JP2012107328A - Polycrystal nickel-based heat-resistant superalloy excellent in mechanical property at high temperature - Google Patents

Polycrystal nickel-based heat-resistant superalloy excellent in mechanical property at high temperature Download PDF

Info

Publication number
JP2012107328A
JP2012107328A JP2011231795A JP2011231795A JP2012107328A JP 2012107328 A JP2012107328 A JP 2012107328A JP 2011231795 A JP2011231795 A JP 2011231795A JP 2011231795 A JP2011231795 A JP 2011231795A JP 2012107328 A JP2012107328 A JP 2012107328A
Authority
JP
Japan
Prior art keywords
nickel
high temperature
alloy
strength
based heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011231795A
Other languages
Japanese (ja)
Other versions
JP5323162B2 (en
Inventor
In Soo Kim
ス キム、イン
Chang Yong Jo
ヨン チョ、チャン
Young Soo Yoo
ス ユ、ヨン
Baig Gyu Choi
ギュ チョイ、ペグ
Hi Won Jeong
ウォン チョン、ヒ
Seong Moon Seo
ムン ソ、ソン
Hyun Uk Hong
ウク ホン、ヒュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2012107328A publication Critical patent/JP2012107328A/en
Application granted granted Critical
Publication of JP5323162B2 publication Critical patent/JP5323162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Ni-based heat-resistant superalloy excellent in a tension characteristic and a creep characteristic, of course, at the room temperature and at the high temperature of ≥700°C by improving the constitution.SOLUTION: This nickel-based heat-resistant superalloy is composed, by weight, of 8.0-13.0% Co, ≤1.0% Fe, 18.0-25.0% Cr, 0.1-1.5% Mo, 0.1-3% W, 0.5-2.0% Al, 0.5-1.1% Ti, 0.5-2.5% Nb, 0.01-1.0% C, ≤0.5% Mn, ≤0.5% Si, ≤0.008% B, ≤0.05% Zr and the balance Ni with inevitable impurities. Further, this superalloy has mixed microstructure of γ base and γ' precipitation.

Description

本発明は、多結晶ニッケル基超耐熱合金に関するものである。より詳細には、高温での機械的な特性、特に引張特性とクリープ(creep)特性に優れた多結晶ニッケル基超耐熱合金に関するものである。   The present invention relates to a polycrystalline nickel-base superalloy. More specifically, the present invention relates to a polycrystalline nickel-base superalloy having excellent mechanical properties at high temperatures, particularly excellent tensile properties and creep properties.

航空機のエンジンや発電に使用される産業用のガスタービンの主要な部品であるブレード(blade)及びベイン(vane)、燃焼器などにはニッケル基超耐熱合金が広く使用される。その中でも燃焼器合金には、多結晶状態の鍛錬用ニッケル基超耐熱合金が素材として主に使用されている。一方、最近では石炭を原料とする蒸気タービン発電にも、蒸気温度上昇による効率向上のためにタービンローター、蒸気管など、主要な部品へのニッケル基超耐熱合金の使用が増加している。蒸気温度約670℃まではオーステナイト系耐熱鋼が使用できるが、蒸気温度が700℃以上に上昇する場合、現在使用されている材料では高温強度が足りないため、高温での強度とクリープ特性に優れたニッケル基超耐熱合金の適用が要求されている。   Nickel-based superalloys are widely used in blades, vanes, combustors, and the like, which are main components of industrial gas turbines used in aircraft engines and power generation. Among them, for the combustor alloy, a nickel-base superalloy for wrought in a polycrystalline state is mainly used as a material. On the other hand, recently, in steam turbine power generation using coal as a raw material, the use of nickel-based superalloys for major components such as turbine rotors and steam pipes is increasing in order to improve efficiency by increasing the steam temperature. Austenitic heat-resisting steel can be used up to a steam temperature of about 670 ° C. However, when the steam temperature rises to 700 ° C or higher, the materials currently in use are insufficient in high-temperature strength, so they have excellent strength and creep properties at high temperatures Application of nickel-base superalloys is also required.

このように、ニッケル基超耐熱合金は、高温機械的特性に優れた合金として様々な高温構造物に使用されてきた。ガスタービン燃焼器にはNimonic263やIN617などが使用され、700℃以上の蒸気タービンにもこれらの合金の適用が検討されている。高温機械的特性を向上させるため、ニッケル基超耐熱合金は析出強化元素を添加して基地(matrix)内に規則格子の強化相であるγ′(L12構造)粒子を生成させ、高温強度を得て、W、Mo、Coなどの合金元素を添加して基地そのものの強度を向上させることで高い高温強度を確保する。 Thus, nickel-base superalloys have been used in various high-temperature structures as alloys having excellent high-temperature mechanical properties. Nimonic 263, IN617, and the like are used for the gas turbine combustor, and the application of these alloys to a steam turbine of 700 ° C. or higher is also being studied. To improve the high temperature mechanical properties of nickel-base superalloys is to produce a gamma '(L1 2 structure) particles is a strengthening phase of ordered lattice by the addition of precipitation strengthening elements in the base (matrix), the high-temperature strength Then, an alloying element such as W, Mo, or Co is added to improve the strength of the base itself, thereby ensuring a high high temperature strength.

しかし、従来のニッケル基超耐熱合金は、蒸気温度が700℃以上に上昇する場合、高温での機械的な特性、特に引張強度とクリープ特性に不十分な点がある。一方、合金元素の量を調節して高温での引張強度とクリープ特性に優れた合金を得るようにする努力は続いているが、適切な超耐熱合金がまだ発見されていないのが実情である。   However, conventional nickel-base superalloys have insufficient mechanical properties at high temperatures, particularly tensile strength and creep properties, when the vapor temperature rises above 700 ° C. On the other hand, efforts to adjust the amount of alloying elements to obtain an alloy with excellent tensile strength and creep properties at high temperatures have continued, but no actual superheat-resistant alloy has yet been discovered. .

したがって、本発明が解決しようとする課題は、組成の改良により常温ではもちろん、700℃以上の高温での機械的な特性、特に高温引張特性と高温クリープ特性に優れたNi基超耐熱合金を提供することである。   Accordingly, the problem to be solved by the present invention is to provide a Ni-based superalloy having excellent mechanical properties at high temperatures of 700 ° C. or higher, particularly high temperature tensile properties and high temperature creep properties, not only at room temperature, but by improving the composition. It is to be.

前記課題を達成するため、本発明の高温での機械的な特性に優れた多結晶ニッケル基超耐熱合金は、重量%でCo:8.0〜13.0%、Fe:0〜1.0%,Cr:18.0〜25.0%、Mo:0.1〜1.5%、W:0.1〜3%、Al:0.5〜2.0%、Ti:0.5〜1.1%、Nb:0.5〜2.5%、C:0.01〜1.0%、Mn:0〜0.5%、Si:0〜0.5%、B:0〜0.008%、Zr:0〜0.05%であり、残りはNiとその他の不可避不純物からなる。ここで、前記超耐熱合金はγ基地とγ′析出物の混合組織を有することができる。   In order to achieve the above object, the polycrystalline nickel-base superalloy having excellent mechanical properties at high temperature of the present invention is Co: 8.0 to 13.0% by weight%, Fe: 0 to 1.0. %, Cr: 18.0 to 25.0%, Mo: 0.1 to 1.5%, W: 0.1 to 3%, Al: 0.5 to 2.0%, Ti: 0.5 to 1.1%, Nb: 0.5 to 2.5%, C: 0.01 to 1.0%, Mn: 0 to 0.5%, Si: 0 to 0.5%, B: 0 to 0 0.008%, Zr: 0 to 0.05%, and the remainder consists of Ni and other inevitable impurities. Here, the super heat-resistant alloy may have a mixed structure of γ matrix and γ ′ precipitate.

本発明の高温引張特性に優れた多結晶ニッケル基超耐熱合金によれば、重量%でCo:8.0〜13.0%、Fe:0〜1.0%,Cr:18.0〜25.0%、Mo:0.1〜1.5%、W:0.1〜3%、Al:0.5〜2.0%、Ti:0.5〜1.1%、Nb:0.5〜2.5%、C:0.01〜1.0%、Mn:0〜0.5%、Si:0〜0.5%、B:0〜0.008%、Zr:0〜0.05%であり、残りはNiとその他の不可避不純物からなる超耐熱合金を多結晶に製造することにより、高温引張特性とクリープ特性が顕著に増加した合金を確保することができる。   According to the polycrystalline nickel-based superalloy having excellent high temperature tensile properties of the present invention, Co: 8.0 to 13.0%, Fe: 0 to 1.0%, Cr: 18.0 to 25 by weight% 0.0%, Mo: 0.1-1.5%, W: 0.1-3%, Al: 0.5-2.0%, Ti: 0.5-1.1%, Nb: 0.0. 5 to 2.5%, C: 0.01 to 1.0%, Mn: 0 to 0.5%, Si: 0 to 0.5%, B: 0 to 0.008%, Zr: 0 to 0 .05%, and the remainder is made of polycrystalline heat-resistant alloy composed of Ni and other inevitable impurities, so that an alloy with significantly increased high-temperature tensile properties and creep properties can be secured.

以下、本発明の好ましい実施例を詳細に説明する。下記に説明する実施例は他の様々な形態に変形でき、本発明の範囲は下記に説明する実施例に限定されるものではない。本発明の実施例は当分野で通常の知識を有する者に、本発明をより完全に説明するため提供するものである。   Hereinafter, preferred embodiments of the present invention will be described in detail. The embodiments described below can be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

以下の実施例では、高温での引張特性とクリープ特性に優れた多結晶ニッケル基超耐熱合金を説明する。ここで、高温というのは、700℃以上の温度のことであり、高温での機械的な特性の中で、引張特性とクリープ特性を中心に説明する。   In the following examples, a polycrystalline nickel-base superalloy having excellent tensile properties and creep properties at high temperatures will be described. Here, the high temperature means a temperature of 700 ° C. or higher, and among the mechanical characteristics at a high temperature, description will be made focusing on tensile characteristics and creep characteristics.

前記ニッケル基超耐熱合金は次のような主要な特徴を有する。本発明による高温引張特性とクリープ特性に優れた多結晶ニッケル基超耐熱合金は、Al、Tiを添加して規則格子の強化相であるγ′(L12構造)を、γ相の基地に生成させ、高温強度を得て、Co、W、Moなどの合金元素を添加して基地を強化(hardening)させて得る。このように、合金元素の量を調節することにより、高温機械的特性を極大化させ、比較合金に比べて向上した高温引張特性を有することを特徴とする。 The nickel-base superalloy has the following main features. Polycrystalline nickel base superalloy having excellent high-temperature tensile properties and creep characteristics according to the present invention, Al, gamma is a strengthening phase of ordered lattice by the addition of Ti 'the (L1 2 structure), generating a base of gamma phase To obtain a high-temperature strength and harden the base by adding an alloy element such as Co, W, or Mo. Thus, by adjusting the amount of the alloy element, the high-temperature mechanical properties are maximized, and the high-temperature tensile properties are improved as compared with the comparative alloys.

本発明によるニッケル基超耐熱合金は、まず、通常の真空誘導溶解方法により母合金を製作する。その後、製作されたそれぞれの母合金を真空で再溶解してビレット(billet)を作り、熱間圧延工程後に溶体化熱処理と時効熱処理をした後、試験片(specimen)を製作する。その熱処理をした試験片はγとγ′の2つの相(phase)からなる微細組織を得ることができる。   In the nickel-base superalloy according to the present invention, first, a mother alloy is manufactured by a normal vacuum induction melting method. Thereafter, each manufactured master alloy is remelted in a vacuum to form a billet, and after a hot rolling process, solution heat treatment and aging heat treatment are performed, and then a specimen is manufactured. The heat-treated test piece can obtain a fine structure composed of two phases γ and γ ′.

[合金の組成]
本発明のニッケル基超耐熱合金は、重量%で次のような組成を有していて、ここではそれぞれの組成による数値限定の理由をあわせて説明する。下記の重量%はニッケル基合金の全体を100とした時、添加される量を重量で換算したものである。説明の便宜のために、ニッケルとその他の不可避不純物に対する説明は省略する。
[Alloy composition]
The nickel-base superalloy according to the present invention has the following composition in weight%, and here, the reason for numerical limitation by each composition will be described together. The following weight% is the amount added in terms of weight, assuming that the entire nickel-base alloy is 100. For convenience of explanation, explanation of nickel and other inevitable impurities is omitted.

(1)コバルト(Co): 8.0〜13.0%
Coは、Ni基地に固溶(resolved)されて基地を強化する固溶強化の役割をする。しかし、Coの量が13%を超えると、他の合金元素らと結合して、金属間化合物を形成して強度を低下させる。Coの量が8%未満である時は加工性と強度が低下する。
(1) Cobalt (Co): 8.0 to 13.0%
Co serves as a solid solution strengthening that is resolved in the Ni base and strengthens the base. However, when the amount of Co exceeds 13%, it is combined with other alloy elements to form an intermetallic compound and reduce the strength. When the amount of Co is less than 8%, workability and strength are lowered.

(2)鉄(Fe): 0〜1.0%
鉄は、熱間加工性を向上させる元素であるので必要に応じて少量を添加するが、1.0%より多ければ高温強度を低下させるので望ましくない。
(2) Iron (Fe): 0 to 1.0%
Iron is an element that improves hot workability, so a small amount is added as necessary. However, if it is more than 1.0%, the high temperature strength is lowered, which is not desirable.

(3)クロム(Cr): 18.0〜25.0%
クロムは、超耐熱合金で耐蝕性と耐酸化性を向上させる役割をする一方、炭化物やTCP(Topologically Close Packed)相を生成し得る。18.0%より少なく添加すれば耐蝕性に問題が発生し、25.0%より多く添加すればクリープ特性が低下し、高温で長時間露出時、機械的特性に悪い影響を与えるTCP相が生成され得る。
(3) Chromium (Cr): 18.0 to 25.0%
Chromium is a super heat-resistant alloy and plays a role of improving corrosion resistance and oxidation resistance, and can generate a carbide and a TCP (Topologically Closed Packed) phase. If added less than 18.0%, there will be a problem in corrosion resistance, and if added more than 25.0%, the creep characteristics will deteriorate, and the TCP phase will adversely affect the mechanical properties when exposed for a long time at high temperature. Can be generated.

(4)モリブデン(Mo): 0.5〜1.50%
モリブデンは固溶強化元素で、超耐熱合金の高温引張特性、クリープ特性を向上させる役割をする。また、炭素と結合して結晶粒界にM6C形炭化物を形成して結晶粒成長を抑制する。しかし、多量に添加すればTCP相が生成され、熱間加工性が低下し得る。0.5%未満では固溶強化の効果を期待しにくく、1.5%を超えて添加すれば熱間加工性が低下し、TCP相が形成されやすい。
(4) Molybdenum (Mo): 0.5 to 1.50%
Molybdenum is a solid solution strengthening element that plays a role in improving the high temperature tensile properties and creep properties of superalloys. Moreover, it combines with carbon to form M 6 C-type carbides at the grain boundaries to suppress grain growth. However, if added in a large amount, a TCP phase is generated, and hot workability may be reduced. If it is less than 0.5%, it is difficult to expect the effect of solid solution strengthening. If it is added in excess of 1.5%, the hot workability is lowered and a TCP phase is likely to be formed.

(5)タングステン(W): 0.1〜3.0%
タングステンは、固溶強化により高温強度とクリープ強度を高める元素である。しかし、多量に添加すれば靭性及び延性が低下し、相安定性が低下する。したがって、高温強度のために0.1%以上のタングステンが添加され、多量に添加する場合に生じる望ましくない効果を抑制するために、3.0%に含量を制限する。
(5) Tungsten (W): 0.1 to 3.0%
Tungsten is an element that increases high temperature strength and creep strength by solid solution strengthening. However, if added in a large amount, toughness and ductility are lowered, and phase stability is lowered. Therefore, 0.1% or more of tungsten is added for high temperature strength, and the content is limited to 3.0% in order to suppress an undesirable effect that occurs when a large amount is added.

(6)アルミニウム(Al): 0.5〜2.0%
アルミニウムは、ニッケル基超耐熱合金の主な強化相であるγ′の構成元素であるから、高温クリープ特性の向上に必ず必要な元素である。また、耐酸化性の向上にも寄与する。しかし、0.5%より少ない時は、析出相形成による強度向上効果を得にくく、2.0%より多ければ、過度なγ′相の析出により延性を低下させる。
(6) Aluminum (Al): 0.5 to 2.0%
Since aluminum is a constituent element of γ ′, which is the main strengthening phase of nickel-base superalloys, it is an essential element for improving high-temperature creep characteristics. It also contributes to the improvement of oxidation resistance. However, when the content is less than 0.5%, it is difficult to obtain the effect of improving the strength due to the formation of the precipitated phase. When the content is more than 2.0%, the ductility is lowered due to the excessive precipitation of the γ ′ phase.

(7)チタニウム(Ti): 0.5〜1.1%
チタニウムはアルミニウムと同様にγ′相の構成元素で、高温強度の向上を助け、耐蝕性の向上にも寄与するので0.5%以上添加する。しかし、過度に添加する場合には延性が低下し、不必要な相を生成し得るので1.1%に制限する。
(7) Titanium (Ti): 0.5 to 1.1%
Titanium, like aluminum, is a constituent element of the γ 'phase and helps improve high temperature strength and contributes to improved corrosion resistance, so 0.5% or more is added. However, when added excessively, the ductility is lowered and an unnecessary phase can be formed, so the content is limited to 1.1%.

(8)ニオブ(Nb): 0.5〜2.5%
ニオブは、主な強化相であるγ′相に固溶されてγ′相を強化させる役割をし、これを通して高温強度の向上に寄与するので、0.5%以上添加する。しかし、過度に添加する場合には延性と靭性を低下させるので、2.5%以下に制限する。
(8) Niobium (Nb): 0.5-2.5%
Niobium is dissolved in the γ ′ phase, which is the main strengthening phase, to strengthen the γ ′ phase and contributes to the improvement of the high temperature strength through this, so 0.5% or more is added. However, when added excessively, ductility and toughness are lowered, so the content is limited to 2.5% or less.

(9)炭素(C): 0.01〜1.0%
炭素はTi、W、Mo、Crなどと結合し、MC、M6C、またM236形態の炭化物を形成して結晶粒界微細化に寄与し、炭化物を粒界に形成させることで結晶粒界強度を向上させる。炭素含量が0.01%未満では、充分な炭化物が形成されず、1.0%を超えると炭化物が過多に形成されて、延性、加工性などが低下するので、含量を0.01〜1.0%とする。
(9) Carbon (C): 0.01 to 1.0%
Carbon combines with Ti, W, Mo, Cr, etc., and forms carbides of MC, M 6 C, and M 23 C 6 forms, contributing to refinement of grain boundaries, and forming carbides at grain boundaries. Improves grain boundary strength. If the carbon content is less than 0.01%, sufficient carbide is not formed, and if it exceeds 1.0%, excessive carbide is formed and ductility, workability, etc. are lowered. 0.0%.

(10)マンガン(Mn): 0〜0.5%
マンガンは合金を溶解する時の脱酸剤に使用される。しかし、過度に添加すれば、加工性と高温耐酸化性が低下するので、その含量は0.5%以下に制限する。
(10) Manganese (Mn): 0 to 0.5%
Manganese is used as a deoxidizer when melting alloys. However, if added excessively, the workability and high-temperature oxidation resistance decrease, so the content is limited to 0.5% or less.

(11)シリコーン(Si): 0〜0.5%
シリコーンもマンガンと同様に溶解する時の脱酸剤に使用され、合金の耐酸化性を向上させる。しかし、過度に添加すれば、加工性と靭性などを低下させるので、その含量は0.5%以下に制限する。
(11) Silicone (Si): 0 to 0.5%
Silicone, like manganese, is used as a deoxidizer when it is dissolved, and improves the oxidation resistance of the alloy. However, if added excessively, the workability and toughness are reduced, so the content is limited to 0.5% or less.

(12)ボロン(B): 0〜0.008%
ボロンは結晶粒界に偏析されて粒界強度を向上させ、結晶粒成長を抑制させる。しかし、過度に添加すれば、基地の融点を低下させて熱間加工性を低下させ、延性が低下するので、0.008%以下に含量を制限する。
(12) Boron (B): 0 to 0.008%
Boron is segregated at the grain boundaries to improve the grain boundary strength and suppress the grain growth. However, if added excessively, the melting point of the matrix is lowered, the hot workability is lowered, and the ductility is lowered. Therefore, the content is limited to 0.008% or less.

(13)ジルコニウム(Zr): 0 〜0.05%
ジルコニウムは結晶粒界に偏析して粒界強度を向上させる。しかし、過度に添加すれば、合金の靭性を低下させるので、0.05%以下に含量を制限する。
(13) Zirconium (Zr): 0 to 0.05%
Zirconium segregates at the grain boundaries and improves the grain boundary strength. However, if added excessively, the toughness of the alloy is lowered, so the content is limited to 0.05% or less.

以下、実施例を通して本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail through examples.

表1は、本発明の実施例が適用された多結晶超耐熱合金と前記超耐熱合金と比較される合金の化学組成を提示したものである。   Table 1 presents the chemical composition of the polycrystalline superalloy to which the embodiment of the present invention is applied and the alloy compared with the superalloy.

表1によれば、試験材1はC が0.035重量%添加されたニッケル基合金の造成を表したものであり、試験材2はCが0.088重量%である場合を提示したものである。一方、比較試験材は、全部Cの量は試験材と同一な範囲内にあるが、Al、Nb、Ti、Wなどの含量が範囲外で添加されたものである。比較試験材1はAl含量を減らした合金であり、比較試験材2はNb含量を減らした合金であり、比較試験材3はTi含量を減らした合金であり、比較試験材4はW含量を減らした合金である。   According to Table 1, test material 1 represents the formation of a nickel-base alloy to which C 3 is added in an amount of 0.035% by weight, and test material 2 presents a case in which C is 0.088% by weight. It is. On the other hand, the total amount of C in the comparative test material is in the same range as the test material, but the contents of Al, Nb, Ti, W, etc. are added outside the range. Comparative test material 1 is an alloy having a reduced Al content, comparative test material 2 is an alloy having a reduced Nb content, comparative test material 3 is an alloy having a reduced Ti content, and comparative test material 4 has a W content. It is a reduced alloy.

Figure 2012107328
Figure 2012107328

前記試験材と比較試験材は、まず、通常の真空誘導溶解方法により母合金を製作した後、熱間圧延により板材に製作し、溶体化熱処理と時効熱処理によりγとγ′の2つの相からなる微細組織を得た。   The test material and the comparative test material are manufactured by first producing a mother alloy by a normal vacuum induction melting method, then producing a plate material by hot rolling, and from two phases γ and γ ′ by solution heat treatment and aging heat treatment. The resulting microstructure was obtained.

表2は、前記試験材と比較材の合金を常温(25℃)と750℃で引張試験を行い、降伏強度、引張強度と延伸率を表したものである。   Table 2 shows the yield strength, tensile strength, and stretch ratio of the test material and the comparative material, which were subjected to a tensile test at room temperature (25 ° C.) and 750 ° C.

Figure 2012107328
Figure 2012107328

表2から分かるように、常温と750℃での引張試験結果、本発明の化学組成範囲にあるニッケル基合金試料である試験材1と試験材2が、比較材1から比較材4より優れた降伏強度、引張強度及び延伸率の数値を現していることが分かった。   As can be seen from Table 2, the tensile test results at room temperature and 750 ° C., the test material 1 and the test material 2 which are nickel-based alloy samples in the chemical composition range of the present invention were superior to the comparative material 1 to the comparative material 4 It was found that the values of yield strength, tensile strength and stretch ratio were expressed.

表3は、760℃/280MPa条件で前記試験材と比較材のクリープ特性を表したものである。   Table 3 shows the creep characteristics of the test material and the comparative material under the conditions of 760 ° C./280 MPa.

Figure 2012107328
Figure 2012107328

表3から分かるように、760℃/280MPa条件で試験材1のクリープ破断時間は435時間であり、比較材のクリープ破断時間は101〜173時間であった。相対的にクリープ特性に優れた比較材を、本発明の試験材と比較して見ても、本発明の試験材1は、比較試験材3より約2倍以上のクリープ破断時間を現していることが分かった。   As can be seen from Table 3, the creep rupture time of the test material 1 was 435 hours under the condition of 760 ° C./280 MPa, and the creep rupture time of the comparative material was 101 to 173 hours. Even when the comparative material having relatively excellent creep characteristics is compared with the test material of the present invention, the test material 1 of the present invention exhibits a creep rupture time approximately twice as long as that of the comparative test material 3. I understood that.

以上、本発明は好ましい実施例を挙げて詳細に説明したが、本発明は前記実施例に限定されず、本発明の技術思想の範囲内で当分野で通常の知識を有する者により様々な変形が可能である。   The present invention has been described in detail with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications may be made by those having ordinary knowledge in the art within the scope of the technical idea of the present invention. Is possible.

Claims (2)

重量%で Co:8.0〜13.0%、Fe:0〜1.0%,Cr:18.0〜25.0%、Mo:0.1〜1.5%、W:0.1〜3%、Al:0.5〜2.0%、Ti:0.5〜1.1%、Nb:0.5〜2.5%、C:0.01〜1.0%、Mn:0〜0.5%、Si:0〜0.5%、B:0〜0.008%、Zr:0〜0.05%であり、残りはNiとその他の不可避不純物からなる高温引張特性に優れた多結晶ニッケル基超耐熱合金。   By weight% Co: 8.0 to 13.0%, Fe: 0 to 1.0%, Cr: 18.0 to 25.0%, Mo: 0.1 to 1.5%, W: 0.1 -3%, Al: 0.5-2.0%, Ti: 0.5-1.1%, Nb: 0.5-2.5%, C: 0.01-1.0%, Mn: 0 to 0.5%, Si: 0 to 0.5%, B: 0 to 0.008%, Zr: 0 to 0.05%, and the rest for high temperature tensile properties composed of Ni and other inevitable impurities Excellent polycrystalline nickel-based superalloy. 前記超耐熱合金は、γ基地とγ′析出物の混合組織を有することを特徴とする請求項1に記載の高温引張特性に優れた多結晶ニッケル基超耐熱合金。   The polycrystalline nickel-based superalloy having excellent high temperature tensile properties according to claim 1, wherein the superalloy has a mixed structure of γ matrix and γ 'precipitate.
JP2011231795A 2010-11-18 2011-10-21 Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures Expired - Fee Related JP5323162B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100114867A KR20120053645A (en) 2010-11-18 2010-11-18 Polycrystal ni base superalloy with good mechanical properties at high temperature
KR10-2010-0114867 2010-11-18

Publications (2)

Publication Number Publication Date
JP2012107328A true JP2012107328A (en) 2012-06-07
JP5323162B2 JP5323162B2 (en) 2013-10-23

Family

ID=46269750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231795A Expired - Fee Related JP5323162B2 (en) 2010-11-18 2011-10-21 Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures

Country Status (2)

Country Link
JP (1) JP5323162B2 (en)
KR (1) KR20120053645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725924A (en) * 2014-01-16 2014-04-16 张霞 Nickel alloy and manufacturing method thereof
US20170342525A1 (en) * 2016-05-26 2017-11-30 The Japan Steel Works, Ltd. High strength ni-based superalloy
CN108520167A (en) * 2018-03-30 2018-09-11 国电锅炉压力容器检验中心 A kind of the high temperature service life fast evaluation method and system of G102 steel heating surface
EP3249063B1 (en) 2016-05-27 2018-10-17 The Japan Steel Works, Ltd. High strength ni-based superalloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104745881A (en) * 2013-12-27 2015-07-01 新奥科技发展有限公司 A nickel based alloy and applications thereof
CN104032198B (en) * 2014-06-16 2016-07-06 中冶京诚(扬州)冶金科技产业有限公司 A kind of fireproof furnace rolls high temperature alloy and heat-treatment furnace fireproof furnace rolls
CN111349819A (en) * 2018-12-21 2020-06-30 南京沃尔德特钢有限公司 High-purity nickel-based alloy composite seamless steel pipe
KR102201046B1 (en) 2020-03-04 2021-01-11 대남이엔지 (주) Wasted heat recovery piping system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516680A (en) * 2003-01-25 2006-07-06 シュミット + クレメンス ゲーエムベーハー + ツェーオー.カーゲー Heat-stable and corrosion-resistant cast nickel-chromium alloy
JP2008075171A (en) * 2006-09-25 2008-04-03 Nippon Seisen Co Ltd HEAT RESISTANT ALLOY SPRING AND Ni-BASED ALLOY WIRE USED THEREFOR
JP2010029914A (en) * 2008-07-30 2010-02-12 Mitsubishi Heavy Ind Ltd Welding material for nickel-based alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516680A (en) * 2003-01-25 2006-07-06 シュミット + クレメンス ゲーエムベーハー + ツェーオー.カーゲー Heat-stable and corrosion-resistant cast nickel-chromium alloy
JP2008075171A (en) * 2006-09-25 2008-04-03 Nippon Seisen Co Ltd HEAT RESISTANT ALLOY SPRING AND Ni-BASED ALLOY WIRE USED THEREFOR
JP2010029914A (en) * 2008-07-30 2010-02-12 Mitsubishi Heavy Ind Ltd Welding material for nickel-based alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725924A (en) * 2014-01-16 2014-04-16 张霞 Nickel alloy and manufacturing method thereof
US20170342525A1 (en) * 2016-05-26 2017-11-30 The Japan Steel Works, Ltd. High strength ni-based superalloy
EP3249063B1 (en) 2016-05-27 2018-10-17 The Japan Steel Works, Ltd. High strength ni-based superalloy
CN108520167A (en) * 2018-03-30 2018-09-11 国电锅炉压力容器检验中心 A kind of the high temperature service life fast evaluation method and system of G102 steel heating surface
CN108520167B (en) * 2018-03-30 2021-03-02 国电锅炉压力容器检验中心 Method and system for rapidly evaluating high-temperature life of G102 steel heating surface

Also Published As

Publication number Publication date
KR20120053645A (en) 2012-05-29
JP5323162B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5696995B2 (en) Heat resistant superalloy
JP5323162B2 (en) Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures
US9945019B2 (en) Nickel-based heat-resistant superalloy
JP5278936B2 (en) Heat resistant superalloy
JP2015129341A (en) Ni-BASED SUPERALLOY CAPABLE OF HOT FORGING EXCELLENT IN HIGH TEMPERATURE STRENGTH
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
CA2955320C (en) Ni-based superalloy for hot forging
CA2955322C (en) Ni-based superalloy for hot forging
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP5502435B2 (en) High heat and oxidation resistant materials
JP2010275597A (en) Nickel-based alloy for turbine rotor of steam turbine, and the turbine rotor of steam turbine
CN115505790B (en) Nickel-based superalloy with stable weld strength, and preparation method and application thereof
JP5393829B2 (en) Single crystal nickel-base superalloy with improved creep properties
JP5595495B2 (en) Nickel-base superalloy
JP2012046787A (en) Forged alloy for steam turbine and steam turbine rotor using the same
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP5791640B2 (en) Nickel / chromium / cobalt / molybdenum alloy
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JPH05505426A (en) Nickel alloy for casting
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP7112317B2 (en) Austenitic steel sintered materials and turbine components
JP6176665B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2011219853A (en) Single crystal nickel-base superalloy excellent in creep characteristic
JP2010084167A (en) Nickel-based alloy and high-temperature member for turbine using the same
JP2014005528A (en) Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees