比f2/f1倍に拡大又は縮小される。回折格子006は波長多重された信号光を、波長ごとに分離するものである。波長ごとに分離された信号光は、第2主レンズ007を介して、対応するMEMSミラーに照射される。
 MEMSミラー008は、複数のミラー素子を備え、MEMSミラー008の各ミラー素子の中心を通る直線がx軸方向に沿うように配列される。このようなMEMSミラー008は、各ミラー素子の主表面を、第2主レンズに対向させた状態で、第2主レンズの焦点位置に配設される。MEMSミラー008は、照射された各信号光の主光線を、角度θxに変えて反射させ、入射する出力ポートを選択するものである。MEMSミラー008の各ミラー素子は、波長分離軸z軸に直交するx軸周りに回転するため、回転により出射角度を変更することで、A点009での入射角度を変更する。これにより、波長選択スイッチは、主光線が入射する出力ポート0012を、選択することができる。
 上記波長選択スイッチは、信号光ごと割り当てられたMEMSミラーの出射角度を変えることで、波長ごとに出力ポートを切り替えることができる。
 波長選択スイッチは、光ネットワークを構成するノード200内に複数個同時に実装される。図2は、波長選択スイッチ(WSS)を、1ノードに2つ実装した場合の波長選択スイッチ部を記載した構成図である。ノード200に入ってきた光信号を波長選択スイッチ201にて分波し、次の波長選択スイッチ202に流れる信号と受信機203-1、203-2に流れる信号とに分ける。次の波長選択スイッチ202では、前段の波長選択スイッチ201から流れて来た信号と、送信機204-1、204-2からの信号光とを合波させ、ノード200から信号光を出力する。
 このようにして各ノードにて受信、送信及び通過させる信号を、波長選択スイッチによって分波、合波することができる。ノードは、一般的に波長選択スイッチのほかに光モニタ、光アンプ及び光カプラ等の光部品が実装され、故障検知や光品質補償、光品質劣化検知等の機能も有している。
 図3に、方路数が4のときのノード構成を示す。各信号波長を任意の方路に切り替えることができるノード構成である。このとき波長選択スイッチは8個実装されている。方路数が4のときの説明をしているが、方路数は任意の数で良く、方路数が増えるにしたがって、使用される波長選択スイッチの個数は増加する。
 ノード内に複数個の波長選択スイッチや光部品を実装すると、ノードのサイズが大きくなり、ノードのコストが波長選択スイッチ等の個数分だけ増えてしまう。そのため、複数個の波長選択スイッチ間等にて共通の部品は共通化し、機能集積できる部品は1部品にて作製することができれば、ノード内のそれぞれの装置のサイズを小さくし、またコストを下げることができる。
 本発明では、複数個の波長選択スイッチの一部の光部品等を共通化する際に必要な入出力ポートの配置と光学系配置とを提供する。また、複数個の波長選択スイッチを実装することによって増える入出力ポートを、精度よく実装できる入出力ポート作製手段を提供する。更にノード内装置を小さくするための、波長選択スイッチの入出力ポートにノード機能を集積する手段を提供する。
特開2009-122492号公報
 本発明の波長選択スイッチアレイは、光を入力する少なくとも一つの入力ポートと、前記入力ポートからの光を受光する少なくとも一つの出力ポートと、前記入力ポートから入射した光のビーム形状を変化させる少なくとも一つの集光素子と、前記入力ポートから入射した光を波長ごとに分散させる少なくとも一つの分散素子と、前記分散素子において分散された前記波長ごとの光を、波長ごとに前記出力ポートに対して反射させる少なくとも一つの波面制御素子と、を有する波長選択スイッチを同一基板上にn個備えた波長選択スイッチアレイであって、前記集光素子、前記分散素子および前記波面制御素子の少なくとも一つを前記n個の波長選択スイッチ間で共用することができる。
 また、本発明の上記n個の波長選択スイッチは、前記少なくとも一つの集光素子を共用することができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポートに入出射される光の波長ごとの主光線が、同一の前記波長選択スイッチ内では前記波面制御素子上の1点で交差し、異なる前記波長選択スイッチ間では前記波面制御素子上で交わらないことができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポートが、同一の前記波長選択スイッチ内では前記波面制御素子上の1点を中心として円弧上に配置され、異なる前記波長選択スイッチ間では前記波面制御素子上の異なる点を中心とした異なる円弧上に配置されることができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポートに入出射される主光線の角度が、異なる前記波長選択スイッチ間では異なることができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポートが、同一の前記波長選択スイッチ内では主光線の入出射角度が平行になるよう配置され、異なる前記波長選択スイッチ間では主光線の入出射角度が非平行になるよう配置されることができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポートに入出射される光の波長ごとの主光線が、同一の前記波長選択スイッチ内では前記波面制御素子上外の1点で交差し、前記波面制御素子上外の1点は、異なる前記波長選択スイッチ間では異なることができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポートが、同一の前記波長選択スイッチ内では主光線の入出射角度が異なる角度になるよう配置されることができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポートが、同一の前記波長選択スイッチ内では主光線の入出射角度が平行になるよう配置され、少なくとも1つのレンズによって前記主光線が1点で交わり、異なる前記波長選択スイッチ間では主光線の入出射角度が非平行になるよう配置されることができる。
 また、本発明の波長選択スイッチアレイは、入力ポートおよび前記出力ポート、又は、前記入力ポートおよび前記出力ポートと前記集光素子、前記分散素子および前記波面制御素子の少なくとも1つとをプレーナ光波回路で作製することができる。
 ノード内に実装される複数個の波長選択スイッチや光部品の構成部品を共通化、集積化することでノード装置のサイズ、コストの増加分を減らすことができる。
特許文献1に記載の従来の波長選択型スイッチの一例を示す図である。 特許文献1に記載の波長選択型スイッチを2つ実装したノードを示す図である。 特許文献1に記載の波長選択型スイッチの方路数を4としたときのノードを示す図である。 本発明に係る波長選択スイッチの第1の実施形態を示す図である。 本発明に係る波長選択スイッチの第1の実施形態を示す図である。 本発明に係る波長選択スイッチの第一の実施形態の入力ポートアレイとマイクロレンズアレイを、PLCに集積化した例を示す図である。 本発明に係る波長選択スイッチの第2の実施形態を示す図である。 本発明に係る波長選択スイッチの第2の実施形態を示す図である。 本発明に係る波長選択スイッチの第3の実施形態を示す図である。 本発明に係る波長選択スイッチの第3の実施形態を示す図である。 本発明に係る波長選択スイッチの第4の実施形態を示す図である。 本発明に係る波長選択スイッチの第4の実施形態を示す図である。 本発明に係る波長選択スイッチの第5の実施形態を示す図である。 本発明に係る波長選択スイッチの第5の実施形態を示す図である。 本発明に係る波長選択スイッチの第6の実施形態を示す図である。 本発明に係る波長選択スイッチの第6の実施形態を示す図である。 本発明に係る波長選択スイッチの第7の実施形態を示す図である。 本発明に係る波長選択スイッチの第8の実施形態を示す図である。 本発明に係る波長選択スイッチの第9の実施形態を示す図である。 本発明に係る波長選択スイッチの第10の実施形態を示す図である。 本発明に係る波長選択スイッチの第11の実施形態を示す図である。 本発明に係る波長選択スイッチの第12の実施形態を示す図である。 本発明に係る波長選択スイッチの第12の実施形態を示す図である。 図16A、16Bに記載の波長選択スイッチのプレーナ光波回路の詳細を示す図である。
 以下、本発明を実施するための形態について説明するが、本発明は実施形態に限定されるものではない。なお、全図を通して同一の符号は同一または相当部分を示すものとする。
 [実施形態1]
 第1の実施形態の波長選択スイッチアレイ4100を図4A、4Bに示す。図4A、4Bの波長選択スイッチアレイ4100は、入出力ポートアレイ群4101、マイクロレンズアレイ群4102、分散素子4103、集光レンズ4104、反射型波面制御素子4105により構成されている。本発明の波長選択スイッチアレイは、複数の入出力ポートアレイを備えており、それぞれの入出力ポートアレイ内には複数の光入出力ポートが配備されている。
 ポートが配列されている方向をポート方向とする。図4Aがポート方向と直交している波長分散方向から見た波長選択スイッチアレイであり、図4Bが波長選択スイッチアレイのポート方向断面図である。
 (光学系各要素)
 入出力ポートアレイ群4101は、複数の光ファイバを一列に配列して構成され、入力光を出射する入力ポートと、出力光を受光する出力ポートとに分けられる。図4A、4Bの例においては、第一の入出力ポートアレイ4101a及び第二の入出力ポートアレイ4101b、2つの入出力ポートアレイが設けられている。第一の入出力ポートアレイ4101aには、1つの入力ポート4101a-1と、2つの出力ポート4101a-2,3とが設けられている。一方で、第二の入出力ポートアレイ4101bには、1つの入力ポート4101b-1と、2つの出力ポート4101b-2,3とが設けられている。マイクロレンズアレイ4102は、入出力ポートアレイ群4101と同じ方向に配列され、入出力ポートアレイ4101群の入力ポートの出力側及び出力ポートの入力側に、各マイクロレンズが対応する入出力ポートアレイ群4101の各光ファイバと対向するように配置される。マイクロレンズアレイ4102の各マイクロレンズは、ファイバアレイの各光ファイバの対応する入出力ポート4101a-1~4101a-3、4101b-1~4101b-3から出射したビーム形状を整形し、コリメート光に変換する。
 分散素子4103は、入出力ポートアレイ群4101の各入力ポート4101a-1及び4101b-1から照射された光を、波長ごとに分波し、分波した光を、集光レンズ4104を介して波面制御素子4105に照射する。分散素子4103の一例としては、回折格子があるが、これには限定されない。
 集光レンズ4104はシリンドリカルレンズであり、波面制御素子4105に照射されるビーム形状を変化させる効果をもつ。波面制御素子4105上における波長分波方向のビーム径を小さくすることによって、信号光の透過帯域を広げることができる。
 反射型波面制御素子4105は、照射された各主光線を波面制御によって出射角度を変えて反射し、主光線が入射する出力ポートを選択する。波面制御素子4105は、それぞれ各波長選択スイッチの入出力ポートアレイに対して波長分散方向に一列に配列されるように構成され、少なくとも1つ以上の基板上に配置される。分散素子4103において分波された光は波長ごとに波面制御素子4105の主光線の照射位置が異なるため、基板上に配列された複数の波面制御素子4105が、それぞれ独立して出射角度を変えることが可能であり、出射角度を変えることにより、それぞれの波長ごとに出力ポート4101a-2若しくは4101a-3、又は4101b-2若しくは4101b-3を選択することができる。
 波面制御素子4105は、反射面を備え、反射面を、集光レンズに対向させた状態で配置される。反射型波面制御素子4105の反射面は、波長分散方向の軸に直交する方向に、すなわち波長分散方向の軸の周りに回転可能な状態に支持されている。回転により出射角度を変更することで、主光線が入射する出力ポート(4101a-2又は3、4101b-2又は3)を、選択することができる。ここで、波面制御素子4105に入射される光ビームは、平行ビームに限らず、集光ビームや発散ビームであってもよい。
 なお、反射型波面制御素子4015としては、LCOS(Liquid Crystal on Silicon)、MEMS(Micro-Electro -Mechanical Systems)ミラー、液晶パネル、DMD(Digital Micromirror Device)などを利用できる。
 (ポート切り替え)
 第一の入出力ポートアレイ4101aの一つのポート4101a-1から出射された光が第一のマイクロレンズアレイ4102aの対応するマイクロレンズ4102a-1、分散素子4103、集光レンズ4104を通り反射型波面制御素子4105に照射される。波面制御素子4105に照射された光は、波面制御によって出射角度を変えて反射され、集光レンズ4104、分散素子4103を再び通過したのち、第一のマイクロレンズアレイ4102a内のマイクロレンズ4102a-2を通り、第一の入出力ポートアレイ4101a内のポート4101a-2に結合する。波面制御素子4105を適切に制御することによって、反射光方向を変えることができ、別のポート4101a-3に結合させることもできる。なお、結合される出力ポートは入力ポートと同じ4101a-1であってもよく、その場合には、サーキュレータを追加して出力光を分離する。同一の入出力ポートアレイ、すなわち第一の入出力ポートアレイ4101aから入出射されるビームの波長ごとの主光線は、波面制御素子4105上において、同一の点4106aで交差するように光学系が設計されているため、高い結合効率を担保できる。
 第二の入出力ポートアレイ4101bについても、同様のポート切替動作が実現される。すなわち、第二の入出力ポートアレイ4101bの一つのポート4101b-1から出射された光が、第二のマイクロレンズアレイ4102bの対応するマイクロレンズ4102b-1、分散素子4103、集光レンズ4104を通り、波面制御素子4105に照射される。波面制御素子4105に照射された光は、波面制御によって出射角度を変えて反射され、集光レンズ4104、分散素子4103を再び通過したのち、第二のマイクロレンズアレイ4102b内のマイクロレンズ4102b-2を通り、第二の入出力ポートアレイ4101b内のポート4101b-2に結合する。波面制御素子4105を適切に制御することによって、反射光方向を変えることができ、別のポート4101b-3に結合させることもできる。第一の入出力ポートアレイの場合と同様、同一の入出力ポートアレイ、すなわち第二の入出力ポートアレイ4101bから入出射されるビームの波長ごとの主光線は、波面制御素子4105上において、同一の点4106bで交差するように光学系が設計される。
 ここで、第二の入出力ポートアレイ4101bに関する集光点4106bは、第一の入出力ポートアレイ4101aに関する集光点4106aとは異なる場所にある。そのようにするために、本実施形態では、第一の入出力ポートアレイ4101aに接続されるファイバは点4106aを中心とした円弧上に配置され、第二の入出力ポートアレイ4101aに接続されるファイバは、4106bを中心とした円弧上に配置される。
 このとき、波面制御素子4105面上での入力ポートから出射された光のビーム電界プロファイルをE0、任意の出力ポートから出射されたと仮定した光のビーム電界プロファイルをE1、波面制御素子によって補正する位相をHとしたとき、結合効率ηは
Figure JPOXMLDOC01-appb-M000001
で表せる。ここでsは波面制御素子4105面上の面積である。入出力ポートアレイ群4101の各入出力ポートから出射された光のビーム電界プロファイルは同一のガウシアン形状である。入出力ポートから出射されたビームプロファイルの強度分布が波面制御素子4105上にて近接しており、かつ、入出力ポートから出射された光のビームプロファイルの位相を波面制御素子の位相Hによって一致させることができれば結合効率は高くなる。そのため接続したい同一の波長選択スイッチに属するポートへの結合に関しては、ビームプロファイルの強度分布を近接させ、かつ、波面制御素子によって任意の出力ポートと入力ポートのビームプロファイルの位相を一致できるように設計することで、波面制御素子によって選択的に結合効率を高めることができる。一方、異なる波長選択スイッチに属するポートへの結合に関しては、ビームプロファイルの強度分布が近接しないように設計することでクロストークを抑えることができる。
 (PLC入出力ポート)
 本発明に係る波長選択スイッチアレイを備えたノードは、複数の波長選択スイッチ(本実施形態は2個)を含む構成であるため、少なくとも、複数の入出力ポートアレイとマイクロレンズアレイが存在する。従って、コンパクトに実装するためには、高密度な配置が必要となり、高い実装精度が求められる。そこで、図5に示すように、入出力ポートアレイとマイクロレンズアレイを、フォトリソグラフィー技術を用いたプレーナ光波回路(PLC:Planar Lightwave Circuit)に集積化して作製することにより、高いマスク精度に応じた高精度な配置が実現をできる。図5は入出力ポートアレイ群4201、マイクロレンズアレイ群4202によって構成されている。入出力ポートアレイ群4201が図5の入出力ポートアレイ群4101に、マイクロレンズアレイ群4202がマイクロレンズアレイ群4102に対応する。第一の入出力ポートアレイ4201aの一つのポート4201a-1から出射された光が第一のマイクロレンズアレイ4202aの対応するマイクロレンズ4202a-1を通り、図4A、4Bに示す分散素子4103以降の光学系に出射される。分散素子4103から戻ってきた光は第一のマイクロレンズアレイ4202a内のマイクロレンズ4202a-2を通り、第一の入出力ポートアレイ4201a内のポート4201a-2に結合する。図4A、4Bと同様に波面制御素子4105を適切に制御することによって、反射光方向を変えることができ、別のポート4201a-3に結合させることもできる。また、第二の入出力ポートアレイ4201bについても、同様のポート切替動作が実現される。図4A、4Bと同様に、図5では入出力ポートアレイ群4201とマイクロレンズアレイ群4202をPLCにより作製した構成の説明をしたが、入出力ポートアレイ群(4101aと4101b)のみをPLCで作製してもよいし、波面制御素子4105以外の光学部品の一部をPLCに集積化することも可能である。
 また、それぞれの入出力ポートアレイごとに分けて、入出力ポートとマイクロレンズアレイをPLCに集積化し、波長選択スイッチの数だけPLCを用意することもできる。それぞれの波長選択スイッチに対応したPLC基板は、互いに平行に配置され、あるいは、互いに適切な角度をなして配置されてもよい。そのような3次元配置構成とすることにより、ポート密度を高めて、コンパクトにポート数を増やすことが容易になる。
 さらに、上記PLCには、光分岐、光合流、スイッチ、受光素子、グレーティングなどの機能素子を集積化することもできる。これによって、波長選択光スイッチへの機能追加が可能となり、例えば、光タップ(分岐)と光モニタ(グレーティング、受光素子)を集積することによって、波長選択スイッチの故障検知機能を付加することができる。
 この光学系では入出力ポートアレイ群4101の波長選択スイッチごとの主光線集光位置を変えて、その集光位置を中心に円弧上にポートを配置することで、簡易な構成にてスイッチ群を複数構成できる。また、分散素子4103を加えることで、波長選択スイッチを複数構成できる。またプレーナ光波回路によってポートを作製することで実装誤差を低減でき、加えて付加機能を容易に実装することができる。
 本実施形態では、ポートはファイバを示したが、ファイバとマイクロレンズアレイを組み合わせてポートとしても良い。
 [実施形態2]
 第2の実施形態である波長選択スイッチアレイ6100を図6A、6Bに示す。図6A、6Bは入出力ポートアレイ群6101、マイクロレンズアレイ群6102、集光レンズ6103、分散素子6104、シリンドリカルレンズ6105、反射型波面制御素子4106にて構成されている。本発明の波長選択スイッチは、複数の入出力ポートアレイを備えており、それぞれの入出力ポートアレイ内には複数の光入出力ポートが配備されている。本実施形態の波長選択スイッチアレイ6100では、2個の波長選択スイッチを同一基板上に構成している。
 ポートが配置されている方向をポート方向とする。図6Aがポート方向と直交している波長分散方向から見た波長選択スイッチアレイであり、図6Bが波長選択スイッチアレイのポート方向断面図である。
 (光学系各要素)
 入出力ポートアレイ群6101は、図4A、4Bに示した第一の実施形態の入出力ポートアレイ群4101と、マイクロレンズアレイ群6102は、マイクロレンズアレイ群4102と、配列方法以外は、同一である。また、反射型波面制御素子6106は、反射型波面制御素子4105と同一である。
 分散素子6104は、入出力ポートアレイ群6101の各入力ポート6101a-1及び6101b-1から照射された光を、波長ごとに分波し、分波した光を、シリンドリカルレンズ6105を介して波面制御素子6106に照射する。
 集光レンズ6103、シリンドリカルレンズ6105は、波面制御素子に照射されるビーム形状を変化させる効果をもつ。波面制御素子上における波長分波方向のビーム径を小さくすることによって、信号光の透過帯域を広げることができる。また、ポート切り替え方向にてビーム形状を大きくすることでスイッチングに必要な出射角度を小さくすることができる。
 (ポート切り替え)
 第一の入出力ポートアレイ6101aの一つのポート6101a-1から出射された光が第一のマイクロレンズアレイ6102aの対応するマイクロレンズ6102a-1、集光レンズ6103、分散素子6104、シリンドリカルレンズ6105を通り波面制御素子6106に照射される。波面制御素子6106に照射された光は波面制御によって出射角度を変えて反射され、シリンドリカルレンズ6105、分散素子6104、集光レンズ6103を再び通過したのち、第一のマイクロレンズアレイ6102a内のマイクロレンズ6102a-2を通り、第一の入出力ポートアレイ6101a内のポート6101a-2に結合する。波面制御素子6106を適切に制御することによって、反射光方向を変えることができ、別のポート6101a-3に結合させることもできる。集光レンズ6103は波面制御素子上同一の点6107aで交差する任意角度の光を入出力ポート面上にて平行にする作用を有しており、同一群内のポートは平行に配置されている。なお、結合される出力ポートは入力ポートと同じ6101a-1であってもよく、その場合には、サーキュレータを追加して出力光を分離する。同一の入出力ポートアレイ、すなわち第一の入出力ポートアレイ6101aから入出射されるビームの波長ごとの主光線は、波面制御素子6106上において、同一の点6107aで交差するように光学系が設計されているため、高い結合効率を担保できる。
 第二の入出力ポートアレイ6101bについても、同様のポート切替動作が実現される。すなわち、第二の入出力ポート群6101bの一つのポート6101b-1から出射された光が第二のマイクロレンズアレイ6102bの対応するマイクロレンズ6102b-1、集光レンズ6103、分散素子6104、シリンドリカルレンズ6105を通り、波面制御素子6106に照射される。波面制御素子6106に照射された光は波面制御によって出射角度を変えて反射され、シリンドリカルレンズ6105、分散素子6104、集光レンズ6103を再び通過したのち、第二のマイクロレンズアレイ6102b内のマイクロレンズ6102b-2を通り、第二の入出力ポートアレイ6101b内のポート6101b-2に結合する。波面制御素子6105を適切に制御することによって、反射光方向を変えることができ、別のポート6101b-3に結合させることもできる。第一の入出力ポート群の場合と同様、同一の入出力ポートアレイ、すなわち第一の入出力ポートアレイ6101bから入出射されるビームの波長ごとの主光線は、波面制御素子6106上において、同一の点6107bで交差するように光学系が設計される。
 本実施形態においても、結合効率は入力と出力のビームの重なりが大きく、かつ、位相がそろえば高くなる。すなわち接続したい同一の群に属するポートへの結合に関しては、ビームが重なり、かつ位相をそろえるように設計して選択的に結合効率を高めることができる。一方、異なる群に属するポートへの結合に関しては、ビームが重ならないように設計して、クロストークを抑えることができる。
 更に、本実施形態においても、入出力ポートアレイとマイクロレンズアレイを、フォトリソグラフィー技術を用いたプレーナ光波回路に集積化して作製することにより、高いマスク精度に応じた高精度な配置が実現をできる。
 この光学系では入出力ポートアレイ群6101の波長選択スイッチごとの主光線入出射角度を変えて、各波長選択スイッチの入出力ポートに接続されるファイバを平行に配置することで、簡易な構成にて波長選択スイッチを複数構成できる。また、分散素子6104を加えることで波長選択スイッチを複数構成できる。またプレーナ光波回路によってポートを作製することで実装誤差を低減でき、加えて付加機能を容易に実装することができる。
 [実施形態3]
 第3の実施形態の波長選択スイッチアレイ7100を図7A、7Bに示す。図7A、7Bは入出力ポートアレイ群7101、マイクロレンズアレイ群7102、集光レンズ7103、分散素子7104、シリンドリカルレンズ7105、反射型波面制御素子7106にて構成されている。本発明の波長選択スイッチアレイは、複数の入出力ポートアレイを備えており、それぞれの入出力ポートアレイ内には複数の光入出力ポートが配備されている。
 ポートが配置されている方向をポート方向とする。図7Aがポート方向と直交している波長分散方向であり、図7Bがポート方向断面図である。
 (光学系各要素)
 入出力ポートアレイ群7101は、図4A、4Bに示した第一の実施形態の入出力ポートアレイ群4101と、マイクロレンズアレイ群7102は、マイクロレンズアレイ群4102と、配列方法以外は、同一である。反射型波面制御素子7106は、反射型波面制御素子4105と同一である。
 分散素子7104は、入出力ポートアレイ群7101の各入力ポート7101a-1及び7101b-1から集光レンズ7103を介して照射された光を、波長ごとに分波し、分波した光を、シリンドリカルレンズ7105を介して波面制御素子7106に照射する。
 集光レンズ7103、シリンドリカルレンズ7105は、波面制御素子7106に照射されるビーム形状を変化させる効果をもつ。波面制御素子7106上における波長分波方向のビーム径を小さくすることによって、信号光の透過帯域を広げることができる。また、ポート切り替え方向にてビーム形状を大きくすることでスイッチングに必要な出射角度を小さくすることができる。
 (ポート切り替え)
 第一の入出力ポートアレイ7101aの一つのポート7101a-1から出射された光が第一のマイクロレンズアレイ7102aの対応するマイクロレンズ7102a-1、集光レンズ7103、分散素子7104、シリンドリカルレンズ7105を通り波面制御素子7106に照射される。波面制御素子7106に照射された光は波面制御によって出射角度を変えて反射され、シリンドリカルレンズ7105、分散素子7104、集光レンズ7103を再び通過したのち、第一のマイクロレンズアレイ7102a内のマイクロレンズ7102a-2を通り、第一の入出力ポートアレイ7101a内のポート7101a-2に結合する。波面制御素子7106を適切に制御することによって、反射光方向を変えることができ、別のポート7101a-3に結合させることもできる。集光レンズ7103は波面制御素子上同一の点7108aで交差する任意角度の光を波面制御素子以外の面上の1点7107aにて交差させる作用を有しており、同一の入出力ポートアレイ、すなわち第一の入出力ポートアレイ7101a入出力ポート7101aは7107aを中心とした円弧上に配置されている。上記1点7107aは主光線の延長上にある仮想点によって実現してもよい。同一の入出力ポートアレイ、すなわち第一の入出力ポートアレイ7101aから入出射されるビームの波長ごとの主光線は、波面制御素子7106上において、同一の点7106aで交差するように光学系が設計されているため、高い結合効率を担保できる。
 第二の入出力ポートアレイ7101bについても、同様のポート切替動作が実現される。すなわち、第二の入出力ポートアレイ7101bの一つのポート7101b-1から出射された光が第二のマイクロレンズアレイ7102bの対応するマイクロレンズ7102b-1、集光レンズ7103分散素子7104、シリンドリカルレンズ7105を通り、波面制御素子7106に照射される。波面制御素子7106に照射された光は波面制御によって出射角度を変えて反射され、シリンドリカルレンズ7105、分散素子7104、集光レンズ7103を再び通過したのち、第二のマイクロレンズアレイ7102b内のマイクロレンズ7102b-2を通り、第二の入出力ポートアレイ7101b内のポート7101b-2に結合する。波面制御素子7106を適切に制御することによって、反射光方向を変えることができ、別のポート7101b-3に結合させることもできる。第一の入出力ポートアレイの場合と同様、同一の入出力ポートアレイ、すなわち第二の入出力ポートアレイ7101bから入出射されるビームの波長ごとの主光線は、波面制御素子7106上において、同一の点7108bで交差し、波面制御素子外の面上において同一点7107bで交差するように光学系が設計される。
 本実施形態では、第一の入出力ポートアレイ7101aに接続されるファイバは点7107aを中心とした円弧上に配置され、第二の入出力ポートアレイ7101bに接続されるファイバは、7107bを中心とした円弧上に配置して、集光点7107aも集光点7107bとを異なる場所に配置する。これにより、接続したい同一の波長選択スイッチに属するポートへの結合に関しては、ビームが重なり、かつ位相をそろえるように設計して選択的に結合効率を高めることができる。一方、異なる波長選択スイッチに属するポートへの結合に関しては、ビームが重ならないように設計して、クロストークを抑えることができる。
 更に、本実施形態においても、入出力ポートアレイとマイクロレンズアレイを、フォトリソグラフィー技術を用いたプレーナ光波回路に集積化して作製することにより、高いマスク精度に応じた高精度な配置が実現をできる。
 この光学系では入出力ポートアレイ群7101の波長選択スイッチごとの主光線集光位置を変えて、その集光位置7107を中心に円弧上にポートを配置し、集光レンズによって点7107を波面制御素子7106上に投影することで、簡易な構成にてスイッチ群を複数構成できる。また、分散素子7104を加えることで波長選択スイッチを複数構成できる。またプレーナ光波回路によってポートを作製することで実装誤差を低減でき、加えて付加機能を容易に実装することができる。
 [実施形態4]
 第4実施形態の波長選択スイッチアレイ8100を図8A、8Bに示す。図8A、8Bは入出力ポートアレイ群8101、マイクロレンズアレイ群8102、シリンドリカルレンズ8103、分散素子8104、集光レンズ8105、反射型波面制御素子8106にて構成されている。それぞれの群内には、複数の光入出力ポートが配備されており、本例ではそれぞれに3本の光入出力ポートが図示されている。
 ポートが配置されている方向をポート方向とする。図8Aがポート方向と直交している波長分散方向であり、図8Bがポート方向断面図である。
 (光学系各要素)
 入出力ポートアレイ群8101は、図4A、4Bに示した第一の実施形態の入出力ポートアレイ群4101と、マイクロレンズアレイ群8102は、マイクロレンズアレイ群4102と、配列方法以外は、同一である。反射型波面制御素子8106は、反射型波面制御素子4105と同一である。
 分散素子8104は、入出力ポートアレイ群8101の各入力ポート8101a-1及び8101b-1からシリンドリカルレンズ8103を介して照射された光を、波長ごとに分波し、分波した光を、集光レンズ8105を介して波面制御素子8106に照射する。
 シリンドリカルレンズ8103、集光レンズ8105は波面制御素子8106に照射されるビーム形状を変化させる効果をもつ。波面制御素子上における波長分波方向のビーム径を小さくすることによって、信号光の透過帯域を広げることができる。また、ポート切り替え方向にてビーム形状を大きくすることでスイッチングに必要な出射角度を小さくすることができる。
 (ポート切り替え)
 第一の入出力ポートアレイ8101aの一つのポート8101a-1から出射された光が第一のマイクロレンズアレイ8102aの対応するマイクロレンズ8102a-1、シリンドリカルレンズ8103、分散素子8104、集光レンズ8105を通り波面制御素子8106に照射される。波面制御素子8106に照射された光は波面制御によって出射角度を変えて反射され、集光レンズ8105、分散素子8104、シリンドリカルレンズ8103を再び通過したのち、第一のマイクロレンズアレイ8102a内のマイクロレンズ8102a-2を通り、第一の入出力ポートアレイ8101a内のポート8101a-2に結合する。波面制御素子8106を適切に制御することによって、反射光方向を変えることができ、別のポート8101a-3に結合させることもできる。シリンドリカルレンズ8103と集光レンズ8105は波面制御素子上同一の点8108aで交差する任意角度の光を波面制御素子以外の面上の1点8107aにて交差させる作用を有しており、同一波長選択スイッチ内の入出力ポートアレイ8101aは点8107aを中心とした円弧上に配置されている。上記1点8107aは主光線の延長上にある仮想点によって実現してもよい。同一の入出力ポートアレイ、すなわち第一の入出力ポートアレイ8101aから入出射されるビームの波長ごとの主光線は、波面制御素子8106上において、同一の点8106aで交差するように光学系が設計されているため、高い結合効率を担保できる。
 第二の入出力ポートアレイ8101bについても、同様のポート切替動作が実現される。すなわち、第二の入出力ポートアレイ8101bの一つのポート8101b-1から出射された光が第二のマイクロレンズアレイ8102bの対応するマイクロレンズ8102b-1、シリンドリカルレンズ8103分散素子8104、集光レンズ8105を通り、波面制御素子8106に照射される。波面制御素子8106に照射された光は波面制御によって出射角度を変えて反射され、集光レンズ8105、分散素子8104、シリンドリカルレンズ8103を再び通過したのち、第二のマイクロレンズアレイ8102b内のマイクロレンズ8102b-2を通り、第二の入出力ポートアレイ8101b内のポート8101b-2に結合する。波面制御素子8106を適切に制御することによって、反射光方向を変えることができ、別のポート8101b-3に結合させることもできる。第一の入出力ポートアレイ8101aの場合と同様、同一の入出力ポートアレイ、すなわち第一の入出力ポートアレイ8101bから入出射されるビームの波長ごとの主光線は、波面制御素子8106上において、同一の点8108bで交差し、波面制御素子外の面上において同一点8107bで交差するように光学系が設計される。
 本実施形態では、第一の入出力ポートアレイ8101aに接続されるファイバは点8107aを中心とした円弧上に配置され、第二の入出力ポートアレイ8101bに接続されるファイバは、点8107bを中心とした円弧上に配置して、集光点8107aも集光点8107bと異なる場所に配置する。これにより、接続したい同一の群に属するポートへの結合に関しては、ビームが重なり、かつ位相をそろえるように設計して選択的に結合効率を高めることができる。一方、異なる群に属するポートへの結合に関しては、ビームが重ならないように設計して、クロストークを抑えることができる。
 更に、本実施形態においても、入出力ポートアレイとマイクロレンズアレイを、フォトリソグラフィー技術を用いたプレーナ光波回路に集積化して作製することにより、高いマスク精度に応じた高精度な配置が実現をできる。
 この光学系では入出力ポートアレイ群8101の波長選択スイッチごとの主光線集光位置を変えて、その集光位置8107を中心に円弧上にポートを配置し、集光レンズによって点8107を波面制御素子8106上に投影することで、簡易な構成にてスイッチ群を複数構成できる。また、分散素子8104を加えることで波長選択スイッチを複数構成できる。またプレーナ光波回路によってポートを作製することで実装誤差を低減でき、加えて付加機能を容易に実装することができる。
 [実施形態5]
 第5の実施形態の波長選択スイッチアレイ9100を図9A、9Bに示す。図9A、9Bは入出力ポートアレイ群9101、マイクロレンズアレイ群9102、シリンドリカルレンズ9103、シリンドリカルレンズ9104、集光レンズ9105、分散素子9106、集光レンズ9107、反射型波面制御素子9108にて構成されている。それぞれの波長選択スイッチ内には、複数の光入出力ポートが配備されており、本例ではそれぞれに3本の光入出力ポートが図示されている。
 ポートが配置されている方向をポート方向とする。図9Aがポート方向と直交している波長分散方向であり、図9Bがポート方向断面図である。
 (光学系各要素)
 入出力ポートアレイ群9101は、図4A、4Bに示した第一の実施形態の入出力ポートアレイ群4101と、マイクロレンズアレイ群9102は、マイクロレンズアレイ群4102と、配列方法以外は、同一である。反射型波面制御素子9108は、反射型波面制御素子4105と同一である。
 分散素子9106は、入出力ポートアレイ群9101の各入力ポート9101a-1及び9101b-1からシリンドリカルレンズ9103、9104及び集光レンズ9105を介して照射された光を、波長ごとに分波し、分波した光を、集光レンズ9107を介して波面制御素子9108に照射する。
 シリンドリカルレンズ9103、シリンドリカルレンズ9104は、交差点9109に照射されるビーム形状を変化させる効果をもつ。また交差点9109面でのビーム形状は集光レンズ9105、集光レンズ9107によって波面制御素子9108上に投影される。波面制御素子上における波長分波方向のビーム径を小さくすることによって、信号光の透過帯域を広げることができる。ポート切り替え方向にてビーム形状を大きくすることでスイッチングに必要な出射角度を小さくすることができる。
 (ポート切り替え)
 第一の入出力ポートアレイ9101aの一つのポート9101a-1から出射された光が第一のマイクロレンズアレイ9102aの対応するマイクロレンズ9102a-1、シリンドリカルレンズ9103、シリンドリカルレンズ9104、集光レンズ9105、分散素子9106、集光レンズ9107を通り波面制御素子9108に照射される。波面制御素子9108に照射された光は波面制御によって出射角度を変えて反射され、集光レンズ9107、分散素子9106、集光レンズ9105、シリンドリカルレンズ9104、シリンドリカルレンズ9103を再び通過したのち、第一のマイクロレンズアレイ9102a内のマイクロレンズ9102a-2を通り、第一の入出力ポートアレイ9101a内のポート9101a-2に結合する。波面制御素子9108を適切に制御することによって、反射光方向を変えることができ、別のポート9101a-3に結合させることもできる。集光レンズ9105と集光レンズ9107は波面制御素子上同一の点9110aで交差する任意角度の光を波面制御素子以外の面上の1点9109aにて交差させる作用を有している。シリンドリカルレンズ9103は波面制御素子外の面上の1点9109aにて交差する光任意角度の光を平行光にする作用を有しており、入出力ポート9102aはそれぞれ平行に配置されている。同一の入出力ポートアレイ、すなわち第二の入出力ポートアレイ9101aから入出射されるビームの波長ごとの主光線は、波面制御素子9108上において、同一の点9110aで交差するように光学系が設計されているため、高い結合効率を担保できる。
 第二の入出力ポートアレイ9101bについても、同様のポート切替動作が実現される。すなわち、第二の入出力ポートアレイ9101bの一つのポート9101b-1から出射された光が第二のマイクロレンズアレイ9102bの対応するマイクロレンズ9102b-1、シリンドリカルレンズ9103、シリンドリカルレンズ9104、集光レンズ9105、分散素子9106、集光レンズ9107を通り、波面制御素子9108に照射される。波面制御素子9108に照射された光は波面制御によって出射角度を変えて反射され、集光レンズ9107、分散素子9106、集光レンズ9105、シリンドリカルレンズ9104、シリンドリカルレンズ9103を再び通過したのち、第二のマイクロレンズアレイ9102b内のマイクロレンズ9102b-2を通り、第二の入出力ポートアレイ9101b内のポート9101b-2に結合する。波面制御素子9106を適切に制御することによって、反射光方向を変えることができ、別のポート9101b-3に結合させることもできる。第一の入出力ポートアレイ9101aの場合と同様、同一の入出力ポートアレイ、すなわち第二の入出力ポートアレイ9101bから入出射されるビームの波長ごとの主光線は、波面制御素子9108上において、同一の点9110bで交差し、波面制御素子外の面上において同一点9109bで交差するように光学系が設計される。
 本実施形態では、第一の入出力ポートアレイ9101aに接続されるファイバは平行に配置され、第二の入出力ポートアレイ9101bに接続されるファイバは平行に配置されるが、第一の入出力ポートアレイ9101aと第二の入出力ポートアレイ9101bのファイバ配置角度を変えている。異なった角度の主光線はシリンドリカルレンズ9103によって異なる位置に集光されるため、集光点9109aと9109bを異なる位置に配置して、集光点9107aも集光点9107bとを異なる場所に配置する。これにより、接続したい同一の波長選択スイッチに属するポートへの結合に関しては、ビームが重なり、かつ位相をそろえるように設計して選択的に結合効率を高めることができる。一方、異なる波長選択スイッチに属するポートへの結合に関しては、ビームが重ならないように設計して、クロストークを抑えることができる。
 更に、本実施形態においても、入出力ポートアレイとマイクロレンズアレイを、フォトリソグラフィー技術を用いたプレーナ光波回路に集積化して作製することにより、高いマスク精度に応じた高精度な配置が実現をできる。
 この光学系では入出力ポートアレイ群9101の波長選択スイッチごとの主光線出射角度を変えて、シリンドリカルレンズ9103による集光位置9109を変え、集光レンズ9105,9107によって点9109を波面制御素子9108上に投影することで、簡易な構成にてスイッチ群を複数構成できる。また、分散素子9106を加えることで波長選択スイッチアを複数構成できる。またプレーナ光波回路によってポートを作製することで実装誤差を低減でき、加えて付加機能を容易に実装することができる。
 [実施形態6]
 第6の実施形態の波長選択スイッチアレイ10100を図10A、10Bに示す。図10A、10Bは入出力ポートアレイ群10101、マイクロレンズアレイ群10102、シリンドリカルレンズ10103、シリンドリカルレンズ10104、集光レンズ10105、分散素子10106、集光レンズ10107、波面制御素子10108にて構成されている。
 ポートが配置されている方向をポート方向とする。図10Aがポート方向と直交している波長分散方向であり、図10Bがポート方向断面図である。
 10100の構成にて入出力ポートアレイの数を3つにしている。上記実施形態では波長選択スイッチ数を2で記載していたが、波長選択スイッチ数は2以上であっても構わない。
 [実施形態7]
 第7の実施形態の波長選択スイッチアレイの入出力ポート11100を図11に示す。図11は入出力ポートアレイ群11101、光機能回路11102をPLCにて作製した構成である。第一の入出力ポートアレイ11101aは図4A、4Bの第一の入出力ポートアレイ4201aに対応し、第二の入出力ポートアレイ11101bは第二の入出力ポートアレイ4201bに対応する。入出力ポートアレイ群11101の各入出力ポートに光接続した光機能回路11102は、光分岐、光合流、スイッチ、受光素子、グレーティングなどの機能素子を集積し構成されている。機能素子を入出力ポートアレイ群に集積することで、ROADMに付加される機能部品をWSSに取り込むことができるため、ノード部品として小型化が期待される。光機能回路11102の具体的な機能回路については実施形態8以降にて説明する。
 [実施形態8]
 第8の実施形態の波長選択スイッチアレイの入出力ポートの光機能回路部12100を図12に示す。図12は光導波路アレイ12101a、12101b、光カプラ12102a-1~12102a-3、12102b-1~12102b-3、フォトダイオード12103a-1~12103a-3、12103b-1~12103b-3によって構成されている。これは入出力ポートに光強度モニタを実装した構成である。入力ポートは12101a-1と12101b-1であり、それぞれ光カプラ12102a-1、12102b-1によってWSSへ向かう光とフォトダイオード12103a-1、12103b-1に向かう光に分けられる。入力ポート12101a-1からWSSへ向かった光は、光学系を通って出力ポート12101a-2もしくは12101a-3に返ってくる。出力ポートにも入力ポートと同様に光カプラ12102a-2、12102a-3があり、出力光がフォトダイオード12103a-2、12103a-3へ向かう光と出力される光に分けられる。入力ポート12101b-1から入った光は12101a-1と同様に光学系を通り出力ポート12101b-2もしくは12101b-3から出力される。光カプラによって分けられ、フォトダイオードに向かう光は受光されるため、光強度測定が可能となる。光強度測定によって、出力ポートに設定通りの光強度が出力されているかを確認できるために、故障検知が可能となる。このようにWSSの故障検知用モニタをWSSの入出力部に機能集積することで小型かつ故障検知可能なノード用光部品が実現できる。
 本実施形態では、入力ポートが1つであるDrop型WSSについて説明したが、入力ポートが複数あるAdd型WSSでも同様の効果が得られる。
 [実施形態9]
 第9の実施形態の波長選択スイッチアレイの入出力ポートの光機能回路部13100を図13に示す。図13は光導波路アレイ13101a、13101b、光カプラ13102a、13102b、AWG(Arrayed waveguide gratings)13103a、13103b、フォトダイオードアレイ13104a、13104bによって構成されている。これは入力ポートに波長モニタを実装した構成である。入力ポートは13101a-1と13101b-1であり、それぞれ光カプラ13102a、13102bによってWSSへ向かう光とAWG13103a、13103bに向かう光に分けられる。入力ポート13101a-1からWSSへ向かった光は、光学系を通って出力ポート13101a-2もしくは13101a-3に返ってくる。入力ポート13101b-1から入った光は、13101a-1と同様に光学系を通り出力ポート13101b-2もしくは13101b-3から出力される。光カプラによって分けられ、AWGに向かう光は波長ごとに分波され各波長がそれぞれのフォトダイオードにて受光される。このため、波長ごとの光強度が可能となる。各波長の光強度測定によって、WSSで各波長の出力値を制御することができる。また、出力ポート側に同じ構成の波長ごとのモニタを加えることでWSSの故障を波長ごとに検知することが可能となる。このように波長モニタをWSSの入出力部に機能集積することで小型かつ出力制御もしくは故障検知可能なノード用光部品が実現できる。
 本実施形態についても、入力ポートが1つであるDrop型WSSについて説明したが、入力ポートが複数あるAdd型WSSでも同様の効果が得られる。
 [実施形態10]
 第10の実施形態の波長選択スイッチアレイの入出力ポートの光機能回路部14100を図14に示す。図14は、光導波路アレイ14101a、14101b、マッハツェンダー干渉計アレイ14102a、14102bによって構成され、マッハツェンダー干渉計アレイ14102a、14102bには位相シフタ群14103a、14103bが取り付けられている。これは入出力ポートにVOA(variable optical attenuator)を実装した構成である。入力ポートは14101a-1と14101b-1であり、マッハツェンダー干渉計を通り光学系に向かう。入力ポート14101a-1からの光は光学系を通った後、出力ポート14101a-2もしくは14101a-3に返ってくる。入力ポート14101b-1から入った光は14101a-1と同様に光学系を通り出力ポート14101b-2もしくは14101b-3から出力される。マッハツェンダー干渉計14102a-1は位相シフタ14103a-1-1、14103a-1-2の調整によって、光学系に向かう光強度を変化させることができる。各マッハツェンダー干渉計14102a-2、14102a-3、14102b-2、14102b-3も同様にそれぞれの位相シフタ14103a-2-1~14103a-3-2、14103b-2-1~14103b-3-2の調整により透過する光強度を変化させることができる。VOA機能によって入出力ポートの光強度を一括にて調整できる。このようにVOAをWSSの入出力部に機能集積することで小型かつ一括で光強度調整可能なノード用光部品が実現できる。
 本実施形態についても入力ポートが1つであるDrop型WSSについて説明したが、入力ポートが複数あるAdd型WSSでも同様の効果が得られる。
 [実施形態11]
 第11の実施形態の波長選択スイッチアレイの入出力ポートの光機能回路部15100を図15に示す。図15は光導波路アレイ15101a、15101b、マッハツェンダー干渉計アレイ15102a、15102b、フォトダイオード15104a、15104b、15105a、15105bによって構成され、マッハツェンダー干渉計アレイ15102a、15102bには位相シフタ群15103a、15103bが取り付けられている。これは入出力ポートに光スイッチとパワーモニタを実装した構成である。入力ポートは15101a-1と15101b-1であり、マッハツェンダー干渉計を通り光学系に向かう。入力ポート15101a-1からの光は光学系を通った後、出力ポート15101a-2もしくは15101a-3に返ってくる。入力ポート15101b-1から入った光は15101a-1と同様に光学系を通り出力ポート15101b-2もしくは15101b-3から出力される。
 マッハツェンダー干渉計15102a-1は位相シフタ15103a-1-1、15103a-1-2の調整によって、光が向かう方向を光導波路15101a-1かフォトダイオード15104a-1に選択できる光スイッチ機能を有している。各マッハツェンダー干渉計15102a、15102bは同様にそれぞれの位相シフタ群15103a、15103bの調整によってポートに入出力される光とモニタに向かう光とを切り替えられる。
 この機能によって定期的に光スイッチによって光強度をモニタすることが可能となる。このように光スイッチとモニタをWSSの入出力部に機能集積することで小型かつ定期的な光強度モニタ可能なノード用光部品が実現できる。
 本実施形態についても、入力ポートが1つであるDrop型WSSについて説明したが、入力ポートが複数あるAdd型WSSでも同様の効果が得られる。
 [実施形態12]
 第12の実施形態の波長選択スイッチアレイ16100を図16A、16Bに示す。図16A、16Bはプレーナ光波回路16101、コリメートシリンドリカルレンズ16102、シリンドリカルレンズ16103、分散素子16104、集光レンズ16105、反射型波面制御素子16106にて構成されている。プレーナ光波回路16101の詳細を図17に示す。図17は光導波路アレイ17101a、17101b、スラブ導波路17102a、17102b、アレイ導波路17103a、17103bによって構成されている。アレイ導波路17103a、17103bについては、アレイ導波路個別の長さは全て等しく設計されており、アレイ導波路を構成する個別の導波路間で位相差が発生しない構成となっている。入力ポートは17101a-1と17101b-1であり、スラブ導波路およびアレイ導波路を通り光学系に向かう。それぞれの群内には、複数の光入出力ポートが配備されており、本例ではそれぞれに3本の光入出力ポートが図示されている。
 ポートが配置されている方向をポート方向とする。図16Aがポート方向と直交している波長分散方向であり、図16Bがポート方向断面図である。
 (光学系各要素)
 図8A、8Bに示した第四の実施形態の入出力ポートアレイ8101と、マイクロレンズアレイ8102がプレーナ光波回路16101に集積されている点以外は、同一である。反射型波面制御素子16106は、反射型波面制御素子8106と同一である。
 分散素子16104は、入出力ポートアレイ群16101の各入力ポート17101a-1及び17101b-1からシリンドリカルレンズ16103を介して照射された光を、波長ごとに分波し、分波した光を、集光レンズ16105を介して波面制御素子16106に照射する。
 シリンドリカルレンズ16103、集光レンズ16105は波面制御素子16106に照射されるビーム形状を変化させる効果をもつ。波面制御素子上における波長分波方向のビーム径を小さくすることによって、信号光の透過帯域を広げることができる。また、ポート切り替え方向にてビーム形状を大きくすることでスイッチングに必要な出射角度を小さくすることができる。
 (ポート切り替え)
 第一の入出力ポートアレイ17101aの一つのポート17101a-1を伝搬する光が第一のスラブ導波路17102aにて基板厚み方向に閉じ込められたままポート方向に広がりながら伝搬する。光はアレイ導波路17103aに結合する。アレイ導波路は全て同じ長さにて配置されているため、スラブ導波路17102aの位相情報を保持したままアレイ導波路17103aの終端へ向かう。アレイ導波路17103aの終端はプレーナ光波回路16101の端面に接続していることから、アレイ導波路のそれぞれから出射する光の位相は端面で揃うことになり、結果的にポート方向に関する平面波として出射する。出射した光はコリメートシリンドリカルレンズ16102によって波長分波軸方向に関するコリメート光に調整された後、シリンドリカルレンズ16103、分散素子16104、集光レンズ16105を通り波面制御素子16106に照射される。波面制御素子16106に照射された光は波面制御によって出射角度を変えて反射され、集光レンズ16105、分散素子16104、シリンドリカルレンズ16103、コリメートシリンドリカルレンズ16102を再び通過したのち、第一のアレイ導波路17103aおよび第一のスラブ導波路17102aを通る。ここで、波面制御素子にて反射角度を変えられた光は、その傾きに応じて第一のスラブ導波路17102a内でポート方向に傾いて伝搬し、第一の入出力ポートアレイ17101a内のポート17101a-2に結合する。波面制御素子16106を適切に制御することによって、反射光方向を変えることができ、別のポート17101a-3に結合させることもできる。シリンドリカルレンズ16103と集光レンズ16105は波面制御素子上同一の点16108aで交差する任意角度の光を波面制御素子以外の面上の1点16107aにて交差させる作用を有しており、同一の入出力ポートアレイ17101aの各入出力ポートは17104aを中心とした円弧上に配置されている。点17104aは主光線の延長上にある仮想点によって実現してもよい。同一の入出力ポートアレイ17101aから入出射されるビームの波長ごとの主光線は、波面制御素子16106上において、同一の点16108aで交差するように光学系が設計されているため、高い結合効率を担保できる。
 第二の入出力ポートアレイ17101bについても、同様のポート切替動作が実現される。 本実施形態では、第四の実施形態と同様の光学系を採用するため、接続したい同一の波長選択スイッチに属するポートへの結合に関しては、ビームが重なり、かつ位相をそろえるように設計して選択的に結合効率を高めることができる。一方、異なる波長選択スイッチに属するポートへの結合に関しては、ビームが重ならないように設計して、クロストークを抑えることができる。
 もちろん、本実施形態においても、入出力ポートアレイとマイクロレンズアレイを、フォトリソグラフィー技術を用いたプレーナ光導波路に集積化して作製することにより、高いマスク精度に応じた高精度な配置の実現、実装誤差の低減、付加機能の容易な実装が可能である。
 更に、本実施形態においては、ビームのアスペクト比を自在に変更させることが可能である。前述のとおり、波長選択スイッチにおいて出力ポート数を増加させるためには、波面制御素子16106に上に集光するビームのポート方向のビーム径を大きくする必要がある。本構成においては、波長分波軸方向のビーム径に関しては、埋め込まれた導波路層の比屈折率および厚みで決定するため、アスペクト比の調整はポート方向のビーム径を調整することで実現する。このときの、プレーナ光波回路16101を出射するビームのポート方向の径wportは、以下の式にて表すことができる。
Figure JPOXMLDOC01-appb-M000002
 数式2におけるλは信号光の波長、fslabはスラブ導波路の長さ、wI/Oはスラブ導波路に入射するポート方向のビーム径をそれぞれ表している。数式2によれば、スラブ導波路の長さfslabに比例して,ポート方向のビーム径を拡大させることができる。
 一般的な空間光学系でビームのアスペクト比の調整をするためには、ビームエキスパンダ、アナモルフィックプリズムペアなどを採用する構成が一般的である。しかしながら、このような構成では、新たな部材のコストおよびアライメント調整の負担が増えてしまう。この点で、アナモルフィックプリズムペアおよび偏波ダイバーシティのための光学系を、1つのプレーナ光波回路16101内に集積した本実施形態の構成は、部材コストおよびアライメント調整の負担を低減するのに非常に大きな効果をもたらす。

Claims (15)

  1.  光を入力する少なくとも一つの入力ポートと、
     前記入力ポートからの光を受光する少なくとも一つの出力ポートと、
     前記入力ポートから入射した光のビーム形状を変化させる少なくとも一つの集光素子と、
     前記入力ポートから入射した光を波長ごとに分散させる少なくとも一つの分散素子と、
     前記分散素子において分散された前記波長ごとの光を、波長ごとに前記出力ポートに対して反射させる少なくとも一つの波面制御素子と、
     を有する波長選択スイッチを同一基板上にn個備えた波長選択スイッチアレイであって、
     前記集光素子、前記分散素子および前記波面制御素子の少なくとも一つを前記n個の波長選択スイッチ間で共用することを特徴とする波長選択スイッチアレイ。
  2.  前記n個の波長選択スイッチは、前記少なくとも一つの集光素子を共用することを特徴とする請求項1に記載の波長選択スイッチアレイ。
  3.  前記入力ポートおよび前記出力ポートに入出射される光の波長ごとの主光線は、同一の前記波長選択スイッチ内では前記波面制御素子上の1点で交差し、異なる前記波長選択スイッチ間では前記波面制御素子上で交わらないことを特徴とする請求項1に記載の波長選択スイッチアレイ。
  4.  前記入力ポートおよび前記出力ポートは、同一の前記波長選択スイッチ内では前記波面制御素子上の1点を中心として円弧上に配置され、異なる前記波長選択スイッチ間では前記波面制御素子上の異なる点を中心とした異なる円弧上に配置されていることを特徴とする請求項3に記載の波長選択スイッチアレイ。
  5.  前記入力ポートおよび前記出力ポートに入出射される主光線の角度は、異なる前記波長選択スイッチ間では異なることを特徴とする請求項3に記載の波長選択スイッチアレイ。
  6.  前記入力ポートおよび前記出力ポートは、同一の前記波長選択スイッチ内では主光線の入出射角度が平行になるよう配置されており、異なる前記波長選択スイッチ間では主光線の入出射角度が非平行になるよう配置されていることを特徴とする請求項5に記載の波長選択スイッチアレイ。
  7.  前記入力ポートおよび前記出力ポートに入出射される光の波長ごとの主光線は、同一の前記波長選択スイッチ内では前記波面制御素子上外の1点で交差し、前記波面制御素子上外の1点は、異なる前記波長選択スイッチ間では異なることを特徴とする請求項3に記載の波長選択スイッチアレイ。
  8.  前記入力ポートおよび前記出力ポートは、同一の前記波長選択スイッチ内では主光線の入出射角度が異なる角度になるよう配置されていることを特徴とする請求項7に記載の波長選択スイッチアレイ。
  9.  前記入力ポートおよび前記出力ポートは、同一の前記波長選択スイッチ内では主光線の入出射角度が平行になるよう配置されており、少なくとも1つのレンズによって前記主光線が1点で交わり、異なる前記波長選択スイッチ間では主光線の入出射角度が非平行になるよう配置されていることを特徴とする請求項7に記載の波長選択スイッチアレイ。
  10.  前記入力ポートおよび前記出力ポート、又は、前記入力ポートおよび前記出力ポートと前記集光素子、前記分散素子および前記波面制御素子の少なくとも1つとをプレーナ光波回路で作製したことを特徴とする請求項1に記載の波長選択スイッチアレイ。
  11.  前記入力ポートおよび前記出力ポートに入出射される光の波長ごとの主光線は、同一の前記波長選択スイッチ内では前記波面制御素子上の1点で交差し、異なる前記波長選択スイッチ間では前記波面制御素子上で交わらないことを特徴とする請求項2に記載の波長選択スイッチアレイ。
  12.  前記入力ポートおよび前記出力ポート、又は、前記入力ポートおよび前記出力ポートと前記集光素子、前記分散素子および前記波面制御素子の少なくとも1つとをプレーナ光波回路で作製したことを特徴とする請求項4に記載の波長選択スイッチアレイ。
  13.  前記入力ポートおよび前記出力ポート、又は、前記入力ポートおよび前記出力ポートと前記集光素子、前記分散素子および前記波面制御素子の少なくとも1つとをプレーナ光波回路で作製したことを特徴とする請求項6に記載の波長選択スイッチアレイ。
  14.  前記入力ポートおよび前記出力ポート、又は、前記入力ポートおよび前記出力ポートと前記集光素子、前記分散素子および前記波面制御素子の少なくとも1つとをプレーナ光波回路で作製したことを特徴とする請求項8に記載の波長選択スイッチアレイ。
  15.  前記入力ポートおよび前記出力ポート、又は、前記入力ポートおよび前記出力ポートと前記集光素子、前記分散素子および前記波面制御素子の少なくとも1つとをプレーナ光波回路で作製したことを特徴とする請求項9に記載の波長選択スイッチアレイ。
PCT/JP2013/005156 2012-08-30 2013-08-30 光信号処理装置 WO2014034144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014532811A JP6068478B2 (ja) 2012-08-30 2013-08-30 光信号処理装置
US14/417,709 US9645321B2 (en) 2012-08-30 2013-08-30 Optical signal processing device
CN201380045794.7A CN104603671B (zh) 2012-08-30 2013-08-30 光信号处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012190399 2012-08-30
JP2012-190399 2012-08-30

Publications (1)

Publication Number Publication Date
WO2014034144A1 true WO2014034144A1 (ja) 2014-03-06

Family

ID=50182974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005156 WO2014034144A1 (ja) 2012-08-30 2013-08-30 光信号処理装置

Country Status (4)

Country Link
US (1) US9645321B2 (ja)
JP (1) JP6068478B2 (ja)
CN (1) CN104603671B (ja)
WO (1) WO2014034144A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212806A (ja) * 2014-04-16 2015-11-26 住友電気工業株式会社 波長選択スイッチ
JP2015230371A (ja) * 2014-06-04 2015-12-21 住友電気工業株式会社 波長選択スイッチ
JP2016001285A (ja) * 2014-06-12 2016-01-07 日本電信電話株式会社 光信号処理装置
JP2016158230A (ja) * 2015-02-19 2016-09-01 日本電信電話株式会社 光クロスコネクト装置
JP2017009871A (ja) * 2015-06-24 2017-01-12 日本電信電話株式会社 光スイッチ
JP2017058417A (ja) * 2015-09-14 2017-03-23 日本電信電話株式会社 光信号モニタ装置
JPWO2018123921A1 (ja) * 2016-12-28 2019-04-11 日本電信電話株式会社 光信号処理装置
JP2019113770A (ja) * 2017-12-25 2019-07-11 日本電信電話株式会社 光信号処理装置及び光クロスコネクト装置
JP6872212B1 (ja) * 2021-01-15 2021-05-19 サンテック株式会社 光デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3137935B1 (en) * 2014-04-30 2023-07-05 Hewlett-Packard Development Company, L.P. Imaging apparatus using diffraction-based illumination
US10135559B1 (en) * 2017-05-19 2018-11-20 Lumentum Operations Llc M×N wavelength selective switch for high degree count
US10146020B1 (en) * 2017-05-30 2018-12-04 Google Llc MEMS steering mirrors for applications in photonic integrated circuits
CN111856658B (zh) * 2019-04-30 2022-03-25 华为技术有限公司 一种光通信的装置和波长选择方法
CN113156585A (zh) 2020-01-23 2021-07-23 华为技术有限公司 一种波长选择开关wss
CN114070450B (zh) * 2020-07-30 2023-02-07 华为技术有限公司 光传输的方法、装置、计算设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239991A (ja) * 2003-02-04 2004-08-26 Fujitsu Ltd 光機能デバイス
JP2005070546A (ja) * 2003-08-26 2005-03-17 Fujitsu Ltd 偏光制御型波長選択スイッチ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895129B2 (en) 2002-04-29 2005-05-17 Oplink Communications, Inc. Optical circulator
EP1506690A2 (en) * 2002-05-20 2005-02-16 Metconnex Canada Inc. Wavelength cross-connect
US7092594B2 (en) 2003-03-31 2006-08-15 Fujitsu Limited Wavelength selector switch
EP1656815B1 (en) 2003-07-28 2007-12-05 Olympus Corporation Optical switch and method of controlling an optical switch
JP4476140B2 (ja) 2005-03-07 2010-06-09 富士通株式会社 波長選択スイッチ
US7362930B2 (en) * 2005-04-11 2008-04-22 Capella Photonics Reduction of MEMS mirror edge diffraction in a wavelength selective switch using servo-based rotation about multiple non-orthogonal axes
US7539371B2 (en) * 2005-04-11 2009-05-26 Capella Photonics, Inc. Optical apparatus with reduced effect of mirror edge diffraction
US7352927B2 (en) * 2005-04-11 2008-04-01 Capella Photonics Optical add-drop multiplexer architecture with reduced effect of mirror edge diffraction
US7346234B2 (en) * 2005-04-11 2008-03-18 Capella Photonics Reduction of MEMS mirror edge diffraction in a wavelength selective switch using servo-based multi-axes rotation
US7283709B2 (en) * 2005-10-06 2007-10-16 Lucent Technologies Inc. Integrated microelectromechanical wavelength selective switch and method of making same
US20070160321A1 (en) * 2005-12-01 2007-07-12 The Regents Of The University Of California Monolithic mems-based wavelength-selective switches and cross connects
US7616372B2 (en) 2006-04-06 2009-11-10 Jds Uniphase Corporation Piano MEMS with hidden hinge
JP4651635B2 (ja) * 2007-03-29 2011-03-16 富士通株式会社 波長選択スイッチ
US8351789B2 (en) * 2007-07-23 2013-01-08 Nistica, Inc. High resolution digital optical encoder/decoder
JP4842915B2 (ja) 2007-11-16 2011-12-21 日本電信電話株式会社 光チャネルモニタおよび波長選択型光スイッチ
US7912331B1 (en) * 2008-07-15 2011-03-22 Capella Photonics, Inc. Integrated fiber collimator and passive components
JP2011185971A (ja) * 2010-03-04 2011-09-22 Olympus Corp 波長選択スイッチ
JP5563855B2 (ja) 2010-03-19 2014-07-30 ジェイディーエス ユニフェイズ コーポレーション 波長選択スイッチ
JP5537260B2 (ja) 2010-05-25 2014-07-02 ジェイディーエス ユニフェイズ コーポレーション 波長選択スイッチ
US8315490B1 (en) * 2010-06-22 2012-11-20 Capella Photonics, Inc. Port array topology for high port count wavelength selective switch
US8611742B2 (en) 2011-03-15 2013-12-17 Capella Photonics, Inc. Wavelength switch system using angle multiplexing optics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239991A (ja) * 2003-02-04 2004-08-26 Fujitsu Ltd 光機能デバイス
JP2005070546A (ja) * 2003-08-26 2005-03-17 Fujitsu Ltd 偏光制御型波長選択スイッチ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHI, CHAO-HSI ET AL.: "Monolithic Wavelength-Selective Switches and Cross Connects with Integrated MEMS Mirror Array", PROC. OF SPIE, vol. 6376, 2006, pages 63760G.1 - 63760G.10 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212806A (ja) * 2014-04-16 2015-11-26 住友電気工業株式会社 波長選択スイッチ
JP2015230371A (ja) * 2014-06-04 2015-12-21 住友電気工業株式会社 波長選択スイッチ
US9467757B2 (en) 2014-06-04 2016-10-11 Sumitomo Electric Industries, Ltd. Wavelength selective switch
JP2016001285A (ja) * 2014-06-12 2016-01-07 日本電信電話株式会社 光信号処理装置
JP2016158230A (ja) * 2015-02-19 2016-09-01 日本電信電話株式会社 光クロスコネクト装置
JP2017009871A (ja) * 2015-06-24 2017-01-12 日本電信電話株式会社 光スイッチ
JP2017058417A (ja) * 2015-09-14 2017-03-23 日本電信電話株式会社 光信号モニタ装置
JPWO2018123921A1 (ja) * 2016-12-28 2019-04-11 日本電信電話株式会社 光信号処理装置
JP2019113770A (ja) * 2017-12-25 2019-07-11 日本電信電話株式会社 光信号処理装置及び光クロスコネクト装置
JP7053985B2 (ja) 2017-12-25 2022-04-13 日本電信電話株式会社 光信号処理装置及び光クロスコネクト装置
JP6872212B1 (ja) * 2021-01-15 2021-05-19 サンテック株式会社 光デバイス

Also Published As

Publication number Publication date
CN104603671B (zh) 2017-05-24
CN104603671A (zh) 2015-05-06
US9645321B2 (en) 2017-05-09
JP6068478B2 (ja) 2017-01-25
US20150268421A1 (en) 2015-09-24
JPWO2014034144A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6068478B2 (ja) 光信号処理装置
USRE47906E1 (en) Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
JP5692865B2 (ja) 波長クロスコネクト装置
JP6609789B2 (ja) 波長選択スイッチアレイ
US6549699B2 (en) Reconfigurable all-optical multiplexers with simultaneous add-drop capability
US9967050B2 (en) Optical signal processing device
JP4960294B2 (ja) 波長選択スイッチ
JP5373291B2 (ja) 波長選択スイッチ
WO2012172968A1 (ja) 光学装置
US7529441B2 (en) Wavelength routing optical switch
JP4949355B2 (ja) 波長選択スイッチ
JP4842226B2 (ja) 波長選択スイッチ
JP5965099B2 (ja) 光学装置およびその調整方法
Seno et al. Spatial beam transformer for wavelength selective switch consisting of silica-based planar lightwave circuit
JP5651904B2 (ja) N×n波長選択スイッチ
JP2011179979A (ja) ダブルパスモノクロメータ、波長選択光スイッチ、および光チャンネルモニタ
JP5759430B2 (ja) 波長選択スイッチ
JP4505313B2 (ja) 光装置および光制御方法
US7277607B2 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
JP4544828B2 (ja) 波長選択スイッチ
JP2012145373A (ja) 分光装置及びそれを用いた波長選択スイッチ
JP5839586B2 (ja) 光信号処理装置
JP2017009871A (ja) 光スイッチ
WO2019203307A1 (ja) 波長選択光スイッチ
WO2005006044A1 (en) Optical multiplexer/demultiplexer and channel equaliser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532811

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14417709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833231

Country of ref document: EP

Kind code of ref document: A1