US20170342525A1 - High strength ni-based superalloy - Google Patents

High strength ni-based superalloy Download PDF

Info

Publication number
US20170342525A1
US20170342525A1 US15/165,570 US201615165570A US2017342525A1 US 20170342525 A1 US20170342525 A1 US 20170342525A1 US 201615165570 A US201615165570 A US 201615165570A US 2017342525 A1 US2017342525 A1 US 2017342525A1
Authority
US
United States
Prior art keywords
alloy
phase
temperature
high strength
based superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/165,570
Inventor
Koichi Takasawa
Takuya Ohkawa
Masato Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to US15/165,570 priority Critical patent/US20170342525A1/en
Assigned to THE JAPAN STEEL WORKS, LTD. reassignment THE JAPAN STEEL WORKS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OHKAWA, TAKUYA, TAKASAWA, KOICHI, YOSHIDA, MASATO
Publication of US20170342525A1 publication Critical patent/US20170342525A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • the present invention relates to a high strength Ni-based superalloy having a high strength.
  • a Ni-based superalloy shows excellent mechanical characteristics at high temperatures and is widely used as high-temperature members of aircraft jet engines, etc.
  • adding a small amount of Al, Ti as well as Nb and Ta to a Ni-based alloy brings about fine precipitation of a strengthening phase that is called a ⁇ ′ (gamma prime) phase of Ni 3 (Al,Ti), or a ⁇ ′′ (gamma double prime) phase of Ni 3 (Al,Ti,Nb) in crystal grains to express an excellent strength.
  • a technical tendency is toward an uncooled low-pressure turbine disk in jet engines.
  • a low-pressure turbine disk has become desired to have a high strength at higher temperatures, and development of an alloy having an increased strength by increasing the amount of the above-mentioned strengthening phase therein is being made.
  • the hot workability of the alloy lowers, and therefore, the alloy becomes difficult to work into a desired shape. Accordingly, it is important to secure hot workability of an alloy while increasing the strength thereof.
  • a Ni-based superalloy generally contains large quantities of alloying elements, and in smelting the alloy, there may occur in any way, unevenness in compositional distribution, that is, micro-segregation.
  • the solidus temperature is lower than that of the other part, and therefore, when overheated, the micro-segregated part may be partially melted to lower the hot workability of the alloy. Accordingly, before hot working, the alloy must be heat-treated under a suitable condition to relax the micro-segregation.
  • Patent Documents 1 to 3 Some proposes have been made for a Ni-based superalloy having excellent hot workability or a technique of improving the hot workability of a Ni-based alloy.
  • Patent Document 1 JP-A-2011-231410
  • Patent Document 2 JP-A-2007-332412
  • Patent Document 3 JP-T-2013-531739
  • Patent Documents 1 and 2 propose a Ni-based superalloy excellent in weldability and hot workability.
  • these documents refer to nothing relating to hot workability from the viewpoint of the above-mentioned micro-segregation, and there is a possibility of absence of any suitable evaluation therein.
  • the contents of Al and Ti capable of contributing to formation of a strengthening phase are smaller than those in the present invention, and therefore, a strengthening phase in an amount required by low-pressure turbine disks to which the present invention is intended to be applied could not be formed, that is, there is a possibility that the strength of the alloys may be insufficient.
  • Patent Document 3 refers to nothing relating to the relationship between micro-segregation and hot workability, and it is unclear whether alloy production would be carried out under a suitable condition.
  • the present invention has been made in consideration of the above-mentioned situation, and an object thereof is to provide a Ni-based superalloy excellent in strength and hot workability.
  • the present invention relates to the following (1) to (7).
  • Ni-based superalloy having a high strength and excellent hot workability.
  • FIG. 1 is a graph showing a relationship between a reduction of area and a temperature in the tensile test in Examples.
  • FIG. 2 is a graph showing a relationship between a reduction of area and a temperature in the tensile test in Examples.
  • FIG. 3 is a graph showing the temperature range within which the reduction of area is 50% or more in Examples.
  • % by mass “ratio by mass”, and “ppm by mass” are the same as “% by weight”, “ratio by weight”, and “ppm by weight”, respectively.
  • C is an additive element to form a carbide to suppress crystal grain coarsening of the alloy, and to precipitate in a grain boundary to improve the high-temperature strength of the alloy; but when the content thereof is small, it is not effective for sufficiently improving the strength, and therefore, the content of C must be 0.005% or more. However, when the content thereof is too large, an excessive carbide may be formed to have a negative influence of decreasing the amount of other useful precipitates such as a ⁇ ′-phase, and therefore, the upper limit thereof is 0.05%. For the same reasons, the lower limit thereof is preferably 0.01% and the upper limit thereof is preferably 0.02%.
  • Fe is, when the content thereof is increased, effective for alloy cost reduction, but when Fe is incorporated excessively in an Nb-containing alloy, an intermetallic compound called a Laves phase is formed to cause worsening of material characteristics, for example, degradation of hot rollability, etc. Accordingly, the content of Fe is 0.1 to 2.0%. For the same reasons, the lower limit thereof is preferably 0.5% and the upper limit thereof is preferably 1.5%.
  • Co is an element of improving the segregation property of the alloy by bringing the partition coefficient of alloying elements such as Al, Ti, Nb and W close to 1.
  • the alloy does not contain Co in an amount of 10% or more, the effect could not be sufficiently realized.
  • the content of Co is more than 20%, not only the forgeability is worsened but also a Laves phase may be readily formed, whereby, the matrix texture at a high temperature would be rather destabilized and the high-temperature texture stability would be worsened. Accordingly, the content of Co is limited to a range of 10 to 20%.
  • the lower limit thereof is preferably 12% and the upper limit thereof is preferably 16%.
  • Mo mainly dissolves in a matrix to strengthen it, and also dissolves in a ⁇ ′ phase to substitute for the Al site in this phase to thereby increase the stability of the phase, and is therefore effective for increasing both high-temperature strength and texture stability.
  • the content of Mo is less than 1.0%, the above-mentioned effect is insufficient, but when the content thereof is more than 8.0%, a Laves phase may be readily formed, whereby the matrix texture at a high temperature would be rather destabilized and the high-temperature texture stability would be worsened.
  • the content of Mo is limited to a range of 1.0 to 8.0%.
  • the lower limit thereof is preferably 2.0% and the upper limit thereof is preferably 6.0%.
  • W Like Mo, W also dissolves in a matrix to strengthen it, and dissolves in a ⁇ ′ phase to substitute for the Al site in this phase to thereby increase the stability of the phase, and is therefore effective for increasing both high-temperature strength and texture stability.
  • W when W is incorporated excessively, not only ⁇ -W precipitates to lower texture stability but also hot workability is also noticeably worsened. Accordingly, the content of W is limited to a range of 1.0 to 8.0%.
  • the lower limit thereof is preferably 2.0% and the upper limit thereof is preferably 6.0%.
  • Cr is an element necessary for enhancing oxidation resistance, corrosion resistance and strength of the alloy. Also, it combines with C to form a carbide, thereby enhancing high-temperature strength. However, too large content thereof invites destabilization of matrix and promotes the formation of harmful TCP phases such as a ⁇ phase and ⁇ -Cr, resulting in adverse influences on ductility and toughness. Therefore, the content of Cr is limited to 10 to 20%. For the same reasons, the lower limit thereof is preferably 14% and the upper limit thereof is preferably 18%.
  • Ti mainly forms an MC carbide to suppress crystal grain coarsening of the alloy and also combines with Ni to precipitate a ⁇ ′ phase, thereby contributing to precipitation strengthening of the alloy.
  • the content of Ti is limited to a range of 0.1 to 2.0%.
  • the lower limit thereof is preferably 0.5% and the upper limit thereof is preferably 1.5%.
  • Al combines with Ni to precipitate a ⁇ ′ phase, thereby contributing to precipitation strengthening of the alloy.
  • the content of Al is limited to 2.0 to 4.5%.
  • the lower limit thereof is preferably 3.0% and the upper limit thereof is preferably 4.0%.
  • Nb is an element that stabilizes the ⁇ ′ phase and contributes to strength enhancement, but when Nb is exceedingly incorporated, the precipitation of the ⁇ phase, the ⁇ phase, and the Laves phase that are harmful phases is promoted, thereby remarkably lowering texture stability. Therefore, the content of Nb is limited to 0.1 to 2.0%. For the same reasons, the lower limit thereof is preferably 0.5% and the upper limit thereof is preferably 1.5%.
  • P is considered to have an effect of reducing local strain accumulation near grain boundaries to prevent creep deformation by depositing precipitates containing P at grain boundaries, thereby lowering the minimum creep speed and prolonging the creep rupture time.
  • P when P is exceedingly incorporated, there is a possibility that grain boundary segregation of P becomes excessive to lower the consistency of the grain boundaries, thereby causing ductility reduction and the like. Therefore, when P is incorporated according to the necessity, it is desirable that the lower limit of the content of P is 30 ppm and the upper limit thereof is 100 ppm.
  • the lower limit thereof is more preferably 40 ppm and the upper limit thereof is more preferably 80 ppm.
  • B segregates at grain boundaries to contribute to high-temperature characteristics, and is therefore incorporated according to the necessity.
  • the content of B is preferably 250 ppm or less.
  • the content thereof is preferably 50 ppm or more, and for the same reasons as above, the lower limit thereof is more preferably 100 ppm and the upper limit thereof is more preferably 200 ppm.
  • Mg mainly combines with S to form a sulfide and enhances hot workability, so that Mg is incorporated according to the necessity.
  • the content of Mg is preferably 0.01% or less.
  • the lower limit of the Mg content is preferably 0.0005% or more.
  • Zr segregates at grain boundaries to contribute to an improvement in high-temperature characteristics, so that Zr is incorporated according to the necessity.
  • the content of Zr is preferably 0.50% or less. In order to obtain the above-described effect, it is preferable to incorporate Zr in an amount of 0.01% or more.
  • ⁇ ′ phase amount at 700° C. being 40 to 43% in terms of volume fraction.
  • the ⁇ ′ phase amount at 700° C. in terms of volume fraction is appropriate, a desired strength can be realized. When it is lower than 40%, the strength would be too low and desired characteristics of members could not be satisfied. On the other hand, when it is more than 43%, the strength would be excessive to lower the toughness of members. Accordingly, it is desirable that the ⁇ ′ phase amount at 700° C. is 40 to 43% in terms of volume fraction.
  • the ⁇ ′ phase amount in terms of volume fraction may be controlled by varying the balance of Al and Ti that are the constituent elements of the ⁇ ′ phase.
  • ⁇ ′ phase solution temperature being 1100° C. or lower.
  • the ⁇ ′ phase solution temperature is 1100° C. or lower, the temperature range within which the alloy exhibits good hot workability can be expanded to lower temperatures, thereby enabling effective bloom-forging at lower temperatures.
  • the ⁇ ′ phase solution temperature can be controlled by varying the balance of Al and Ti that are the constituent elements of the ⁇ ′ phase.
  • Temperature range within which reduction of area is 50% or more being 120° C. or higher.
  • the temperature range that realizes excellent hot workability is expanded, and in a one-time bloom-forging step, a cast structure can be more effectively destroyed.
  • the temperature range is less than 120° C.
  • the temperature range capable of realizing excellent hot workability may narrow, and multiple bloom-forging steps would be necessary for sufficiently destroying a cast structure, thereby resulting in cost increase.
  • Hot working can be carried out, for example, in a temperature range of 900° C. to 1150° C.
  • the temperature range for hot working is not limited to the above-described temperature range.
  • the temperature range within which the reduction of area is 50% or more is preferably 120° C. or higher, and the temperature range can be controlled by varying the balance of Al and Ti that are the constituent elements of the ⁇ ′ phase, and the balance of Cr, Mo and Nb that are micro-segregation elements.
  • the Ni-based alloy of the present invention is controlled to have a composition including, in terms of % by mass, C: 0.005 to 0.05%, Fe: 0.1 to 2.0%, Cr: 10 to 20%, Co: 10 to 20%, Mo: 1.0 to 8.0%, W: 1.0 to 8.0%, Ti: 0.1 to 2.0%, Al: 2.0 to 4.5%, and Nb: 0.1 to 2.0%, with the balance being Ni and unavoidable impurities.
  • the composition may further include according to the necessity, in terms of ppm by mass, at least one of P: 30 to 100 ppm, and B: 50 to 250 ppm, and also according to the necessity, at least one of Mg: 0.01% or less, and Zr: 0.01 to 0.50%.
  • the Ni-based alloy of the present invention can be produced according to an ordinary smelting method and, as the invention, the smelting method is not particularly limited.
  • the Ni-based alloy may be subjected to diffusion heat treatment.
  • an ingot of 5 tons or more is expected in smelting.
  • the size of products is not specifically limited, the effect of improving hot workability for large-size members of 5 tons or more brings about especially favorable results.
  • Diffusion heat treatment can be carried out under the condition at 1200° C. for 50 hours or more.
  • the treatment time is preferably 100 hours or less.
  • diffusion heat treatment may be omitted.
  • the Ni-based alloy may be worked for forging or the like, according to the necessity.
  • the condition in working is not specifically limited in the present invention.
  • the ⁇ ′ phase amount at 700° C. is 40 to 43% in terms of volume fraction
  • the ⁇ ′ phase solution temperature is 1100° C. or lower
  • the temperature range within which the reduction of area of the alloy in a tensile test is 50% or more, is 120° C. or higher; and the alloy realizes good hot workability.
  • an Ni-based superalloy that has improved hot workability and contains a sufficient amount of a strengthening phase to secure the strength thereof can be obtained.
  • the strength is, for example, 1050 MPa or more at 750° C., but is not limited thereto.
  • Ni-based alloy is favorably used in the field where a temperature of 600° C. or higher is expected, such as low-pressure turbine disks of jet engines and gas turbine disks for high-efficiency power generation.
  • the material was a 25-kg round ingot produced according to a vacuum induction melting method, and nine invention alloys and one comparative alloy were produced.
  • the chemical components (with the balance being unavoidable impurities) of the invention alloys and the comparative alloy are shown in Table 1.
  • the ⁇ ′ phase amount at 700° C. and the ⁇ ′ phase solution temperature of the invention alloys and the comparative alloy are calculated using a general-purpose thermodynamic calculation software (Thermo-Calc). Table 2 collectively shows them.
  • these materials were, except some samples, subjected to diffusion heat treatment at 1200° C. for 50 hours, and then the test materials were machined to give tensile test pieces.
  • the tensile test was performed as follows.
  • each test piece had a diameter in the parallel part of 6 mm and a mark-to-mark distance of 30 mm.
  • the test temperature range was 950 to 1225° C., and the following method was employed for avoiding the influence to be provided by the difference in the crystal grain size. Specifically, in the case where the test temperature was 1150° C. or higher, the test piece was kept at the test temperature for 30 minutes and then subjected to the tensile test. In the case where the tensile temperature was lower than 1150° C., the test piece was once kept at 1150° C.
  • the strain speed in the tensile test was 3 ⁇ 10 ⁇ 2 s ⁇ 1 in every case.
  • JIS Z 2241:2011 are hereby incorporated by reference.
  • all the invention alloys have a larger ⁇ ′ phase amount at 700° C., from 42.0 to 43.1%, than the comparative alloy.
  • the ⁇ ′ phase solution temperature in the invention alloys is lower than that in the comparative alloy, that is, lower than 1100° C.
  • FIG. 1 and FIG. 2 each show a relationship between a reduction of area and a temperature of the invention alloys and the comparative alloy.
  • the maximum reduction of area is almost the same between the invention alloys and the comparative alloy, but the temperature range within which the reduction of area is 50% or more is broader for the invention alloys than that for the comparative alloy.
  • the broader temperature range means that the forgeable temperature range is broad and the hot workability of the alloy is good.
  • FIG. 3 shows the temperature range within which the reduction of area is 50% or more for the invention alloys and the comparative alloy.
  • the temperature range for the comparative alloy is 120° C., but all the invention alloys shown in FIG. 3 show a temperature range higher than that for the comparative alloy. Accordingly, it becomes clear that the invention alloys are excellent in hot workability.

Abstract

The present invention provides a Ni-based alloy having a high strength and excellent hot workability. The present invention relates to a high strength Ni-based superalloy having a composition including, in terms of % by mass: C: 0.005 to 0.05%; Fe: 0.1 to 2.0%; Cr: 10 to 20%; Co: 10 to 20%; Mo: 1.0 to 8.0%; W: 1.0 to 8.0%; Ti: 0.1 to 2.0%; Al: 2.0 to 4.5%; and Nb: 0.1 to 2.0%, with the balance being Ni and unavoidable impurities.

Description

    TECHNICAL FIELD
  • The present invention relates to a high strength Ni-based superalloy having a high strength.
  • BACKGROUND ART
  • A Ni-based superalloy shows excellent mechanical characteristics at high temperatures and is widely used as high-temperature members of aircraft jet engines, etc. In general, adding a small amount of Al, Ti as well as Nb and Ta to a Ni-based alloy brings about fine precipitation of a strengthening phase that is called a γ′ (gamma prime) phase of Ni3(Al,Ti), or a γ″ (gamma double prime) phase of Ni3(Al,Ti,Nb) in crystal grains to express an excellent strength. For fuel consumption reduction and CO2 emission reduction in civil aircraft jet engines in recent years, a technical tendency is toward an uncooled low-pressure turbine disk in jet engines. With such an uncooling technology, a low-pressure turbine disk has become desired to have a high strength at higher temperatures, and development of an alloy having an increased strength by increasing the amount of the above-mentioned strengthening phase therein is being made. However, with the increase in the precipitated phase, the hot workability of the alloy lowers, and therefore, the alloy becomes difficult to work into a desired shape. Accordingly, it is important to secure hot workability of an alloy while increasing the strength thereof.
  • A Ni-based superalloy generally contains large quantities of alloying elements, and in smelting the alloy, there may occur in any way, unevenness in compositional distribution, that is, micro-segregation. In the micro-segregated part, the solidus temperature is lower than that of the other part, and therefore, when overheated, the micro-segregated part may be partially melted to lower the hot workability of the alloy. Accordingly, before hot working, the alloy must be heat-treated under a suitable condition to relax the micro-segregation.
  • Heretofore, some proposes have been made for a Ni-based superalloy having excellent hot workability or a technique of improving the hot workability of a Ni-based alloy (Patent Documents 1 to 3).
  • BACKGROUND-ART DOCUMENTS Patent Documents
  • Patent Document 1: JP-A-2011-231410
  • Patent Document 2: JP-A-2007-332412
  • Patent Document 3: JP-T-2013-531739
  • SUMMARY OF THE INVENTION Problems that the Invention is to Solve
  • For example, Patent Documents 1 and 2 propose a Ni-based superalloy excellent in weldability and hot workability. However, these documents refer to nothing relating to hot workability from the viewpoint of the above-mentioned micro-segregation, and there is a possibility of absence of any suitable evaluation therein. Further, in these, the contents of Al and Ti capable of contributing to formation of a strengthening phase are smaller than those in the present invention, and therefore, a strengthening phase in an amount required by low-pressure turbine disks to which the present invention is intended to be applied could not be formed, that is, there is a possibility that the strength of the alloys may be insufficient. Also Patent Document 3 refers to nothing relating to the relationship between micro-segregation and hot workability, and it is unclear whether alloy production would be carried out under a suitable condition.
  • The present invention has been made in consideration of the above-mentioned situation, and an object thereof is to provide a Ni-based superalloy excellent in strength and hot workability.
  • Means for Solving the Problems
  • Namely, the present invention relates to the following (1) to (7).
    • (1) A high strength Ni-based superalloy having a composition including, in terms of % by mass:
  • C: 0.005 to 0.05%;
  • Fe: 0.1 to 2.0%;
  • Cr: 10 to 20%;
  • Co: 10 to 20%;
  • Mo: 1.0 to 8.0%;
  • W: 1.0 to 8.0%;
  • Ti: 0.1 to 2.0%;
  • Al: 2.0 to 4.5%; and
  • Nb: 0.1 to 2.0%,
  • with the balance being Ni and unavoidable impurities.
    • (2) The high strength Ni-based superalloy according to (1), in which the composition further includes, in terms of ppm by mass, at least one of:
  • P: 30 to 100 ppm; and
  • B: 50 to 250 ppm.
    • (3) The high strength Ni-based superalloy according to (1) or (2), in which the composition further includes, in terms of % by mass, at least one of
  • Mg: 0.01% or less; and
  • Zr: 0.01 to 0.50%.
    • (4) The high strength Ni-based superalloy according to any one of (1) to (3), having a γ′ phase amount at 700° C. of 40 to 43% in terms of volume fraction.
    • (5) The high strength Ni-based superalloy according to any one of (1) to (4), having a γ′ phase solution temperature of 1100° C. or lower.
    • (6) The high strength Ni-based superalloy according to any one of (1) to (5), in which a temperature range within which a reduction of area of the superalloy evaluated in a tensile test is 50% or more, is 120° C. or higher.
    • (7) The high strength Ni-based superalloy according to any one of (1) to (6), which is used at a temperature of 600° C. or higher.
    Advantages of the Invention
  • According to the present invention, it is possible to obtain a Ni-based superalloy having a high strength and excellent hot workability.
  • Furthermore, as a secondary effect, application of the alloy of the present invention to members of high-temperature instruments such as low-pressure turbine disks of jet engines and the like (for example, used at a temperature of 600° C. or higher) brings about an effect of providing highly-efficient and environment-friendly instruments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph showing a relationship between a reduction of area and a temperature in the tensile test in Examples.
  • FIG. 2 is a graph showing a relationship between a reduction of area and a temperature in the tensile test in Examples.
  • FIG. 3 is a graph showing the temperature range within which the reduction of area is 50% or more in Examples.
  • MODES FOR CARRYING OUT THE INVENTION
  • The following will explain the conditions defined in the present invention and the effects associated therewith. Every component is expressed by ratio by mass.
  • Here, “% by mass”, “ratio by mass”, and “ppm by mass” are the same as “% by weight”, “ratio by weight”, and “ppm by weight”, respectively.
  • C: 0.005 to 0.05%
  • C is an additive element to form a carbide to suppress crystal grain coarsening of the alloy, and to precipitate in a grain boundary to improve the high-temperature strength of the alloy; but when the content thereof is small, it is not effective for sufficiently improving the strength, and therefore, the content of C must be 0.005% or more. However, when the content thereof is too large, an excessive carbide may be formed to have a negative influence of decreasing the amount of other useful precipitates such as a γ′-phase, and therefore, the upper limit thereof is 0.05%. For the same reasons, the lower limit thereof is preferably 0.01% and the upper limit thereof is preferably 0.02%.
  • Fe: 0.1 to 2.0%
  • Fe is, when the content thereof is increased, effective for alloy cost reduction, but when Fe is incorporated excessively in an Nb-containing alloy, an intermetallic compound called a Laves phase is formed to cause worsening of material characteristics, for example, degradation of hot rollability, etc. Accordingly, the content of Fe is 0.1 to 2.0%. For the same reasons, the lower limit thereof is preferably 0.5% and the upper limit thereof is preferably 1.5%.
  • Co: 10 to 20%
  • Co is an element of improving the segregation property of the alloy by bringing the partition coefficient of alloying elements such as Al, Ti, Nb and W close to 1. When the alloy does not contain Co in an amount of 10% or more, the effect could not be sufficiently realized. On the other hand, when the content of Co is more than 20%, not only the forgeability is worsened but also a Laves phase may be readily formed, whereby, the matrix texture at a high temperature would be rather destabilized and the high-temperature texture stability would be worsened. Accordingly, the content of Co is limited to a range of 10 to 20%. For the same reasons, the lower limit thereof is preferably 12% and the upper limit thereof is preferably 16%.
  • Mo: 1.0 to 8.0%
  • Mo mainly dissolves in a matrix to strengthen it, and also dissolves in a γ′ phase to substitute for the Al site in this phase to thereby increase the stability of the phase, and is therefore effective for increasing both high-temperature strength and texture stability. When the content of Mo is less than 1.0%, the above-mentioned effect is insufficient, but when the content thereof is more than 8.0%, a Laves phase may be readily formed, whereby the matrix texture at a high temperature would be rather destabilized and the high-temperature texture stability would be worsened. Accordingly, the content of Mo is limited to a range of 1.0 to 8.0%. For the same reasons, the lower limit thereof is preferably 2.0% and the upper limit thereof is preferably 6.0%.
  • W: 1.0 to 8.0%
  • Like Mo, W also dissolves in a matrix to strengthen it, and dissolves in a γ′ phase to substitute for the Al site in this phase to thereby increase the stability of the phase, and is therefore effective for increasing both high-temperature strength and texture stability. However, when W is incorporated excessively, not only α-W precipitates to lower texture stability but also hot workability is also noticeably worsened. Accordingly, the content of W is limited to a range of 1.0 to 8.0%. For the same reasons, the lower limit thereof is preferably 2.0% and the upper limit thereof is preferably 6.0%.
  • Cr: 10 to 20%
  • Cr is an element necessary for enhancing oxidation resistance, corrosion resistance and strength of the alloy. Also, it combines with C to form a carbide, thereby enhancing high-temperature strength. However, too large content thereof invites destabilization of matrix and promotes the formation of harmful TCP phases such as a σ phase and α-Cr, resulting in adverse influences on ductility and toughness. Therefore, the content of Cr is limited to 10 to 20%. For the same reasons, the lower limit thereof is preferably 14% and the upper limit thereof is preferably 18%.
  • Ti: 0.1 to 2.0%
  • Ti mainly forms an MC carbide to suppress crystal grain coarsening of the alloy and also combines with Ni to precipitate a γ′ phase, thereby contributing to precipitation strengthening of the alloy. However, when Ti is exceedingly incorporated, the stability of the γ′ phase at a high temperature is lowered and an η phase is formed, thereby impairing strength, ductility, toughness, and high-temperature long-term texture stability. Therefore, the content of Ti is limited to a range of 0.1 to 2.0%. For the same reasons, the lower limit thereof is preferably 0.5% and the upper limit thereof is preferably 1.5%.
  • Al: 2.0 to 4.5%
  • Al combines with Ni to precipitate a γ′ phase, thereby contributing to precipitation strengthening of the alloy. However, when the content thereof is too large, the γ′ phase aggregates at grain boundaries and is coarsened, thereby drastically impairing mechanical properties at a high temperature and also lowering hot workability. Therefore, the content of Al is limited to 2.0 to 4.5%. For the same reasons, the lower limit thereof is preferably 3.0% and the upper limit thereof is preferably 4.0%.
  • Nb: 0.1 to 2.0%
  • Nb is an element that stabilizes the γ′ phase and contributes to strength enhancement, but when Nb is exceedingly incorporated, the precipitation of the η phase, the σ phase, and the Laves phase that are harmful phases is promoted, thereby remarkably lowering texture stability. Therefore, the content of Nb is limited to 0.1 to 2.0%. For the same reasons, the lower limit thereof is preferably 0.5% and the upper limit thereof is preferably 1.5%.
  • P: 30 to 100 ppm
  • P is considered to have an effect of reducing local strain accumulation near grain boundaries to prevent creep deformation by depositing precipitates containing P at grain boundaries, thereby lowering the minimum creep speed and prolonging the creep rupture time. However, when P is exceedingly incorporated, there is a possibility that grain boundary segregation of P becomes excessive to lower the consistency of the grain boundaries, thereby causing ductility reduction and the like. Therefore, when P is incorporated according to the necessity, it is desirable that the lower limit of the content of P is 30 ppm and the upper limit thereof is 100 ppm. For the same reasons, the lower limit thereof is more preferably 40 ppm and the upper limit thereof is more preferably 80 ppm.
  • B: 50 to 250 ppm
  • B segregates at grain boundaries to contribute to high-temperature characteristics, and is therefore incorporated according to the necessity. However, when the content thereof is too large, B may readily form borides thereof and would rather bring about intergranular embrittlement. Accordingly, when B is incorporated according to the necessity, the content of B is preferably 250 ppm or less. For sufficiently realizing the above-described effect, the content thereof is preferably 50 ppm or more, and for the same reasons as above, the lower limit thereof is more preferably 100 ppm and the upper limit thereof is more preferably 200 ppm.
  • Mg: 0.01% or less
  • Mg mainly combines with S to form a sulfide and enhances hot workability, so that Mg is incorporated according to the necessity. However, when the content thereof is too large, the grain boundaries are contrarily embrittled and hot workability decreases. Accordingly, when Mg is incorporated according to the necessity, the content of Mg is preferably 0.01% or less. Incidentally, for sufficiently exhibiting the above-described effect, the lower limit of the Mg content is preferably 0.0005% or more.
  • Zr: 0.01 to 0.50%
  • Zr segregates at grain boundaries to contribute to an improvement in high-temperature characteristics, so that Zr is incorporated according to the necessity. However, when Zr is exceedingly incorporated, the hot workability of the alloy is lowered. Accordingly, when Zr is incorporated according to the necessity, the content of Zr is preferably 0.50% or less. In order to obtain the above-described effect, it is preferable to incorporate Zr in an amount of 0.01% or more.
  • γ′ phase amount at 700° C. being 40 to 43% in terms of volume fraction.
  • When the γ′ phase amount at 700° C. in terms of volume fraction is appropriate, a desired strength can be realized. When it is lower than 40%, the strength would be too low and desired characteristics of members could not be satisfied. On the other hand, when it is more than 43%, the strength would be excessive to lower the toughness of members. Accordingly, it is desirable that the γ′ phase amount at 700° C. is 40 to 43% in terms of volume fraction.
  • The γ′ phase amount in terms of volume fraction may be controlled by varying the balance of Al and Ti that are the constituent elements of the γ′ phase.
  • γ′ phase solution temperature being 1100° C. or lower.
  • When the γ′ phase solution temperature is 1100° C. or lower, the temperature range within which the alloy exhibits good hot workability can be expanded to lower temperatures, thereby enabling effective bloom-forging at lower temperatures. The γ′ phase solution temperature can be controlled by varying the balance of Al and Ti that are the constituent elements of the γ′ phase.
  • Temperature range within which reduction of area is 50% or more being 120° C. or higher.
  • In the present invention, the temperature range that realizes excellent hot workability is expanded, and in a one-time bloom-forging step, a cast structure can be more effectively destroyed. When the temperature range is less than 120° C., the temperature range capable of realizing excellent hot workability may narrow, and multiple bloom-forging steps would be necessary for sufficiently destroying a cast structure, thereby resulting in cost increase. Hot working can be carried out, for example, in a temperature range of 900° C. to 1150° C. However, in the present invention, the temperature range for hot working is not limited to the above-described temperature range.
  • The temperature range within which the reduction of area is 50% or more is preferably 120° C. or higher, and the temperature range can be controlled by varying the balance of Al and Ti that are the constituent elements of the γ′ phase, and the balance of Cr, Mo and Nb that are micro-segregation elements.
  • The Ni-based alloy of the present invention is controlled to have a composition including, in terms of % by mass, C: 0.005 to 0.05%, Fe: 0.1 to 2.0%, Cr: 10 to 20%, Co: 10 to 20%, Mo: 1.0 to 8.0%, W: 1.0 to 8.0%, Ti: 0.1 to 2.0%, Al: 2.0 to 4.5%, and Nb: 0.1 to 2.0%, with the balance being Ni and unavoidable impurities. The composition may further include according to the necessity, in terms of ppm by mass, at least one of P: 30 to 100 ppm, and B: 50 to 250 ppm, and also according to the necessity, at least one of Mg: 0.01% or less, and Zr: 0.01 to 0.50%.
  • The Ni-based alloy of the present invention can be produced according to an ordinary smelting method and, as the invention, the smelting method is not particularly limited.
  • After smelted, the Ni-based alloy may be subjected to diffusion heat treatment. In this embodiment, an ingot of 5 tons or more is expected in smelting. In the present invention, although the size of products is not specifically limited, the effect of improving hot workability for large-size members of 5 tons or more brings about especially favorable results.
  • Diffusion heat treatment can be carried out under the condition at 1200° C. for 50 hours or more. For preventing cost increase, the treatment time is preferably 100 hours or less.
  • In the present invention, diffusion heat treatment may be omitted.
  • The Ni-based alloy may be worked for forging or the like, according to the necessity. The condition in working is not specifically limited in the present invention.
  • In working the Ni-based alloy of the present invention, the γ′ phase amount at 700° C. is 40 to 43% in terms of volume fraction, the γ′ phase solution temperature is 1100° C. or lower, and the temperature range within which the reduction of area of the alloy in a tensile test is 50% or more, is 120° C. or higher; and the alloy realizes good hot workability.
  • In this embodiment, an Ni-based superalloy that has improved hot workability and contains a sufficient amount of a strengthening phase to secure the strength thereof can be obtained. The strength is, for example, 1050 MPa or more at 750° C., but is not limited thereto.
  • The above-described Ni-based alloy is favorably used in the field where a temperature of 600° C. or higher is expected, such as low-pressure turbine disks of jet engines and gas turbine disks for high-efficiency power generation.
  • EXAMPLES
  • Examples of the present invention are described with reference to the tables and the drawings given herein.
  • The material was a 25-kg round ingot produced according to a vacuum induction melting method, and nine invention alloys and one comparative alloy were produced. The chemical components (with the balance being unavoidable impurities) of the invention alloys and the comparative alloy are shown in Table 1.
  • The γ′ phase amount at 700° C. and the γ′ phase solution temperature of the invention alloys and the comparative alloy are calculated using a general-purpose thermodynamic calculation software (Thermo-Calc). Table 2 collectively shows them.
  • For solving the unevenness of the compositional distribution owing to micro-segregation that is generally expected in a Ni-based superalloy, these materials were, except some samples, subjected to diffusion heat treatment at 1200° C. for 50 hours, and then the test materials were machined to give tensile test pieces.
  • TABLE 1
    Chemical Composition of Invention Alloy and Comparative Alloy
    (mass %, but mass ppm for B and P)
    Sample No. Ni Fe Cr Co Mo W Al Ti Nb C B Zr P
    Comparative Bal. 0.9 15.4 13.8 3.8 4.1 2.2 3.8 0.7 0.016 170 50
    Alloy
    Invention Bal. 0.5 14.3 12.3 2.9 5.8 4.0 1.2 0.8 0.016 102 0.01 55
    Alloy 1
    Invention Bal. 0.9 17.5 13.4 2.0 4.9 3.7 0.5 1.2 0.017 198 0.01 40
    Alloy 2
    Invention Bal. 1.0 15.7 15.3 5.9 2.8 3.6 1.5 0.9 0.012 154 0.03 48
    Alloy 3
    Invention Bal. 0.8 16.1 14.2 4.0 3.9 3.6 1.0 0.5 0.014 183 0.06 69
    Alloy 4
    Invention Bal. 1.3 15.2 15.8 3.9 4.8 3.3 1.3 1.2 0.011 133 0.12 41
    Alloy 5
    Invention Bal. 1.5 17.8 13.0 4.0 2.0 3.1 1.2 1.4 0.019 117 0.48 80
    Alloy 6
    Invention Bal. 1.0 16.0 13.2 5.0 4.0 3.7 1.2 1.2 0.015
    Alloy 7
    Invention Bal. 1.0 16.0 13.2 5.0 4.0 3.7 1.2 1.2 0.015 0.03
    Alloy 8
    Invention Bal. 1.0 16.0 13.2 5.0 4.0 3.7 1.2 1.2 0.015 120 70
    Alloy 9
  • The tensile test was performed as follows.
  • Based on the Japanese Industrial Standards, JIS Z 2241:2011, each test piece had a diameter in the parallel part of 6 mm and a mark-to-mark distance of 30 mm. The test temperature range was 950 to 1225° C., and the following method was employed for avoiding the influence to be provided by the difference in the crystal grain size. Specifically, in the case where the test temperature was 1150° C. or higher, the test piece was kept at the test temperature for 30 minutes and then subjected to the tensile test. In the case where the tensile temperature was lower than 1150° C., the test piece was once kept at 1150° C. for 30 minutes, then cooled down to the test temperature, and further kept at the test temperature for 15 minutes to thereby stabilize the temperature thereof, and thereafter subjected to the tensile test. The strain speed in the tensile test was 3×10−2 s−1 in every case.
  • In this description, the contents of JIS Z 2241:2011 are hereby incorporated by reference.
  • TABLE 2
    γ′ Phase Solution
    γ′ Phase Amount at 700° C. Temperature
    Sample No. (vol. %) (° C.)
    Comparative Alloy 38.6 1114
    Invention Alloy 1 42.1 1092
    Invention Alloy 2 42.5 1093
    Invention Alloy 3 41.8 1093
    Invention Alloy 4 41.9 1093
    Invention Alloy 5 42.0 1093
    Invention Alloy 6 43.1 1094
    Invention Alloy 7 42.1 1092
    Invention Alloy 8 42.2 1092
    Invention Alloy 9 42.1 1092
  • As in Table 2, all the invention alloys have a larger γ′ phase amount at 700° C., from 42.0 to 43.1%, than the comparative alloy. In addition, the γ′ phase solution temperature in the invention alloys is lower than that in the comparative alloy, that is, lower than 1100° C.
  • FIG. 1 and FIG. 2 each show a relationship between a reduction of area and a temperature of the invention alloys and the comparative alloy. The maximum reduction of area is almost the same between the invention alloys and the comparative alloy, but the temperature range within which the reduction of area is 50% or more is broader for the invention alloys than that for the comparative alloy. The broader temperature range means that the forgeable temperature range is broad and the hot workability of the alloy is good.
  • FIG. 3 shows the temperature range within which the reduction of area is 50% or more for the invention alloys and the comparative alloy. The temperature range for the comparative alloy is 120° C., but all the invention alloys shown in FIG. 3 show a temperature range higher than that for the comparative alloy. Accordingly, it becomes clear that the invention alloys are excellent in hot workability.

Claims (7)

1. A high strength Ni-based superalloy having a composition comprising, in terms of % by mass:
C: 0.005 to 0.05%;
Fe: 0.1 to 2.0%;
Cr: 10 to 20%:
Co: 10 to 20%;
Mo: 1.0 to 8.0%;
W: 1.0 to 8.0%;
Ti: 0.1 to 2.0%;
Al: 2.0 to 4.5%; and
Nb: 0.1 to 2.0%,
with the balance being Ni and unavoidable impurities.
2. The high strength Ni-based superalloy according to claim 1, wherein the composition further comprises, in terms of ppm by mass, at least one of:
P: 30 to 100 ppm; and
B: 50 to 250 ppm.
3. The high strength Ni-based superalloy according to claim 1, wherein the composition further comprises, in terms of % by mass, at least one of:
Mg: 0.01% or less; and
Zr: 0.01 to 0.50%.
4. The high strength Ni-based superalloy according to claim 1, having a γ′ phase amount at 700° C. of 40 to 43% in terms of volume fraction.
5. The high strength Ni-based superalloy according to claim 1, having a γ′ phase solution temperature of 1100° C. or lower.
6. The high strength Ni-based superalloy according to claim 1, wherein a temperature range within which a reduction of area of the superalloy evaluated in a tensile test is 50% or more, is 120° C. or higher.
7. The high strength Ni-based superalloy according to claim 1, which is used at a temperature of 600° C. or higher.
US15/165,570 2016-05-26 2016-05-26 High strength ni-based superalloy Abandoned US20170342525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/165,570 US20170342525A1 (en) 2016-05-26 2016-05-26 High strength ni-based superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/165,570 US20170342525A1 (en) 2016-05-26 2016-05-26 High strength ni-based superalloy

Publications (1)

Publication Number Publication Date
US20170342525A1 true US20170342525A1 (en) 2017-11-30

Family

ID=60420385

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/165,570 Abandoned US20170342525A1 (en) 2016-05-26 2016-05-26 High strength ni-based superalloy

Country Status (1)

Country Link
US (1) US20170342525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100303665A1 (en) * 2009-05-29 2010-12-02 General Electric Company Nickel-base superalloys and components formed thereof
JP2012107328A (en) * 2010-11-18 2012-06-07 Korea Inst Of Machinery & Materials Polycrystal nickel-based heat-resistant superalloy excellent in mechanical property at high temperature
US20150284823A1 (en) * 2013-07-12 2015-10-08 Daido Steel Co., Ltd. Hot-forgeable ni-based superalloy excellent in high temperature strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100303665A1 (en) * 2009-05-29 2010-12-02 General Electric Company Nickel-base superalloys and components formed thereof
JP2012107328A (en) * 2010-11-18 2012-06-07 Korea Inst Of Machinery & Materials Polycrystal nickel-based heat-resistant superalloy excellent in mechanical property at high temperature
US20150284823A1 (en) * 2013-07-12 2015-10-08 Daido Steel Co., Ltd. Hot-forgeable ni-based superalloy excellent in high temperature strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy

Similar Documents

Publication Publication Date Title
JP5278936B2 (en) Heat resistant superalloy
JP5582532B2 (en) Co-based alloy
EP2479302B1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
EP2835434B1 (en) Ni-based alloy for forging, method for manufacturing the same, and turbine component
US11131013B2 (en) Ni-based alloy, gas turbine material, and method for manufacturing Ni-based alloy
EP2039789A1 (en) Nickel-based alloy for turbine rotor of steam turbine and turbine rotor of steam turbine
JP6733210B2 (en) Ni-based superalloy for hot forging
WO2016052423A1 (en) Ni‑BASED SUPERHEAT-RESISTANT ALLOY
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP6293682B2 (en) High strength Ni-base superalloy
EP2292807A1 (en) Ni based casting alloy and turbine casing
EP3249063B1 (en) High strength ni-based superalloy
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6733211B2 (en) Ni-based superalloy for hot forging
JP5769204B2 (en) Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same
US20160215373A1 (en) Wear resistant alloy
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
US20170342525A1 (en) High strength ni-based superalloy
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
EP2944704B1 (en) Nickel alloy composition
CN105886954A (en) Alloy for fan blade of aircraft engine
EP2889387B1 (en) Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
US11208707B2 (en) Ni-based alloy and heat-resistant sheet material obtained using same
JP2015108177A (en) Nickel-based alloy
US20090257865A1 (en) Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE JAPAN STEEL WORKS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKASAWA, KOICHI;OHKAWA, TAKUYA;YOSHIDA, MASATO;REEL/FRAME:038729/0722

Effective date: 20160518

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION