WO2014033792A1 - 放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法 - Google Patents

放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法 Download PDF

Info

Publication number
WO2014033792A1
WO2014033792A1 PCT/JP2012/005545 JP2012005545W WO2014033792A1 WO 2014033792 A1 WO2014033792 A1 WO 2014033792A1 JP 2012005545 W JP2012005545 W JP 2012005545W WO 2014033792 A1 WO2014033792 A1 WO 2014033792A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
projection data
reconstructed image
replacement
data
Prior art date
Application number
PCT/JP2012/005545
Other languages
English (en)
French (fr)
Inventor
智則 ▲崎▼本
和義 西野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US14/424,909 priority Critical patent/US9486178B2/en
Priority to PCT/JP2012/005545 priority patent/WO2014033792A1/ja
Priority to JP2014532576A priority patent/JP5994858B2/ja
Priority to EP12883942.0A priority patent/EP2891455B1/en
Priority to CN201280075569.3A priority patent/CN104602606B/zh
Publication of WO2014033792A1 publication Critical patent/WO2014033792A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction

Definitions

  • the present invention relates to a radiation tomographic image generation apparatus, a radiation tomography apparatus, and a radiation tomographic image generation method that generate a radiation tomographic image by reconstructing projection data acquired from a plurality of different directions with respect to a subject.
  • Such a conventional apparatus includes an X-ray tube that irradiates the subject with X-rays, an X-ray detector that is disposed opposite to the X-ray tube and detects X-rays transmitted through the subject, And an X-ray tomographic image generation device that generates an X-ray (radiation) tomographic image (hereinafter referred to as “tomographic image” as appropriate) from projection data (projected image) acquired by a line detector.
  • the conventional apparatus acquires projection data by performing X-ray imaging on a subject from a plurality of different directions while moving an X-ray tube and an X-ray detector integrally or in conjunction with each other.
  • the acquired plurality of projection data is reconstructed by an X-ray tomographic image generation device to acquire a tomographic image.
  • tomosynthesis is a method of collecting a plurality of projection data by one tomography, and reconstructing the plurality of projection data to generate a tomographic image having an arbitrary cutting height.
  • step S101 actual projection data is acquired (step S101).
  • a superabsorber region is specified from the actually measured projection data (step S102).
  • Data replacement is performed on the high-absorber region of the actually measured projection data using pixels in the vicinity of the high-absorber region (step S103).
  • Image reconstruction is performed from the projection data subjected to data replacement, and a first reconstructed image is generated (step S104).
  • Forward projection data is created by forward projecting the first reconstructed image (step S105).
  • the forward projection data is adjusted, and the adjusted forward projection data is reconstructed to generate a second reconstructed image (step S106).
  • a final tomographic image (reconstructed image) is acquired by performing forward projection, adjustment, and image reconstruction once or repeatedly plural times.
  • the tomographic image is obtained by erasing the high-absorber regions reflected in each of the actually measured projection data by replacement and reconstructing them. Thereby, the tissue around the high absorber is restored with high accuracy, and a tomographic image with reduced artifacts around the high absorber is acquired.
  • the conventional apparatus has a process of specifying the high-absorber region reflected in the actual projection data.
  • the conventional apparatus has a problem in that the high-absorber area that causes artifacts in image reconstruction is not sufficiently specified. That is, when specifying the superabsorbent region based only on the measured projection data, it is difficult to specify the conventional absorber. For example, a thin object such as a wire or a small object such as a screw becomes an image in which the pixel value of the measured projection data is not so different from that of an area other than the wire, although it is a high absorber.
  • the present invention has been made in view of such circumstances, and a first object thereof is a radiation tomographic image generation apparatus capable of restoring a tissue near a high-absorber region of a tomographic image with higher accuracy. It is to provide a radiation tomography apparatus and a radiation tomographic image generation method.
  • a second object of the present invention is to provide a radiation tomographic image generation apparatus and radiation tomography capable of obtaining a tomographic image showing a high absorber in a high absorber region while suppressing artifacts caused by the high absorber.
  • An apparatus and a radiation tomographic image generation method are provided.
  • the present invention has the following configuration. That is, the radiation tomographic image generation unit according to the present invention reconstructs an actual image reconstruction image by reconstructing a plurality of actual measurement projection data acquired from different directions with respect to a subject including a radiation superabsorber.
  • a component a superabsorber region identifying unit that identifies a superabsorber region of the measured projection data from the measured projection data and the measured reconstructed image, and acquires superabsorber region identifying data; and the superabsorber region identifying A data replacement unit that uses the data to replace the high-absorber region of the measured projection data with data obtained based on neighboring pixels of the high-absorber region and obtain replacement projection data; and the replacement projection data And a replacement image reconstruction unit that reconstructs the image and generates a replacement reconstructed image.
  • the actual measurement image reconstruction unit reconstructs the actual measurement projection data and generates an actual measurement reconstructed image.
  • the high absorber specifying unit specifies the high absorber region of the actual projection data from the actual projection data and the actual measurement reconstructed image, and acquires the high absorber region specifying data.
  • the measured projection data for example, in the high absorber region such as a wire or a screw, the image has a pixel value that is not so different from other regions, and it is difficult to correctly specify the high absorber region.
  • the pixel value becomes remarkably large at the boundary between the superabsorbent and the living tissue.
  • the boundary between a superabsorbent such as a wire or a screw and a living tissue can be specified with higher accuracy.
  • the actually measured projection data in addition to the actually measured reconstructed image, for example, it can be determined whether or not the inside of the boundary between the superabsorbent and the living tissue is the superabsorbent.
  • the high absorber region can be specified with higher accuracy.
  • the data replacement unit uses the high-absorber region specifying data to replace the high-absorber region of the actually measured projection data with the data obtained based on the neighboring pixels of the high-absorber region to obtain the replacement projection data. get.
  • the replacement image reconstruction unit reconstructs the replacement projection data and generates a replacement reconstruction image without the superabsorbent region. Since the high-absorber region is specified with higher accuracy, the high-absorber region can be replaced with data with higher accuracy. Therefore, it is possible to restore the tissue in the vicinity of the high-absorber region of the tomographic image (replacement reconstruction image) with higher accuracy while suppressing artifacts due to the high-absorber.
  • a difference processing unit that obtains difference projection data by subtracting the measured projection data and the replacement projection data, and reconstructs the difference projection data by reconstructing the image.
  • a difference image reconstruction unit that generates a composition image, and a composition that generates a composite reconstruction image by selecting at least one of the measured reconstruction image, the replacement reconstruction image, and the difference reconstruction image for each region And an image generation unit.
  • the difference processing unit obtains difference projection data by subtracting the actually measured projection data and the replacement projection data.
  • the difference image reconstruction unit reconstructs the difference projection data to generate a difference reconstruction image of only the superabsorbent region.
  • the composite image generation unit selects at least one image among the actually measured reconstructed image, the replacement reconstructed image, and the difference reconstructed image for each region, and generates a composite reconstructed image. That is, not only the replacement reconstructed image but also the composite reconstructed image is generated from the actually measured reconstructed image and the difference reconstructed image.
  • a tomographic image sinthesized reconstructed image in which the high absorber is shown in the high absorber region can be obtained while suppressing artifacts due to the high absorber. .
  • the composite image generation unit is a pixel value of the same coordinates in the actually measured reconstructed image and the replacement reconstructed image, and the pixel value of the replacement reconstructed image Is larger than the pixel value of the measured reconstructed image, it is preferable to select the pixel value of the replacement reconstructed image and generate a composite reconstructed image. That is, in the actually measured reconstructed image, the pixels in the vicinity of the high absorber region tend to have a lower pixel value than the pixel value originally obtained by the high absorber region. Therefore, by selecting the pixel value of the replacement reconstructed image for the pixel in the vicinity of the corresponding high-absorber region, the pixel in the vicinity of the high-absorber region can be brought closer to the originally obtained pixel value.
  • the composite image generation unit is a pixel value of the same coordinates in the actual measurement reconstructed image, the replacement reconstructed image, and the difference reconstructed image, and the replacement
  • the sum pixel value is selected to generate a composite reconstructed image Is preferred. That is, the pixel value of the high-absorber region of the actually measured reconstructed image tends to be a pixel value higher than the pixel value originally obtained by being overestimated at the time of image reconstruction.
  • the pixel of the superabsorber region is brought close to the pixel value originally obtained. Can do.
  • the composite image generation unit is a pixel value of the same coordinates in the actual measurement reconstructed image, the replacement reconstructed image, and the difference reconstructed image, and the replacement
  • the pixel value of the actually measured reconstructed image is selected to generate a composite reconstructed image It is preferable to produce. That is, the pixel value of the actually reconstructed image generated by reconstructing the image with the actual projection data as it is is selected for the region other than the region where the original pixel value cannot be obtained due to the high absorber. Thereby, for example, even if the region is erroneously determined as the high-absorber region in the difference reconstructed image, the erroneously determined region can be prevented from being selected.
  • the high absorber region specifying unit specifies the high absorber region of the actual projection data from the actual projection data and the actual reconstruction image based on a graph cut method.
  • the high absorber region can be specified with high accuracy.
  • the superabsorbent region specifying unit sets a seed region in the graph cut method based on a threshold processing result of the measured projection data and the measured reconstructed image. .
  • the seed region in the graph cut method can be automatically set based on the threshold processing result. Therefore, it is possible to easily identify the high absorbent region.
  • At least one of the measured image reconstruction unit, the replacement image reconstruction unit, and the difference image reconstruction unit performs image reconstruction based on a successive approximation method. It is preferable. Thereby, image reconstruction can be performed with high accuracy.
  • the radiation tomography apparatus includes an actual projection data acquisition unit that acquires a plurality of actual projection data from different directions with respect to a subject including a radiation high-absorber, and reconstructs the actual projection data.
  • An actual image reconstruction unit that generates an actual measurement reconstructed image, and a high absorber that identifies the high absorber region of the actual projection data from the actual projection data and the actual reconstruction image and acquires high absorber region specifying data
  • the high-absorber region of the actually measured projection data is replaced with data obtained based on neighboring pixels of the high-absorber region, and the replacement projection data is obtained.
  • a data replacement unit to be obtained and a replacement image reconstruction unit that reconstructs the replacement projection data and generates a replacement reconstructed image are provided.
  • the measured image reconstruction unit reconstructs the measured projection data and generates a measured reconstructed image.
  • the high absorber specifying unit specifies the high absorber region of the actual projection data from the actual projection data and the actual measurement reconstructed image, and acquires the high absorber region specifying data.
  • the actually measured projection data for example, the pixel values of the superabsorber region such as a wire and a screw are not so different from the pixel values of other regions, and it is difficult to correctly identify the superabsorber region.
  • the pixel value becomes remarkably large at the boundary between the superabsorbent and the living tissue.
  • the boundary between a superabsorbent such as a wire or a screw and a living tissue can be specified with higher accuracy.
  • the actually measured projection data in addition to the actually measured reconstructed image, for example, it can be determined whether or not the inside of the boundary between the superabsorbent and the living tissue is the superabsorbent.
  • the high absorber region can be specified with higher accuracy.
  • the data replacement unit obtains replacement projection data by performing data replacement on the high-absorber region of the actually measured projection data using the data obtained based on the neighboring pixels of the high-absorber region using the high-absorber region specifying data. To do.
  • the replacement image reconstruction unit reconstructs the replacement projection data and generates a replacement reconstruction image without the superabsorbent region. Since the high-absorber region is specified with higher accuracy, the high-absorber region can be replaced with data with higher accuracy. Therefore, it is possible to restore the tissue in the vicinity of the high-absorber region of the tomographic image (replacement reconstruction image) with higher accuracy while suppressing artifacts due to the high-absorber.
  • the radiation tomographic image generation method includes a step of reconstructing a plurality of actually measured projection data acquired from different directions for a subject including a radiation superabsorbent and generating a measured reconstructed image; Specifying the high-absorber region specifying data by specifying the high-absorber region of the actual projection data from the actual measurement projection data and the actual measurement reconstructed image; and using the high-absorber region specifying data, the actual projection data Replacing the high-absorber region with data obtained on the basis of neighboring pixels of the high-absorber region to obtain replacement projection data, and reconstructing the replacement projection data to reconstruct a replacement reconstructed image. And a generating step.
  • the actual measurement reconstructed image is generated by reconstructing the actual projection data.
  • the high-absorber region specifying data is obtained by specifying the high-absorber region of the actual projection data from the actual projection data and the actual measurement reconstructed image.
  • the pixel value is not much different from other regions, and it is difficult to correctly specify the high absorber region.
  • the pixel value becomes remarkably large at the boundary between the superabsorbent and the living tissue.
  • the boundary between a superabsorbent such as a wire or a screw and a living tissue can be specified with higher accuracy.
  • the actually measured projection data in addition to the actually measured reconstructed image, for example, it can be determined whether or not the inside of the boundary between the superabsorbent and the living tissue is the superabsorbent.
  • the high absorber region can be specified with higher accuracy.
  • the replacement projection data is obtained by performing data replacement on the high-absorber region of the actually measured projection data using the data obtained based on the neighboring pixels of the high-absorber region using the high-absorber region specifying data. The replacement projection data is reconstructed to generate a replacement reconstructed image without the superabsorber region.
  • the high-absorber region is specified with higher accuracy, the high-absorber region can be replaced with data with higher accuracy. Therefore, it is possible to restore the tissue in the vicinity of the high-absorber region of the tomographic image (replacement reconstruction image) with higher accuracy while suppressing artifacts due to the high-absorber.
  • the actual measurement reconstructed image is generated by reconstructing the actual measurement projection data.
  • the high-absorber region specifying data is obtained by specifying the high-absorber region of the actual projection data from the actual projection data and the actual measurement reconstructed image.
  • the pixel values of the superabsorber region such as a wire and a screw are not so different from the pixel values of other regions, and it is difficult to correctly identify the superabsorber region.
  • the pixel value becomes remarkably large at the boundary between the superabsorbent and the living tissue.
  • the boundary between a superabsorbent such as a wire or a screw and a living tissue can be specified with higher accuracy.
  • the actually measured projection data in addition to the actually measured reconstructed image, for example, it can be determined whether or not the inside of the boundary between the superabsorbent and the living tissue is the superabsorbent.
  • the high absorber region can be specified with higher accuracy.
  • the replacement projection data is obtained by performing data replacement on the high-absorber region of the actually measured projection data using the data obtained based on the neighboring pixels of the high-absorber region using the high-absorber region specifying data. The replacement projection data is reconstructed to generate a replacement reconstructed image without the superabsorber region.
  • the high-absorber region is specified with higher accuracy, the high-absorber region can be replaced with data with higher accuracy. Therefore, it is possible to restore the tissue in the vicinity of the high-absorber region of the tomographic image (replacement reconstruction image) with higher accuracy while suppressing artifacts due to the high-absorber.
  • the difference projection data is obtained by subtracting the actually measured projection data and the replacement projection data.
  • the difference projection data is reconstructed to generate a difference reconstructed image of only the superabsorbent region.
  • at least one image among the actually measured reconstructed image, the replacement reconstructed image, and the difference reconstructed image is selected for each region to generate a composite reconstructed image. That is, not only the replacement reconstructed image but also the composite reconstructed image is generated from the actually measured reconstructed image and the difference reconstructed image.
  • FIG. 1 It is a figure which shows schematic structure of the X-ray tomography apparatus which concerns on an Example. It is a figure which shows the structure of a X-ray tomographic image generation part.
  • A) is a figure which shows a measurement reconstruction image
  • (b) is a figure which shows a replacement reconstruction image
  • (c) is a figure which shows a difference reconstruction image. It is a figure which shows the structure of a metal area
  • (A) It is a figure which shows the measurement projection data after threshold processing, (b) is a figure which shows forward projection data, (c) is a figure which shows the seed area
  • (A) is a profile used for description of threshold processing for measured projection data. It is a histogram with which it uses for description of the threshold value process with respect to measurement projection data.
  • (A) is a profile used for description of threshold processing for an actually measured reconstructed image
  • (b) is a diagram showing an actually measured reconstructed image after threshold processing. It is a figure where it uses for description of the graph cut method.
  • (A) is a figure which shows the measurement projection data used for description of a data substitution part
  • (b) is a profile of the crossing line L1 of (a). It is a flowchart with which it uses for description of a synthesized image production
  • FIG. 1 is a diagram illustrating a schematic configuration of an X-ray tomography apparatus according to an embodiment.
  • the superabsorber will be described using metal as an example.
  • the X-ray tomography apparatus 1 is disposed so as to face the top plate 2 on which the subject M is placed, the X-ray tube 3 that irradiates the subject M with X-rays, and the X-ray tube 3.
  • a flat panel X-ray detector (hereinafter referred to as “FPD” as appropriate) 4 for detecting X-rays transmitted through M is provided.
  • the FPD 4 corresponds to the actual projection data acquisition unit of the present invention.
  • the X-ray tube 3 is controlled by the X-ray tube control unit 5.
  • the X-ray tube controller 5 has a high voltage generator 6 that generates the tube voltage and tube current of the X-ray tube 3.
  • the X-ray tube controller 5 irradiates X-rays from the X-ray tube 3 in accordance with X-ray irradiation conditions such as tube voltage, tube current, and irradiation time.
  • a large number of X-ray detection elements that detect X-rays by converting them into electric signals are arranged in a horizontal and vertical two-dimensional matrix on an X-ray detection surface on which a transmission X-ray image to be detected is projected.
  • Examples of the array matrix of the X-ray detection elements include horizontal: several thousand ⁇ vertical: several thousand.
  • the X-ray detection element is configured as a direct conversion type in which X-rays are directly converted into electric signals, or an indirect conversion type in which X-rays are once converted into light and then converted into electric signals.
  • the X-ray tube 3 and the FPD 4 move in parallel along the body axis ax of the subject M in FIG.
  • the X-ray tube 3 and the FPD 4 are configured to be driven by a rack, a pinion, a motor, or the like (not shown), for example.
  • the FPD 4 acquires a plurality of actually measured projection data (X-ray images) p1 from different directions (angles) with respect to the subject M containing metal while moving in the reverse direction in synchronization with the X-ray tube 3.
  • the A / D converter 7, the image processing unit 8, and the main control unit 9 are provided in the subsequent stage of the FPD 4.
  • the A / D converter 7 converts the analog measured projection data p1 output from the FPD 4 into digital signals.
  • the image processing unit 8 performs various necessary processes on the actually measured projection data p1 that has been digitally converted.
  • the main control unit 9 comprehensively controls each component of the X-ray tomography apparatus 1 and includes a central processing unit (CPU) and the like.
  • the main control unit 9 performs control for moving the X-ray tube 3 or the FPD 4, for example.
  • the X-ray tomography apparatus 1 includes a display unit 11, an input unit 12, and a storage unit 13.
  • the display unit 11 includes a monitor or the like.
  • the input unit 12 includes a keyboard, a mouse, and the like.
  • the storage unit 13 includes a removable storage medium such as a ROM (Read-only Memory), a RAM (Random-Access Memory), or a hard disk.
  • the storage unit 13 stores, for example, a plurality of actually measured projection data p1.
  • the X-ray tomography apparatus 1 includes an X-ray tomographic image generation unit 20 that generates a tomographic image from a plurality of actually measured projection data p1 acquired by the FPD 4.
  • FIG. 2 is a diagram illustrating a configuration of the X-ray tomographic image generation unit 20.
  • the X-ray tomographic image generation unit 20 generates various tomographic images. As the tomographic image generated by the X-ray tomographic image generation unit 20, the actually measured reconstructed image R1 in FIG. 3A, the replacement reconstructed image R2 in FIG. 3B, and the differential reconstructed image in FIG. There is R3.
  • the X-ray tomographic image generation unit 20 selects at least one image among these tomographic images for each pixel and generates a composite reconstructed image R4.
  • the actual measurement reconstructed image R1 is a tomographic image obtained by reconstructing the actual measurement projection data p1 as it is.
  • the replacement reconstruction image R2 is a tomographic image without the metal region Y1.
  • the difference reconstruction image R3 is a tomographic image of only the metal region Y1.
  • the symbol m1 indicates a bone tissue
  • the symbol m2 indicates a soft tissue such as muscle or skin
  • the symbol m3 indicates a region other than the subject M
  • the symbol m4 indicates a region other than the metal region Y1.
  • the X-ray tomographic image generation unit 20 reconstructs the actual measurement projection data p1 to generate the actual measurement reconstruction image R1, and the actual measurement projection data p1 from the actual measurement projection data p1 and the actual measurement reconstruction image R1.
  • a metal region specifying unit 23 that specifies the metal region Y1 and acquires the metal region specifying data p1c. Further, the X-ray tomographic image generation unit 20 replaces the metal region Y1 of the actually measured projection data p1 with the data Z obtained based on the neighboring pixel K of the metal region Y1 based on the metal region specifying data p1c.
  • a data replacement unit 25 that acquires the projection data p2 and a replacement image reconstruction unit 27 that reconstructs the replacement projection data p2 and generates a replacement reconstructed image R2 are provided.
  • the X-ray tomographic image generation unit 20 obtains differential projection data p3 indicating only the pixel value of the metal region Y1 by subtracting the actual projection data p1 and the replacement projection data p2, and a differential projection.
  • a differential image reconstruction unit 31 that reconstructs data p3 and generates a differentially reconstructed image R3.
  • the X-ray tomographic image generation unit 20 selects at least one of the measured reconstructed image R1, the replacement reconstructed image R2, and the difference reconstructed image R3 for each pixel to generate a composite reconstructed image R4.
  • An image generation unit 33 is provided. Next, each component of the X-ray tomographic image generation unit 20 will be specifically described.
  • the metal region specifying data corresponds to the superabsorber region specifying data of the present invention
  • the metal region specifying unit 23 corresponds to the high absorber region specifying unit of the present invention
  • the X-ray tomographic image generation unit 20 corresponds to the radiation tomographic image generation apparatus of the present invention.
  • the actual measurement image reconstruction unit 21 reconstructs a plurality of actual measurement projection data p1 acquired from different directions with respect to the subject M including metal, and generates an actual reconstruction image R1 which is a kind of tomographic image. That is, the actual measurement image reconstruction unit 21 reconstructs the actual measurement projection data p1 as it is to generate the actual measurement reconstruction image R1.
  • the image reconstruction for example, one of a successive approximation method and an FBP (filtered back-projection) method is used.
  • Examples of the successive approximation method include an ML-EM (maximum likelihood-expectation maximization) method, an OS-EM (ordered subsets-expectation maximization) method, a RAMLA (row-action maximum likelihood algorithm) method, and a DRAMA (dynamic RAMLA) method. Used.
  • ML-EM maximum likelihood-expectation maximization
  • OS-EM ordered subsets-expectation maximization
  • RAMLA row-action maximum likelihood algorithm
  • DRAMA dynamic RAMLA
  • the metal region specifying unit 23 obtains metal region specifying data (projection data) p1c specifying the metal region Y1 of the actually measured projection data p1 from the actually measured projection data p1 and the actually measured reconstructed image R1. get.
  • FIG. 4 is a diagram illustrating a configuration of the metal region specifying unit 23.
  • region specific part 23 is demonstrated.
  • the metal region specifying unit 23 includes an actual projection data threshold processing unit 23a that performs threshold processing on the actual projection data p1 and obtains projection data p1a (see FIG. 5A) after the threshold processing. Further, the metal region specifying unit 23 includes a measured reconstructed image threshold processing unit 23b that obtains a binarized measured reconstructed image R1a by performing threshold processing on the measured reconstructed image R1, and a binarized measured reconstructed image.
  • a forward projection unit 23c that forward-projects the image R1a to obtain forward projection data p1b (see FIG. 5B);
  • the metal region specifying unit 23 uses the threshold-processed post-projection data p1a and the forward projection data p1b to generate a graph G (see FIG. 5C) for specifying the metal region Y1. And a cutting unit 23e that acquires metal region specifying data p1c (see FIG. 5D), which is projection data obtained by cutting the graph G and specifying the metal region Y1. Details of the graph cut method will be described later. Further, in FIGS. 5B to 5D, the symbol W is a wire portion. Further, the post-threshold processing projection data p1a and the like shown in FIGS. 5A to 5D are indicated by a circular metal region Y1 and a wire W for convenience of explanation (FIGS.
  • 13 (c) is the same). Therefore, for example, the replacement reconstructed image R2 of FIG. 3B is not acquired directly from the metal region specifying data p1c of FIG.
  • the area Y4 is an area without data, and the area Y5 is a non-metal area.
  • the measured projection data threshold processing unit 23a performs threshold processing on the measured projection data p1 to obtain measured projection data p1a after threshold processing.
  • FIG. 6 is a diagram illustrating an example of a profile of the actually measured projection data p1. As shown in FIG. 6, first, the metal region Y1 which is a metal is surely distinguished by threshold processing (threshold th1). Further, the non-metal region Y2 which is non-metal is surely distinguished by threshold processing (threshold th2). As a result, the actually measured projection data p1 is divided into three regions, the metal region Y1 and the non-metal region Y2, which are surely undistinguishable. In addition, FIG.
  • FIG. 7 is a diagram illustrating an example of a histogram H indicating the frequency with respect to the pixel values of all the pixels of the actually measured projection data p1.
  • the thresholds th1 and th2 are set in advance from the histogram H.
  • the measured reconstruction image threshold processing unit 23b performs threshold processing on the measured reconstruction image R1 that is a tomographic image, and divides it into a metal region Y1 and a region other than metal. That is, the actual measurement reconstructed image threshold processing unit 23b performs threshold processing (binarization processing) to set the metal region Y1 to “1” and the non-metal region to “0”, thereby binarized actual measurement reconstruction.
  • a configuration image R1a is acquired.
  • the measured reconstructed image threshold processing unit 23b generates a measured reconstructed image R1a binarized for each measured reconstructed image R1.
  • FIG. 8A shows an example of the profile of the actually measured reconstructed image R1.
  • a reconstructed image for example, an actually measured reconstructed image R1 generated by many reconstruction algorithms has a portion with a high luminance difference (high pixel value difference) edge (hereinafter referred to as “high luminance”).
  • the pixel value of HL (referred to as “edge portion”) is remarkably increased.
  • Examples of the high-luminance edge portion HL include a boundary between a metal and a living tissue (bone / soft tissue).
  • the measured reconstructed image threshold processing unit 23b extracts the high-luminance edge portion HL by threshold processing (threshold th3).
  • FIG. 8B is a diagram illustrating an example of the binarized actual measurement reconstructed image R1a.
  • the data part after the threshold processing in FIG. When the metal region Y1 in the measured reconstruction image R1 is circular, the high-luminance edge portion HL is extracted in a donut shape in the binarized measured reconstruction image R1a.
  • the binarized actual measurement reconstructed image R1a When the binarized actual measurement reconstructed image R1a is forward projected, a high-luminance edge portion HL appears in a donut shape on the forward projection data p1b.
  • the donut-shaped high-luminance edge portion HL appears when there is no measured projection data from some directions, such as when the method of acquiring measured projection data is tomosynthesis as in this embodiment.
  • the forward projection unit 23c forward-projects the binarized actual measurement reconstructed image R1a.
  • the forward projection data p1b is obtained in which the region where the pixel value obtained by forward projection is not zero “0” is the metal region Y1, and the region where the pixel value is zero is the region Y4 without data (see FIG. 5B). ).
  • the graph creation unit 23d creates a graph G used in the graph cut method.
  • This graph cut method is a method of generating a graph G based on the actually measured projection data p1, the threshold-processed projection data p1a, and the forward projection data p1b, and dividing the region of the graph G based on this. Therefore, the graph cut method first creates a graph G shown in FIG. 9 from these three images.
  • the graph G includes a node N corresponding to each pixel of the actually measured projection data p1, two terminals S and T, and edges (sides) connecting between the nodes and the node terminals.
  • the node corresponds to each pixel of the actually measured projection data p1
  • the two terminals S and T are represented by metal and nonmetal.
  • a graph G is created by setting the cost to be given to each edge based on the actually measured projection data p1.
  • the edge that connects between the metal side terminal and the node is not cut reliably.
  • the edge connecting the non-metal terminal and the node has a cost of zero.
  • the graph G created at this time includes a node N corresponding to each pixel of the actually measured projection data p1, a metal terminal S, and a non-metal terminal T.
  • the graph creating unit 23d sets the edge cost in the graph cut method based on the threshold processing result of the actually measured projection data p1 and the actually measured reconstructed image R1, the pixel value of the node, and the pixel value difference between adjacent nodes.
  • a seed region is set from the projection data p1a after threshold processing and the forward projection data p1b, and the above-described cost is set for an edge connecting a node and a terminal corresponding to the seed region.
  • a node to be a seed region is determined by the following method.
  • the graph creating unit 23d sets, in each node N in the graph G, a region determined as the metal region Y1 or the nonmetal region Y2 in the post-threshold-value projection data p1a as a seed of metal and nonmetal (FIG. 5 ( c)).
  • the graph creating unit 23d determines, in each node N in the graph G, a region determined as the metal region Y1 in the forward projection data p1b as a seed of the high absorber (see FIG. 5C).
  • the edge E1 is given a cost C1 based on each pixel value of the actually measured projection data p1.
  • An edge E2 connecting the nodes is given a cost C2 based on a pixel value difference between the pixels of the actually measured projection data p1. For example, the cost C2 given to the edge E2 becomes smaller as the pixel value difference between the pixels increases.
  • the costs C1 and C2 are indices for dividing the area.
  • the cut unit 23e is configured so that the sum of the cut costs C2 is minimized.
  • the unknown area Y3 of the graph G is divided. Thereby, the metal region Y1 is specified.
  • the cut unit 23e outputs metal region specifying data (projection data) p1c obtained by extracting only the metal region Y1.
  • the unknown area Y3a has a small pixel value difference from the surroundings of each pixel of the unknown area Y3a in the actual measurement projection data p1, so that the cost C2 is large. Become. Therefore, the unknown area Y3a is not cut.
  • the data replacement unit 25 replaces the specified metal region Y1 of the actually measured projection data p1 with the data Z obtained based on the neighboring pixels K of the metal region Y1, and acquires replacement projection data p2.
  • the data replacement is performed so that when there are crossing lines (L1, L2,..., Lx) crossing the metal region Y1, two pixels outside the metal region Y1 are connected.
  • FIG. 10B shows the replacement data Z.
  • the replacement data Z replaces pixel values by connecting two pixel values in a straight line, but may be a curve. Smoothing processing may be performed to further adjust the pixel value after data replacement. As this processing, for example, a two-dimensional Gaussian filter or median filter is used. Data replacement may be performed by other known methods.
  • the replacement image reconstruction unit 27 reconstructs the replacement projection data p2 to generate a replacement reconstruction image R2.
  • the generated replacement reconstruction image R2 is an image without the metal region Y1.
  • image reconstruction for example, one of the successive approximation method and the FBP method is used.
  • the difference processing unit 29 obtains difference projection data p3 indicating only the metal region Y1 by subtracting the actually measured projection data p1 and the replacement projection data p2.
  • the difference image reconstruction unit 31 reconstructs the difference projection data p3 to generate a difference reconstruction image R3.
  • the generated difference reconstructed image R3 is an image of only the metal region Y1. For example, a successive approximation method is used for image reconstruction.
  • the composite image generation unit 33 receives the actual measurement reconstructed image R1, the replacement reconstructed image R2, and the difference reconstructed image R3, and stores them in a storage unit (not shown).
  • the composite image generation unit 33 selects at least one of the measured reconstructed image R1, the replacement reconstructed image R2, and the difference reconstructed image R3 for each pixel to generate a composite reconstructed image R4.
  • the actually measured reconstructed image R1 is a tomographic image generated based on the actually measured projection data p1, and includes the metal region Y1.
  • the replacement reconstructed image R2 is a tomographic image obtained by reconstructing an image group (replacement projection data p2) obtained by deleting the metal region Y1 from the actual measurement projection data p1.
  • the difference reconstructed image R3 is a tomographic image obtained by reconstructing from an image group (difference projection data p3) that is a difference between the measured projection data p1 and the replacement projection data p2.
  • the composite image generation unit 33 In the actual measurement reconstructed image R1, a dark false image is generated around the metal region Y1, and this should not be displayed on the composite reconstructed image R4. In addition, unevenness is reflected in the metal region Y1 reflected in the actually measured reconstructed image R1, and this should not appear on the composite reconstructed image R4.
  • the replacement reconstruction image R2 the metal region Y1 is deleted, and this alone is not an image suitable for diagnosis.
  • the difference reconstruction image R3 is an image in which only the metal region Y1 is reflected this time, and this alone is not an image suitable for diagnosis. Therefore, the composite image generation unit 33 generates a composite reconstructed image R4 that is a tomographic image suitable for diagnosis by combining the three tomographic images. The composite image generation unit 33 will be described with reference to the flowchart of FIG.
  • Step S01 Extraction of Pixel Values Arbitrary pixel values r1, r2, and r3 of the same coordinates in the actually measured reconstruction image R1, the replacement reconstruction image R2, and the difference reconstruction image R3 are extracted.
  • Step S02 First Pixel Value Comparison
  • the composite image generation unit 33 performs replacement reconstruction when the pixel value r2 of the replacement reconstruction image R2 is larger than the pixel value r1 of the actual measurement reconstruction image R1 (r2> r1).
  • the pixel value r2 of the image R2 is selected as the pixel value r4 of the composite reconstructed image R4. That is, when the pixel value is r2> r1, the composite image generation unit 33 selects the pixel value r2 and proceeds to step S04.
  • the pixels constituting the dark false image on the actually measured reconstructed image R1 are not used for the composite reconstructed image R4, but instead the pixels at the same position on the replacement reconstructed image R2 are used.
  • the dark false image on the actually measured reconstructed image R1 does not appear on the synthesized reconstructed image R4.
  • the replacement reconstruction image R2 is an image without the metal region Y1.
  • pixels in the vicinity of the metal region Y1 tend to have a lower pixel value than the pixel value originally obtained by the metal region Y1. Therefore, by selecting the pixel value r2 of the replacement reconstructed image R2 for the pixel in the vicinity of the corresponding metal region, the pixel in the vicinity of the metal region can be brought close to the originally obtained pixel value (correction of the pixel value for undershooting). .
  • Step S03 Second Pixel Value Comparison
  • the composite image generation unit 33 determines that the sum (r2 + r3) of the pixel value r2 of the replacement reconstructed image R2 and the pixel value r3 of the difference reconstructed image R3 is the pixel of the actually measured reconstructed image R1.
  • the sum (r2 + r3) pixel value is selected as the pixel value r4 of the composite reconstructed image R4. That is, when the pixel value is r2 + r3 ⁇ r1, the composite image generation unit 33 selects the pixel value (r2 + r3) and proceeds to step S04.
  • a bright region (overestimated region) among the metal regions on the actually measured reconstructed image R1 is not used for the composite reconstructed image R4, but instead a sum (r2 + r3) pixel is used.
  • a bright area among the metal areas on the actually measured reconstruction image R1 does not appear on the composite reconstruction image R4.
  • unevenness does not appear in the metal region on the composite reconstructed image R4.
  • the pixel value r1 of the metal region Y1 of the actually measured reconstructed image R1 is likely to be a pixel value higher than the pixel value originally obtained by overestimation at the time of image reconstruction. Therefore, by selecting the sum (r2 + r3) of the pixel value r2 of the replacement reconstructed image R2 and the pixel value r3 of the differential reconstructed image R3 as the pixel of the corresponding metal region Y1, the pixel of the high absorber region is originally obtained. (Correction of pixel values that overshoot, such as the metal region Y1).
  • step S03 the composite image generation unit 33 determines that the sum (r2 + r3) of the pixel value r2 of the replacement reconstructed image R2 and the pixel value r3 of the difference reconstructed image R3 is greater than the pixel value r3 of the difference reconstructed image R3. If it is larger (r2 + r3> r1), the pixel value r1 of the actually measured reconstructed image R1 is selected as the pixel value r4 of the synthesized reconstructed image R4. That is, the composite image generation unit 33 selects the pixel value r1 of the image R1 and proceeds to step S04 when selecting “not applicable (NO)” in both step S02 and step S03.
  • Areas other than the area selected as “YES” in either step S02 or step S03 where the original pixel value cannot be obtained due to the metal are actually generated by directly reconstructing the measured projection data p1.
  • the pixel value r1 of the reconstructed image R1 is selected. Thereby, for example, even if the region is erroneously determined as the metal region Y1 in the difference reconstruction image R3, the erroneously determined region can be prevented from being selected.
  • either the pixel value (r2 + r3) or r1 may be selected.
  • the pixel value (r2 + r3) may be selected and the process may proceed to step S04.
  • Step S04 Generation of Composite Reconstructed Image
  • the composite image generation unit 33 uses the pixel values (r2, r2 + r3, r1) of the images R1 to R3 selected in step S02 and step S03 in the composite reconstructed image R4. This is given to the pixel r4 of coordinates. Thereby, the composite reconstructed image R4 is generated.
  • Step S05 Has the composite reconstructed image been completed? If the composite reconstructed image R4 is incomplete, for example, the next pixel r4 is designated to generate the pixel r4 of the incomplete part of the composite reconstructed image R4, and the process returns to step S01. When the composite reconstructed image R4 is completed (when selection of all the pixels r4 of the composite reconstructed image R4 is completed), the processing is ended (END). As described above, the composite image generation unit 33 generates the composite reconstructed image R4.
  • Step S11 Acquisition of Measured Projection Data
  • the X-ray tube 3 and the FPD 4 move in parallel with each other along the body axis ax in FIG. At that time, the X-ray tube 3 irradiates the subject M with X-rays, and the FPD 4 detects X-rays transmitted through the subject M.
  • the FPD 4 acquires measured projection data p1 from a plurality of different directions with respect to the subject M including metal.
  • the actually measured projection data p1 is stored in the storage unit 13.
  • Step S12 Generation of Measured Reconstructed Image
  • the measured image reconstruction unit 21 reconstructs the measured projection data p1 to generate the measured reconstructed image R1 (see FIG. 3A).
  • Step S13 Specifying the Metal Region
  • the metal region specifying unit 23 specifies the metal region Y1 of the actually measured projection data p1 from the actually measured projection data p1 and the actually measured reconstructed image R1 based on the graph cut method, and the metal region specifying data p1c. To get. First, the metal region specifying unit 23 determines a seed region in the graph cut method based on the threshold processing result of the actually measured projection data p1 and the actually measured reconstructed image R1.
  • the threshold value processing is performed on the actually measured projection data p1, thereby surely obtaining the metal region Y1 and the nonmetal region Y2.
  • the region is divided into three regions, that is, a metal region Y1, a non-metal region Y2, and a region Y3 that cannot be distinguished.
  • the metal region Y1 and the nonmetal region Y2 are set as seeds for the graph G in the graph cut method.
  • threshold processing binarization processing
  • the binarized actual measurement reconstructed image R1a is forward-projected, and a region obtained by forward projection and having a pixel value other than zero “0” is a metal region, and a region having a pixel value of zero is a region without data.
  • the forward projection data p1b is acquired.
  • the metal region Y1 of the acquired forward projection data p1b is set as a seed.
  • the cost C2 between the pixels of the actually measured projection data p1 becomes smaller as the pixel value difference between the pixels increases.
  • a graph G is created by setting seeds and costs C1 and C2.
  • the unknown area Y3 that is not set as a seed in the graph G, the unknown area Y3 of each graph G is divided so that the sum of the costs C2 is minimized.
  • the metal region Y1 is specified.
  • the metal area specifying data p1c after specifying the metal area Y1 is projection data obtained by extracting only the metal area Y1 from the actually measured projection data p1.
  • Step S14 Data Replacement
  • the data replacement unit 25 replaces the metal region Y1 of the actually measured projection data p1 with the replacement data Z obtained based on the neighboring pixels K of the metal region Y1 based on the metal region specifying data p1c. Then, replacement projection data p2 is acquired (see FIGS. 10A and 10B).
  • Step S15 Generation of Replacement Reconstructed Image
  • the replacement image reconstruction unit 27 generates a replacement reconstructed image R2 by reconstructing the replacement projection data p2 (see FIG. 3B).
  • the generated replacement reconstruction image R2 is an image without the metal region Y1.
  • Step S16 Difference Processing
  • the difference processing unit 29 obtains difference projection data p3 indicating only the metal region Y1 by subtracting the actually measured projection data p1 and the replacement projection data p2.
  • Step S17 Generation of Difference Reconstructed Image
  • the difference image reconstruction unit 31 reconstructs the difference projection data p3 to generate a difference reconstructed image R3.
  • the generated difference reconstruction image R3 is an image of only the metal region Y1 (see FIG. 3C).
  • Step S18 Generation of Composite Reconstructed Image
  • the composite image generation unit 33 selects at least one of the measured reconstructed image R1, the replacement reconstructed image R2, and the difference reconstructed image R3 for each pixel, and performs composite reconstructing.
  • An image R4 is generated.
  • the composite image generation unit 33 gives the pixel values (r2, r2 + r3, r1) of the selected images R1 to R3 to the pixel r4 at the corresponding coordinates of the composite reconstructed image R4. Thereby, the composite reconstructed image R4 is generated.
  • the generated composite reconstructed image R4 is displayed on the display unit 11 or stored in the storage unit 13.
  • the actual measurement image reconstruction unit 21 reconstructs the actual measurement projection data p1 and generates the actual measurement reconstruction image R1.
  • the metal region specifying unit 23 specifies the metal region Y1 of the actually measured projection data p1 from the actually measured projection data p1 and the actually measured reconstructed image R1, and acquires the metal region specifying data p1c.
  • the pixel value becomes an image that is not so different from other regions, and it is difficult to correctly specify the metal region Y1.
  • the actually measured reconstructed image R1 for example, the pixel value becomes significantly large at the boundary between the metal and the living tissue.
  • the boundary between a metal such as a wire or a screw and a living tissue can be specified with higher accuracy.
  • the actually measured projection data p1 in addition to the actually measured reconstructed image R1, it is possible to determine whether or not the inside of the boundary between the metal and the living tissue is metal, for example.
  • the metal region can be specified with higher accuracy.
  • the data replacement unit 25 replaces the metal region Y1 of the actually measured projection data p1 with the data Z obtained based on the neighboring pixel K of the metal region Y1 based on the metal region specifying data p1c, and replaces the projection data p2. To get.
  • the replacement image reconstruction unit 27 reconstructs the replacement projection data p2 and generates a replacement reconstruction image R2 without the metal region Y1. Since the metal region Y1 is specified with higher accuracy, the metal region Y1 can be replaced with data with higher accuracy. Therefore, it is possible to restore the tissue near the metal region Y1 in the tomographic image (replacement reconstruction image R2) with higher accuracy while suppressing artifacts due to metal.
  • the difference processing unit 29 obtains difference projection data p3 by subtracting the actually measured projection data p1 and the replacement projection data p2.
  • the difference image reconstruction unit 31 reconstructs the difference projection data p3 to generate a difference reconstruction image R3 of only the metal region Y1.
  • the composite image generation unit 33 selects at least one of the measured reconstructed image R1, the replacement reconstructed image R2, and the difference reconstructed image R3 for each pixel, and generates a composite reconstructed image R4. That is, not only the replacement reconstructed image R2 but also the composite reconstructed image R4 is generated from the actually measured reconstructed image R1 and the difference reconstructed image R3.
  • an optimal image is selected for each pixel, and thus a tomographic image (synthesized reconstructed image R4) in which metal is shown in the metal region Y1 can be obtained while suppressing artifacts due to metal.
  • the metal region specifying unit 23 specifies the metal region Y1 of the actually measured projection data p1 from the actually measured projection data p1 and the actually measured reconstructed image R1 based on the graph cut method, and acquires the metal region specifying data p1c. Thereby, the metal area
  • region Y1 can be pinpointed accurately with respect to another method.
  • the metal region specifying unit 23 sets a seed region in the graph cut method based on the threshold processing result of the actually measured projection data p1 and the actually measured reconstructed image R1. Thereby, the seed region in the graph cut method can be automatically set based on the threshold processing result. Therefore, it is possible to easily identify the metal region Y1.
  • At least one of the measured image reconstruction unit 21, the replacement image reconstruction unit 27, and the difference image reconstruction unit 31 performs image reconstruction based on the successive approximation method. Thereby, image reconstruction can be performed with high accuracy.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the metal region specifying unit 23 specifies the metal region Y1 of the actually measured projection data p1 from the actually measured projection data p1 and the actually measured reconstructed image R1 based on the graph cut method, and the metal region specifying data.
  • p1c is acquired, it is not limited to this.
  • the metal region Y1 is specified by a region dividing method such as a method using a static threshold, a method using a dynamic threshold, a method using a Snake, a level set method, and a grab cut method. You may do it. In these methods, although the method of using the actually measured reconstructed image R1 is different, forward projection data is always created.
  • a method of using a static threshold will be specifically described as an example of a method of specifying the metal region Y1.
  • the non-metal region Y2 is indicated by “0”.
  • the metal region Y1 on the actual projection data p1 is extracted using the actual reconstruction image R1 (see FIG. 13B).
  • the measured reconstructed image R1 is subjected to static threshold processing, and the actually measured reconstructed image R1 after the threshold processing is forward projected to create forward projection data.
  • the metal region Y1 on the actually measured projection data p1 shown in FIG. 13B is extracted.
  • the region determined as the metal region Y1 in at least one of FIG. 13A and FIG. 13B is defined as a metal region Y1 as a final result (see FIG. 13C).
  • the seed of the graph G used in the graph cut method is automatically set.
  • the actual measurement projection data p1 and the actual measurement reconstruction image R1 are displayed on the display unit 11.
  • the metal region Y1 and the non-metal region Y2 are designated from the input unit 12, and the actual measurement reconstruction image R1
  • the metal region Y1 is designated from the input unit 12.
  • the metal region Y1 and the nonmetal region Y2 designated on the actual measurement projection data p1 are set as seeds.
  • the metal region specifying unit 23 sets a seed region in the graph cut method from the actually measured projection data p1 and the actually measured reconstructed image R1 by the input from the input unit 12. As long as the seed is set from the actually measured projection data p1 and the actually measured reconstructed image R1, a graph cut method different from the above-described embodiment may be used.
  • the composite image generation unit 33 selects at least one image among the actually measured reconstructed image R1, the replacement reconstructed image R2, and the difference reconstructed image R3 for each pixel.
  • a composite reconstructed image R4 is generated.
  • the present invention is not limited to this.
  • the composite reconstructed image R4 may be generated by selecting each 2 ⁇ 2 pixel region.
  • the composite image generation unit 33 corrects a pixel value that overshoots, such as step S02 for correcting the pixel value that undershoots, and the metal region Y1 in the flowchart shown in FIG.
  • One of the steps S03 may be omitted to generate the composite reconstructed image R4.
  • the pixel value r1 of the image R1 may be selected when determining “No” in the determination of step S03.
  • the pixel value r1 of the image R1 may be selected when determining “No” in the determination of step S02.
  • the X-ray tomographic image generation unit 20 may be configured by a personal computer, a workstation, or the like. That is, the X-ray tomographic image generation unit 20 includes a control unit configured by a CPU or the like for executing a program, and a storage unit configured by a storage medium such as a ROM or RAM that stores the program or the like. Good.
  • the storage unit may store a program for the operations of steps S01 to S05 and S11 to S18, and the program may be executed by the control unit. In this case, an operation necessary for this program is input by the input unit 12, and the composite reconstructed image R ⁇ b> 4 after the execution of the program is displayed on the display unit 11.
  • the operation program of steps S01 to S05 and S11 to S18 may be stored in the storage unit 13 and executed by the main control unit 9.
  • an operation necessary for this program is input by the input unit 12, for example, the composite reconstructed image R ⁇ b> 4 is displayed on the display unit 11.
  • the operation program may be executed on a personal computer connected to the X-ray tomography apparatus 1 through a network system such as a LAN.
  • the X-ray tomography apparatus 1 obtains the measured projection data p1 by translating the X-ray tube 3 and the FPD 4 in opposite directions. It was. However, the X-ray tomography apparatus 1 may acquire the measured projection data p1 by rotating the X-ray tube 3 and the FPD 4 around the subject M.
  • the X-ray tomography apparatus 1 corresponding to tomosynthesis has been described as an example of a radiation tomography apparatus.
  • the radiation tomography apparatus may be an X-ray CT apparatus.
  • the FPD 4 has been described as an example of the actual projection data acquisition unit, but an image intensifier may be used.
  • Difference image reconstruction part 33 Composite image generation unit th1, th2, th3... Threshold Y1... Metal region Y2... Nonmetal region Y3, Y3a... Unknown region R4... Composite reconstructed image G... Graph p1... Measured projection data p1a... Threshold-processed projection data p1b ... Forward projection data p1c ... Metal region specifying data p2 ... Replacement projection data p3 ... Difference projection data R1 ... Actual reconstruction image R2 ... Replacement reconstruction image R3 ... Difference reconstruction image R4 ... Composite reconstruction image r1 to r4 ... Pixel values Z ... Replacement data

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 本発明は、実測投影データp1と、実測投影データp1を画像再構成した実測再構成画像R1とから実測投影データp1の金属領域を特定して金属領域特定データp1cを取得する。実測投影データp1おいて、例えばワイヤやネジ等の金属領域の画素値が、他の領域の画素値とそれほど変わらない画像となってしまい、金属領域Y1を正しく特定することが難しいが、金属領域Y1をより高精度に特定することができる。また、金属領域特定データp1cに基づいて実測投影データp1の金属領域Y1を金属領域Y1の近傍画素に基づき得られたデータZでデータ置換を行って置換投影データp2を取得し、画像再構成して、金属領域Y1なしの置換再構成画像R2を生成する。金属領域Y1がより高精度に特定されているので、断層画像(置換再構成画像R2)の金属領域Y1近辺の組織をより高精度に復元することができる。

Description

放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法
 本発明は、被検体に対して異なる複数の方向から取得した投影データを画像再構成して放射線断層画像を生成する放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法に関する。
 従来、放射線断層撮影装置として、トモシンセシスに対応したX線断層撮影装置や、X線CT装置などがある(例えば、特許文献1参照)。このような従来装置は、被検体に向けてX線を照射するX線管と、このX線管と対向して配置され、被検体を透過したX線を検出するX線検出器と、X線検出器で取得した投影データ(投影画像)からX線(放射線)断層画像(以下適宜、「断層画像」とする)を生成するX線断層画像生成装置とを備えている。
 従来装置は、X線管およびX線検出器を一体にして又は連動して移動させつつ、被検体に対して異なる複数方向からX線撮影を行って投影データを取得する。取得した複数枚の投影データを、X線断層画像生成装置により、画像再構成して断層画像を取得する。なお、トモシンセシスとは、1回の断層撮影で複数枚の投影データを収集し、複数枚の投影データを画像再構成して任意の裁断高さの断層画像を生成する手法である。
 また、従来、被検体内に例えば金属で構成されるX線(放射線)高吸収体(以下適宜、「高吸収体」とする)が含まれる場合、X線が高吸収体で遮蔽されることから、画像再構成して生成された断層画像にアーチファクトが現れる。そこで、高吸収体によるアーチファクトを低減する種々の方法が提案されている。例えば特許文献1では、図14に示すフローチャートの方法により最終的な断層画像を取得している。
 すなわち、まず、実測投影データを取得する(ステップS101)。実測投影データから高吸収体領域を特定する(ステップS102)。高吸収体領域近傍の画素を用いて、実測投影データの高吸収体領域に対してデータ置換を行う(ステップS103)。データ置換を行った投影データから画像再構成を行い、第1の再構成画像を生成する(ステップS104)。第1の再構成画像を順投影することにより順投影データを作成する(ステップS105)。順投影データを調整し、調整した順投影データを画像再構成して第2の再構成画像を生成する(ステップS106)。そして、順投影と調整と画像再構成を1回または反復的に複数回行うことにより、最終的な断層画像(再構成画像)を取得する。
 以上のように、従来方法では、実測投影データの各々に写り込む高吸収体領域を置換により消去して、これらを再構成することで断層画像を得ている。これにより、高吸収体周辺の組織を高精度に復元し、高吸収体周辺のアーチファクトも低減した断層画像を取得している。また、従来装置は、実測投影データに写り込んだ高吸収体領域を特定する過程を有している。
特開2009-201840号公報
 しかしながら、従来装置は、画像再構成においてアーチファクトの原因となる高吸収体領域の特定が不十分であるという問題点がある。すなわち、実測投影データのみに基づいて高吸収体領域を特定する場合、従来装置では、その特定が困難となる。例えばワイヤなどの細い物体やねじなどの小さい物体は、高吸収体でありながら、実測投影データの画素値がワイヤ等以外の領域とそれほど画素値が違わない画像となってしまう。
 そのため、高吸収体領域が正しく特定することが難しく、断層画像における高吸収体領域周辺の組織の復元を精度よく行うことができない。また、上述した特許文献1の手法では、断層画像には、高吸収体が存在するはずであるが、断層画像から高吸収体が消え去ったような不自然な画像となってしまう。
 本発明は、このような事情に鑑みてなされたものであって、その第1の目的は、断層画像の高吸収体領域近辺の組織をより高精度に復元することができる放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法を提供することである。
 また、本発明の第2の目的は、高吸収体起因のアーチファクトを抑制しつつ、高吸収体領域に高吸収体が示された断層画像を得ることができる放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法を提供することである。
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明に係る放射線断層画像生成部は、放射線高吸収体を含む被検体に対して異なる方向から取得した複数の実測投影データを画像再構成して実測再構成画像を生成する実測画像再構成部と、前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する高吸収体領域特定部と、前記高吸収体領域特定データを用いて、前記実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得するデータ置換部と、前記置換投影データを画像再構成して置換再構成画像を生成する置換画像再構成部と、を備えていることを特徴とするものである。
 本発明に係る放射線断層画像生成部によれば、実測画像再構成部は、実測投影データを画像再構成して実測再構成画像を生成する。高吸収体特定部は、実測投影データおよび実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する。実測投影データにおいて、例えばワイヤやネジ等の高吸収体領域では、他の領域とそれほど画素値が違わない画像となってしまい、高吸収体領域を正しく特定することが難しい。しかしながら、実測再構成画像において、例えば高吸収体と生体組織との境界で画素値が著しく大きくなる。これを利用することで、例えばワイヤやネジ等の高吸収体と生体組織との境界をより精度よく特定することができる。また、実測再構成画像に加えて実測投影データを用いることで、例えば高吸収体と生体組織との境界の内側が高吸収体であるか否かを判別することができる。これらにより、高吸収体領域をより高精度に特定することができる。また、データ置換部は、高吸収体領域特定データを用いて、実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得する。置換画像再構成部は、置換投影データを画像再構成して、高吸収体領域なしの置換再構成画像を生成する。高吸収体領域をより高精度に特定しているので、高吸収体領域をより高精度にデータ置換することができる。したがって、高吸収体起因のアーチファクトを抑制しつつ、断層画像(置換再構成画像)の高吸収体領域近辺の組織をより高精度に復元することができる。
 また、本発明に係る放射線断層画像生成部において、前記実測投影データと前記置換投影データとを差分して差分投影データを取得する差分処理部と、前記差分投影データを画像再構成して差分再構成画像を生成する差分画像再構成部と、前記実測再構成画像、前記置換再構成画像および前記差分再構成画像のうち少なくとも1つの画像を領域毎に選択して合成再構成画像を生成する合成画像生成部と、を備えていることが好ましい。
 差分処理部は、実測投影データと置換投影データとを差分して差分投影データを取得する。差分画像再構成部は、差分投影データを画像再構成して高吸収体領域のみの差分再構成画像を生成する。そして、合成画像生成部は、実測再構成画像、置換再構成画像および差分再構成画像のうち少なくとも1つの画像を領域毎に選択して合成再構成画像を生成する。すなわち、置換再構成画像だけでなく、実測再構成画像および差分再構成画像から合成再構成画像を生成している。これにより、領域毎に最適な画像を選択するので、高吸収体起因のアーチファクトを抑制しつつ、高吸収体領域に高吸収体が示された断層画像(合成再構成画像)を得ることができる。
 また、本発明に係る放射線断層画像生成部において、前記合成画像生成部は、前記実測再構成画像および前記置換再構成画像内の同じ座標の画素値であって、前記置換再構成画像の画素値が前記実測再構成画像の画素値よりも大きい場合に、前記置換再構成画像の画素値を選択して合成再構成画像を生成することが好ましい。すなわち、実測再構成画像において、高吸収体領域近辺の画素は、高吸収体領域により本来得られる画素値よりも低めの画素値になりやすい。そのため、該当する高吸収体領域近辺の画素に置換再構成画像の画素値を選択することで、高吸収体領域近辺の画素を本来得られる画素値に近づけることができる。
 また、本発明に係る放射線断層画像生成部において、前記合成画像生成部は、前記実測再構成画像、前記置換再構成画像および前記差分再構成画像内の同じ座標の画素値であって、前記置換再構成画像の画素値と前記差分再構成画像の画素値の和が、前記実測再構成画像の画素値よりも小さい場合に、前記和の画素値を選択して合成再構成画像を生成することが好ましい。すなわち、実測再構成画像の高吸収体領域の画素値は、画像再構成時に過大評価されて本来得られる画素値よりも高めの画素値になりやすい。そのため、該当する高吸収体領域の画素に、置換再構成画像の画素値と差分再構成画像の画素値の和を選択することで、高吸収体領域の画素を本来得られる画素値に近づけることができる。
 また、本発明に係る放射線断層画像生成部において、前記合成画像生成部は、前記実測再構成画像、前記置換再構成画像および前記差分再構成画像内の同じ座標の画素値であって、前記置換再構成画像の画素値と前記差分再構成画像の画素値の和が、前記差分再構成画像の画素値よりも大きい場合に、前記実測再構成画像の画素値を選択して合成再構成画像を生成することが好ましい。すなわち、高吸収体に起因して本来の画素値が得られない領域以外の領域は、実測投影データをそのままで画像再構成して生成された実測再構成画像の画素値を選択する。これにより、例えば、差分再構成画像において高吸収体領域として誤って判別された領域であっても、誤って判別された領域を選択しないようにすることができる。
 また、本発明に係る放射線断層画像生成部において、前記高吸収体領域特定部は、グラフカット法に基づいて、前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得することが好ましい。これにより、高吸収体領域を精度よく特定することができる。
 また、本発明に係る放射線断層画像生成部において、前記高吸収体領域特定部は、前記実測投影データおよび前記実測再構成画像の閾値処理結果に基づきグラフカット法におけるシード領域を設定することが好ましい。これにより、グラフカット法におけるシード領域を閾値処理結果に基づき自動で設定することができる。そのため、高吸収体領域の特定を容易とすることができる。
 また、本発明に係る放射線断層画像生成部において、前記実測画像再構成部、前記置換画像再構成部および前記差分画像再構成部の少なくともいずれかは、逐次近似法に基づいて画像再構成を行うことが好ましい。これにより、画像再構成を精度よく行うことができる。
 また、本発明に係る放射線断層撮影装置は、放射線高吸収体を含む被検体に対して異なる方向から複数の実測投影データを取得する実測投影データ取得部と、前記実測投影データを画像再構成して実測再構成画像を生成する実測画像再構成部と、前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する高吸収体領域特定部と、前記高吸収体領域特定データを用いて、前記実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得するデータ置換部と、前記置換投影データを画像再構成して置換再構成画像を生成する置換画像再構成部と、を備えていることを特徴とするものである。
 本発明に係る放射線断層撮影装置によれば、実測画像再構成部は、実測投影データを画像再構成して実測再構成画像を生成する。高吸収体特定部は、実測投影データおよび実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する。実測投影データにおいて、例えばワイヤやネジ等の高吸収体領域の画素値が、他の領域の画素値とそれほど変わらない画像となってしまい、高吸収体領域を正しく特定することが難しい。しかしながら、実測再構成画像において、例えば高吸収体と生体組織との境界で画素値が著しく大きくなる。これを利用することで、例えばワイヤやネジ等の高吸収体と生体組織との境界をより精度よく特定することができる。また、実測再構成画像に加えて実測投影データを用いることで、例えば高吸収体と生体組織との境界の内側が高吸収体であるか否かを判別することができる。これらにより、高吸収体領域をより高精度に特定することができる。また、データ置換部は、高吸収体領域特定データを用いて実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得する。置換画像再構成部は、置換投影データを画像再構成して、高吸収体領域なしの置換再構成画像を生成する。高吸収体領域をより高精度に特定しているので、高吸収体領域をより高精度にデータ置換することができる。したがって、高吸収体起因のアーチファクトを抑制しつつ、断層画像(置換再構成画像)の高吸収体領域近辺の組織をより高精度に復元することができる。
 また、本発明に係る放射線断層画像生成方法は、放射線高吸収体を含む被検体に対して異なる方向から取得した複数の実測投影データを画像再構成して実測再構成画像を生成するステップと、前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得するステップと、前記高吸収体領域特定データを用いて、前記実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得するステップと、前記置換投影データを画像再構成して置換再構成画像を生成するステップと、を備えていることを特徴とするものである。
 本発明に係る放射線断層画像生成方法によれば、実測投影データを画像再構成して実測再構成画像を生成する。実測投影データおよび実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する。実測投影データにおいて、例えばワイヤやネジ等の高吸収体領域において、画素値が他の領域とそれほど変わらない画像となってしまい、高吸収体領域を正しく特定することが難しい。しかしながら、実測再構成画像において、例えば高吸収体と生体組織との境界で画素値が著しく大きくなる。これを利用することで、例えばワイヤやネジ等の高吸収体と生体組織との境界をより精度よく特定することができる。また、実測再構成画像に加えて実測投影データを用いることで、例えば高吸収体と生体組織との境界の内側が高吸収体であるか否かを判別することができる。これらにより、高吸収体領域をより高精度に特定することができる。また、高吸収体領域特定データを用いて実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得する。置換投影データを画像再構成して、高吸収体領域なしの置換再構成画像を生成する。高吸収体領域をより高精度に特定しているので、高吸収体領域をより高精度にデータ置換することができる。したがって、高吸収体起因のアーチファクトを抑制しつつ、断層画像(置換再構成画像)の高吸収体領域近辺の組織をより高精度に復元することができる。
 本発明に係る放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法によれば、実測投影データを画像再構成して実測再構成画像を生成する。実測投影データおよび実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する。実測投影データにおいて、例えばワイヤやネジ等の高吸収体領域の画素値が、他の領域の画素値とそれほど変わらない画像となってしまい、高吸収体領域を正しく特定することが難しい。しかしながら、実測再構成画像において、例えば高吸収体と生体組織との境界で画素値が著しく大きくなる。これを利用することで、例えばワイヤやネジ等の高吸収体と生体組織との境界をより精度よく特定することができる。また、実測再構成画像に加えて実測投影データを用いることで、例えば高吸収体と生体組織との境界の内側が高吸収体であるか否かを判別することができる。これらにより、高吸収体領域をより高精度に特定することができる。また、高吸収体領域特定データを用いて実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得する。置換投影データを画像再構成して、高吸収体領域なしの置換再構成画像を生成する。高吸収体領域をより高精度に特定しているので、高吸収体領域をより高精度にデータ置換することができる。したがって、高吸収体起因のアーチファクトを抑制しつつ、断層画像(置換再構成画像)の高吸収体領域近辺の組織をより高精度に復元することができる。
 また、本発明によれば、実測投影データと置換投影データとを差分して差分投影データを取得する。その差分投影データを画像再構成して高吸収体領域のみの差分再構成画像を生成する。そして、実測再構成画像、置換再構成画像および差分再構成画像のうち少なくとも1つの画像を領域毎に選択して合成再構成画像を生成する。すなわち、置換再構成画像だけでなく、実測再構成画像および差分再構成画像から合成再構成画像を生成している。これにより、領域毎に最適な画像を選択するので、高吸収体起因のアーチファクトを抑制しつつ、高吸収体領域に高吸収体が示された断層画像(合成再構成画像)を得ることができる。
実施例に係るX線断層撮影装置の概略構成を示す図である。 X線断層画像生成部の構成を示す図である。 (a)は実測再構成画像を示す図であり、(b)は置換再構成画像を示す図であり、(c)は差分再構成画像を示す図である。 金属領域特定部の構成を示す図である。 (a)閾値処理後の実測投影データを示す図であり、(b)は、順投影データを示す図であり、(c)は、グラフのシード領域を示す図であり、(d)は、金属領域特定データを示す図である。 実測投影データに対する閾値処理の説明に供するプロファイルである。 実測投影データに対する閾値処理の説明に供するヒストグラムである。 (a)は実測再構成画像に対する閾値処理の説明に供するプロファイルであり、(b)は閾値処理後の実測再構成画像を示す図である。 グラフカット法の説明に供する図である。 (a)はデータ置換部の説明に供する実測投影データを示す図であり、(b)は、(a)の横断ラインL1のプロファイルである。 合成画像生成部の説明に供するフローチャートである。 実施例のX線断層撮影装置の動作を示すフローチャートである。 (a)変形例に係る閾値処理後の実測投影データを示す図であり、(b)は、変形例に係る実測再構成画像の閾値処理後の順投影データを示す図であり、(c)は、変形例に係る金属領域特定データを示す図である。 従来装置の動作を示すフローチャートである。
 以下、図面を参照して本発明の実施例を説明する。図1は、実施例に係るX線断層撮影装置の概略構成を示す図である。なお、高吸収体は、金属を一例として説明する。
 図1を参照する。X線断層撮影装置1は、被検体Mを載置する天板2と、被検体Mに向けてX線を照射するX線管3と、X線管3と対向して配置され、被検体Mを透過したX線を検出するフラットパネル型X線検出器(以下適宜、「FPD」と称する)4とを備えている。なお、FPD4が本発明の実測投影データ取得部に相当する。
 X線管3は、X線管制御部5により制御される。X線管制御部5は、X線管3の管電圧および管電流を発生させる高電圧発生部6を有している。X線管制御部5は、管電圧、管電流および照射時間等のX線照射条件に応じてX線管3からX線を照射させる。
 FPD4は、検出対象の透過X線像が投影されるX線検出面にX線を電気信号に変換して検出する多数のX線検出素子が横・縦の2次元マトリックス状に配列されている。X線検出素子の配列マトリックスとしては、例えば横:数千×縦:数千が挙げられる。X線検出素子は、X線が直に電気信号に変換される直接変換タイプ、あるいはX線がいったん光に変換されてから更に電気信号に変換される間接変換タイプで構成される。
 X線管3およびFPD4はそれぞれ、被検体Mの図1中の体軸axに沿って互いに逆方向に同期しながら平行移動する。X線管3およびFPD4は、例えば図示しないラックやピニオンやモータ等により駆動するように構成される。FPD4は、X線管3と同期して逆方向に移動しつつ、金属を含む被検体Mに対して異なる方向(角度)からの複数枚の実測投影データ(X線画像)p1を取得する。
 FPD4の後段には、順番にA/D変換器7と画像処理部8と主制御部9とが設けられている。A/D変換器7は、FPD4から出力されたアナログの実測投影データp1をそれぞれディジタル信号に変換する。画像処理部8は、ディジタル変換された実測投影データp1に対して種々の必要な処理を行う。主制御部9は、X線断層撮影装置1の各構成を統括的に制御し、中央演算処理装置(CPU)などで構成される。主制御部9は、例えば、X線管3またはFPD4を移動させる制御を行う。
 X線断層撮影装置1は、表示部11と入力部12と記憶部13とを備えている。表示部11は、モニタ等で構成される。入力部12は、キーボードやマウス等で構成される。記憶部13は、ROM(Read-only Memory)、RAM(Random-Access Memory)またはハードディスク等、取り外し可能なものを含む記憶媒体で構成される。記憶部13には、例えば、複数枚の実測投影データp1が記憶される。
 また、X線断層撮影装置1は、FPD4により取得された複数枚の実測投影データp1から断層画像を生成するX線断層画像生成部20を備えている。図2は、X線断層画像生成部20の構成を示す図である。X線断層画像生成部20は、種々の断層画像を生成する。X線断層画像生成部20が生成する断層画像としては、図3(a)の実測再構成画像R1、図3(b)の置換再構成画像R2、および図3(c)の差分再構成画像R3がある。また、X線断層画像生成部20は、これら断層画像のうち少なくとも1つの画像を画素ごとに選択して合成再構成画像R4を生成する。なお、実測再構成画像R1は、実測投影データp1をそのまま画像再構成した断層画像である。置換再構成画像R2は、金属領域Y1なしの断層画像である。差分再構成画像R3は、金属領域Y1のみの断層画像である。
 なお、図3(a)~図3(c)において、符号m1は骨組織を示し、符号m2は筋肉や皮膚などの軟部組織を示す。また、符号m3は被検体M以外の領域を示し、符号m4は、金属領域Y1以外の領域を示す。
 図2に戻る。X線断層画像生成部20は、実測投影データp1を画像再構成して実測再構成画像R1を生成する実測画像再構成部21と、実測投影データp1および実測再構成画像R1から実測投影データp1の金属領域Y1を特定して金属領域特定データp1cを取得する金属領域特定部23とを備えている。また、X線断層画像生成部20は、金属領域特定データp1cに基づいて実測投影データp1の金属領域Y1をその金属領域Y1の近傍画素Kに基づき得られたデータZでデータ置換を行って置換投影データp2を取得するデータ置換部25と、置換投影データp2を画像再構成して置換再構成画像R2を生成する置換画像再構成部27とを備えている。
 また、X線断層画像生成部20は、実測投影データp1と置換投影データp2とを差分して金属領域Y1の画素値のみを示した差分投影データp3を取得する差分処理部29と、差分投影データp3を画像再構成して差分再構成画像R3を生成する差分画像再構成部31とを備えている。さらに、X線断層画像生成部20は、実測再構成画像R1、置換再構成画像R2および差分再構成画像R3のうち少なくとも1つの画像を画素ごとに選択して合成再構成画像R4を生成する合成画像生成部33を備えている。次に、X線断層画像生成部20の各構成について具体的に説明する。
 なお、金属領域特定データは本発明の高吸収体領域特定データに相当し、金属領域特定部23は本発明の高吸収体領域特定部に相当する。また、X線断層画像生成部20は、本発明の放射線断層画像生成装置に相当する。
 <実測画像再構成部>
 実測画像再構成部21は、金属を含む被検体Mに対して異なる方向から取得した複数枚の実測投影データp1を画像再構成して断層画像の一種である実測再構成画像R1を生成する。すなわち、実測画像再構成部21は、実測投影データp1をそのまま画像再構成して実測再構成画像R1を生成する。画像再構成は、例えば、逐次近似法およびFBP(filtered back-projection)法のうちいずれかが用いられる。逐次近似法としては、例えば、ML-EM(maximum likelihood - expectation maximization)法、OS-EM(ordered subsets - expectation maximization)法、RAMLA(row-action maximum likelihood algorithm)法、DRAMA(dynamic RAMLA)法が用いられる。
 <金属領域特定部>
 金属領域特定部23は、グラフカット(graph cuts)法に基づいて、実測投影データp1および実測再構成画像R1から実測投影データp1の金属領域Y1を特定した金属領域特定データ(投影データ)p1cを取得する。
 図4は、金属領域特定部23の構成を示す図である。金属領域特定部23の各構成の概要を説明する。金属領域特定部23は、実測投影データp1に対して閾値処理を行って閾値処理後の投影データp1a(図5(a)参照)を取得する実測投影データ閾値処理部23aを備えている。また、金属領域特定部23は、実測再構成画像R1を閾値処理して2値化された実測再構成画像R1aを取得する実測再構成画像閾値処理部23bと、2値化された実測再構成画像R1aを順投影して順投影データp1b(図5(b)参照)を取得する順投影部23cとを備えている。
 そして、金属領域特定部23は、閾値処理後投影データp1aおよび順投影データp1bを用いて、金属領域Y1を特定するためのグラフG(図5(c)参照)を作成するグラフ作成部23dと、グラフGをカットして金属領域Y1を特定した投影データである金属領域特定データp1c(図5(d)参照)を取得するカット部23eとを備えている。なお、グラフカット法についての詳細は後述する。また、図5(b)~図5(d)において、符号Wはワイヤ部分である。また、図5(a)~図5(d)で示す閾値処理後投影データp1a等は、説明の便宜上、円形の金属領域Y1やワイヤWで示している(後述する図13(a)~図13(c)も同様)。そのため、図5(d)の金属領域特定データp1cから、直接、例えば図3(b)の置換再構成画像R2が取得されるものではない。また、領域Y4はデータ無しの領域で、領域Y5は金属でない領域である。
 次に、金属領域特定部23の各構成についてさらに具体的に説明する。実測投影データ閾値処理部23aは、実測投影データp1に対して閾値処理を行って閾値処理後実測投影データp1aを取得する。図6は、実測投影データp1のプロファイルの一例を示す図である。図6に示すように、まず、閾値処理(閾値th1)により、確実に金属である金属領域Y1を区別する。また、閾値処理(閾値th2)により、確実に非金属である非金属領域Y2を区別する。これにより、実測投影データp1を、確実に金属領域Y1、確実に非金属領域Y2、どちらか区別できない不明領域Y3の3つの領域に分割する。なお、図6は、図5(a)中の符号F1の位置にあるものとする。また、図7は、実測投影データp1の全画素の画素値に対する頻度を示すヒストグラムHの一例を示す図である。閾値th1,th2は、ヒストグラムHから予め設定しておく。
 一方、実測再構成画像閾値処理部23bは、断層画像となっている実測再構成画像R1に対して閾値処理を行って、金属領域Y1と金属以外の領域に分割する。すなわち、実測再構成画像閾値処理部23bは、金属領域Y1を“1”とし、金属以外の領域を“0”とする閾値処理(2値化処理)を行って、2値化された実測再構成画像R1aを取得する。実測再構成画像閾値処理部23bは、実測再構成画像R1の各々について2値化された実測再構成画像R1aを生成する。
 図8(a)は、実測再構成画像R1のプロファイルの一例を示す図である。例えば逐次近似法のように、多くの再構成アルゴニズムにより生成された再構成画像(例えば実測再構成画像R1)は、高輝度差(高画素値差)エッジが存在する部分(以下、「高輝度エッジ部分」とする)HLの画素値が著しく大きくなる。高輝度エッジ部分HLは、例えば、金属と生体組織(骨・軟部組織)との境界が挙げられる。実測再構成画像閾値処理部23bは、図8(a)に示すように、閾値処理(閾値th3)により、その高輝度エッジ部分HLを抽出する。
 図8(b)は、2値化された実測再構成画像R1aの一例を示す図である。なお、図8(a)の閾値処理後のデータ部分を符号F2で示す。実測再構成画像R1中の金属領域Y1が円形状の場合、2値化された実測再構成画像R1aには、高輝度エッジ部分HLがドーナツ状に抽出される。この2値化された実測再構成画像R1aを順投影すると、順投影データp1b上にドーナツ状に高輝度エッジ部分HLが現れる。ドーナツ状の高輝度エッジ部分HLは、実測投影データ等の取得方法が本実施例のようにトモシンセシスである場合など、一部の方向からの実測投影データが存在しないとき等に現れる。
 順投影部23cは、2値化された実測再構成画像R1aを順投影する。順投影して得られた画素値が零“0”でない領域を金属領域Y1とし、画素値が零の領域をデータ無しの領域Y4とした順投影データp1bを取得する(図5(b)参照)。
 グラフ作成部23dは、グラフカット法で用いるグラフGを作成する。このグラフカット法は、実測投影データp1、閾値処理後投影データp1aおよび順投影データp1bを基にグラフGを生成し、これに基づいてグラフGの領域を分割する方法である。したがってグラフカット法は、まずこれら3つの画像から図9に示すグラフGを作成する。グラフGは、実測投影データp1の各画素に対応したノードNと、2つのターミナルS,Tと、ノード間およびノードターミナルとの間を結ぶエッジ(辺)を含んで構成される。ここでノードは、実測投影データp1の各画素に対応し、2つのターミナルS,Tは、金属および非金属で表される。実測投影データp1に基づいて、各エッジに与えるコストを設定することにより、グラフGを作成する。ただし、これまでの過程において、確実に金属であるとされた画素に対応するノードすなわち金属側シード(Seed)となるノードでは、金属側ターミナルと当該ノード間を結ぶエッジは、確実にカットされないコストとし、非金属側ターミナルと当該ノード間を結ぶエッジは、コストを0とする。同様にこれまでの過程において、確実に非金属であるとされた画素に対応するノードすなわち非金属側シード(Seed)となるノードでは、非金属側ターミナルと当該ノード間を結ぶエッジは、確実にカットされないコストとし、金属側ターミナルと当該ノード間を結ぶエッジは、コストを0とする。その後、グラフGをエッジに与えたコストに従って領域分割することで、画像内を金属と非金属とに分割する。これにてグラフカット法による領域分割が終了する。
 グラフGの生成方法について具体的に説明する。このとき作成されるグラフGは、図9に示すように、実測投影データp1の各画素に対応するノードNと、金属のターミナルSと、非金属のターミナルTとを含んで構成される。グラフ作成部23dは、実測投影データp1および実測再構成画像R1の閾値処理結果およびノードの画素値、隣接するノード間の画素値差に基づきグラフカット法におけるエッジのコストを設定する。ただし閾値処理後投影データp1aおよび順投影データp1bからシード領域を設定し、シード領域に対応するノードとターミナルを結ぶエッジには、上述のコストを設定する。シード領域となるノードは、下記の方法で決定される。グラフ作成部23dは、グラフG中の各ノードNにおいて、閾値処理後投影データp1aのうち金属領域Y1または非金属領域Y2と判別された領域を金属および非金属のシードとして設定する(図5(c)参照)。また同様に、グラフ作成部23dは、グラフG中の各ノードNにおいて、順投影データp1bのうち金属領域Y1と判別された領域を高吸収体のシードとして定める(図5(c)参照)。
 また、エッジE1には、実測投影データp1の各画素値によるコストC1が与えられる。各ノード間を結ぶエッジE2には、実測投影データp1の各画素間の画素値差に基づいたコストC2が与えられる。エッジE2に与えられるコストC2は、例えば、各画素間で画素値差が大きいほど小さい値となるようになっている。コストC1,C2は、領域分割するための指標となるものである。
 シードおよびコストC1,C2を設定して作成されたグラフGの不明領域Y3(図5(c)参照)において、カット部23eは、カットした部分のコストC2の総和が最小となるように、各グラフGの不明領域Y3を分断する。これにより、金属領域Y1を特定する。カット部23eは、金属領域Y1のみを抽出した金属領域特定データ(投影データ)p1cを出力する。なお、図5(c)のようにシードが設定されたグラフGにおいて、不明領域Y3aは、実測投影データp1における不明領域Y3aの各画素の周囲との画素値差が小さいので、コストC2が大きくなる。そのため、不明領域Y3aではカットされない。
 <データ置換部>
 図2に戻る。データ置換部25は、実測投影データp1の特定した金属領域Y1をその金属領域Y1の近傍画素Kに基づき得られたデータZでデータ置換を行って置換投影データp2を取得する。データ置換は、例えば図10(a)に示すように、金属領域Y1を横断する横断ライン(L1,L2,…,Lx)があるときに、金属領域Y1外側の2つの画素を結ぶように画素値を置換する。図10(b)に、置換データZを示す。置換データZは、2つの画素値を直線状に結んで画素値を置換しているが、曲線であってもよい。データ置換後に更に画素値をなじませる平滑化処理をおこなってもよい。この処理として、例えば2次元のガウスフィルタやメディアンフィルタが用いられる。なお、データ置換は、その他の既知の方法で行ってもよい。
 <置換画像再構成部>
 置換画像再構成部27は、置換投影データp2を画像再構成して置換再構成画像R2を生成する。生成された置換再構成画像R2は、金属領域Y1なしの画像となる。画像再構成は、同様に、例えば逐次近似法およびFBP法のうちいずれかの手法が用いられる。
 <差分処理部および差分画像再構成部>
 差分処理部29は、実測投影データp1と置換投影データp2とを差分して金属領域Y1のみを示した差分投影データp3を取得する。差分画像再構成部31は、差分投影データp3を画像再構成して差分再構成画像R3を生成する。生成された差分再構成画像R3は、金属領域Y1のみの画像となる。画像再構成は、例えば逐次近似法が用いられる。
 <合成画像生成部>
 合成画像生成部33には、実測再構成画像R1、置換再構成画像R2および差分再構成画像R3が送られ、図示しない記憶部に記憶されている。合成画像生成部33は、実測再構成画像R1、置換再構成画像R2および差分再構成画像R3のうち少なくとも1つの画像を画素毎に選択して合成再構成画像R4を生成するものである。ここで、実測再構成画像R1は、実測投影データp1を元に生成された断層画像であり、金属領域Y1を写し込んでいる。置換再構成画像R2は、実測投影データp1から金属領域Y1を消去した画像群(置換投影データp2)から再構成して得られた断層画像である。差分再構成画像R3は、実測投影データp1と、置換投影データp2との差分である画像群(差分投影データp3)から再構成して得られた断層画像である。
 実測再構成画像R1は、金属領域Y1の周りに暗い偽像が生じており、これは、合成再構成画像R4上に出すべきではない。また、実測再構成画像R1に写り込む金属領域Y1には、ムラが写り込んでおり、これも合成再構成画像R4上に出すべきではない。置換再構成画像R2には、金属領域Y1が消去されており、これのみでは、診断に好適な画像とはならない。同様に、差分再構成画像R3は、今度は金属領域Y1のみが写り込んだ画像であり、これのみでは、診断に好適な画像とはならない。そこで、合成画像生成部33は、この3つの断層画像を組み合わせて診断に好適な断層画像である合成再構成画像R4を生成する。合成画像生成部33について図11のフローチャートを参照して説明する。
 〔ステップS01〕画素値の取り出し
 実測再構成画像R1、置換再構成画像R2および差分再構成画像R3内の同じ座標の任意の画素値r1,r2,r3を取り出す。
 〔ステップS02〕第1の画素値比較
 合成画像生成部33は、置換再構成画像R2の画素値r2が実測再構成画像R1の画素値r1よりも大きい場合(r2>r1)に、置換再構成画像R2の画素値r2を選択して合成再構成画像R4の画素値r4とする。すなわち、合成画像生成部33は、画素値がr2>r1の場合、画素値r2を選択して、ステップS04へ進ませる。このステップで、実測再構成画像R1上の暗い偽像を構成する画素は、合成再構成画像R4に使用されず、その代わりに置換再構成画像R2上における同一位置の画素が使用される。これで、実測再構成画像R1上の暗い偽像は、合成再構成画像R4上に現れない。
 置換再構成画像R2は、金属領域Y1なしの画像である。実測再構成画像R1において、金属領域Y1近辺の画素は、金属領域Y1により本来得られる画素値よりも低めの画素値になりやすい。そのため、該当する金属領域近辺の画素に置換再構成画像R2の画素値r2を選択することで、金属領域近辺の画素を本来得られる画素値に近づけることができる(アンダーシュートする画素値の補正)。
 また、合成画像生成部33は、ステップS02において、置換再構成画像R2の画素値r2が実測再構成画像R1の画素値r1より小さい場合(r2<r1)に、ステップS03へ進ませる。なお、画素値がr2=r1の場合は、画素値r1,r2のどちらを選択してもよい。処理を簡単にするため、例えば、画素値がr2≧r1の場合に画素値r2を選択して、ステップS04へ進ませるようにしてもよい。
 〔ステップS03〕第2の画素値比較
 合成画像生成部33は、置換再構成画像R2の画素値r2と差分再構成画像R3の画素値r3の和(r2+r3)が、実測再構成画像R1の画素値r1よりも小さい場合(r2+r3<r1)に、和(r2+r3)の画素値を選択して合成再構成画像R4の画素値r4とする。すなわち、合成画像生成部33は、画素値がr2+r3<r1の場合、画素値(r2+r3)を選択して、ステップS04へ進ませる。このステップで、実測再構成画像R1上の金属領域のうち明るい領域(過剰評価された領域)は、合成再構成画像R4に使用されず、その代わりに和(r2+r3)の画素が使用される。これで、実測再構成画像R1上の金属領域のうち明るい領域は、合成再構成画像R4上に現れない。これにより、合成再構成画像R4上の金属領域には、ムラが現れない。
 実測再構成画像R1の金属領域Y1の画素値r1は、画像再構成時に過大評価されて本来得られる画素値よりも高めの画素値になりやすい。そのため、該当する金属領域Y1の画素に、置換再構成画像R2の画素値r2と差分再構成画像R3の画素値r3の和(r2+r3)を選択することで、高吸収体領域の画素を本来得られる画素値に近づけることができる(金属領域Y1などオーバーシュートする画素値の補正)。
 また、合成画像生成部33は、ステップS03において、置換再構成画像R2の画素値r2と差分再構成画像R3の画素値r3の和(r2+r3)が、差分再構成画像R3の画素値r3よりも大きい場合(r2+r3>r1)に、実測再構成画像R1の画素値r1を選択して合成再構成画像R4の画素値r4とする。すなわち、合成画像生成部33は、ステップS02およびステップS03のいずれも「該当しない(NO)」を選択した場合、画像R1の画素値r1を選択して、ステップS04へ進ませる。
 金属に起因して本来の画素値が得られないステップS02およびステップS03のいずれかで「YES」と選択された領域以外の領域は、実測投影データp1をそのまま画像再構成して生成された実測再構成画像R1の画素値r1を選択する。これにより、例えば、差分再構成画像R3において金属領域Y1として誤って判別された領域であっても、誤って判別された領域を選択しないようにすることができる。
 なお、画素値がr2+r3=r1の場合は、画素値(r2+r3),r1のどちらを選択してもよい。処理を簡単にするため、例えば、画素値がr2+r3≦r1の場合に画素値(r2+r3)を選択して、ステップS04へ進ませるようにしてもよい。
 〔ステップS04〕合成再構成画像の生成
 合成画像生成部33は、ステップS02およびステップS03において選択された画像R1~R3の画素値(r2,r2+r3,r1)を、合成再構成画像R4の対応する座標の画素r4に与える。これにより、合成再構成画像R4を生成する。
 〔ステップS05〕合成再構成画像が完成したか?
 合成再構成画像R4が未完成の場合は、合成再構成画像R4の未完成部分の画素r4を生成するために、例えば次の画素r4を指定して、ステップS01に戻る。合成再構成画像R4が完成した場合(合成再構成画像R4の全画素r4の選択が終了した場合)は、処理を終了する(END)。以上のように、合成画像生成部33は、合成再構成画像R4を生成する。
 次に、X線断層撮影装置1の動作について図12を参照して説明する。
 〔ステップS11〕実測投影データの取得
 X線管3およびFPD4は、被検体Mの図1中の体軸axに沿って互いに逆方向に同期しながら平行移動する。その際、X線管3は、被検体Mに向けてX線を照射し、FPD4は、被検体Mを透過したX線を検出する。FPD4は、金属を含む被検体Mに対して異なる複数の方向からの実測投影データp1を取得する。実測投影データp1は、記憶部13に記憶される。
 〔ステップS12〕実測再構成画像の生成
 実測画像再構成部21は、実測投影データp1を画像再構成して実測再構成画像R1を生成する(図3(a)参照)。
 〔ステップS13〕金属領域の特定
 金属領域特定部23は、グラフカット法に基づいて、実測投影データp1および実測再構成画像R1から実測投影データp1の金属領域Y1を特定して金属領域特定データp1cを取得する。まず、金属領域特定部23は、実測投影データp1および実測再構成画像R1の閾値処理結果に基づきグラフカット法におけるシード領域を決定する。
 実測投影データp1に対して閾値処理を行うことにより、確実に金属領域Y1、および確実に非金属領域Y2を求める。これにより、金属領域Y1、非金属領域Y2および、どちらか区別できない領域Y3の3つの領域に分ける。また、金属領域Y1、非金属領域Y2をグラフカット法におけるグラフGのシードとして設定する。一方、実測再構成画像R1に対して閾値処理(2値化処理)を行うことにより、金属領域を“1”とし、非金属領域を“0”とする2つの領域に分けた2値化された実測再構成画像R1aを取得する。2値化された実測再構成画像R1aは、順投影され、順投影して得られた画素値が零“0”でない領域を金属領域とし、画素値が零の領域をデータ無しの領域とした順投影データp1bを取得する。取得した順投影データp1bの金属領域Y1をシードとして設定する。
 また、実測投影データp1の各画素間のコストC2は、例えば、各画素間で画素値差が大きいほど小さい値になるようになっている。シードおよびコストC1,C2を設定してグラフGを作成する。グラフGにおいてシードとして設定されていない不明領域Y3において、コストC2の総和が最小になるように、各グラフGの不明領域Y3を分断する。これにより、金属領域Y1を特定する。金属領域Y1の特定後の金属領域特定データp1cは、実測投影データp1のうち金属領域Y1のみを抽出した投影データとなる。
 〔ステップS14〕データ置換
 データ置換部25は、金属領域特定データp1cに基づいて実測投影データp1の金属領域Y1をその金属領域Y1の近傍画素Kに基づき得られた置換データZでデータ置換を行って置換投影データp2を取得する(図10(a)および図10(b)参照)。
 〔ステップS15〕置換再構成画像の生成
 置換画像再構成部27は、置換投影データp2を画像再構成して置換再構成画像R2を生成する(図3(b)参照)。生成された置換再構成画像R2は、金属領域Y1無しの画像である。
 〔ステップS16〕差分処理
 差分処理部29は、実測投影データp1と置換投影データp2とを差分して金属領域Y1のみを示した差分投影データp3を取得する。
 〔ステップS17〕差分再構成画像の生成
 差分画像再構成部31は、差分投影データp3を画像再構成して差分再構成画像R3を生成する。生成された差分再構成画像R3は、金属領域Y1のみの画像である(図3(c)参照)。
 〔ステップS18〕合成再構成画像の生成
 合成画像生成部33は、実測再構成画像R1、置換再構成画像R2および差分再構成画像R3のうち少なくとも1つの画像を画素毎に選択して合成再構成画像R4を生成する。合成画像生成部33は、選択された画像R1~R3の画素値(r2,r2+r3,r1)を、合成再構成画像R4の対応する座標の画素r4に与える。これにより、合成再構成画像R4を生成する。生成された合成再構成画像R4は、表示部11に表示されたり、記憶部13で記憶されたりする。
 以上のように本実施例によれば、実測画像再構成部21は、実測投影データp1を画像再構成して実測再構成画像R1を生成する。金属領域特定部23は、実測投影データp1および実測再構成画像R1から実測投影データp1の金属領域Y1を特定して金属領域特定データp1cを取得する。実測投影データp1において、例えばワイヤやネジ等の金属領域において、画素値が他の領域とそれほど変わらない画像となってしまい、金属領域Y1を正しく特定することが難しい。しかしながら、実測再構成画像R1において、例えば金属と生体組織との境界で画素値が著しく大きくなる。これを利用することで、例えばワイヤやネジ等の金属と生体組織との境界をより精度よく特定することができる。また、実測再構成画像R1に加えて実測投影データp1を用いることで、例えば金属と生体組織との境界の内側が金属であるか否かを判別することができる。これらにより、金属領域をより高精度に特定することができる。また、データ置換部25は、金属領域特定データp1cに基づいて実測投影データp1の金属領域Y1をその金属領域Y1の近傍画素Kに基づき得られたデータZでデータ置換を行って置換投影データp2を取得する。置換画像再構成部27は、置換投影データp2を画像再構成して、金属領域Y1なしの置換再構成画像R2を生成する。金属領域Y1をより高精度に特定しているので、金属領域Y1をより高精度にデータ置換することができる。したがって、金属によるアーチファクトを抑制しつつ、断層画像(置換再構成画像R2)の金属領域Y1近辺の組織をより高精度に復元することができる。
 また、差分処理部29は、実測投影データp1と置換投影データp2とを差分して差分投影データp3を取得する。差分画像再構成部31は、差分投影データp3を画像再構成して金属領域Y1のみの差分再構成画像R3を生成する。そして、合成画像生成部33は、実測再構成画像R1、置換再構成画像R2および差分再構成画像R3のうち少なくとも1つの画像を画素毎に選択して合成再構成画像R4を生成する。すなわち、置換再構成画像R2だけでなく、実測再構成画像R1および差分再構成画像R3から合成再構成画像R4を生成している。これにより、画素毎に最適な画像を選択するので、金属起因のアーチファクトを抑制しつつ、金属領域Y1に金属が示された断層画像(合成再構成画像R4)を得ることができる。
 また、金属領域特定部23は、グラフカット法に基づいて、実測投影データp1および実測再構成画像R1から実測投影データp1の金属領域Y1を特定して金属領域特定データp1cを取得する。これにより、他の方法に対して金属領域Y1を精度よく特定することができる。
 また、金属領域特定部23は、実測投影データp1および実測再構成画像R1の閾値処理結果に基づきグラフカット法におけるシード領域を設定する。これにより、グラフカット法におけるシード領域を閾値処理結果に基づき自動で設定することができる。そのため、金属領域Y1の特定を容易とすることができる。
 また、実測画像再構成部21、置換画像再構成部27および差分画像再構成部31の少なくともいずれかは、逐次近似法に基づいて画像再構成を行っている。これにより、画像再構成を精度よく行うことができる。
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、金属領域特定部23は、グラフカット法に基づいて、実測投影データp1および実測再構成画像R1から実測投影データp1の金属領域Y1を特定して金属領域特定データp1cを取得しているが、これに限定されない。例えば、静的な閾値を用いる方法、動的な閾値を用いる方法、スネーク(Snake)を用いる方法、レベルセット法およびグラブカット(Grab Cut)法などの領域分割する手法で金属領域Y1を特定するようにしてもよい。なお、これらの方法において、実測再構成画像R1の用い方はそれぞれ異なるが、必ず順投影データを作成する。
 ここで、金属領域Y1を特定する方法の一例として静的な閾値を用いる方法を具体的に説明する。まず、静的な閾値処理を行って実測投影データp1から金属領域Y1(=“1”)を抽出する(図13(a)参照)。なお、非金属領域Y2は、“0”で示される。次に、実測再構成画像R1を用いて実測投影データp1上の金属領域Y1を抽出する(図13(b)参照)。例えば実施例のように、実測再構成画像R1を静的な閾値処理を行い、閾値処理後の実測再構成画像R1を順投影して順投影データを作成する。これにより、図13(b)に示す実測投影データp1上の金属領域Y1を抽出する。図13(a)および図13(b)のうち少なくともいずれか一方で金属領域Y1として判別された領域を、最終結果としての金属領域Y1とする(図13(c)参照)。
 (2)上述した実施例および変形例(1)では、グラフカット法で用いるグラフGのシードを自動で設定していた。しかしながら、例えば、実測投影データp1および実測再構成画像R1を表示部11に表示し、実測投影データp1では、金属領域Y1および非金属領域Y2を入力部12から指定し、実測再構成画像R1では、金属領域Y1を入力部12から指定する。そして、実測投影データp1上で指定された金属領域Y1および非金属領域Y2をシードとして設定する。また、金属領域Y1を指定した領域を“1”とし、それ以外の領域を“0”として実測再構成画像R1を順投影し、順投影データの画素値が“0”でない領域をシードとして設定する。すなわち、金属領域特定部23は、入力部12からの入力により、実測投影データp1および実測再構成画像R1からグラフカット法におけるシード領域を設定する。なお、実測投影データp1および実測再構成画像R1からシードを設定するものであれば、上述した実施例とは異なるグラフカット法を用いてもよい。
 (3)上述した実施例および各変形例では、合成画像生成部33は、実測再構成画像R1、置換再構成画像R2および差分再構成画像R3のうち少なくとも1つの画像を画素毎に選択して合成再構成画像R4を生成する。しかしながら、これに限定されず、例えば2×2画素の領域毎に選択して合成再構成画像R4を生成するようにしてもよい。
 (4)上述した実施例および各変形例では、合成画像生成部33は、図11に示すフローチャートにおいて、アンダーシュートする画素値を補正するステップS02、および金属領域Y1などオーバーシュートする画素値を補正するステップS03のうちいずれか一方のステップを省略して合成再構成画像R4を生成するようにしてもよい。ステップS02を省略する場合は、ステップS03の判定において、「No」と判定するときに、画像R1の画素値r1を選択するようにしてもよい。同様に、ステップS03を省略する場合は、ステップS02の判定において、「No」と判定するときに、画像R1の画素値r1を選択するようにしてもよい。
 (5)上述した実施例および各変形例において、X線断層画像生成部20は、パーソナルコンピュータやワークステーション等で構成されてもよい。すなわち、X線断層画像生成部20は、プログラムを実行させるためのCPU等で構成される制御部と、プログラム等を記憶するROMやRAM等の記憶媒体で構成される記憶部とを備えてもよい。記憶部には、各ステップS01~S05,S11~S18の動作のプログラムを記憶させて、そのプログラムを制御部で実行するようにしてもよい。この場合、このプログラムに必要な操作は入力部12で入力され、プログラムの実行後の合成再構成画像R4は表示部11に表示される。
 (6)上述した実施例および各変形例において、各ステップS01~S05,S11~S18の動作のプログラムを記憶部13に記憶し、主制御部9で実行するようにしてもよい。この場合、このプログラムに必要な操作は入力部12で入力され、例えば合成再構成画像R4は表示部11に表示される。また、その動作のプログラムは、LAN等のネットワークシステムでX線断層撮影装置1と接続されたパソコン上でも実行できるようにしてもよい。
 (7)上述した実施例および各変形例では、図1に示すように、X線断層撮影装置1は、X線管3およびFPD4を互いに逆方向に平行移動して実測投影データp1を取得していた。しかしながら、X線断層撮影装置1は、X線管3およびFPD4を被検体Mの周りを回転させて実測投影データp1を取得してもよい。
 (8)上述した実施例および各変形例では、トモシンセシスに対応したX線断層撮影装置1を放射線断層撮影装置の一例として説明した。しかしながら、放射線断層撮影装置は、X線CT装置であってもよい。
 (9)上述した実施例および各変形例では、実測投影データ取得部としてFPD4を一例に説明したが、イメージインテンシファイアであってもよい。
 1  … X線断層撮影装置
 4  … フラットパネル型X線検出器(FPD)
 9  … 主制御部
 20 … X線断層画像生成部
 21 … 実測画像再構成部
 23 … 金属領域特定部
 25 … データ置換部
 27 … 置換画像再構成部
 29 … 差分処理部
 31 … 差分画像再構成部
 33 … 合成画像生成部
 th1,th2,th3 … 閾値
 Y1 … 金属領域
 Y2 … 非金属領域
 Y3,Y3a … 不明領域
 R4 … 合成再構成画像
 G  … グラフ
 p1 … 実測投影データ
 p1a … 閾値処理後投影データ
 p1b … 順投影データ
 p1c … 金属領域特定データ
 p2 … 置換投影データ
 p3 … 差分投影データ
 R1 … 実測再構成画像
 R2 … 置換再構成画像
 R3 … 差分再構成画像
 R4 … 合成再構成画像
 r1~r4 … 画素値
 Z  … 置換データ

Claims (10)

  1.  放射線高吸収体を含む被検体に対して異なる方向から取得した複数の実測投影データを画像再構成して実測再構成画像を生成する実測画像再構成部と、
     前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する高吸収体領域特定部と、
     前記高吸収体領域特定データを用いて、前記実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得するデータ置換部と、
     前記置換投影データを画像再構成して置換再構成画像を生成する置換画像再構成部と、
     を備えていることを特徴とする放射線断層画像生成装置。
  2.  請求項1に記載の放射線断層画像生成装置において、
     前記実測投影データと前記置換投影データとを差分して差分投影データを取得する差分処理部と、
     前記差分投影データを画像再構成して差分再構成画像を生成する差分画像再構成部と、
     前記実測再構成画像、前記置換再構成画像および前記差分再構成画像のうち少なくとも1つの画像を領域毎に選択して合成再構成画像を生成する合成画像生成部と、
     を備えていることを特徴とする放射線断層画像生成装置。
  3.  請求項2に記載の放射線断層画像生成装置において、
     前記合成画像生成部は、前記実測再構成画像および前記置換再構成画像内の同じ座標の画素値であって、前記置換再構成画像の画素値が前記実測再構成画像の画素値よりも大きい場合に、前記置換再構成画像の画素値を選択して合成再構成画像を生成することを特徴とする放射線断層画像生成装置。
  4.  請求項2または3に記載の放射線断層画像生成装置において、
     前記合成画像生成部は、前記実測再構成画像、前記置換再構成画像および前記差分再構成画像内の同じ座標の画素値であって、前記置換再構成画像の画素値と前記差分再構成画像の画素値の和が、前記実測再構成画像の画素値よりも小さい場合に、前記和の画素値を選択して合成再構成画像を生成することを特徴とする放射線断層画像生成装置。
  5.  請求項2から4のいずれかに記載の放射線断層画像生成装置において、
     前記合成画像生成部は、前記実測再構成画像、前記置換再構成画像および前記差分再構成画像内の同じ座標の画素値であって、前記置換再構成画像の画素値と前記差分再構成画像の画素値の和が、前記差分再構成画像の画素値よりも大きい場合に、前記実測再構成画像の画素値を選択して合成再構成画像を生成することを特徴とする放射線断層画像生成装置。
  6.  請求項1から5のいずれかに記載の放射線断層画像生成装置において、
     前記高吸収体領域特定部は、グラフカット法に基づいて、前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得することを特徴とする放射線断層画像生成装置。
  7.  請求項6に記載の放射線断層画像生成装置において、
     前記高吸収体領域特定部は、前記実測投影データおよび前記実測再構成画像の閾値処理結果に基づきグラフカット法におけるシード領域を設定することを特徴とする放射線断層画像生成装置。
  8.  請求項1から7のいずれかに記載の放射線断層画像生成装置において、
     前記実測画像再構成部、前記置換画像再構成部および前記差分画像再構成部の少なくともいずれかは、逐次近似法に基づいて画像再構成を行うことを特徴とする放射線断層画像生成装置。
  9.  放射線高吸収体を含む被検体に対して異なる方向から複数の実測投影データを取得する実測投影データ取得部と、
     前記実測投影データを画像再構成して実測再構成画像を生成する実測画像再構成部と、
     前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得する高吸収体領域特定部と、
     前記高吸収体領域特定データを用いて前記実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得するデータ置換部と、
     前記置換投影データを画像再構成して置換再構成画像を生成する置換画像再構成部と、
     を備えていることを特徴とする放射線断層撮影装置。
  10.  放射線高吸収体を含む被検体に対して異なる方向から取得した複数の実測投影データを画像再構成して実測再構成画像を生成するステップと、
     前記実測投影データおよび前記実測再構成画像から実測投影データの高吸収体領域を特定して高吸収体領域特定データを取得するステップと、
     前記高吸収体領域特定データを用いて前記実測投影データの高吸収体領域をその高吸収体領域の近傍画素に基づき得られたデータでデータ置換を行って置換投影データを取得するステップと、
     前記置換投影データを画像再構成して置換再構成画像を生成するステップと、
     を備えていることを特徴とする放射線断層画像生成方法。
PCT/JP2012/005545 2012-08-31 2012-08-31 放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法 WO2014033792A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/424,909 US9486178B2 (en) 2012-08-31 2012-08-31 Radiation tomographic image generating apparatus, and radiation tomographic image generating method
PCT/JP2012/005545 WO2014033792A1 (ja) 2012-08-31 2012-08-31 放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法
JP2014532576A JP5994858B2 (ja) 2012-08-31 2012-08-31 放射線断層画像生成装置および放射線断層画像生成方法
EP12883942.0A EP2891455B1 (en) 2012-08-31 2012-08-31 Radiation tomographic image-generating apparatus and radiation tomographic image-generating method
CN201280075569.3A CN104602606B (zh) 2012-08-31 2012-08-31 放射线断层图像生成装置以及放射线断层图像生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/005545 WO2014033792A1 (ja) 2012-08-31 2012-08-31 放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法

Publications (1)

Publication Number Publication Date
WO2014033792A1 true WO2014033792A1 (ja) 2014-03-06

Family

ID=50182643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005545 WO2014033792A1 (ja) 2012-08-31 2012-08-31 放射線断層画像生成装置、放射線断層撮影装置および放射線断層画像生成方法

Country Status (5)

Country Link
US (1) US9486178B2 (ja)
EP (1) EP2891455B1 (ja)
JP (1) JP5994858B2 (ja)
CN (1) CN104602606B (ja)
WO (1) WO2014033792A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112248A (ja) * 2014-12-16 2016-06-23 コニカミノルタ株式会社 断層画像生成システム及び画像処理装置
JP2017126304A (ja) * 2016-01-15 2017-07-20 富士ゼロックス株式会社 画像処理装置、画像処理方法、画像処理システムおよびプログラム
JP2017187824A (ja) * 2016-04-01 2017-10-12 富士フイルム株式会社 データ分類装置、方法およびプログラム
JP6317511B1 (ja) * 2017-06-30 2018-04-25 株式会社日立製作所 X線トモシンセシス装置
JP2018537224A (ja) * 2015-12-15 2018-12-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ストリークアーチファクト予測
WO2020137745A1 (ja) * 2018-12-28 2020-07-02 キヤノン株式会社 画像処理装置、画像処理システム、画像処理方法、プログラム
JP2021003240A (ja) * 2019-06-25 2021-01-14 株式会社日立製作所 X線トモシンセシス装置、画像処理装置、および、プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10395363B2 (en) * 2013-04-25 2019-08-27 Shimadzu Corporation Image processing device
US10304218B2 (en) * 2014-07-04 2019-05-28 Shimadzu Corporation Image reconstruction processing method
US9672641B2 (en) * 2015-07-09 2017-06-06 Sirona Dental Systems Gmbh Method, apparatus, and computer readable medium for removing unwanted objects from a tomogram
US11151760B2 (en) * 2015-08-17 2021-10-19 Shimadzu Corporation Image reconstruction processing method, image reconstruction processing program, and tomography device equipped with same
CN108780052B (zh) * 2016-03-11 2020-11-17 株式会社岛津制作所 图像重构处理方法、图像重构处理程序以及安装有该程序的断层摄影装置
KR102555465B1 (ko) 2018-06-11 2023-07-17 삼성전자주식회사 단층 영상의 생성 방법 및 그에 따른 엑스선 영상 장치
JP7317651B2 (ja) * 2019-09-24 2023-07-31 富士フイルムヘルスケア株式会社 医用画像処理装置および医用画像処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286463A (ja) * 2000-04-07 2001-10-16 Shimadzu Corp X線ct装置の画像処理方法及びx線ct装置並びにx線ct撮影用記録媒体
JP2005021345A (ja) * 2003-07-01 2005-01-27 Toshiba Corp X線立体再構成処理装置、x線撮影装置、x線立体再構成処理方法及びx線立体撮影補助具
JP2007520300A (ja) * 2004-02-05 2007-07-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ボクセル組織クラスを分散するctにおける高減衰オブジェクトにより生じる画像全体のアーティファクトの縮小
JP2009201840A (ja) 2008-02-29 2009-09-10 Ge Medical Systems Global Technology Co Llc X線ct装置およびプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125193A (en) * 1998-06-01 2000-09-26 Kabushiki Kaisha Toshiba Method and system for high absorption object artifacts reduction and superposition
WO2005008586A2 (en) 2003-07-18 2005-01-27 Koninklijke Philips Electronics N.V. Metal artifact correction in computed tomography
CN100589760C (zh) * 2004-11-26 2010-02-17 株式会社东芝 X射线ct装置和图像处理装置
DE102007016319A1 (de) 2007-04-04 2008-10-09 Siemens Ag Ermittlungsverfahren zum Ermitteln einer endgültigen dreidimensionalen Rekonstruktion eines Untersuchungsobjekts durch mehrfache Segmentierung von Metall und hiermit korrespondierende einrichtungstechnische Gegenstände
DE102009032059A1 (de) * 2009-07-07 2011-01-13 Siemens Aktiengesellschaft Sinogrammbearbeitung für die Metallartefaktreduktion in der Computertomographie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286463A (ja) * 2000-04-07 2001-10-16 Shimadzu Corp X線ct装置の画像処理方法及びx線ct装置並びにx線ct撮影用記録媒体
JP2005021345A (ja) * 2003-07-01 2005-01-27 Toshiba Corp X線立体再構成処理装置、x線撮影装置、x線立体再構成処理方法及びx線立体撮影補助具
JP2007520300A (ja) * 2004-02-05 2007-07-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ボクセル組織クラスを分散するctにおける高減衰オブジェクトにより生じる画像全体のアーティファクトの縮小
JP2009201840A (ja) 2008-02-29 2009-09-10 Ge Medical Systems Global Technology Co Llc X線ct装置およびプログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112248A (ja) * 2014-12-16 2016-06-23 コニカミノルタ株式会社 断層画像生成システム及び画像処理装置
JP2018537224A (ja) * 2015-12-15 2018-12-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ストリークアーチファクト予測
JP2017126304A (ja) * 2016-01-15 2017-07-20 富士ゼロックス株式会社 画像処理装置、画像処理方法、画像処理システムおよびプログラム
JP2017187824A (ja) * 2016-04-01 2017-10-12 富士フイルム株式会社 データ分類装置、方法およびプログラム
JP6317511B1 (ja) * 2017-06-30 2018-04-25 株式会社日立製作所 X線トモシンセシス装置
JP2019010378A (ja) * 2017-06-30 2019-01-24 株式会社日立製作所 X線トモシンセシス装置
WO2020137745A1 (ja) * 2018-12-28 2020-07-02 キヤノン株式会社 画像処理装置、画像処理システム、画像処理方法、プログラム
JP2020109614A (ja) * 2018-12-28 2020-07-16 キヤノン株式会社 画像処理装置、画像処理システム、画像処理方法、プログラム
US12086992B2 (en) 2018-12-28 2024-09-10 Canon Kabushiki Kaisha Image processing apparatus, image processing system, image processing method, and storage medium for classifying a plurality of pixels in two-dimensional and three-dimensional image data
JP2021003240A (ja) * 2019-06-25 2021-01-14 株式会社日立製作所 X線トモシンセシス装置、画像処理装置、および、プログラム
JP7345292B2 (ja) 2019-06-25 2023-09-15 富士フイルムヘルスケア株式会社 X線トモシンセシス装置、画像処理装置、および、プログラム

Also Published As

Publication number Publication date
EP2891455A4 (en) 2015-09-02
JPWO2014033792A1 (ja) 2016-08-08
EP2891455A1 (en) 2015-07-08
EP2891455B1 (en) 2017-11-22
US9486178B2 (en) 2016-11-08
JP5994858B2 (ja) 2016-09-21
CN104602606A (zh) 2015-05-06
CN104602606B (zh) 2017-06-23
US20150305702A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP5994858B2 (ja) 放射線断層画像生成装置および放射線断層画像生成方法
Lemmens et al. Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion
US7978886B2 (en) System and method for anatomy based reconstruction
JP2007530086A (ja) Ctにおける金属アーチファクトの訂正
US10083543B2 (en) Metal artifacts reduction for cone beam CT using image stacking
US8938108B2 (en) Method for artifact reduction in cone-beam CT images
US8855394B2 (en) Methods and apparatus for texture based filter fusion for CBCT system and cone-beam image reconstruction
JP2011172926A (ja) コーンビームコンピュータ断層撮像時密度性偽像抑圧方法及びシステム
CN109920020B (zh) 一种锥束ct病态投影重建伪影抑制方法
JP2007520300A (ja) ボクセル組織クラスを分散するctにおける高減衰オブジェクトにより生じる画像全体のアーティファクトの縮小
JP5324883B2 (ja) Ct装置および金属形状抽出方法
JP2008528228A (ja) 金属アーチファクト補正用の放射状適応フィルタ
US20140126784A1 (en) Systems and methods for performing truncation artifact correction
CN111223156A (zh) 一种用于牙科锥束ct系统的金属伪影消除方法
US11337671B2 (en) Methods and systems for improved spectral fidelity for material decomposition
JP2013192951A (ja) 画像再構成装置、画像再構成方法およびx線コンピュータ断層撮影装置
JP2015231528A (ja) X線コンピュータ断層撮像装置及び医用画像処理装置
US20210272336A1 (en) Systems and methods for interpolation with resolution preservation
JP5329103B2 (ja) 画像処理装置及びx線ct装置
US6845143B2 (en) CT image reconstruction
JP5329204B2 (ja) X線ct装置
EP3329851B1 (en) Medical imaging apparatus and method of operating the same
JP2013119021A (ja) X線ct装置及び画像処理方法
JP6615531B2 (ja) X線コンピュータ断層撮影装置及び医用画像処理装置
WO2009004571A1 (en) Method and apparatus for image reconstruction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532576

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012883942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012883942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14424909

Country of ref document: US