WO2014029439A1 - Ladeeinrichtung zum induktiven laden - Google Patents

Ladeeinrichtung zum induktiven laden Download PDF

Info

Publication number
WO2014029439A1
WO2014029439A1 PCT/EP2012/066427 EP2012066427W WO2014029439A1 WO 2014029439 A1 WO2014029439 A1 WO 2014029439A1 EP 2012066427 W EP2012066427 W EP 2012066427W WO 2014029439 A1 WO2014029439 A1 WO 2014029439A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary coil
coil
medium
holding device
secondary coil
Prior art date
Application number
PCT/EP2012/066427
Other languages
English (en)
French (fr)
Inventor
Dragan Mikulec
Rainer Knorr
Roland Brill
Anja LIPOLD
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US14/423,375 priority Critical patent/US9682632B2/en
Priority to CN201280075306.2A priority patent/CN104582999B/zh
Priority to DE112012006833.5T priority patent/DE112012006833A5/de
Priority to PCT/EP2012/066427 priority patent/WO2014029439A1/de
Publication of WO2014029439A1 publication Critical patent/WO2014029439A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a charging device for inductively charging a traction battery of an electrically driven vehicle and to a method for positioning a primary coil during inductive charging.
  • Electrically driven vehicles have a traction battery
  • a primary coil angeord ⁇ net which transmits electrical energy to a secondary coil of the vehicle by means of an electromagnetic field.
  • the efficiency of this wireless energy transfer depends essentially on how large the distance between the primary coil and the secondary coil and how exactly the primary coil are aligned to the secondary coil.
  • an inductive charging device in which the primary coil toward be ⁇ is moved by means of compressed air technology to the secondary coil of the vehicle. In this case, the position of the vehicle is determined by a block with a recess in which retract the wheels of the vehicle.
  • an inductive charging device is furthermore known, wherein the primary coil is installed in a survey of the soil and Ra ⁇ of the vehicle are positioned in a hollow.
  • the invention has for its object to provide a device and a method that allows safe and reli ⁇ sige positioning of the primary coil during inductive charging.
  • a charging device for inductively charging a traction battery of an electrically driven vehicle with a primary coil, which is movable by means of a pressurized medium in a first direction to a secondary coil of the vehicle, the primary ⁇ coil on an at least temporarily elastic Holding device is arranged.
  • this holding device to ⁇ minimum then elastic properties, when the primary coil has been moved to the secondary coil of the vehicle, that is, when the primary coil is in the loading position. In this charging position, the primary coil is arranged as close as possible to the secondary coil of the vehicle.
  • the Hal ⁇ tevorraum but can also be permanently elastic, ie have permanently elastic properties.
  • the primary coil and / or the secondary coil are advantageously insbeson ⁇ then protected from damage when moving the electrically driven vehicle during the charging process.
  • Such movement may occur, for example, when a person enters the vehicle during the charging process or when the vehicle is being loaded. Then the suspension at the wheels of the vehicle is compressed more and the Secondary coil of the vehicle moves down.
  • a rigidly arranged primary coil then there is the danger that the primary coil and / or the secondary coil is damaged by this movement. This danger is also significant because the primary coil and / or the secondary coil often have brittle ferrite material.
  • the elastic ⁇ cal holding device this danger is reduced, because in such a vehicle movement, the primary coil can yield elastically and therefore damage can be avoided.
  • the charging device can be designed so that the pressurized medium is a gas, in particular compressed air.
  • the charging device can be configured such that the retaining device connects the primary coil to a substrate (passable by the vehicle). Thereby, the primary coil is ⁇ elastically with the (rigid) base connected so that the primary coil can yield elastically if necessary, at a movement of the vehicle without any damage occurs.
  • the charging device may be configured so that the Hal ⁇ tevoriques comprises a bellows, in particular a bellows, which can be filled with the medium.
  • a bellows which changes its length when filled with the medium, the primary coil can advantageously be moved towards the secondary coil.
  • the bellows in a partially or completely filled with the medium state elastic properties.
  • the charging device can be designed such that the primary coil is arranged at one end of the bellows.
  • the charging device can also be designed so that the holding device has a hose which can be filled with the medium or the holding device has a cushion which can be filled with the medium.
  • a hose or such a pillow have in the unfilled state a fla che shape, so that the primary coil is spaced from the secondary coil of the vehicle.
  • a partially or fully ⁇ constantly filled tube or a partially or completely filled cushion advantageously has elastic properties.
  • the charging device can also be designed so that the holding device has a membrane which can be arched up with the medium.
  • the charging device can be designed so that the membrane comprises the primary coil annular.
  • Such a configured membrane allows movement of the primary ⁇ coil in the first direction to the secondary coil.
  • the charging device can also be set up so that the primary coil is displaceably arranged in a second direction. This makes it even better align the primary coil bezüg ⁇ Lich the secondary coil.
  • the charging device can be designed so that the elasticity of the holding device allows a displacement of the primary coil in the second direction.
  • the elastic holding device advantageously not only allows an elastic retraction of the primary coil when external forces act, but also permits alignment of the primary coil
  • the charging device can also be designed so that the primary coil is mounted in a plain bearing, which allows a displacement of the primary coil in the second direction. By means of such a plain bearing, a further displacement of the primary coil in the second direction is made possible.
  • the charging device may be constructed such that it has a pressure sensor for measuring the contact pressure between the primary coil and the secondary coil and / or a pressure sensor for measuring the pressure of the medium.
  • a pressure sensor for measuring the contact pressure between the primary coil and the secondary coil and / or a pressure sensor for measuring the pressure of the medium.
  • the charging device can also be designed so that the holding device is sunk in a first position in a (passable by the vehicle) underground.
  • This first position is a rest position of the holding device and the primary coil.
  • the first position is in the idle state of La ⁇ de Rhein before. It is advantageous that in Oxfordippo ⁇ state of the charging device, the holding device can be brought into the first position and then sunk in the ground. This disturbing obstacles that protrude from the bottom ⁇ avoided.
  • the primary coil is arranged protected in the first position.
  • the loading device can also be designed so that the holding device protrudes in a second position from the ground in the first direction. This second position is the working position or loading position of the holding device and the primary coil.
  • the holding device is advantageously ge ⁇ into the second position in which the holding device from the substrate in the first direction protrudes (in the direction of the secondary coil).
  • the charging device can be designed such that the second direction is aligned perpendicular to the first direction.
  • the charging device may be configured such that the first direction is the vertical direction and the second direction is a horizontal direction.
  • a method for positioning a primary coil when inductively charging a traction battery of an electrically driven vehicle wherein in the method, a primary coil is moved by means of a pressurized medium in a first direction to a secondary coil of the vehicle, the primary coil of a at least temporarily elastic holding device
  • This method can be designed so that the pressurized medium is a gas, in particular compressed air.
  • the method can proceed such that the primary coil is moved by means of the medium in the first direction until the Pri ⁇ märspule contacts the secondary coil.
  • This will advantageously be converted enables the primary coil passes very close to the secondary coil of the vehicle, whereby a high We ⁇ ciency in energy transfer is possible.
  • the method may be such that the contact is detected by means of at least one pressure sensor.
  • the movement of the primary coil can be stopped by, for example, the pressure of the medium is no longer he increased ⁇ .
  • the method can proceed in such a way that the contact pressure between the primary coil and the secondary coil is measured by the pressure sensor or the pressure of the medium is measured by the pressure sensor.
  • the Touched secondary coil creates a contact pressure between the primary coil and the secondary coil, which is measured by means of the pressure ⁇ sensor.
  • the pressure of the Me ⁇ diums increases, since the primary coil does not move further.
  • the method can proceed such that the holding device allows a displacement of the primary coil in a second direction.
  • the displacement of the primary coil in the second direction allows an even better orientation of the primary coil to the secondary coil of the vehicle.
  • the method may be configured to pass electrical current through the primary coil, thereby aligning the primary coil (in the second direction) with respect to the secondary coil.
  • the primary coil is directed bezüg ⁇ Lich from a magnetic field of the secondary coil.
  • the electric current generates a magnetic field in the primary coil.
  • the secondary coil also has such a magnetic field (because, for example, electric current is simultaneously conducted through the secondary coil). Due to the Anzie ⁇ hung the two magnetic fields, the primary coil aligns with the secondary coil. Through this orientation of the effect ⁇ degree of wireless transfer of energy between the primary coil and the secondary coil is further increased.
  • the method may be configured to pass electrical current through an electromagnet disposed on the primary coil, thereby aligning the primary coil (in the second direction) with respect to the secondary coil.
  • the primary coil can be aligned, in particular, with respect to an electromagnet arranged on the secondary coil, through which electrical current is also conducted.
  • the method may also be configured such that the primary coil aligns concentrically to the secondary coil before ⁇ part by way of proving to the primary coil so directed to the secondary coil of ⁇ that both coils are arranged concentrically.
  • the Primary coil and the secondary coil In a concentric alignment or arrangement are the Primary coil and the secondary coil about a common center point or ⁇ arranged around a common axis.
  • the method may be such that, after alignment, the pressure of the medium is increased, thereby fixing the position of the aligned primary coil with respect to the secondary coil.
  • the primary coil is more ⁇ pressed against the secondary coil. This who the frictional forces between the primary coil and the secondary coil increases ⁇ . This increased frictional forces cause the position of the aligned primary coil with respect to the secondary coil no longer changes, but is fixed.
  • the method may be configured such that the second direction is aligned perpendicular to the first direction.
  • the method may be configured such that the first direction is the vertical direction and the second direction is a horizontal direction.
  • this method also has the advantages that are mentioned above in connection with the charging device.
  • the invention will be explained in more detail below with reference to exemplary embodiments. This is in
  • Figure 1 is a schematic sectional view of a first embodiment of a charging device with a bellows, in
  • Figure 2 shows another embodiment of a Ladeeinrich ⁇ tion with a hose, in
  • Figure 3 shows another embodiment of a Ladeeinri device with a pillow
  • Figure 4 shows another embodiment with a diaphragm having a holding device in a first position
  • Figure 5 the holding device of Figure 4 in a second
  • FIG. 6 shows the holding device of Figure 4 in a plan view and in
  • FIG. 7 shows a flow chart of an embodiment of a
  • FIG. 1 shows schematically an electrically driven vehicle 1 is shown.
  • This electric automobile 1 has a driving battery 3, which stores the information on driving be forced ⁇ electrical energy.
  • the driving battery can be charged.
  • electric power is supplied from the secondary coil 5 to the traction battery 3. This is merely symbo ⁇ cally represented by an electrical connection 7.
  • the electrically driven vehicle 1 is on a lower ⁇ ground 10, which is passable by the vehicle.
  • This underground may be, for example, the ground, a street, a parking lot or a parking space in a parking garage.
  • a charging device 12 is arranged, of which only selected components are shown in the embodiment of Figure 1.
  • This charging device has a primary coil 13.
  • the primary coil and the secondary coil can, for. B. have a diameter between 30 and 60 cm. In this case, smaller coils are advantageous because they require less space, we have niger weight and have better integrability in the charger and in the vehicle.
  • the primary coil 13 is angeord ⁇ net on a holding device 15.
  • the holding device 15 is configured in the embodiment as a bellows 15, more precisely as a bellows.
  • the primary coil 13 is arranged at the end of the bellows 15.
  • the bellows is connected via a pressure line 18 and an electrically controllable valve 20 to a compressor 22.
  • the compressor 22 generates a pressurized medium in the form of compressed air. (In other embodiments, other gases may be used as the medium in place of compressed air.)
  • This pressurized medium passes from the compressor with the valve 20 open through the compressed air line 18 to the bellows 15 and causes the bellows 15 to expand along the arrow 25 , ie enlarged.
  • the primary coil 13 is in a first direction (in the embodiment, the Z direction corresponds to) moves to the secondary coil 5 of the driving apparatus 1 ⁇ out. If the pressure in the bellows 15 is increased by means of the compressor 22, then the primary coil 13 is moved toward the secondary coil 5 and the distance between the two coils decreases.
  • valve 20 in the bellows 15, the valve 20 is closed, then the pressure in the holder 15 remains constant and the primary coil remains in its depending ⁇ nosti position.
  • pressure By means of the valve 20 pressure bringslas ⁇ sen, so the pressure in the holding device 15 and the primary coil 13 is reduced decreases due to their weight after un ⁇ th, that is, the primary coil moves away from the secondary coil 5 of the vehicle.
  • the air pressure in the bellows 15 is increased by means of the compressor 22. Then the moves
  • the first pressure sensor 30 is angeord ⁇ net on the primary coil 13.
  • the second pressure sensor 33 is arranged on the secondary coil 5.
  • the first pressure sensor and / or the second pressure sensor can also be designed as a simple switch, which switches when a predetermined contact pressure is reached, whereby a corresponding signal is produced.
  • the valve 20 is closed, so that the pressure in the bellows 15 remains constant and the contact pressure between the primary coil 13 and the secondary coil 5 does not increase any further.
  • the compressor 22 can be switched off.
  • the bellows 15 has elastic properties. Because of the thin walls of the bellows, the primary coil 13 may be in a second direction (in the execution ⁇ example is that direction in the XY plane) moves the advertising. So it is possible to shift the primary coil in this second direction. In the illustrated second position, the elasticity of the holding device 15 thus allows a shift of the primary coil in the second direction, ie a displacement of the primary coil along the arrow 44th
  • both the primary coil 13 and the secondary coil 5 are oriented in the aligned to stand ⁇ a common center or are with respect to a common axis.
  • This common axis is indicated in the embodiment as an axis 40.
  • the aligned state of the primary coil is shown in the second position of the holding device. In this second position, the holding device protrudes with the primary coil arranged thereon from the substrate 10 in the first direction. (Only for the sake of clarity, an air gap between the primary coil 13 and the secondary coil 5 is shown in Figure 1.
  • this air gap will be negligibly small.
  • the alignment of the primary coil can also be effected by means of an electromagnet.
  • at least one electromagnet 47 is arranged on the primary coil and at least one further ⁇ er solenoid 49 on the secondary coil.
  • the two electromagnets are flowed through with direct current; the resulting magnetic field of the electromagnet 47 and the resulting magnetic field of the electromagnet 49 attract.
  • the primary coil 13 in so long the second direction shifted until the primary coil 13 is aligned with the secondary coil 5.
  • the valve 20 After aligning the primary coil 13, the valve 20 is open, thereby increasing the overall pressure of the medium in the bellows 15 wei ⁇ ter. Characterized the contact pressure between the primary coil 13 and the secondary coil 5 is increased and the Rei ⁇ bung forces between the primary coil 13 and the secondary coil 5 to increase. Therefore, the aligned primary coil is relative to the secondary coil 5 fixed, ie, the position of the primary ⁇ coil is set relative to the secondary coil 5.
  • the inductive charging process can begin by applying an alternating current to the primary coil.
  • This alternating current produces an electromagnetic alternating field which passes through the secondary coil 5.
  • an electric current is induced in the secondary coil 5, which is used to charge the traction battery 3.
  • the components of the charging device that are needed for the actual inductive charging process such as
  • Switching devices, converters or power electronic assemblies are not shown in FIG. 1 for reasons of clarity. Also on the part of the vehicle 1 such components are not shown.
  • the valve 20 After completion of the inductive charging, the valve 20 is opened, whereby the pressure in the bellows 15 decreases.
  • the bellows can also be evacuated by means of a pump or by means of the compressor.
  • the primary coil 13 drops downwards due to its weight and is sunk completely in the ground 10 together with the holding device 15.
  • a recess 45 is present in the substrate 10, which receives the holding device and the primary coil. Now is the first position, in which the holding device is completely sunk in the ground 10.
  • the valve 20 is turned off so that the pressure of the
  • the holding device 15 is due to the compressible
  • FIG. 2 shows a further exemplary embodiment of a charging device 200.
  • This charging device 200 differs from the charging device 12 described with reference to FIG. 1 in that, instead of the bellows 15, the retaining device has a hose 202 which can be filled with the medium.
  • the exemplary embodiment is as ⁇ at an air hose 202 which is shown in Figure 2 in ge Scholl- th state.
  • This tube has the shape of a torus. (A torus has a shape similar to an air hose of a tire or similar to a swim tire.) In the sectional view of FIG. 2, only two circular cut surfaces are visible from the torus.
  • FIG. 2 shows the second position of the air tube 202 is shown, in which the air tube and the primary coil arranged thereon from the substrate 10 in the first direction stuntste ⁇ hen.
  • the primary spool 13 moves downward with the hose 202 and is completely received by the recess 45.
  • FIG 3 is shown as a further embodiment of a signaling device La ⁇ 300th
  • This charging device 300 differs from the charging device 12 described with reference to FIG 1 only in that the holding device instead of the bellows 15 has a cushion 302 which can be filled with the medium (here: an air cushion 302).
  • a cavity 404 is arranged in a substrate 402 in a substrate 402, a cavity 404 is arranged. This cavity 404 can be filled by means of the compressor 22, the valve 20 and the compressed air lines 18 with a pressurized medium in the form of compressed air.
  • the cavity 404 has a first annular groove 406 and a second annular groove 408.
  • wel ⁇ Ches has the shape of a flat circular cylinder.
  • the primary coil 13 is arranged so that it can move within the slide bearing in the direction of the XY plane, that is, is displaceable in this plane.
  • the primary spool 13 is slidably disposed in the sliding bearing 410 in the second direction (XY plane direction).
  • the primary coil is suspended freely floating, so that the primary coil can move in the second direction or is displaceable.
  • a power supply cable 412 extends to the primary coil 13.
  • the sliding bearing 410 is connected by means of a stretchable membrane 413 to the substrate 402 airtight.
  • the Gleitla ⁇ ger 410 itself is designed airtight. As a result, no air can escape from the cavity 404.
  • the diaphragm 413 comprises the sliding bearing 410 and thus also the primary coil 413 arranged in the sliding bearing 410 in a ring shape.
  • the holding device is formed by the sliding bearing 410 and the annular membrane 413.
  • FIG. 4 shows the first position of the holding device, in which the holding device is completely sunk into the base 402.
  • the annular diaphragm is in the first position in the second annular groove 408.
  • In this first position form the sliding bearing 410 and the Membrane 413 together with the surface of the substrate 402 a smooth plane, so that no obstacle (eg tripping ⁇ trap) protrudes from the substrate 402.
  • the Haltevorrich ⁇ tion and the primary coil can thus be installed flush and seamless in the ground / floor.
  • the expandable diaphragm 413 allows the primary coil to extend toward the secondary coil of the vehicle.
  • the nikringför ⁇ -shaped membrane 413 seals off the cavity 404, and thus the primary coil 13 against contamination, which on the particular surface ⁇ surface of the substrate (z. B. road surface) may occur Kgs ⁇ NEN.
  • FIG. 5 shows the second position, in which the holding device protrudes from the substrate 402 in the first direction (Z-direction). If now the valve 20 ge ⁇ opens and thereby the medium is discharged from the cavity 404, then the sliding bearing 410 moves with the primary coil 13 back into the first annular groove 406. Likewise, the diaphragm 413 moves back into the second annular groove 408. This then returns to the initial state, as shown in FIG. FIG. 6 is a schematic plan view of the arrangement according to FIG. 4.
  • the membrane 413 which includes the sliding bearing 410 and thus the primary coil 13 annular.
  • the primary coil 13 is shown by dashed lines, as this is not visible in the plan view, but is covered by the upper cover of the sliding bearing 410.
  • the displaceability of the primary coil 13 in the second direction within the XY plane is indicated by arrows 415.
  • the membrane 413 may also be configured circular and completely cover the slide bearing 410 upwards.
  • the membrane may also have another configuration, it may for example also be oval.
  • FIG. 7 an embodiment of the method is illustrated for positioning the primary ⁇ coil in a flow chart again.
  • Starting point is the first position of the holding device, in which the holding device and the primary coil are sunk in the ground (block 700).
  • the pressure of the medium eg, the pressure of the compressed air
  • block 710 the pressure of the medium
  • the primary coil contacts the secondary coil, this contact is detected by means of a pressure sensor (block 710)
  • the primary coil thus now touches the secondary coil, but is displaceable in the second direction due to the elasticity of the holding device. Now, a DC current flows through both the primary coil and the secondary coil. Magnetic fields build up in both coils. Due to the attractive forces between the magnetic fields, the primary coil concentrically aligns with the secondary coil. This ensures optimum alignment of the primary coil with the secondary coil (block 730).
  • the pressure of the medium is further increased.
  • the primary coil is still more suppressed ge ⁇ against the secondary coil, whereby the friction forces between the primary coil and Increase secondary coil.
  • the aligned primary coil is fixed to the secondary coil, so that the primary coil can not slip during the subsequent charging process.
  • the coil through the primary and the secondary coil the DC current flowing istchal ⁇ tet and the pressure of the medium is kept constant (block 740).
  • the second position of the holding device is present (block 750).
  • the actual inductive charging process can be carried out now, that the transmission of electrical energy from the primary coil to the secondary coil can be ⁇ ginnen.
  • the air gap between the primary coil and the Se ⁇ secondary coil is significantly reduced, ideally, the air gap can be reduced to zero.
  • the position of the primary coil also remains unchanged during a movement of the vehicle (eg when the vehicle is rocking or when the vehicle load changes due to the driver getting in) since the pressurized medium continues to press the primary coil against the vehicle.
  • a sufficient pressure reserve in the cavity of the holding device in particular in the bellows, the hose, the cushion or under the
  • the primary coil and the secondary coil are protected against mechanical damage during movement of the vehicle.
  • the coils can additionally be replaced by an elastic, e.g.
  • Foam-like, coating protected from mechanical damage By means of a switchable valve in the supply line for the medium, the pressure of the medium can be specifically influenced and held.
  • the valve When switching off without power (and thus, for example, during a power failure), the valve opens so that the pressure in the medium decreases. As a result, the holding device returns to its first position (for example, the bellows or the air tube or the air cushion collapses). The primary coil sinks down and disappears completely in the
  • a contact between the primary coil and the secondary coil is detected by a pressure sensor or switch, which is located on the top of the primary coil and / or Se ⁇ secondary coil.
  • the air gap between the primary coil and the secondary coil can be reduced to almost zero in the aligned state.
  • the maximum transmissible power can be be ⁇ siderably increased, for example from 3.3 kW to 12 kW while reducing the coil diameter. It is also advantageous that during the inductive charging no object between the primary coil and secondary coil can gene, because no or almost no air gap is present.
  • the gap between the primary coil and the seconding ⁇ därspule also remains constant (ideally to zero re ⁇ Jerusalem remains) when the vehicle is moving, so if for example, a person sits down or in the vehicle on the vehicle teetering or rocking.
  • the primary coil of the ⁇ movement of the vehicle follows or follows the movement of the vehicle.
  • the pressure of the medium under pressure need not be increased because there is sufficient pressure reserve in the medium.
  • This flexibility or elasticity of the holding device has the further advantage that the coils are not damaged during movements of the vehicle.
  • a thin elastic surface eg, an elastic coating
  • the pressure of the medium in the retaining device is rapidly reduced. This can be done on the one hand by opening the valve or by evacuating the holding device by means of a pump or by means of the compressor.
  • the holding ⁇ device with the primary coil thereby moves away from the secondary coil of the vehicle and returns to their safe Ru ⁇ hegna or in the underground (a first position).
  • the valve 20 can be designed so that this reduces the pressure of the medium as soon as the electrical valve 20 is no longer supplied with voltage (eg in a
  • the compressed air is discharged from the holding device.
  • Such persistence in the second position could cause damage when the vehicle is moving (eg when driving away).
  • the charging device is therefore intrinsically safe.
  • the first position of the holding device can also be referred to as a rest position, idle state, safe state, retracted state or initial state.
  • the second position of the holding device can also be used as a working position, Loading position, loading position or extended state are called.
  • the first direction corresponds in the embodiment of the Z-direction, ie the vertical direction.
  • the second direction corresponds to a horizontal embodiment Rich ⁇ tung, ie, a direction, which lies in the XY plane, ie, the second direction is perpendicular to the first direction from ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Ladeeinrichtung (12) zum induktiven Laden einer Fahrbatterie (3) eines elektrisch antreibbaren Fahrzeugs (1) mit einer Primärspule (13), die mittels eines unter Druck stehenden Mediums in einer ersten Richtung (25) zu einer Sekundärspule (5) des Fahrzeugs (1) hin bewegbar ist. Die Primärspule (13) ist an einer zumindest zeitweise elastischen Haltevorrichtung (15) angeordnet.

Description

Beschreibung
Ladeeinrichtung zum induktiven Laden Die Erfindung betrifft eine Ladeeinrichtung zum induktiven Laden einer Fahrbatterie eines elektrisch antreibbaren Fahrzeugs sowie ein Verfahren zum Positionieren einer Primärspule beim induktiven Laden. Elektrisch antreibbare Fahrzeuge weisen eine Fahrbatterie
(Akkumulator) auf, welche die für den Fahrbetrieb benötigte elektrische Energie zur Verfügung stellt. Entladene Batterien müssen bei Bedarf mittels einer Ladeeinrichtung wieder aufgeladen werden. Dazu werden die Fahrbatterie des elektrisch antreibbaren Fahrzeugs und die Ladeeinrichtung häufig mittels eines Ladekabels elektrisch miteinander verbunden. Das Herstellen dieser elektrischen Verbindung wird manchmal als lästig empfunden, insbesondere wenn das Kabel lang, schmutzig oder nass ist oder wenn die Verbindungsstecker schwer sind.
Eine elektrische Verbindung mit einem Ladekabel ist nicht notwendig, wenn die Fahrbatterie induktiv aufgeladen wird. Dabei ist außerhalb des Fahrzeugs eine Primärspule angeord¬ net, die mittels eines elektromagnetischen Felds elektrische Energie zu einer Sekundärspule des Fahrzeugs überträgt. Der Wirkungsgrad dieser drahtlosen Energieübertragung hängt wesentlich davon ab, wie groß der Abstand zwischen der Primärspule und der Sekundärspule ist und wie genau die Primärspule zu der Sekundärspule hin ausgerichtet sind.
Aus der Patentanmeldung US 2011/0181240 AI ist eine induktive Ladeeinrichtung bekannt, bei der die Primärspule mittels Drucklufttechnik zu der Sekundärspule des Fahrzeugs hin be¬ wegt wird. Dabei wird die Position des Fahrzeugs festgelegt durch einen Block mit einer Ausnehmung, in die die Räder des Fahrzeugs einfahren. Aus der internationalen Patentanmeldung WO 2011/044969 A2 ist weiterhin eine induktive Ladeeinrichtung bekannt, bei der die Primärspule in einer Erhebung des Bodens verlegt ist und Rä¬ der des Fahrzeugs in einer Mulde positioniert werden.
Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung und ein Verfahren anzugeben, die eine sichere und zuverläs¬ sige Positionierung der Primärspule beim induktiven Laden ermöglicht .
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Ladeein¬ richtung und ein Verfahren nach den unabhängigen
Patentansprüchen. Vorteilhafte Ausgestaltungen sind in den abhängigen Patentansprüchen angegeben.
Erfindungsgemäß angegeben wird eine Ladeeinrichtung zum induktiven Laden einer Fahrbatterie eines elektrisch antreibbaren Fahrzeugs mit einer Primärspule, die mittels eines unter Druck stehenden Mediums in einer ersten Richtung zu einer Se- kundärspule des Fahrzeugs hin bewegbar ist, wobei die Primär¬ spule an einer zumindest zeitweise elastischen Haltevorrichtung angeordnet ist. Dabei weist diese Haltevorrichtung zu¬ mindest dann elastische Eigenschaften auf, wenn die Primärspule zu der Sekundärspule des Fahrzeugs hin bewegt worden ist, d. h. wenn sich die Primärspule in der Ladeposition befindet. In dieser Ladeposition ist die Primärspule möglichst dicht an der Sekundärspule des Fahrzeugs angeordnet. Die Hal¬ tevorrichtung kann aber auch dauerhaft elastisch sein, d.h. dauerhaft elastische Eigenschaften aufweisen.
Durch die Elastizität der Haltevorrichtung wird die Primärspule und/oder die Sekundärspule vorteilhafterweise insbeson¬ dere dann vor Beschädigungen geschützt, wenn sich während des Ladevorgangs das elektrisch antreibbare Fahrzeug bewegt. Eine solche Bewegung kann beispielsweise dann auftreten, wenn während des Ladevorgangs eine Person in das Fahrzeug einsteigt oder wenn das Fahrzeug beladen wird. Dann wird die Federung an den Rädern des Fahrzeugs stärker zusammengedrückt und die Sekundärspule des Fahrzeugs bewegt sich nach unten. Bei einer starr angeordneten Primärspule besteht dann die Gefahr, dass durch diese Bewegung die Primärspule und/oder die Sekundärspule beschädigt wird. Diese Gefahr ist auch deshalb be- trächtlich, weil die Primärspule und/oder die Sekundärspule oftmals brüchiges Ferritmaterial aufweisen. Durch die elasti¬ sche Haltevorrichtung wird diese Gefahr verringert, weil bei einer derartigen Fahrzeugbewegung die Primärspule elastisch zurückweichen kann und daher Beschädigungen vermieden werden.
Die Ladeeinrichtung kann so ausgestaltet sein, dass das unter Druck stehende Medium ein Gas, insbesondere Druckluft, ist.
Die Ladeeinrichtung kann so ausgestaltet sein, dass die Hal- tevorrichtung die Primärspule mit einem (durch das Fahrzeug befahrbaren) Untergrund verbindet. Dadurch ist die Primär¬ spule elastisch mit dem (starren) Untergrund verbunden, so dass die Primärspule bei einer Bewegung des Fahrzeugs ggf. elastisch zurückweichen kann, ohne dass eine Beschädigung auftritt.
Die Ladeeinrichtung kann so ausgestaltet sein, dass die Hal¬ tevorrichtung einen Balg aufweist, insbesondere einen Faltenbalg, der mit dem Medium füllbar ist. Mit einem derartigen Balg, der beim Füllen mit dem Medium seine Länge verändert, kann die Primärspule vorteilhafterweise zu der Sekundärspule hin bewegt werden. Darüber hinaus weist der Balg in einem teilweise oder vollständig mit dem Medium gefüllten Zustand elastische Eigenschaften auf.
Die Ladeeinrichtung kann dabei so ausgestaltet sein, dass die Primärspule an einem Ende des Balgs angeordnet ist.
Die Ladeeinrichtung kann auch so ausgestaltet sein, dass die Haltevorrichtung einen Schlauch aufweist, der mit dem Medium füllbar ist oder die Haltevorrichtung ein Kissen aufweist, das mit dem Medium füllbar ist. Ein derartiger Schlauch oder ein derartiges Kissen weisen im ungefüllten Zustand eine fla- che Form auf, so dass die Primärspule von der Sekundärspule des Fahrzeugs beabstandet ist. Mit zunehmender Füllung durch das Medium vergrößert sich die Dicke des Schlauchs bzw. die Dicke des Kissens, so dass die Primärspule zu der Sekundär- spule des Fahrzeugs hin bewegt wird. Ein teilweise oder voll¬ ständig gefüllter Schlauch bzw. ein teilweise oder vollständig gefülltes Kissen weist vorteilhafterweise elastische Eigenschaften auf. Die Ladeeinrichtung kann auch so ausgestaltet sein, dass die Haltevorrichtung eine Membran aufweist, die mit dem Medium aufwölbbar ist. Wenn die Membran mit dem unter Druck stehenden Medium beaufschlagt wird, dann wird die Membran aufge¬ wölbt, so dass eine an der Membran angeordnete Primärspule in Richtung der Sekundärspule des Fahrzeugs bewegt wird. Auch diese Membran weist im aufgewölbten Zustand elastische Eigen¬ schaften auf, so dass die Primärspule elastisch an der Halte¬ vorrichtung angeordnet bzw. von dieser gehaltert ist. Dabei kann die Ladeeinrichtung so ausgestaltet sein, dass die Membran die Primärspule ringförmig umfasst. Eine derartig ausgestaltete Membran ermöglicht eine Bewegung der Primär¬ spule in der ersten Richtung zu der Sekundärspule hin. Die Ladeeinrichtung kann auch so eingerichtet sein, dass die Primärspule in einer zweiten Richtung verschiebbar angeordnet ist. Dies ermöglicht es, die Primärspule noch besser bezüg¬ lich der Sekundärspule auszurichten. Dabei kann die Ladeeinrichtung so ausgestaltet sein, dass die Elastizität der Haltevorrichtung eine Verschiebung der Primärspule in der zweiten Richtung ermöglicht. Die elastische Haltevorrichtung ermöglicht vorteilhafterweise nicht nur ein elastisches Zurückweichen der Primärspule beim Wirken von äußeren Kräften, sondern erlaubt auch eine Ausrichtung der
Primärspule in der zweiten Richtung (aufgrund der elastischen Verformung der Haltevorrichtung) . Die Ladeeinrichtung kann auch so ausgestaltet sein, dass die Primärspule in einem Gleitlager gelagert ist, welches eine Verschiebung der Primärspule in der zweiten Richtung ermöglicht. Mittels eines derartigen Gleitlagers wird eine noch weitere Verschiebung der Primärspule in der zweiten Richtung ermöglicht .
Die Ladeeinrichtung kann so aufgebaut sein, dass diese einen Drucksensor zum Messen des Berührungsdrucks zwischen der Pri- märspule und der Sekundärspule und/oder einen Drucksensor zum Messen des Drucks des Mediums aufweist. Mittels eines derar¬ tigen Drucksensors kann vorteilhafterweise erkannt werden, wenn die Primärspule bei der Bewegung in der ersten Richtung die Sekundärspule berührt. In diesem Falle steigt der Berüh- rungsdruck zwischen der Primärspule und der Sekundärspule an. Gleichzeitig steigt der Druck des Mediums an.
Die Ladeeinrichtung kann auch so ausgestaltet sein, dass die Haltevorrichtung in einer ersten Stellung in einem (durch das Fahrzeug befahrbaren) Untergrund versenkt ist. Diese erste Stellung ist eine Ruhestellung der Haltevorrichtung und der Primärspule. Die erste Stellung liegt im Ruhezustand der La¬ deeinrichtung vor. Hierbei ist vorteilhaft, dass im Ruhezu¬ stand der Ladeeinrichtung die Haltevorrichtung in die erste Stellung gebracht werden kann und dann im Untergrund versenkt ist. Dadurch werden störende Hindernisse, die aus dem Unter¬ grund herausragen, vermieden. Außerdem ist die Primärspule in der ersten Stellung geschützt angeordnet. Die Ladeeinrichtung kann auch so ausgestaltet sein, dass die Haltevorrichtung in einer zweiten Stellung aus dem Untergrund in der ersten Richtung hervorsteht. Diese zweite Stellung ist die Arbeitsstellung bzw. Ladestellung der Haltevorrichtung und der Primärspule. Zum Laden eines Fahrzeugs wird die Hal- tevorrichtung vorteilhafterweise in die zweite Stellung ge¬ bracht, in der die Haltevorrichtung aus dem Untergrund in der ersten Richtung (in Richtung der Sekundärspule) hervorsteht. Die Ladeeinrichtung kann so ausgestaltet sein, dass die zweite Richtung senkrecht zur ersten Richtung ausgerichtet ist . Die Ladeeinrichtung kann insbesondere so ausgestaltet sein, dass die erste Richtung die vertikale Richtung ist und die zweite Richtung eine horizontale Richtung ist.
Erfindungsgemäß angegeben wird weiterhin ein Verfahren zum Positionieren einer Primärspule beim induktiven Laden einer Fahrbatterie eines elektrisch antreibbaren Fahrzeugs, wobei bei dem Verfahren eine Primärspule mittels eines unter Druck stehenden Mediums in einer ersten Richtung zu einer Sekundärspule des Fahrzeugs hin bewegt wird, wobei die Primärspule von einer zumindest zeitweise elastischen Haltevorrichtung
(die mit dem Medium beaufschlagt wird) in die erste Richtung bewegt wird.
Dieses Verfahren kann so ausgestaltet sein, dass das unter Druck stehende Medium ein Gas, insbesondere Druckluft, ist.
Das Verfahren kann so ablaufen, dass die Primärspule mittels des Mediums in der ersten Richtung bewegt wird, bis die Pri¬ märspule die Sekundärspule berührt. Dadurch wird vorteilhaft- erweise ermöglicht, dass die Primärspule sehr dicht an die Sekundärspule des Fahrzeugs gelangt, wodurch ein hoher Wir¬ kungsgrad bei der Energieübertragung möglich wird.
Das Verfahren kann so ablaufen, dass die Berührung erkannt wird mittels mindestens eines Drucksensors. Bei Erkennen der Berührung kann die Bewegung der Primärspule gestoppt werden, indem beispielsweise der Druck des Mediums nicht weiter er¬ höht wird. Dabei kann das Verfahren so ablaufen, dass von dem Drucksensor der Berührungsdruck zwischen der Primärspule und der Sekundärspule gemessen wird oder von dem Drucksensor der Druck des Mediums gemessen wird. Sobald nämlich die Primärspule die Sekundärspule berührt, entsteht ein Berührungsdruck zwischen der Primärspule und der Sekundärspule, der mittels des Druck¬ sensors gemessen wird. Gleichzeitig steigt der Druck des Me¬ diums an, da sich die Primärspule nicht weiter bewegt.
Das Verfahren kann so ablaufen, dass die Haltevorrichtung eine Verschiebung der Primärspule in einer zweiten Richtung ermöglicht. Die Verschiebung der Primärspule in der zweiten Richtung ermöglicht eine noch bessere Ausrichtung der Primär- spule zur Sekundärspule des Fahrzeugs.
Das Verfahren kann so ausgestaltet sein, dass elektrischer Strom durch die Primärspule geleitet wird, wodurch sich die Primärspule (in der zweiten Richtung) bezüglich der Sekundär- spule ausrichtet. Dabei richtet sich die Primärspule bezüg¬ lich eines Magnetfelds der Sekundärspule aus. Der elektrische Strom erzeugt in der Primärspule ein magnetisches Feld. Auch die Sekundärspule verfügt über ein derartiges magnetisches Feld (weil beispielsweise gleichzeitig durch die Sekundär- spule elektrischer Strom geleitet wird) . Aufgrund der Anzie¬ hung der beiden Magnetfelder richtet sich die Primärspule zur Sekundärspule aus. Durch diese Ausrichtung wird der Wirkungs¬ grad der drahtlosen Energieübertragung zwischen der Primärspule und der Sekundärspule noch weiter erhöht.
Das Verfahren kann so ausgestaltet sein, dass elektrischer Strom durch einen an der Primärspule angeordneten Elektromagneten geleitet wird, wodurch sich die Primärspule (in der zweiten Richtung) bezüglich der Sekundärspule ausrichtet. Da- bei kann sich die Primärspule insbesondere bezüglich eines an der Sekundärspule angeordneten Elektromagneten ausrichten, durch den ebenfalls elektrischer Strom geleitet wird.
Das Verfahren kann auch so ausgestaltet sein, dass sich die Primärspule konzentrisch zur Sekundärspule ausrichtet Vor¬ teilhafterweise richtet sich die Primärspule so zur Sekundär¬ spule aus, dass beide Spulen konzentrisch angeordnet sind. Bei einer konzentrischen Ausrichtung bzw. Anordnung sind die Primärspule und die Sekundärspule um einen gemeinsamen Mit¬ telpunkt oder um eine gemeinsame Achse angeordnet.
Das Verfahren kann so ablaufen, dass nach dem Ausrichten der Druck des Medium erhöht wird, wodurch die Lage der ausgerichteten Primärspule bezüglich der Sekundärspule fixiert wird. Durch die Erhöhung des Drucks des Mediums wird die Primär¬ spule stärker gegen die Sekundärspule gedrückt. Dadurch wer¬ den die Reibungskräfte zwischen Primärspule und Sekundärspule vergrößert. Diese vergrößerten Reibungskräfte bewirken, dass sich die Lage der ausgerichteten Primärspule bezüglich der Sekundärspule nicht mehr ändert, sondern festgelegt ist.
Das Verfahren kann so ausgestaltet sein, dass die zweite Richtung senkrecht zur ersten Richtung ausgerichtet ist.
Das Verfahren kann insbesondere so ausgestaltet sein, dass die erste Richtung die vertikale Richtung ist und die zweite Richtung eine horizontale Richtung ist.
Weiterhin weist dieses Verfahren ebenfalls die Vorteile auf, die oben im Zusammenhang mit der Ladeeinrichtung angegeben sind . Im Folgenden wird die Erfindung anhand von Ausführungsbei¬ spielen näher erläutert. Dazu ist in
Figur 1 in einer schematischen Schnittdarstellung ein erstes Ausführungsbeispiel einer Ladeeinrichtung mit einem Balg, in
Figur 2 ein weiteres Ausführungsbeispiel einer Ladeeinrich¬ tung mit einem Schlauch, in
Figur 3 ein weiteres Ausführungsbeispiel einer Ladeeinri tung mit einem Kissen, in Figur 4 ein weiteres Ausführungsbeispiel mit einer eine Membran aufweisenden Haltevorrichtung in einer ersten Stellung, in Figur 5 die Haltevorrichtung der Figur 4 in einer zweiten
Stellung, in
Figur 6 die Haltevorrichtung der Figur 4 in einer Draufsicht und in
Figur 7 ein Ablaufdiagramm eines Ausführungsbeispiels eines
Verfahrens zum Positionieren dargestellt.
In Figur 1 ist schematisch ein elektrisch antreibbares Fahr- zeug 1 dargestellt. Dieses elektrisch antreibbare Fahrzeug 1 weist eine Fahrbatterie 3 auf, welche die zum Fahrbetrieb be¬ nötigte elektrische Energie speichert. Mittels einer Sekun¬ därspule 5 kann die Fahrbatterie 3 aufgeladen werden. Während des Aufladens wird elektrische Energie von der Sekundärspule 5 zu der Fahrbatterie 3 geleitet. Dies ist lediglich symbo¬ lisch durch eine elektrische Verbindung 7 dargestellt.
Das elektrisch antreibbare Fahrzeug 1 steht auf einem Unter¬ grund 10, der durch das Fahrzeug befahrbar ist. Bei diesem Untergrund kann es sich beispielsweise um den Erdboden, eine Straße, einen Parkplatz oder ein Stellplatz in einem Parkhaus handeln. An dem Untergrund ist eine Ladeeinrichtung 12 angeordnet, von der im Ausführungsbeispiel der Figur 1 lediglich ausgewählte Komponenten dargestellt sind. Diese Ladeeinrich- tung weist eine Primärspule 13 auf.
Die Primärspule und die Sekundärspule können z. B. einen Durchmesser zwischen 30 und 60 cm haben. Dabei sind kleinere Spulen vorteilhaft, weil diese weniger Bauraum benötigen, we niger Gewicht aufweisen und eine bessere Integrierbarkeit in der Ladeeinrichtung und in das Fahrzeug aufweisen. Die Primärspule 13 ist an einer Haltevorrichtung 15 angeord¬ net. Die Haltevorrichtung 15 ist im Ausführungsbeispiel als ein Balg 15, genauer gesagt als ein Faltenbalg, ausgestaltet. Die Primärspule 13 ist am Ende des Balgs 15 angeordnet. Der Balg ist über eine Druckleitung 18 und ein elektrisch ansteuerbares Ventil 20 mit einem Kompressor 22 verbunden.
Der Kompressor 22 erzeugt ein unter Druck stehendes Medium in Form von Druckluft. (In anderen Ausführungsbeispielen können als Medium anstelle von Druckluft auch andere Gase verwendet werden.) Dieses unter Druck stehende Medium gelangt vom Kompressor bei geöffnetem Ventil 20 über die Druckluftleitung 18 zu dem Balg 15 und bewirkt, dass sich der Balg 15 entlang des Pfeils 25 ausdehnt, d.h. vergrößert. Dadurch wird die Primär- spule 13 in einer ersten Richtung (die im Ausführungsbeispiel der Z-Richtung entspricht) zu der Sekundärspule 5 des Fahr¬ zeugs 1 hin bewegt. Wird mittels des Kompressors 22 der Druck in dem Balg 15 erhöht, dann wird die Primärspule 13 zu der Sekundärspule 5 hinbewegt und der Abstand zwischen den beiden Spulen verringert sich. Wird das Ventil 20 geschlossen, dann bleibt der Druck in der Haltevorrichtung 15 (hier: in dem Balg 15) konstant und die Primärspule verbleibt in ihrer je¬ weiligen Stellung. Wird mittels des Ventils 20 Druck abgelas¬ sen, so verringert sich der Druck in der Haltevorrichtung 15 und die Primärspule 13 sinkt aufgrund ihres Gewichts nach un¬ ten, d. h. die Primärspule bewegt sich von der Sekundärspule 5 des Fahrzeugs 1 weg.
Im Ausführungsbeispiel wird mittels des Kompressors 22 der Luftdruck in dem Balg 15 erhöht. Daraufhin bewegt sich die
Primärspule 13 so lange in die erste Richtung, bis die Pri¬ märspule 13 die Sekundärspule 5 berührt. Diese Berührung wird mittels eines ersten Drucksensors 30, eines zweiten Drucksen¬ sors 33 und/oder eines dritten Drucksensors 36 erkannt. Mit- tels des ersten Drucksensors 30 wird der Berührungsdruck zwischen der Primärspule 13 und der Sekundärspule 5 gemessen. Der ersten Drucksensor 30 ist an der Primärspule 13 angeord¬ net. Alternativ oder zusätzlich kann auch mittels des zweiten Drucksensors 33 der Berührungsdruck zwischen der Primärspule 13 und der Sekundärspule 5 gemessen werden. Dazu ist der zweite Drucksensor 33 an der Sekundärspule 5 angeordnet. Der erste Drucksensor und/oder der zweite Drucksensor kann auch als ein einfacher Schalter ausgestaltet sein, der bei Erreichen eines vorbestimmten Berührungsdrucks umschaltet, wodurch ein entsprechendes Signal entsteht. Alternativ oder zusätz¬ lich kann auch mittels des dritten Drucksensors 36 der Druck des Mediums (hier: der Luftdruck in dem Balg) gemessen wer- den. Sobald die Primärspule 13 die Sekundärspule 5 berührt und sich daher nicht weiter bewegt, steigt nämlich der Druck in dem Balg 15 an. Durch diesen Druckanstieg wird erkannt, dass die Primärspule 13 die Sekundärspule 5 berührt des Fahr¬ zeugs 1 berührt. Die Signale des ersten Drucksensors 30 und/oder des dritten Drucksensors 36 werden über gestrichelt dargestellte Kommunikationsverbindungen 38 zu einer Steuereinrichtung 39 übertragen, welche die Komponenten der Ladeeinrichtung (also hier insbesondere den Kompressor 22 und das Ventil 20) steuert. Die Messwerte des zweiten Drucksensors 33 werden über Kommunikationsverbindung 41 sowie über eine schematisch dargestellte drahtlose Kommunikationsverbindung 43 ebenfalls zu der Steuereinrichtung 39 übertragen.
Sobald die Berührung zwischen der Primärspule und der Sekun- därspule erkannt wird, wird das Ventil 20 geschlossen, so dass der Druck in dem Balg 15 konstant bleibt und sich der Berührungsdruck zwischen Primärspule 13 und der Sekundärspule 5 nicht weiter erhöht. Optional kann auch der Kompressor 22 abgeschaltet werden.
In diesem gefüllten Zustand weist der Balg 15 elastische Eigenschaften auf. Aufgrund der dünnen Wände des Balgs kann die Primärspule 13 in einer zweiten Richtung (im Ausführungs¬ beispiel liegt diese Richtung in der X-Y-Ebene) bewegt wer- den. Es ist also eine Verschiebung der Primärspule in dieser zweiten Richtung möglich. In der dargestellten zweiten Stellung ermöglicht die Elastizität der Haltevorrichtung 15 also eine Verschiebung der Primärspule in der zweiten Richtung, d. h. eine Verschiebung der Primärspule entlang des Pfeils 44.
Um die Primärspule 13 noch genauer zur Sekundärspule 5 hin auszurichten, wird nun kurzzeitig (z. B. einige Sekunden lang) elektrischer Gleichstrom durch die Primärspule geleitet. Daraufhin baut sich um die Primärspule 13 ein Magnetfeld auf. Gleichzeitig wird elektrischer Gleichstrom durch die Sekundärspule 5 geleitet, wodurch sich auch um die Sekundär- spule 5 ein Magnetfeld aufbaut. Das magnetische Feld der Pri¬ märspule und das magnetische Feld der Sekundärspule 5 ziehen sich an. Dadurch wird die Primärspule 13 so lange in der zweiten Richtung (d. h. hier in der X-Y-Ebene) verschoben, bis die Primärspule 13 zur Sekundärspule 5 ausgerichtet ist. Es wird insbesondere eine konzentrische Ausrichtung der bei¬ den Spulen zueinander erreicht, d. h. sowohl die Primärspule 13 als auch die Sekundärspule 5 haben im ausgerichteten Zu¬ stand einen gemeinsamen Mittelpunkt bzw. sind bezüglich einer gemeinsamen Achse ausgerichtet. Diese gemeinsame Achse ist im Ausführungsbeispiel als eine Achse 40 angedeutet. In Figur 1 ist also der ausgerichtete Zustand der Primärspule bei der zweiten Stellung der Haltevorrichtung dargestellt. Bei dieser zweiten Stellung steht die Haltevorrichtung mit der daran angeordneten Primärspule aus dem Untergrund 10 in der ersten Richtung hervor. (Nur aus Gründen der Übersichtlichkeit ist in Figur 1 ein Luftspalt zwischen der Primärspule 13 und der Sekundärspule 5 dargestellt. Vorteilhafterweise wird bei der Berührung der Primärspule 13 und der Sekundärspule 5 dieser Luftspalt vernachlässigbar klein sein.)
Alternativ kann das Ausrichten der Primärspule auch mittels eines Elektromagneten erfolgen. Dabei ist mindestens ein Elektromagnet 47 an der Primärspule und mindestens ein weite¬ rer Elektromagnet 49 an der Sekundärspule angeordnet. Die beiden Elektromagneten werden mit Gleichstrom durchflössen; das dadurch entstehende Magnetfeld des Elektromagneten 47 und das dadurch entstehende Magnetfeld des Elektromagneten 49 ziehen sich an. Dadurch wird die Primärspule 13 so lange in der zweiten Richtung verschoben, bis die Primärspule 13 zur Sekundärspule 5 ausgerichtet ist.
Nach dem Ausrichten der Primärspule 13 wird das Ventil 20 ge- öffnet und dadurch der Druck des Mediums in dem Balg 15 wei¬ ter erhöht. Dadurch wird der Berührungsdruck zwischen der Primärspule 13 und der Sekundärspule 5 erhöht und die Rei¬ bungskräfte zwischen der Primärspule 13 und der Sekundärspule 5 steigen an. Daher wird die ausgerichtete Primärspule bezüg- lieh der Sekundärspule 5 fixiert, d. h. die Lage der Primär¬ spule wird bezüglich der Sekundärspule 5 festgelegt.
Nun kann der induktive Ladevorgang beginnen, indem an die Primärspule ein Wechselstrom angelegt wird. Durch diesen Wechselstrom entsteht ein elektromagnetisches Wechselfeld, welches die Sekundärspule 5 durchsetzt. In bekannter Weise wird in der Sekundärspule 5 ein elektrischer Strom induziert, welcher genutzt wird, um die Fahrbatterie 3 aufzuladen. Die Komponenten der Ladeeinrichtung, die für den eigentlichen in- duktiven Ladevorgang benötigt werden, wie beispielsweise
Schalteinrichtungen, Umrichter oder leistungselektronische Baugruppen, sind aus Gründen der Übersichtlichkeit in der Figur 1 nicht dargestellt. Auch auf Seiten des Fahrzeugs 1 sind derartige Komponenten nicht dargestellt.
Nach Beendigung des induktiven Ladevorgangs wird das Ventil 20 geöffnet, wodurch der Druck in dem Balg 15 sinkt. (Alternativ kann der Balg auch mittels einer Pumpe oder mittels des Kompressors evakuiert werden.) Die Primärspule 13 sinkt auf- grund ihres Gewichts nach unten und wird zusammen mit der Haltevorrichtung 15 vollständig im Untergrund 10 versenkt. Dazu ist in dem Untergrund 10 eine Ausnehmung 45 vorhanden, welche die Haltevorrichtung und die Primärspule aufnimmt. Jetzt liegt die erste Stellung vor, bei der die Haltevorrich- tung vollständig im Untergrund 10 versenkt ist.
Das Ventil 20 ist so ausgeschaltet, dass der Druck des
Mediums sinkt, sobald das Ventil nicht mehr mit Spannung ver- sorgt wird (z. B. bei einem Stromausfall) . Dadurch wird die Haltevorrichtung in die erste Stellung gebracht, in der die Haltevorrichtung und die Primärspule im Untergrund geschützt sind .
Die Haltevorrichtung 15 ist aufgrund des kompressiblen
Mediums und des beweglichen Balgs zumindest in der in der Fi¬ gur 1 dargestellten zweiten Stellung elastisch, d. h. sie besitzt elastische Eigenschaften. Wenn das Medium aus der Hal- tevorrichtung 15 abgelassen ist und sich die Haltevorrichtung 15 mitsamt der Primärspule in der Ausnehmung 45 des Unter¬ grunds 10 befindet, dann verfügt die Haltevorrichtung nicht über elastische Eigenschaften. Zu diesem Zeitpunkt sind die elastischen Eigenschaften aber auch gar nicht notwendig, weil sich die Primärspule 13 geschützt in der Ausnehmung 45 und damit in großem Abstand von dem Fahrzeug 1 befindet.
In Figur 2 ist ein weiteres Ausführungsbeispiel einer Lade¬ einrichtung 200 dargestellt. Diese Ladeeinrichtung 200 unter- scheidet sich von der anhand der Figur 1 beschriebenen Ladeeinrichtung 12 dadurch, dass die Haltevorrichtung anstelle des Balgs 15 einen Schlauch 202 aufweist, welcher mit dem Medium füllbar ist. Im Ausführungsbeispiel handelt es sich da¬ bei um einen Luftschlauch 202, welcher in Figur 2 im gefüll- ten Zustand dargestellt ist. Dieser Schlauch weist die Form eines Torus auf. (Ein Torus hat eine Form ähnlich eines Luft- schlauchs eines Reifens oder ähnlich eines Schwimmreifens.) In der Schnittdarstellung der Figur 2 sind von dem Torus lediglich zwei kreisförmige Schnittflächen sichtbar. In Figur 2 ist die zweite Stellung des Luftschlauchs 202 dargestellt, bei der der Luftschlauch sowie die daran angeordnete Primärspule aus dem Untergrund 10 in der ersten Richtung hervorste¬ hen. Wenn die Luft aus dem Luftschlauch 202 abgelassen wird, dann bewegt sich die Primärspule 13 mit dem Schlauch 202 nach unten und wird vollständig von der Ausnehmung 45 aufgenommen.
In Figur 3 ist als ein weiteres Ausführungsbeispiel eine La¬ deeinrichtung 300 dargestellt. Diese Ladeeinrichtung 300 un- terscheidet sich von der anhand der Figur 1 beschriebenen Ladeeinrichtung 12 lediglich dadurch, dass die Haltevorrichtung anstelle des Balgs 15 ein mit dem Medium füllbares Kissen 302 (hier: ein Luftkissen 302) aufweist.
In Figur 4 ist ein Ausschnitt aus einem weiteren Ausführungs¬ beispiel einer Ladeeinrichtung dargestellt. In einem Untergrund 402 ist ein Hohlraum 404 angeordnet. Dieser Hohlraum 404 kann mittels des Kompressors 22, des Ventils 20 und der Druckluftleitungen 18 mit einem unter Druck stehenden Medium in Form von Druckluft befüllt werden. Der Hohlraum 404 weist eine erste Ringnut 406 und eine zweite Ringnut 408 auf. In der ersten Ringnut 406 befindet sich ein Gleitlager 410, wel¬ ches die Form eines flachen Kreiszylinders aufweist. In die- sem Gleitlager 410 ist die Primärspule 13 so angeordnet, dass sich diese innerhalb des Gleitlagers in Richtung der X-Y- Ebene bewegen kann, also in dieser Ebene verschiebbar ist. Mit anderen Worten ist die Primärspule 13 im Gleitlager 410 in der zweiten Richtung (Richtung in der X-Y-Ebene) ver- schiebbar angeordnet. Mit anderen Worten ist die Primärspule frei schwimmend aufgehängt, so dass sich die Primärspule in der zweiten Richtung bewegen kann bzw. verschiebbar ist. Ein Stromzuführungskabel 412 verläuft zu der Primärspule 13. Das Gleitlager 410 ist mittels einer dehnbaren Membran 413 mit dem Untergrund 402 luftdicht verbunden. Auch das Gleitla¬ ger 410 selbst ist luftdicht ausgestaltet. Dadurch kann keine Luft aus dem Hohlraum 404 entweichen. Die Membran 413 umfasst das Gleitlager 410 und damit auch die in dem Gleitlager 410 angeordnete Primärspule 413 ringförmig. Im Ausführungsbeispiel der Figur 4 wird die Haltevorrichtung durch das Gleitlager 410 und die kreisringförmige Membran 413 gebildet. In Figur 4 ist die erste Stellung der Haltevorrich- tung dargestellt, in der die Haltevorrichtung vollständig in den Untergrund 402 versenkt ist. Die kreisringförmige Membran liegt bei der ersten Stellung in der zweiten Ringnut 408. In dieser ersten Stellung bilden das Gleitlager 410 und die Membran 413 gemeinsam mit der Oberfläche des Untergrunds 402 eine glatte Ebene, so dass kein Hindernis (z. B. Stolper¬ falle) aus dem Untergrund 402 hervorsteht. Die Haltevorrich¬ tung und die Primärspule können also bündig und fugenlos in den Untergrund/Boden eingebaut werden.
Wenn das Ventil 20 geöffnet wird, gelangt Druckluft von dem Kompressor 22 in den Hohlraum 404. Dadurch dehnt sich die Membran 413 und wölbt sich auf. Dadurch wird das Gleitlager 410 mit der Primärspule 13 in der ersten Richtung (d. h. in
Z-Richtung) auf die Sekundärspule 5 des Fahrzeugs 1 zubewegt. (Das Fahrzeug mit der Sekundärspule ist in der Figur 4 nicht dargestellt. Es ist - ähnlich wie in den Figuren 1 bis 3 - über der Primärspule abgestellt.)
Die dehnbare Membran 413 ermöglicht also bei Erhöhung des Drucks in dem Hohlraum 404 ein Ausfahren der Primärspule in Richtung der Sekundärspule des Fahrzeugs. Die kreisringför¬ mige Membran 413 dichtet den Hohlraum 404 und damit auch die Primärspule 13 gegen Verschmutzungen ab, die von der Oberflä¬ che des Untergrunds (z. B. Straßenoberfläche) auftreten kön¬ nen .
Durch eine entsprechende Vergrößerung des Drucks des Mediums kann nun die Primärspule 13 soweit in Richtung der Sekundärspule bewegt werden, bis die Primärspule 13 die Sekundärspule des Fahrzeugs berührt. Der weitere Ablauf entspricht dem im Zusammenhang mit der Figur 1 beschriebenen Ablauf. In Figur 5 ist die zweite Stellung dargestellt, bei der die Haltevorrichtung aus dem Untergrund 402 in der ersten Richtung (Z-Richtung) hervorsteht. Wenn jetzt das Ventil 20 ge¬ öffnet wird und dadurch das Medium aus dem Hohlraum 404 abgelassen wird, dann bewegt sich das Gleitlager 410 mit der Pri- märspule 13 zurück in die erste Ringnut 406. Ebenso bewegt sich die Membran 413 zurück in die zweite Ringnut 408. Damit liegt dann wieder der Ausgangszustand vor, wie er in Figur 4 dargestellt ist. In Figur 6 ist in einer Draufsicht schematisch die Anordnung gemäß Figur 4 dargestellt. Gut zu erkennen ist die kreisring¬ förmige Membran 413, welche das Gleitlager 410 und damit auch die Primärspule 13 ringförmig umfasst. Die Primärspule 13 ist strichliert dargestellt, da diese in der Draufsicht nicht zu sehen ist, sondern durch die obere Abdeckung des Gleitlagers 410 verdeckt wird. Die Verschiebbarkeit der Primärspule 13 in der zweiten Richtung innerhalb der X-Y-Ebene ist mittels Pfeilen 415 angedeutet. In einem anderen Ausführungsbeispiel kann die Membran 413 auch kreisförmig ausgestaltet sein und das Gleitlager 410 nach oben hin vollständig abdecken. Die Membran kann aber auch eine andere Ausgestaltung haben, sie kann z.B. auch oval sein.
In Figur 7 ist in einem Ablaufdiagramm nochmals ein Ausführungsbeispiel des Verfahrens zum Positionieren der Primär¬ spule dargestellt. Ausgangspunkt ist die erste Stellung der Haltevorrichtung, bei der die Haltevorrichtung und die Pri- märspule in dem Untergrund versenkt sind (Block 700) . Als erstes wird der Druck des Mediums (z. B. der Druck der Druckluft) erhöht, dadurch bewegt sich die Primärspule in der ersten Richtung auf die Sekundärspule des Fahrzeugs zu (Block 710) . Wenn die Primärspule die Sekundärspule berührt, wird diese Berührung mittels eines Drucksensors erkannt (Block
720) . Die Primärspule berührt jetzt also die Sekundärspule, ist aber aufgrund der Elastizität der Haltevorrichtung in der zweiten Richtung verschiebbar. Nun erfolgt ein Gleichstrom- fluss sowohl durch die Primärspule als auch durch die Sekun- därspule. In beiden Spulen bauen sich Magnetfelder auf. Durch die Anziehungskräfte zwischen den Magnetfeldern richtet sich die Primärspule konzentrisch zur Sekundärspule aus. Damit ist eine optimale Ausrichtung der Primärspule zur Sekundärspule gegeben (Block 730) .
Danach wird der Druck des Mediums weiter erhöht. Dadurch wird die Primärspule noch stärker gegen die Sekundärspule ge¬ drückt, wodurch die Reibungskräfte zwischen Primärspule und Sekundärspule ansteigen. Durch diese Reibungskräfte wird die ausgerichtete Primärspule an der Sekundärspule fixiert, so dass die Primärspule während des folgenden Ladevorgangs nicht mehr verrutschen kann. Daraufhin wird der durch die Primär- spule und die Sekundärspule fließende Gleichstrom abgeschal¬ tet und der Druck des Mediums wird konstant gehalten (Block 740) . Jetzt liegt die zweite Stellung der Haltevorrichtung vor (Block 750) . Nun kann der eigentliche induktive Ladevorgang durchgeführt werden, d. h. die Übertragung von elektri- scher Energie von der Primärspule zur Sekundärspule kann be¬ ginnen .
Die beschriebene Ladeeinrichtung sowie das beschriebene Ver¬ fahren weisen eine Reihe von Vorteilen auf:
- Durch den Einsatz eines unter Druck stehenden Mediums wird der Luftspalt zwischen der Primärspule und der Se¬ kundärspule deutlich verringert, im Idealfall kann der Luftspalt auf Null verringert werden.
- Durch kurzzeitiges Bestromen der Primärspule erfolgt
eine Feinpositionierung (Feinausrichtung) der Primärspule und der Sekundärspule zueinander.
- Wenn die Primärspule korrekt zur Sekundärspule
ausgerichtet ist, bleibt die Position der Primärspule auch bei einer Bewegung des Fahrzeugs (z. B. beim Wippen des Fahrzeugs oder bei Änderung der Fahrzeugbelastung durch Einsteigen des Fahrers) unverändert, da das unter Druck stehende Medium die Primärspule weiter gegen das Fahrzeug drückt. Dazu ist eine ausreichende Druckreserve in dem Hohlraum der Haltevorrichtung (insbesondere in dem Balg, dem Schlauch, dem Kissen oder unter der
Membran) vorhanden.
- Durch die Elastizität der Haltevorrichtung werden bei einer Bewegung des Fahrzeugs die Primärspule und die Se- kundärspule vor mechanischer Beschädigung geschützt.
- Die Spulen können zusätzlich durch eine elastische, z.B.
Schaumstoffartige, Beschichtung vor mechanischer Beschädigung geschützt werden. - Durch ein schaltbares Ventil in der Zuführungsleitung für das Medium kann der Druck des Mediums gezielt beein- flusst und gehalten werden.
- Beim Stromlos-Schalten (und damit beispielsweise auch bei einem Stromausfall) öffnet das Ventil so, dass sich der Druck in dem Medium verringert. Dadurch geht die Haltevorrichtung wieder in ihre erste Stellung über (beispielsweise fällt der Balg oder der Luftschlauch oder das Luftkissen in sich zusammen) . Die Primärspule sinkt nach unten und verschwindet vollständig in der
Versenkung des Untergrunds. Damit wird ein sicherer Zu¬ stand erreicht, bei dem die Primärspule sicher vor Be¬ schädigungen geschützt ist.
- Eine Berührung zwischen Primärspule und Sekundärspule wird durch einen Drucksensor oder Schalter erkannt, der sich auf der Oberseite der Primärspule und/oder der Se¬ kundärspule befindet.
- Es sind keine mechanischen Antriebe notwendig, die durch Schmutz oder durch Flüssigkeiten verklemmen bzw. verkle- ben können.
Je nach Ausgestaltung der Primärspule und der Sekundärspule kann im ausgerichteten Zustand der Luftspalt zwischen der Primärspule und der Sekundärspule nahezu auf Null reduziert werden. Dadurch kann die maximal übertragbare Leistung be¬ trächtlich erhöht werden, beispielsweise von 3,3 kW auf 12 kW bei gleichzeitiger Reduzierung des Spulendurchmessers. Dabei ist weiterhin vorteilhaft, dass während des induktiven Ladens kein Gegenstand zwischen Primärspule und Sekundärspule gelan- gen kann, weil kein oder nahezu kein Luftspalt vorhanden ist. Bei dem dargestellten Ladeeinrichtung ist weiterhin vorteilhaft, dass der Spalt zwischen der Primärspule und der Sekun¬ därspule auch dann konstant bleibt (idealerweise auf Null re¬ duziert bleibt) , wenn sich das Fahrzeug bewegt, wenn also beispielsweise eine Person sich in das Fahrzeug setzt oder an dem Fahrzeug wippt oder schaukelt. Durch die Flexibili¬ tät/Elastizität der Haltevorrichtung, also z. B. durch die Flexibilität/Elastizität des Balgs, des Luftschlauchs , des Luftkissens oder der Membran, gibt die Primärspule der Bewe¬ gung des Fahrzeugs nach oder folgt der Bewegung des Fahrzeugs. Dafür braucht der Druck des unter Druck stehenden Mediums nicht erhöht zu werden, weil in dem Medium eine ausrei- chende Druckreserve vorhanden ist. Diese Flexibilität bzw. Elastizität der Haltevorrichtung hat weiterhin den Vorteil, dass die Spulen bei Bewegungen des Fahrzeugs nicht beschädigt werden. Zusätzlich kann auf der Sekundärspule und/oder auf der Primärspule eine dünne elastische Oberfläche (z. B. eine elastische Beschichtung) aufgebracht sein, um den Schutz der Spulen noch weiter zu verbessern.
Bei einem Abschalten der Ladeeinrichtung (d. h. bei einem planmäßigen Abschalten oder auch bei einer Notabschaltung) wird der Druck des Mediums in der Haltevorrichtung schnell reduziert. Dies kann zum einen geschehen durch ein Öffnen des Ventils oder auch durch ein Evakuieren der Haltevorrichtung mittels einer Pumpe oder mittels des Kompressors. Die Halte¬ vorrichtung mit der Primärspule entfernt sich dadurch von der Sekundärspule des Fahrzeugs und nimmt wieder ihre sichere Ru¬ hestellung an bzw. im Untergrund ein (erste Stellung) .
Das Ventil 20 kann so ausgestaltet sein, dass dieses den Druck des Mediums verringert, sobald das elektrische Ventil 20 nicht mehr mit Spannung versorgt wird (z. B. bei einem
Stromausfall) . In einem solchen Fehlerfall wird also z.B. die Druckluft aus der Halteeinrichtung abgelassen. Somit ist sichergestellt, dass die Haltevorrichtung mit der Primärspule ihren sicheren Zustand einnimmt (erste Stellung) und nicht in der Ladeposition (zweite Stellung) verharrt. Ein solches Verharren in der zweiten Stellung könnte nämlich bei Bewegung des Fahrzeugs (z. B. bei einem Wegfahren) zu Schäden führen. Die Ladeeinrichtung ist also eigensicher. Die erste Stellung der Haltevorrichtung kann auch als Ruhestellung, Ruhezustand, sicherer Zustand, eingefahrener Zustand oder Ausgangszustand bezeichnet werden. Die zweite Stellung der Haltevorrichtung kann auch als Arbeitsstellung, Ladestellung, Ladeposition oder ausgefahrener Zustand bezeichnet werden.
Die erste Richtung entspricht im Ausführungsbeispiel der Z- Richtung, also der vertikalen Richtung. Die zweite Richtung entspricht im Ausführungsbeispiel einer horizontalen Rich¬ tung, d. h. einer Richtung, die in der X-Y-Ebene liegt, also ist die zweite Richtung senkrecht zu der ersten Richtung aus¬ gerichtet .
Es wurde ein Verfahren beschrieben, mit dem sicher und zuverlässig die Primärspule beim induktiven Laden an dem Fahrzeug positioniert werden kann.

Claims

Patentansprüche
1. Ladeeinrichtung (12) zum induktiven Laden einer Fahrbatterie (3) eines elektrisch antreibbaren Fahrzeugs (1) mit
- einer Primärspule (13), die mittels eines unter Druck ste¬ henden Mediums in einer ersten Richtung (25) zu einer Sekundärspule (5) des Fahrzeugs (1) hin bewegbar ist,
dadurch gekennzeichnet, dass
- die Primärspule (13) an einer zumindest zeitweise elasti- sehen Haltevorrichtung (15, 202, 302, 413) angeordnet ist.
2. Ladeeinrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
- das unter Druck stehende Medium ein Gas, insbesondere
Druckluft, ist.
3. Ladeeinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
- die Haltevorrichtung (15) die Primärspule (13) mit einem Untergrund (10) verbindet.
4. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Haltevorrichtung einen Balg (15) aufweist, insbesondere einen Faltenbalg, der mit dem Medium füllbar ist.
5. Ladeeinrichtung nach Anspruch 4,
dadurch gekennzeichnet, dass
- die Primärspule (13) an einem Ende des Balgs (15) angeord- net ist.
6. Ladeeinrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
- die Haltevorrichtung einen Schlauch (202) aufweist, der mit dem Medium füllbar ist oder
- die Haltevorrichtung ein Kissen (302) aufweist, das mit dem Medium füllbar ist.
7. Ladeeinrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
- die Haltevorrichtung eine Membran (413) aufweist, die mit dem Medium aufwölbbar ist.
8. Ladeeinrichtung nach Anspruch 7,
dadurch gekennzeichnet, dass
- die Membran (413) die Primärspule (13) ringförmig umfasst.
9. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Primärspule (13) in einer zweiten Richtung (44) verschiebbar angeordnet ist.
10. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Elastizität der Haltevorrichtung (15) eine Verschiebung der Primärspule (13) in einer zweiten Richtung (44) ermöglicht .
11. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Primärspule (13) in einem Gleitlager (410) gelagert ist, welches eine Verschiebung der Primärspule (13) in einer zweiten Richtung (44) ermöglicht.
12. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- diese einen Drucksensor (30, 33) zum Messen des Berührungs- drucks zwischen der Primärspule (13) und der Sekundärspule
(5) und/oder
- einen Drucksensor (36) zum Messen des Drucks des Mediums aufweist .
13. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Haltevorrichtung (413) in einer ersten Stellung in einem Untergrund (202) versenkt ist.
14. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die Haltevorrichtung (413) in einer zweiten Stellung aus dem Untergrund (402) in der ersten Richtung hervorsteht.
15. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die zweite Richtung (44) senkrecht zur ersten Richtung (25) ausgerichtet ist.
16. Ladeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- die erste Richtung die vertikale Richtung (25) ist und die zweite Richtung eine horizontale Richtung (44) ist.
17. Verfahren zum Positionieren einer Primärspule (13) beim induktiven Laden einer Fahrbatterie (3) eines elektrisch antreibbaren Fahrzeugs (1), wobei bei dem Verfahren
- eine Primärspule (13) mittels eines unter Druck stehenden Mediums in einer ersten Richtung (25) zu einer Sekundärspule (5) des Fahrzeugs (1) hin bewegt wird,
dadurch gekennzeichnet, dass
- die Primärspule (13) von einer zumindest zeitweise elasti- sehen Haltevorrichtung (15) in die erste Richtung (25) bewegt wird .
18. Verfahren nach Anspruch 17,
dadurch gekennzeichnet, dass
- das unter Druck stehende Medium ein Gas, insbesondere
Druckluft, ist.
19. Verfahren nach Anspruch 17 oder 18,
dadurch gekennzeichnet, dass
- die Primärspule (13) mittels des Mediums in der ersten
Richtung (25) bewegt wird, bis die Primärspule (13) die Se¬ kundärspule (5) berührt.
20. Verfahren nach Anspruch 19,
dadurch gekennzeichnet, dass
- die Berührung erkannt wird mittels mindestens eines Druck¬ sensors (30, 33, 36) .
21. Verfahren nach Anspruch 20,
dadurch gekennzeichnet, dass
- von dem Drucksensor (30, 33) der Berührungsdruck zwischen der Primärspule (13) und der Sekundärspule (5) gemessen wird oder
- von dem Drucksensor (36) der Druck des Mediums gemessen wird .
22. Verfahren nach einem der Ansprüche 17 bis 21,
dadurch gekennzeichnet, dass
- die Haltevorrichtung (15) eine Verschiebung der Primärspule (13) in einer zweiten Richtung (44) ermöglicht.
23. Verfahren nach einem der Ansprüche 17 bis 22,
dadurch gekennzeichnet, dass
- elektrischer Strom durch die Primärspule (13) geleitet wird, wodurch sich die Primärspule (13) bezüglich der Sekundärspule (5) ausrichtet.
24. Verfahren nach einem der Ansprüche 17 bis 22,
dadurch gekennzeichnet, dass
- elektrischer Strom durch einen an der Primärspule (13) angeordneten Elektromagneten (47) geleitet wird, wodurch sich die Primärspule (13) bezüglich der Sekundärspule (5) ausrich- tet.
25. Verfahren nach Anspruch 23 oder 24,
dadurch gekennzeichnet, dass
- sich die Primärspule (13) konzentrisch zur Sekundärspule (5) ausrichtet.
26. Verfahren nach einem der Ansprüche 23 bis 25,
dadurch gekennzeichnet, dass - nach dem Ausrichten der Druck des Medium erhöht wird, wodurch die Lage der ausgerichteten Primärspule (13) bezüglich der Sekundärspule (5) fixiert wird.
27. Verfahren nach einem der Ansprüche 17 bis 26,
dadurch gekennzeichnet, dass
- die zweite Richtung (44) senkrecht zur ersten Richtung (25) ausgerichtet ist.
28. Verfahren nach einem der Ansprüche 17 bis 27,
dadurch gekennzeichnet, dass
- die erste Richtung die vertikale Richtung (25) ist und die zweite Richtung eine horizontale Richtung (44) ist.
PCT/EP2012/066427 2012-08-23 2012-08-23 Ladeeinrichtung zum induktiven laden WO2014029439A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/423,375 US9682632B2 (en) 2012-08-23 2012-08-23 Charging device for inductive charging
CN201280075306.2A CN104582999B (zh) 2012-08-23 2012-08-23 用于感应充电的充电装置
DE112012006833.5T DE112012006833A5 (de) 2012-08-23 2012-08-23 Ladeeinrichtung zum induktiven Laden
PCT/EP2012/066427 WO2014029439A1 (de) 2012-08-23 2012-08-23 Ladeeinrichtung zum induktiven laden

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/066427 WO2014029439A1 (de) 2012-08-23 2012-08-23 Ladeeinrichtung zum induktiven laden

Publications (1)

Publication Number Publication Date
WO2014029439A1 true WO2014029439A1 (de) 2014-02-27

Family

ID=46801464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/066427 WO2014029439A1 (de) 2012-08-23 2012-08-23 Ladeeinrichtung zum induktiven laden

Country Status (4)

Country Link
US (1) US9682632B2 (de)
CN (1) CN104582999B (de)
DE (1) DE112012006833A5 (de)
WO (1) WO2014029439A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128450A1 (en) * 2014-02-28 2015-09-03 Bombardier Transportation Gmbh Inductive power transfer pad, system for inductive power transfer and method of operating an inductive power transfer pad
US20150336464A1 (en) * 2014-05-23 2015-11-26 Ford Global Technologies, Llc Ultrasonic location for electric vehicle charging system
WO2016038052A1 (de) * 2014-09-11 2016-03-17 Continental Automotive Gmbh Vorrichtung zum induktiven laden eines fahrzeuges
DE102014220261A1 (de) 2014-10-07 2016-04-07 Robert Bosch Gmbh Steuervorrichtung zur Positionierung eines Fahrzeugs, Fahrzeug, Ladestation und Verfahren
WO2016165920A1 (de) * 2015-04-16 2016-10-20 Volkswagen Aktiengesellschaft Vorrichtung und verfahren zum elektrischen laden eines fahrzeugs
WO2017037021A1 (en) * 2015-08-28 2017-03-09 Bombardier Primove Gmbh Inductive power transfer pad and method of operating an inductive power transfer pad with scissor lift means for moving a primary coil
GB2546776A (en) * 2016-01-28 2017-08-02 Bombardier Primove Gmbh An inductive power transfer pad, system for inductive transfer and method of operating an inductive power transfer pad
WO2017153080A1 (de) * 2016-03-10 2017-09-14 Bayerische Motoren Werke Aktiengesellschaft Induktionsaufladesystem für fahrzeug sowie verwendung
US9829599B2 (en) 2015-03-23 2017-11-28 Schneider Electric USA, Inc. Sensor and method for foreign object detection in induction electric charger
US9893557B2 (en) 2013-07-12 2018-02-13 Schneider Electric USA, Inc. Method and device for foreign object detection in induction electric charger
WO2018086883A1 (de) * 2016-11-08 2018-05-17 easE-Link GmbH Fahrzeugverbindungsvorrichtung sowie fahrzeugverbindungssystem
DE102018004750A1 (de) 2018-06-14 2019-01-24 Daimler Ag Ladeneinrichtung zum induktiven Laden
DE102018200252A1 (de) 2018-01-10 2019-07-11 Audi Ag Induktive Ladeanordnung für einen Fahrzeugakkumulator
JP2019145728A (ja) * 2018-02-23 2019-08-29 株式会社Ihi コイル装置
DE102020123734A1 (de) 2020-09-11 2022-03-17 Audi Aktiengesellschaft Drahtlosladesystem zum Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs mit elektrischer Energie, Verfahren zum Betreiben eines Drahtlossystems sowie Drahtlosladeanordnung
US12009131B2 (en) 2018-02-23 2024-06-11 Ihi Corporation Coil device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327608B2 (en) * 2011-08-04 2016-05-03 Schneider Electric USA, Inc. Extendable and deformable carrier for a primary coil of a charging system
JP6043462B2 (ja) * 2012-09-27 2016-12-14 Ihi運搬機械株式会社 車両給電装置
JP6111583B2 (ja) * 2012-10-01 2017-04-12 株式会社Ihi 非接触給電システム
US9586493B2 (en) * 2013-02-27 2017-03-07 Satyajit Patwardhan Hands free conductive charging system for electric vehicles
DE102013103157A1 (de) * 2013-03-27 2014-10-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kontaktloses Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
JP2014220893A (ja) * 2013-05-07 2014-11-20 株式会社東芝 制御装置、無線電力伝送システムおよび無線電力伝送装置
DE102014223532A1 (de) * 2014-11-18 2016-06-02 Robert Bosch Gmbh Vorrichtung zur induktiven Energieübertragung mit einer Überwachungsvorrichtung
WO2016168751A1 (en) * 2015-04-15 2016-10-20 Wireless Advanced Vehicle Electrification, Inc. Removable inductive power transfer pad
DE102015209576A1 (de) * 2015-05-26 2016-12-01 Bayerische Motoren Werke Aktiengesellschaft Überfahrschutz für Kabel
GB2541731A (en) * 2015-08-28 2017-03-01 Bombardier Transp Gmbh An inductive power transfer pad and method of operating an inductive power transfer pad
US10354794B2 (en) * 2016-08-25 2019-07-16 Witricity Corporation Multi-coil base pad with angled structure
DE102017202138A1 (de) 2017-02-10 2018-08-16 Volkswagen Aktiengesellschaft Induktive Ladeeinrichtung für Kraftfahrzeuge
DE102017130173A1 (de) * 2017-02-24 2018-08-30 Denso Ten Limited Ladeunterstützungsvorrichtung
US10682921B2 (en) * 2017-12-11 2020-06-16 Zoox, Inc. Underbody charging of vehicle batteries
EP4266545A2 (de) 2017-12-22 2023-10-25 Wireless Advanced Vehicle Electrification, Inc. Drahtloses leistungsübertragungspad mit mehreren wicklungen
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
US11437854B2 (en) 2018-02-12 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
US10515742B1 (en) 2018-05-31 2019-12-24 General Electric Company Power cable and system for delivering electrical power

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740921A1 (fr) * 1995-11-06 1997-05-09 Electricite De France Dispositif automatise de charge des batteries d'un vehicule automobile a propulsion electrique
EP0788212A2 (de) * 1996-01-30 1997-08-06 Sumitomo Wiring Systems, Ltd. Verbindungssystem und -verfahren für ein elektrisch betriebenes Fahrzeug
US20100235006A1 (en) * 2009-03-12 2010-09-16 Wendell Brown Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle
GB2471879A (en) * 2009-07-16 2011-01-19 Damien Smith Electric Vehicle Charging System
US20110074346A1 (en) * 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
WO2011044969A2 (de) 2009-10-14 2011-04-21 Sew-Eurodrive Gmbh & Co. Kg Abt. Ecg Ladestation
US20110133692A1 (en) * 2009-12-03 2011-06-09 Hyundai Motor Japan R&D Center, Inc. Primary coil raising type non-contact charging system with elevating-type primary coil
US20110181240A1 (en) 2010-01-05 2011-07-28 Access Business Group International Llc Inductive charging system for electric vehicle
US20130033227A1 (en) * 2011-08-04 2013-02-07 Schneider Electric USA, Inc. Extendable and deformable charging system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788211B1 (de) 1996-01-30 2002-08-28 Sumitomo Wiring Systems, Ltd. Verbindungssystem mit zugehörigem Verfahren
WO1997045913A1 (fr) 1996-05-27 1997-12-04 Sanyo Electric Co., Ltd. Systeme de charge pour vehicule a moteur
US9266440B2 (en) * 2011-09-26 2016-02-23 GM Global Technology Operations LLC Robotically operated vehicle charging station

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740921A1 (fr) * 1995-11-06 1997-05-09 Electricite De France Dispositif automatise de charge des batteries d'un vehicule automobile a propulsion electrique
EP0788212A2 (de) * 1996-01-30 1997-08-06 Sumitomo Wiring Systems, Ltd. Verbindungssystem und -verfahren für ein elektrisch betriebenes Fahrzeug
US20100235006A1 (en) * 2009-03-12 2010-09-16 Wendell Brown Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle
GB2471879A (en) * 2009-07-16 2011-01-19 Damien Smith Electric Vehicle Charging System
US20110074346A1 (en) * 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
WO2011044969A2 (de) 2009-10-14 2011-04-21 Sew-Eurodrive Gmbh & Co. Kg Abt. Ecg Ladestation
US20110133692A1 (en) * 2009-12-03 2011-06-09 Hyundai Motor Japan R&D Center, Inc. Primary coil raising type non-contact charging system with elevating-type primary coil
US20110181240A1 (en) 2010-01-05 2011-07-28 Access Business Group International Llc Inductive charging system for electric vehicle
US20130033227A1 (en) * 2011-08-04 2013-02-07 Schneider Electric USA, Inc. Extendable and deformable charging system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893557B2 (en) 2013-07-12 2018-02-13 Schneider Electric USA, Inc. Method and device for foreign object detection in induction electric charger
CN106256068A (zh) * 2014-02-28 2016-12-21 庞巴迪无接触运行有限责任公司 感应式电力传输垫、用于感应式电力传输的系统以及运行感应式电力传输垫的方法
WO2015128450A1 (en) * 2014-02-28 2015-09-03 Bombardier Transportation Gmbh Inductive power transfer pad, system for inductive power transfer and method of operating an inductive power transfer pad
JP2017512453A (ja) * 2014-02-28 2017-05-18 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツングBombardier Primove GmbH 誘導電力伝達パッド、誘導電力伝達用システム、および誘導電力伝達パッドの作動方法
EP3110655B1 (de) * 2014-02-28 2020-09-09 Bombardier Primove GmbH Induktives leistungsübertragungspad, system zur induktiven leistungsübertragung und verfahren zum betrieb eines induktiven leistungsübertragungspads
US10071644B2 (en) 2014-02-28 2018-09-11 Bombardier Primove Gmbh Inductive power transfer pad, system for inductive power transfer and method of operating inductive power transfer pad
US20150336464A1 (en) * 2014-05-23 2015-11-26 Ford Global Technologies, Llc Ultrasonic location for electric vehicle charging system
WO2016038052A1 (de) * 2014-09-11 2016-03-17 Continental Automotive Gmbh Vorrichtung zum induktiven laden eines fahrzeuges
DE102014220261A1 (de) 2014-10-07 2016-04-07 Robert Bosch Gmbh Steuervorrichtung zur Positionierung eines Fahrzeugs, Fahrzeug, Ladestation und Verfahren
US9829599B2 (en) 2015-03-23 2017-11-28 Schneider Electric USA, Inc. Sensor and method for foreign object detection in induction electric charger
WO2016165920A1 (de) * 2015-04-16 2016-10-20 Volkswagen Aktiengesellschaft Vorrichtung und verfahren zum elektrischen laden eines fahrzeugs
DE102015206907A1 (de) * 2015-04-16 2016-10-20 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum elektrischen Laden eines Fahrzeugs
WO2017037021A1 (en) * 2015-08-28 2017-03-09 Bombardier Primove Gmbh Inductive power transfer pad and method of operating an inductive power transfer pad with scissor lift means for moving a primary coil
US10543753B2 (en) 2015-08-28 2020-01-28 Bombardier Primove Gmbh Inductive power transfer pad and method of operating an inductive power transfer pad with scissor lift means for moving a primary coil
GB2546776A (en) * 2016-01-28 2017-08-02 Bombardier Primove Gmbh An inductive power transfer pad, system for inductive transfer and method of operating an inductive power transfer pad
WO2017153080A1 (de) * 2016-03-10 2017-09-14 Bayerische Motoren Werke Aktiengesellschaft Induktionsaufladesystem für fahrzeug sowie verwendung
US11267348B2 (en) 2016-03-10 2022-03-08 Bayerische Motoren Werke Aktiengesellschaft Inductive charging system for a vehicle, and use
WO2018086883A1 (de) * 2016-11-08 2018-05-17 easE-Link GmbH Fahrzeugverbindungsvorrichtung sowie fahrzeugverbindungssystem
US10604026B2 (en) 2016-11-08 2020-03-31 easE-Link GmbH Vehicle connection device and vehicle connection system
WO2019137669A1 (de) 2018-01-10 2019-07-18 Audi Ag Induktive ladeanordnung für einen fahrzeugakkumulator
DE102018200252A1 (de) 2018-01-10 2019-07-11 Audi Ag Induktive Ladeanordnung für einen Fahrzeugakkumulator
US11370312B2 (en) 2018-01-10 2022-06-28 Audi Ag Inductive charging arrangement for a vehicle battery
WO2019163208A1 (ja) * 2018-02-23 2019-08-29 株式会社Ihi コイル装置
JP2019145728A (ja) * 2018-02-23 2019-08-29 株式会社Ihi コイル装置
EP3758029A4 (de) * 2018-02-23 2021-11-24 Ihi Corporation Spulenvorrichtung
JP7063002B2 (ja) 2018-02-23 2022-05-09 株式会社Ihi コイル装置
US12009131B2 (en) 2018-02-23 2024-06-11 Ihi Corporation Coil device
DE102018004750A1 (de) 2018-06-14 2019-01-24 Daimler Ag Ladeneinrichtung zum induktiven Laden
DE102020123734A1 (de) 2020-09-11 2022-03-17 Audi Aktiengesellschaft Drahtlosladesystem zum Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs mit elektrischer Energie, Verfahren zum Betreiben eines Drahtlossystems sowie Drahtlosladeanordnung

Also Published As

Publication number Publication date
DE112012006833A5 (de) 2015-05-21
CN104582999B (zh) 2017-06-06
CN104582999A (zh) 2015-04-29
US9682632B2 (en) 2017-06-20
US20150224882A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2014029439A1 (de) Ladeeinrichtung zum induktiven laden
EP2735074B1 (de) Vorrichtung zum übertragen von energie an ein elektrofahrzeug und kraftwagen
DE102011077427A1 (de) Ladevorrichtung und Ladeverfahren mit schwimmender Ladeeinheit
DE102009023409A1 (de) System zur elektischen Energieübertragung
EP3466747A1 (de) Ladestation für elektrofahrzeuge mit einem höhenverstellbar gehaltenen ladekabelstecker
DE102013103157A1 (de) Kontaktloses Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
DE102011114321A1 (de) Steckereinrichtung, Steckeraufnahme und System zur elektrischen Kopplung eines Fahrzeugs mit einer Ladestation sowie entsprechendes Verfahren
WO2013092361A1 (de) Induktives übertragen von energie von einer primärspule zu einer sekundärspule eines elektromobilen kraftfahrzeugs
WO2017041932A1 (de) Verfahren zur induktiven energieübertragung und vorrichtung zum betrieb einer induktiven energieübertragungsvorrichtung
DE102014107153A1 (de) Elektrofahrzeug-Ladestation
DE102018200252A1 (de) Induktive Ladeanordnung für einen Fahrzeugakkumulator
DE1955597B2 (de) Elektrisch gesteuerte Niveauregelanlage fur Fahrzeuge, insbesondere Kraftfahrzeuge
DE102007036228A1 (de) Verfahren und System zur Sicherstellung einer Verbindung zwischen einem mobilen Gerät und einem stationären Gerät, insbesondere zwischen einem akkumulatorbetriebenen Staubsammelroboter und einer Akkumulator-Ladestation
DE102008013800B4 (de) Anordnung zur Ausrichtung und Verriegelung eines Elektro-Einschienensystems und einer Vertikalhebestation
DE19943091C2 (de) Permanent-Magnetschienenbremse
EP3684643B1 (de) Verfahren zum betrieb einer induktiven übertragungseinrichtung
DE102017118297A1 (de) Modulare Ladestation für Elektrofahrzeuge
DE102011118287A1 (de) Induktionsladevorrichtung zu einem kabellosen Laden und/oder Entladen eines elektrischen Kraftfahrzeugakkumulators
DE102018010076A1 (de) Ladeeinrichtung sowie Verfahren zum Herstellen einer elektrischen Verbindung zwischen einer Ladeeinrichtung und einem Kraftfahrzeug zum Aufladen eines elektrischen Energiespeichers des Kraftfahrzeugs
DE102018207455A1 (de) System zur induktiven Übertragung von Energie von einer Energieversorgungseinheit an ein Fahrzeug
AT524344A1 (de) Ladeeinrichtung und Verfahren zum elektrischen Laden eines Elektrofahrzeuges
DE202011001735U1 (de) Niveaurad
WO2016055326A1 (de) Induktives energieübertragungssystem mit breiter primäranordnung
DE102016203933A1 (de) Induktionsaufladesystem für Fahrzeug sowie Verwendung
EP3441256A1 (de) Ladestation für elektrofahrzeuge mit einer sicherheitskupplung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12756143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012006833

Country of ref document: DE

Ref document number: 1120120068335

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14423375

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112012006833

Country of ref document: DE

Effective date: 20150521

122 Ep: pct application non-entry in european phase

Ref document number: 12756143

Country of ref document: EP

Kind code of ref document: A1