WO2014030705A1 - 耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法 - Google Patents

耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法 Download PDF

Info

Publication number
WO2014030705A1
WO2014030705A1 PCT/JP2013/072431 JP2013072431W WO2014030705A1 WO 2014030705 A1 WO2014030705 A1 WO 2014030705A1 JP 2013072431 W JP2013072431 W JP 2013072431W WO 2014030705 A1 WO2014030705 A1 WO 2014030705A1
Authority
WO
WIPO (PCT)
Prior art keywords
based alloy
hydrogen embrittlement
hydrogen
temperature
less
Prior art date
Application number
PCT/JP2013/072431
Other languages
English (en)
French (fr)
Inventor
孝一 高澤
榮二 前田
佐藤 慎也
隆司 波多野
高橋 達也
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to KR1020157004576A priority Critical patent/KR101704312B1/ko
Priority to CN201380044315.XA priority patent/CN104583432B/zh
Priority to US14/423,328 priority patent/US20150225827A1/en
Priority to EP13831112.1A priority patent/EP2889387B1/en
Publication of WO2014030705A1 publication Critical patent/WO2014030705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • This invention relates to a Ni-based alloy having excellent hydrogen embrittlement resistance and a method for producing a Ni-based alloy material.
  • An ammonothermal method is known as a kind of single crystal growth method, and the ammonothermal method is applied to, for example, single crystal growth of gallium nitride which is a nitride semiconductor for blue light-emitting diodes.
  • gallium nitride is expected to be used as an optical device such as a high-brightness LED or a semiconductor laser, or an electronic device used in a transistor for an electric vehicle or an amplifier for a mobile phone base station. In order to apply to these devices, it is necessary to increase the size of the gallium nitride single crystal, and a size of 2 inches or more to 6 inches or more and further larger is required.
  • vapor phase epitaxy has been the mainstream for growing gallium nitride single crystals.
  • it can be performed in high-temperature and high-pressure ammonia. It is being replaced by the ammonothermal method of growing crystals. Since the synthesis conditions in the ammonothermal method are generally a temperature of 600 to 650 ° C. and a pressure of 200 to 250 MPa, a Ni—Fe based alloy can be applied as a pressure vessel material having high strength in a high temperature environment. Yes.
  • the ammonothermal method operates at high temperature and high pressure, the raw material ammonia is decomposed and a large amount of high-pressure hydrogen is generated. Therefore, as a characteristic required for the pressure vessel material, firstly, it has excellent hydrogen embrittlement resistance at a high temperature. Moreover, since it is used in a high temperature environment, a creep characteristic is also required.
  • Patent Document 1 discloses a technique related to an Fe—Ni-based alloy having high strength and excellent hydrogen embrittlement resistance used as a high-pressure hydrogen piping material for a hydrogen station.
  • a pipe material having a two-layer structure composed of an outer layer imparted with high strength by aging and an inner layer imparted with hydrogen embrittlement resistance is presented.
  • Patent Document 2 discloses a Ni—Fe alloy that exhibits high strength and resistance to hydrogen embrittlement by controlling the particle size of the ⁇ ′ phase and the fraction of each precipitated phase.
  • Patent Document 3 discloses a technique dealing with hydrogen embrittlement characteristics at high temperatures.
  • Patent Documents 1 and 2 the temperature considered to be high strength and excellent in hydrogen embrittlement resistance is room temperature, and it is unclear whether these characteristics can be guaranteed under high temperature and high pressure.
  • Patent Document 3 deals with a high Ni-base alloy having high strength and excellent hydrogen embrittlement resistance that can be used at 200 to 500 ° C., but the alloy has characteristics at 600 to 650 ° C., which is an object of the present invention. Was not guaranteed, and the characteristics under high pressure could not be guaranteed.
  • none of the conventional Ni—Fe base alloys having high strength and excellent hydrogen embrittlement resistance can guarantee their properties under the conditions handled by the present invention.
  • the present invention has been made against the background of the above circumstances, and Ni-based alloys and Ni-based alloys having high strength and excellent hydrogen embrittlement resistance even in high-temperature and high-pressure environments such as 600 to 650 ° C. and 200 to 250 MPa. It aims at providing the manufacturing method of an alloy material.
  • the inventors have found that by limiting the composition of the Ni-based alloy to a specific range, a Ni-based alloy having high strength and excellent hydrogen embrittlement resistance can be obtained even at high temperatures and high pressures.
  • the present invention has been completed. That is, the gist of the present invention resides in the following ⁇ 1> to ⁇ 7>.
  • the Ni-based alloy according to ⁇ 1> or ⁇ 2>, which is 0.1 or less at ° C. ⁇ 4> The Ni-based alloy according to any one of ⁇ 1> to ⁇ 3>, wherein a creep rupture time at 700 ° C. and 333 MPa is 1,500 hours or more.
  • ⁇ 5> The Ni-based alloy according to any one of ⁇ 1> to ⁇ 4>, wherein a minimum creep rate at 700 ° C. and 333 MPa is 1 ⁇ 10 ⁇ 8 s ⁇ 1 or less.
  • ⁇ 6> The Ni-based alloy according to any one of ⁇ 1> to ⁇ 5>, which is used for an ammonothermal pressure vessel material.
  • Ni-based alloy having good hydrogen embrittlement resistance at a high temperature such as 600 ° C. or more and excellent creep properties at a higher temperature range such as 700 ° C.
  • a pressure vessel that can cope with higher temperature and high pressure environments.
  • gallium nitride useful as an electronic device Single crystal growth, mass production, and cost reduction are expected to make significant progress.
  • FIG. 1 shows the relationship between the hydrogen embrittlement index and the P content of the inventive material and the comparative material.
  • FIG. 2 shows the relationship between the creep stress and the creep rupture time of the inventive material and the comparative material.
  • FIG. 3 shows the relationship between the creep test time and the creep speed of the inventive material and the comparative material.
  • weight% weight ratio
  • weight ppm weight ppm
  • the Ni-based alloy according to the present invention has a mass ratio of Fe: 30 to 40%, Cr: 14 to 16%, Ti: 1.2 to 1.7%, Al: 1.1 to 1.5%, Nb It is characterized by containing 1.9 to 2.7% and P: 40 to 150 ppm, with the balance being Ni and inevitable impurities. Further, it is more preferable to contain at least one of Mg: 0.01% or less and Zr: 0.1% or less. The reason for determining the alloy composition will be described below. Hereinafter, the content of each element other than P is indicated by mass%, and P is indicated by mass ppm.
  • Fe 30-40% Increasing the content of Fe is effective in reducing the cost of the alloy. However, if Fe is contained excessively together with Nb, a Laves phase is generated, which leads to deterioration of material properties such as increased hydrogen embrittlement sensitivity. Therefore, the Fe content is 30 to 40%. For the same reason, it is preferable to set the lower limit to 33% and the upper limit to 38%.
  • Cr 14-16% Cr is an element necessary for increasing the oxidation resistance, corrosion resistance, and strength of the alloy. Moreover, it combines with C to form carbides and increase the high temperature strength. However, if the content is too large, the matrix is destabilized and promotes the formation of harmful TCP phases such as ⁇ phase and ⁇ -Cr, which adversely affects ductility and toughness. In addition, the ⁇ phase may act as a hydrogen accumulation site in the alloy and may increase the sensitivity to hydrogen embrittlement. Therefore, the Cr content is limited to 14 to 16%.
  • Ti 1.2 to 1.7%
  • Ti mainly forms MC carbides to suppress the grain coarsening of the alloy, and combines with Ni to precipitate a ⁇ ′ phase, contributing to the precipitation strengthening of the alloy.
  • the stability of the ⁇ ′ phase at high temperature is lowered, and further, the ⁇ phase is generated, and the strength, ductility, toughness, and structure stability at high temperature for a long time are impaired.
  • the ⁇ phase also acts as a hydrogen accumulation site in the alloy and may increase the sensitivity to hydrogen embrittlement. Therefore, the Ti content is limited to the range of 1.2 to 1.7%.
  • Al 1.1 to 1.5% Al combines with Ni to precipitate a ⁇ ′ phase, contributing to precipitation strengthening of the alloy. However, if the content is too large, the ⁇ 'phase aggregates and coarsens at the grain boundaries, significantly impairing the mechanical properties at high temperatures and lowering the hot workability. Therefore, the Al content is limited to 1.1 to 1.5%.
  • Nb 1.9 to 2.7%
  • Nb is an element that stabilizes the ⁇ 'phase and contributes to an increase in strength.
  • Nb promotes the precipitation of ⁇ , ⁇ , and Laves phases, which are harmful phases, and the structural stability is significantly reduced. Increases embrittlement susceptibility. Therefore, the Nb content is limited to 1.9 to 2.7%.
  • P 40 to 150 ppm P is included because it is considered to have an effect of suppressing the excessive accumulation of hydrogen at the grain boundary and increasing the hydrogen embrittlement sensitivity by increasing the consistency of the grain boundary.
  • a P content of 40 ppm or more is required. It also has the effect of increasing the creep rupture time and reducing the minimum creep rate.
  • the P content is limited to 40 to 150 ppm.
  • the lower limit is preferably 45 ppm and the upper limit is preferably 140 ppm.
  • Mg 0.01% or less Mg is mainly combined with S to form a sulfide and enhance hot workability, so it is contained as desired. However, if the content is too large, the grain boundaries are embrittled and the hot workability is lowered, so the Mg content is preferably 0.01% or less. In order to fully express the above effect, the lower limit of the Mg content is more preferably 0.0005% or more.
  • Zr 0.1% or less Zr is segregated at the grain boundaries and contributes to the improvement of high temperature characteristics. However, if excessively contained, the hot workability of the alloy is lowered, so Zr is preferably 0.1% or less. Moreover, in order to acquire said effect, it is more preferable to make it contain 0.01% or more.
  • Mg and Zr are included in the above range, but it is more preferable that both Mg and Zr are included from the viewpoint of ensuring good hot workability.
  • the balance in the Ni-based alloy according to the present invention is Ni and inevitable impurities.
  • the inevitable impurities are elements that are included in the alloy raw material from the beginning or are inevitable to be mixed during alloy melting, and examples thereof include O, N, and S.
  • the content of inevitable impurities in the entire Ni-based alloy is preferably as small as possible, and more preferably 50 ppm or less from the viewpoint of high cleaning of the alloy.
  • the Ni-based alloy of the present invention is excellent in hydrogen embrittlement resistance and can be suitably used as a material exposed to a hydrogen environment. Moreover, it is excellent in high strength characteristics at high temperatures, and can be suitably used for ammonothermal pressure vessel materials.
  • the Ni-based alloy of the present invention can be melted by a conventional method, and the melting method is not particularly limited as the present invention.
  • the Ni-based alloy of the present invention can be subjected to processing such as forging as desired, and can also be subjected to solution treatment and heat treatment (aging treatment) by aging.
  • the solution treatment can be performed, for example, at 1040 to 1140 ° C. for 4 to 10 hours.
  • the aging treatment is preferably performed in at least two stages.
  • the aging treatment can be performed twice at a temperature of 825 to 855 ° C. and a temperature of 710 to 740 ° C.
  • the aging treatment temperature is preferably carried out in the order of 825 to 855 ° C. (first stage) and then 710 to 740 ° C. (second stage).
  • the aging treatment time is more preferably 4 to 10 hours for the first stage and 4 to 24 hours for the second stage.
  • the resulting tensile strength is preferably 1000 MPa or more at room temperature and 820 MPa or more at 625 ° C.
  • the temperature of the first stage of the aging treatment is less than 825 ° C. or more than 855 ° C., the ⁇ ′ phase cannot be sufficiently grown and the above tensile strength may not be ensured. Further, if the temperature of the second stage of the aging treatment is less than 710 ° C., M 23 C 6 type carbide is excessively precipitated, and if it exceeds 740 ° C., the MC type carbide is coarsened, both of which decrease the hot ductility. There is a risk of adverse effects.
  • EI (RA A ⁇ RA H ) / RA A, where the restriction in the tensile test of the hydrogen charge material and the non-hydrogen charge material is RA H and RA A , respectively.
  • a Ni-based alloy capable of obtaining hydrogen embrittlement resistance with a hydrogen embrittlement index EI of 0.1 or less at 625 ° C. is more preferred.
  • the hydrogen charge simulates an intrusion of 50 ppm of hydrogen.
  • Ni-based alloys obtained as described above a Ni-based alloy capable of obtaining high-temperature creep characteristics in which the creep rupture time at 700 ° C. and 333 MPa is 1,500 hours or more is more preferable. Further, among the Ni-based alloys obtained as described above, a Ni-based alloy capable of obtaining high-temperature creep characteristics in which the minimum creep rate at 700 ° C. and 333 MPa is 1 ⁇ 10 ⁇ 8 s ⁇ 1 or less is more preferable.
  • Ni-based alloy having the hydrogen embrittlement index and high-temperature creep characteristics satisfies the above-described composition conditions, and can be obtained particularly by containing 40 ppm or more of P.
  • the material using the Ni-based alloy according to the present invention can be used for a desired application capable of exhibiting hydrogen embrittlement resistance through plastic working, machining, etc., and particularly suitably used for ammonothermal pressure vessel materials. can do. Thereby, for example, it is possible to realize enlargement, mass production, and cost reduction of a gallium nitride single crystal.
  • the hydrogen embrittlement resistance was evaluated according to the following procedure. First, test pieces having a parallel part diameter and length of 10 mm and 50 mm, respectively, were held in an atmosphere of a temperature of 450 ° C. and a hydrogen pressure of 25 MPa for 72 hours to charge hydrogen. This hydrogen charge condition is set so as to simulate 50 ppm which is the amount of hydrogen assumed to enter the material by the actual ammonothermal method. A tensile test was performed at 625 ° C. using the hydrogen-charged material after hydrogen charging, and the tensile strength and the drawing were measured. Tensile strength and drawing were measured in the same manner for a test piece (non-hydrogen charged material) in a state where hydrogen was not charged.
  • the hydrogen embrittlement resistance was evaluated by calculating the hydrogen embrittlement index EI defined by the following formula (1) using the tensile test result at 625 ° C. of the non-hydrogen charge material.
  • Hydrogen embrittlement index EI (RA A ⁇ RA H ) / RA A (1)
  • RA A is a restriction for a non-hydrogen charge material
  • RA H is a restriction for a hydrogen charge material. The smaller the hydrogen embrittlement index, the better the hydrogen embrittlement resistance.
  • Creep characteristics were evaluated by performing a creep rupture test and a creep plate test. In all the tests, the test temperature was 700 ° C., the test stress was 333 MPa and 275 MPa in the rupture test, and 333 MPa in the rate test.
  • Table 2 shows the tensile strength, drawing, and hydrogen embrittlement index at 625 ° C. for the hydrogen charged material and the non-hydrogen charged material.
  • the hydrogen embrittlement index of the inventive material P1 was negative, but in Table 2, this is indicated as 0.00 for convenience.
  • the inventive materials P1 and P2 (hereinafter sometimes collectively referred to as “inventive materials”) and the comparative materials 1 and 2 (hereinafter collectively referred to as “comparative materials”) at 625 ° C.
  • the relationship between the hydrogen embrittlement index and the P content in the Ni-based alloy is shown. From the figure, it was found that the hydrogen embrittlement index of the inventive material is significantly smaller than that of the comparative material, and the inventive material is extremely excellent in hydrogen embrittlement resistance at high temperatures. As indicated by the shaded portion in the figure, when the P content is 40 ppm or more, the hydrogen embrittlement index becomes 0.1 or less, and the hydrogen embrittlement sensitivity is reduced until the influence of hydrogen can be almost ignored.
  • P has the effect of suppressing the excessive accumulation of hydrogen at the grain boundary by increasing the consistency of the grain boundary and lowering the hydrogen embrittlement susceptibility, and improving the hydrogen embrittlement resistance by increasing the P content.
  • a P content of 40 ppm or more is necessary.
  • the rupture time of the inventive material is significantly longer than that of the comparative material, the rupture time when the test stress is 333 MPa is at least 10 times that of the comparative material 1, and the rupture time is about 1500 hours for the inventive material P1.
  • the invention material P2 took about 2000 hours.
  • the minimum creep rate of the inventive material is at least 1/4 or less than that of the comparative material 2, and the value is 1 ⁇ 10 ⁇ 8 s ⁇ 1 (3.6 ⁇ 10 ⁇ 5 h ⁇ 1 ). It turns out that it is the following. From the above, it has been clarified that the inventive material according to the present invention has excellent creep characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

 本発明は、高温、高圧の環境においても高強度で水素脆化特性に優れ、特にアモノサーマルの圧力容器などに使用可能なNi基合金を提供することを課題とする。本発明は、質量比で、Fe:30~40%、Cr:14~16%、Ti:1.2~1.7%、Al:1.1~1.5%、Nb:1.9~2.7%及びP:40~150ppmを含有し、残部がNiおよび不可避不純物であるNi基合金に関する。

Description

耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法
 この発明は、耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法に関するものである。
 単結晶育成法の一種としてアモノサーマル法が知られており、該アモノサーマル法は、例えば青色発光ダイオード用窒化物半導体である窒化ガリウムの単結晶育成などに応用されている。
 窒化ガリウムは、高輝度LEDや半導体レーザなどの光学デバイス、あるいは電気自動車用トランジスタ、携帯電話基地局用アンプなどに用いられる電子デバイスとして利用が期待されている。これらのデバイスに応用するためには、窒化ガリウム単結晶のサイズを大きくする必要があり、2インチ以上から6インチ以上、さらにはそれ以上の大きさが求められている。
 従来、窒化ガリウム単結晶の育成には気相成長法が主流であったが、上記のような結晶の大型化や量産化、あるいは低コスト化に対応するために、高温、高圧のアンモニア中で結晶を成長させるアモノサーマル法に置き換わりつつある。アモノサーマル法での合成条件は概ね温度が600~650℃、圧力が200~250MPaであることから、高温環境下で高い強度をもつ圧力容器材料としてNi-Fe基合金の適用が図られている。
 アモノサーマル法では高温、高圧下での操業となるため、原料のアンモニアが分解されて大量の高圧水素が発生する。従って、圧力容器材料に求められる特性としてはまず高温で優れた耐水素脆化特性を有することが挙げられる。また、高温環境下で使用されることからクリープ特性も要求される。
 従来、高強度で耐水素脆化特性に優れたNi-Fe基合金に関する技術はいくつか開発されている。例えば、特許文献1では、水素ステーション用高圧水素配管材料として用いられる高強度で耐水素脆化特性に優れたFe-Ni基合金に関する技術が開示されている。該文献では時効により高強度を付与した外層と、耐水素脆化特性を付与した内層から成る2層構造の配管材料が提示されている。
 特許文献2では、γ’相の粒径や各析出相の分率を制御して高強度や耐水素脆化特性を発現させたNi-Fe合金が開示されている。
 また、特許文献3では高温における水素脆化特性などを扱った技術が開示されている。
日本国特開2010-174360号公報 日本国特開2009-68031号公報 日本国特開平5-255788号公報
 しかし、特許文献1、2で高強度で耐水素脆化特性に優れるとされる温度は室温であり、高温高圧下ではそれらの特性を保証できるかは不明である。また、特許文献3では、200~500℃で使用できる高強度で耐水素脆化特性に優れた高Ni基合金を扱っているが、該合金では本発明の課題である600~650℃における特性は担保できないと考えられ、また高圧下での特性については何ら保証できるものでなかった。
 前記のように、従来の高強度で耐水素脆化特性に優れたNi-Fe基合金は、いずれも本発明が扱う条件下でそれらの特性が保証できるものではなかった。
 本発明は、上記事情を背景としてなされたものであり、600~650℃及び200~250MPaのような高温、高圧の環境においても高強度で耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法を提供することを目的とする。
 本発明者らは、Ni基合金の組成をある特定の範囲に限定することにより、高温、高圧下においても高強度で耐水素脆化特性にも優れたNi基合金が得られることを見出し、本発明を完成するに至った。すなわち、本発明の要旨は以下の<1>~<7>に存する。
<1>質量比で、Fe:30~40%、Cr:14~16%、Ti:1.2~1.7%、Al:1.1~1.5%、Nb:1.9~2.7%およびP:40~150ppmを含有し、残部がNiおよび不可避不純物である、Ni基合金。
<2>質量比で、さらにMg:0.01%以下およびZr:0.1%以下の少なくともいずれか一方を含有する、前記<1>に記載のNi基合金。
<3>水素チャージ材および非水素チャージ材の引張試験における絞りをそれぞれRAおよびRAとしたとき、EI=(RA-RA)/RAで定義される水素脆化指数EIが625℃にて0.1以下である、前記<1>または<2>に記載のNi基合金。
<4>700℃及び333MPaにおけるクリープ破断時間が1,500時間以上である、前記<1>~<3>のいずれか1に記載のNi基合金。
<5>700℃及び333MPaにおける最小クリープ速度が1×10-8-1以下である、前記<1>~<4>のいずれか1に記載のNi基合金。
<6>アモノサーマル圧力容器材料に用いる、前記<1>~<5>のいずれか1に記載のNi基合金。
<7>前記<1>または<2>に記載のNi基合金を溶体化処理後、825~855℃の温度と710~740℃の温度で2回時効処理を行う、Ni基合金材の製造方法。
 本発明によれば、600℃以上のような高温における耐水素脆化特性が良好で、且つ700℃等のより高温域において優れたクリープ特性を有するNi基合金を提供することが可能となる。さらに従たる効果として、前記Ni基合金をアモノサーマル用圧力容器材料に適用することにより、より高温・高圧の環境に対応可能な圧力容器の製造が可能となり、例えば電子デバイスとして有用な窒化ガリウム単結晶の大型化、量産化および低コスト化が大きく前進するものと期待される。
図1は発明材と比較材の水素脆化指数とP含有量の関係を示したものである。 図2は発明材と比較材のクリープ応力とクリープ破断時間の関係を示したものである。 図3は発明材と比較材のクリープ試験時間とクリープ速度の関係を示したものである。
 以下、本発明の実施の形態につき詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更して実施することができる。
 ここで“重量%”、“重量比”及び“重量ppm”と、“質量%”、“質量比”及び“質量ppm”とは、それぞれ同義である。
 本発明に係るNi基合金は、質量比で、Fe:30~40%、Cr:14~16%、Ti:1.2~1.7%、Al:1.1~1.5%、Nb:1.9~2.7%およびP:40~150ppmを含有し、残部がNiおよび不可避不純物であることを特徴とする。
 また、さらにMg:0.01%以下及びZr:0.1%以下の少なくともいずれか一方を含有することが、より好ましい。
 以下に上記合金組成を決定した理由を説明する。以降、P以外の各元素の含有量は質量%で示し、Pは、質量ppmで示す。
Fe:30~40%
 Feは含有量を多くすると合金のコスト低減に効果があるが、Nb含有とともに過剰にFeを含有するとLaves相が生成し、水素脆化感受性の増大など材料特性の悪化を招く。そのため、Feの含有量は30~40%とする。なお、同様の理由で下限を33%、上限を38%とするのが好ましい。
Cr:14~16%
 Crは合金の耐酸化性、耐食性、強度を高めるために必要な元素である。また、Cと結合して炭化物を生成し高温強度を高める。しかし、含有量が多すぎるとマトリクスの不安定化を招き、σ相やα-Crなどの有害なTCP相の生成を助長して延性や靭性に悪影響をもたらす。またσ相は合金中で水素集積サイトとして働き水素脆化感受性を高めるおそれがある。従って、Crの含有量は14~16%に限定する。
Ti:1.2~1.7%
 Tiは主にMC炭化物を形成して合金の結晶粒粗大化を抑制するとともに、Niと結合してγ’相を析出させ、合金の析出強化に寄与する。しかし過度に含有させると高温でのγ’相の安定性を低下させ、さらにη相を生成し強度や延性、靭性、高温長時間での組織安定性を損ねる。また、η相も合金中で水素集積サイトとして働き水素脆化感受性を高めるおそれがある。従って、Tiの含有量は1.2~1.7%の範囲に限定する。
Al:1.1~1.5%
 AlはNiと結合してγ’相を析出させ、合金の析出強化に寄与する。しかし含有量が多すぎるとγ’相が粒界に凝集して粗大化し、高温での機械的特性を著しく損ねるほか、熱間加工性も低下させる。従って、Al含有量は1.1~1.5%に限定する。
Nb:1.9~2.7%
 Nbはγ’相を安定化させ強度増大に寄与する元素であるが、過剰に含有させると有害相であるη相、σ相およびLaves相の析出が助長され、組織安定性が著しく低下し水素脆化感受性が高まる。したがって、Nbの含有量は1.9~2.7%に限定する。
P:40~150ppm
 Pは粒界の整合性を増大させることにより粒界における水素の過剰集積を抑え、水素脆化感受性を低下させる効果があると考えられるので含有させる。上記の効果を得るには40ppm以上のP含有量が必要である。また、クリープ破断時間を長くし最小クリープ速度を低下させる効果がある。しかし、過剰に含有するとPの粒界偏析が過多となり逆に粒界の整合性を低下させ、水素脆化感受性低減効果を喪失する可能性がある。従って、Pの含有量は40~150ppmに限定する。なお、同様に理由で、下限を45ppm、上限を140ppmとするのが好ましい。
Mg:0.01%以下
 Mgは主にSと結合して硫化物を形成し、熱間加工性を高めるので所望により含有させる。但し含有量が多すぎると逆に粒界が脆化して熱間加工性を低下させるので、Mgの含有量は0.01%以下にすることが好ましい。なお上記の効果を十分発現させるため、Mg含有量の下限は0.0005%以上とするのがより好ましい。
Zr:0.1%以下
 Zrは粒界に偏析して高温特性向上に寄与するので所望により含有させる。但し、過剰に含有させると合金の熱間加工性を低下させるので、Zrは0.1%以下とすることが好ましい。また上記の効果を得るためには0.01%以上含有させるのがより好ましい。
 MgとZrのうち少なくともいずれか一方が上記範囲で含まれることが好ましいが、MgとZrを共に含むことが良好な熱間加工性確保の点からより好ましい。
 本発明に係るNi基合金における残部はNi及び不可避不純物である。
 不可避不純物とは合金原料に当初から含まれていたり、合金溶製中の混入が避けられない元素のことであり、例えばO、N、S等が挙げられる。不可避不純物のNi基合金全体における含有量は少ないほど好ましく、50ppm以下が該合金の高清浄化の点からより好ましい。
 本発明のNi基合金は、耐水素脆化特性に優れており、水素環境に晒される材料として好適に使用することができる。また、高温での高強度特性に優れており、アモノサーマル圧力容器材料に好適に用いることができる。
 本発明のNi基合金は、常法により溶製することができ、本発明としては特に溶製の方法が限定されるものではない。
 本発明のNi基合金は、所望により鍛造などの加工を行うことができ、また、溶体化処理および時効による熱処理(時効処理)を施すこともできる。
 溶体化処理は、例えば1040~1140℃で4~10時間の条件で行うことができる。また、時効処理は、少なくとも2段で行う処理が好ましく、例えば825~855℃の温度と710~740℃の温度で2回時効処理を行うことができる。時効処理温度は、始めに825~855℃(1段目)、続いて710~740℃(2段目)の順序で行うことが好ましい。また、時効処理の時間は1段目を4~10時間、2段目を4~24時間とすることがより好ましい。
 上記溶体化処理と時効処理の条件を採用することで、室温および600℃以上の高温における高い引張強度をそれぞれ確保することができ、耐水素脆化特性に優れたNi基合金材を得ることができる。得られる引張強度は、室温において1000MPa以上、625℃において820MPa以上であることが好ましい。
 なお、時効処理の1段目の温度を825℃未満あるいは855℃超とすると、γ’相が十分成長できず上記の引張強度を確保することができないおそれがある。
 また、時効処理の2段目の温度を710℃未満とするとM23型の炭化物が過剰に析出し、740℃超とするとMC型炭化物が粗大化することによって、いずれも高温延性の低下など悪影響をもたらすおそれがある。
 上記で得られるNi基合金のうち、水素チャージ材および非水素チャージ材の引張試験における絞りをそれぞれRAおよびRAとしたとき、EI=(RA-RA)/RAで定義される水素脆化指数EIが625℃にて0.1以下となる耐水素脆化特性を得られるNi基合金がより好ましい。水素チャージは、50ppmの水素量侵入が模擬される。
 また、上記で得られるNi基合金のうち、700℃及び333MPaにおけるクリープ破断時間が1,500時間以上となる高温クリープ特性を得られるNi基合金もより好ましい。
 さらに、上記で得られるNi基合金のうち、700℃及び333MPaにおける最小クリープ速度が1×10-8-1以下となる高温クリープ特性を得られるNi基合金もより好ましい。
 なお、上記水素脆化指数や高温クリープ特性を有するNi基合金は、上述した組成条件を満たし、特にPを40ppm以上含有することによって得ることができる。
 本発明に係るNi基合金を用いた材料は、塑性加工や機械加工などを経て耐水素脆化特性を発揮できる所望の用途に使用することができ、特にアモノサーマル圧力容器材料に好適に使用することができる。これにより、例えば窒化ガリウム単結晶の大型化、量産化および低コスト化を実現することが可能となる。
 以下に、本発明の実施例を説明する。
 表1に示す組成となるように、真空誘導溶解法で50kg丸型鋼塊の素材からそれぞれ発明材2種と比較材2種を得るために溶製し、鍛造して板状とした。
 得られた鍛造板を適当な大きさに切り出し、1040℃×4時間の溶体化処理と、840℃×10時間次いで730℃×24時間の2段時効処理を行い試験材(発明材P1、P2及び比較材1、2)とした。続いて試験材を機械加工し、耐水素脆化特性評価用引張試験片とクリープ試験片とした。
Figure JPOXMLDOC01-appb-T000001
 耐水素脆化特性の評価は以下の手順で行った。
 先ず、平行部の直径および長さがそれぞれ10mmおよび50mmの試験片を、温度450℃、水素圧力25MPaの雰囲気にて72時間保持し、水素をチャージした。この水素チャージ条件は実際のアモノサーマル法で材料内に侵入すると想定されている水素量である50ppmを模擬するように設定している。水素チャージ後の水素チャージ材を用いて、625℃にて引張試験を行い、引張強度及び絞りを測定した。
 水素をチャージしない状態の試験片(非水素チャージ材)でも同様に引張強度及び絞りを測定した。
 耐水素脆化特性は、非水素チャージ材の625℃における引張試験結果も用いて、次式(1)で定義する水素脆化指数EIを算出して評価した。
  水素脆化指数EI=(RA-RA)/RA ・・・(1)
 ここで、RAは非水素チャージ材の絞り、RAは水素チャージ材の絞りである。
 水素脆化指数の値は小さいほど耐水素脆化特性に優れることを示している。
 クリープ特性はクリープラプチャー試験とクリープレート試験を行って評価した。いずれの試験も試験温度は700℃とし、試験応力はラプチャー試験では333MPaと275MPa、レート試験では333MPaとした。
 表2に水素チャージ材と非水素チャージ材の625℃における引張強度、絞りおよび水素脆化指数を示す。なお発明材P1の水素脆化指数は負になったが、表2では便宜上これを0.00と表示している。
Figure JPOXMLDOC01-appb-T000002
 図1に発明材P1、P2(以下、まとめて「発明材」と称することがある。)と比較材1、2(以下、まとめて「比較材」と称することがある。)の625℃における水素脆化指数とNi基合金中のP含有量の関係を示す。
 同図より、発明材の水素脆化指数は比較材に比べて著しく小さく、発明材は高温での耐水素脆化特性に極めて優れることが判った。同図中の網掛け部で示すように、P含有量が40ppm以上になると水素脆化指数が0.1以下となり、水素の影響がほぼ無視できるまで水素脆化感受性が低減する。これより、Pは粒界の整合性を増大させることにより粒界における水素の過剰集積を抑え、水素脆化感受性を低下させる効果があり、P含有量を増やして耐水素脆化特性を改善するためには、40ppm以上のP含有量が必要であることが判った。
 図2および図3にクリープラプチャー試験結果とクリープレート試験結果をそれぞれ示す。図2より、発明材の破断時間は比較材を大幅に上回っており、試験応力が333MPaの場合の破断時間は比較材1の少なくとも10倍以上であり、破断時間は発明材P1で1500時間程度、発明材P2で2000時間程度であった。また、図3より発明材の最小クリープ速度は比較材2に比べて少なくとも4分の1以下であり、その値は1×10-8-1(3.6×10-5-1)以下であることが分かった。
 以上より、本発明に係る発明材は優れたクリープ特性を有していることが明らかとなった。
 以上、本発明について上記実施形態および実施例に基づいて説明を行ったが、本発明は上記実施形態および実施例の内容に限定されるものではなく、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は2012年8月24日出願の日本特許出願(特願2012-184966)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (7)

  1.  質量比で、Fe:30~40%、Cr:14~16%、Ti:1.2~1.7%、Al:1.1~1.5%、Nb:1.9~2.7%およびP:40~150ppmを含有し、残部がNiおよび不可避不純物である、Ni基合金。
  2.  質量比で、さらにMg:0.01%以下およびZr:0.1%以下の少なくともいずれか一方を含有する、請求項1に記載のNi基合金。
  3.  水素チャージ材および非水素チャージ材の引張試験における絞りをそれぞれRAおよびRAとしたとき、EI=(RA-RA)/RAで定義される水素脆化指数EIが625℃にて0.1以下である、請求項1または2に記載のNi基合金。
  4.  700℃及び333MPaにおけるクリープ破断時間が1,500時間以上である、請求項1~3のいずれか1項に記載のNi基合金。
  5.  700℃及び333MPaにおける最小クリープ速度が1×10-8-1以下である、請求項1~4のいずれか1項に記載のNi基合金。
  6.  アモノサーマル圧力容器材料に用いる、請求項1~5のいずれか1項に記載のNi基合金。
  7.  請求項1または2に記載のNi基合金を溶体化処理後、825~855℃の温度と710~740℃の温度で2回時効処理を行う、Ni基合金材の製造方法。
PCT/JP2013/072431 2012-08-24 2013-08-22 耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法 WO2014030705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157004576A KR101704312B1 (ko) 2012-08-24 2013-08-22 내수소 취화 특성에 우수한 Ni기 합금 및 Ni기 합금재의 제조 방법
CN201380044315.XA CN104583432B (zh) 2012-08-24 2013-08-22 具有优异抗氢脆性的Ni基合金和用于制造Ni基合金材料的方法
US14/423,328 US20150225827A1 (en) 2012-08-24 2013-08-22 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
EP13831112.1A EP2889387B1 (en) 2012-08-24 2013-08-22 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-184966 2012-08-24
JP2012184966A JP5599850B2 (ja) 2012-08-24 2012-08-24 耐水素脆化特性に優れたNi基合金および耐水素脆化特性に優れたNi基合金材の製造方法

Publications (1)

Publication Number Publication Date
WO2014030705A1 true WO2014030705A1 (ja) 2014-02-27

Family

ID=50150009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072431 WO2014030705A1 (ja) 2012-08-24 2013-08-22 耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法

Country Status (6)

Country Link
US (1) US20150225827A1 (ja)
EP (1) EP2889387B1 (ja)
JP (1) JP5599850B2 (ja)
KR (1) KR101704312B1 (ja)
CN (1) CN104583432B (ja)
WO (1) WO2014030705A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176665B2 (ja) * 2014-02-20 2017-08-09 株式会社日本製鋼所 Ni−Fe基合金およびNi−Fe基合金材の製造方法
US12023643B1 (en) * 2023-12-14 2024-07-02 First Ammonia Motors, Inc. System and method for heating gas in a continuous focused path within an electric catalyst unit
US12109546B1 (en) 2023-12-14 2024-10-08 First Ammonia Motors, Inc. System and method for heating gas in a continuous focused path within an electric heating unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255788A (ja) 1992-03-12 1993-10-05 Sumitomo Metal Ind Ltd 耐水素脆化高Ni基合金およびその製造方法
JP2007056320A (ja) * 2005-08-25 2007-03-08 Solvothermal Kessho Seicho Gijutsu Kenkyu Kumiai Ni基耐食合金および該合金からなる超臨界アンモニア反応機器用耐食部材
JP2009068031A (ja) 2007-09-11 2009-04-02 Hitachi Ltd 高強度FeNi基合金
JP2010174360A (ja) 2009-02-02 2010-08-12 Hitachi Ltd 耐水素脆化材料及びその製造方法
JP2011127204A (ja) * 2009-12-21 2011-06-30 Hitachi Metals Ltd 耐水素脆性高強度オーステナイト系合金
JP2012046787A (ja) * 2010-08-26 2012-03-08 Hitachi Ltd 蒸気タービン用鍛造合金、それを用いた蒸気タービンロータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149441A (en) * 1981-03-12 1982-09-16 Res Inst Electric Magnetic Alloys Elinver type alloy for high temperature and preparation thereof
JP3058794B2 (ja) * 1993-08-19 2000-07-04 日立金属株式会社 Fe−Ni−Cr基超耐熱合金、エンジンバルブおよび排ガス触媒用ニットメッシュ
JP2003164946A (ja) * 2001-11-29 2003-06-10 Daido Steel Co Ltd ニッケル基超合金のインゴットを製造する方法
JP4123064B2 (ja) * 2003-06-13 2008-07-23 株式会社日立製作所 蒸気タービンロータおよび蒸気タービンプラント
JP5147037B2 (ja) * 2006-04-14 2013-02-20 三菱マテリアル株式会社 ガスタービン燃焼器用Ni基耐熱合金
JP4261562B2 (ja) * 2006-08-25 2009-04-30 株式会社日立製作所 高温強度と高温延性の優れたNi−Fe基鍛造超合金とその製造法および蒸気タービンロータ
JP4784501B2 (ja) * 2006-12-12 2011-10-05 株式会社日立製作所 高圧水素流量計
SE533124C2 (sv) * 2008-05-28 2010-06-29 Westinghouse Electric Sweden Spridare för kärnbränslestavar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255788A (ja) 1992-03-12 1993-10-05 Sumitomo Metal Ind Ltd 耐水素脆化高Ni基合金およびその製造方法
JP2007056320A (ja) * 2005-08-25 2007-03-08 Solvothermal Kessho Seicho Gijutsu Kenkyu Kumiai Ni基耐食合金および該合金からなる超臨界アンモニア反応機器用耐食部材
JP2009068031A (ja) 2007-09-11 2009-04-02 Hitachi Ltd 高強度FeNi基合金
JP2010174360A (ja) 2009-02-02 2010-08-12 Hitachi Ltd 耐水素脆化材料及びその製造方法
JP2011127204A (ja) * 2009-12-21 2011-06-30 Hitachi Metals Ltd 耐水素脆性高強度オーステナイト系合金
JP2012046787A (ja) * 2010-08-26 2012-03-08 Hitachi Ltd 蒸気タービン用鍛造合金、それを用いた蒸気タービンロータ

Also Published As

Publication number Publication date
JP5599850B2 (ja) 2014-10-01
CN104583432B (zh) 2017-05-24
KR101704312B1 (ko) 2017-02-07
US20150225827A1 (en) 2015-08-13
EP2889387B1 (en) 2018-05-02
JP2014043597A (ja) 2014-03-13
CN104583432A (zh) 2015-04-29
EP2889387A1 (en) 2015-07-01
KR20150034282A (ko) 2015-04-02
EP2889387A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5582532B2 (ja) Co基合金
CN101248198B (zh) 高耐热性、高强度Co基合金及其制造方法
CN113646458B (zh) 具有良好耐腐蚀性和高拉伸强度的镍合金以及制造半成品的方法
JP2015129341A (ja) 高温強度に優れた熱間鍛造可能なNi基超合金
JP6733210B2 (ja) 熱間鍛造用Ni基超合金
JP2003253363A (ja) 耐熱ばね用Ni基合金、その合金を用いた耐熱ばねとその製造方法
JP6842316B2 (ja) Ni基合金、ガスタービン材およびクリープ特性に優れたNi基合金の製造方法
CN107460374A (zh) 高强度Ni基高温合金
JP6733211B2 (ja) 熱間鍛造用Ni基超合金
JP6293682B2 (ja) 高強度Ni基超合金
WO2014030705A1 (ja) 耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法
JP5769204B2 (ja) 高温特性および耐水素脆化特性に優れたFe−Ni基合金およびその製造方法
JP6738010B2 (ja) 高温強度特性および高温クリープ特性に優れたニッケル基合金
JP6176665B2 (ja) Ni−Fe基合金およびNi−Fe基合金材の製造方法
US20170342525A1 (en) High strength ni-based superalloy
WO2016121495A1 (ja) 高温クリープ特性に優れたNi基合金およびこれを用いたガスタービン用部材
JP2015042770A (ja) 高強度Ni基合金
JP6025216B2 (ja) Fe−Ni基合金およびFe−Ni基合金の製造法
JP2015108177A (ja) ニッケル基合金
JP2019085594A (ja) Fe−Ni基合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14423328

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157004576

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013831112

Country of ref document: EP