WO2017041932A1 - Verfahren zur induktiven energieübertragung und vorrichtung zum betrieb einer induktiven energieübertragungsvorrichtung - Google Patents

Verfahren zur induktiven energieübertragung und vorrichtung zum betrieb einer induktiven energieübertragungsvorrichtung Download PDF

Info

Publication number
WO2017041932A1
WO2017041932A1 PCT/EP2016/066500 EP2016066500W WO2017041932A1 WO 2017041932 A1 WO2017041932 A1 WO 2017041932A1 EP 2016066500 W EP2016066500 W EP 2016066500W WO 2017041932 A1 WO2017041932 A1 WO 2017041932A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
coil
receiving coil
distance
inductive energy
Prior art date
Application number
PCT/EP2016/066500
Other languages
English (en)
French (fr)
Inventor
Ulrich Brenner
Anthony CHEVRET
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US15/759,318 priority Critical patent/US11554673B2/en
Priority to JP2018512968A priority patent/JP6636138B2/ja
Priority to KR1020187009675A priority patent/KR102612778B1/ko
Publication of WO2017041932A1 publication Critical patent/WO2017041932A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/38Current collectors for power supply lines of electrically-propelled vehicles for collecting current from conductor rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/42Current collectors for power supply lines of electrically-propelled vehicles for collecting current from individual contact pieces connected to the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a method for inductive energy transfer from a transmitting coil to one spaced from the transmitting coil
  • Electric vehicles and hybrid vehicles usually have an electrical energy storage, such as a traction battery, which provides the electrical energy for propulsion. Is this electric
  • Electric vehicle is connected by a cable connection to the charging station.
  • This connection must be made disadvantageously by a user usually manually. It is also necessary that charging station and electric vehicle have a mutually corresponding connection system.
  • wireless charging systems for electric vehicles are known.
  • one or more coils transmitting coils
  • one or more coils receiving coil
  • the electric vehicle If an electric vehicle is parked above the transmitter coil, it sends out an alternating magnetic field. The magnetic alternating field is absorbed by the receiving coil within the vehicle and converted into electrical energy. By means of this electrical energy can then by the contactless Energy transfer a traction battery of the vehicle are loaded.
  • a battery of an electric vehicle is located between the transmitting coil of the charging station and the receiving coil in the
  • Air gaps are very common, if not by measures such as lowering the vehicle-fixed coil, the entire vehicle or lifting the stationary coil or a combination of these measures, an ideal small air gap is achieved.
  • the efficiency of the inductive energy transfer depends inter alia on the air gap (distance) between the / in the floor and / built in the vehicle floor coils. The smaller the air gap, the greater the efficiency to be achieved.
  • the energy storage of the electric vehicle can also be used for feeding back. For this purpose, if necessary, a
  • a disadvantage of the prior art is that the inductive charging is not done while driving - that is charged statically. Instead, the vehicle must be in the parked state.
  • Energy transmission device that reliably charging the vehicle during standing and / or driving - as a dynamic charging method - allows.
  • the method according to the invention with the characterizing part of claim 1 has the advantages that the vehicle can be charged both while standing and while driving. In addition, by this type of dynamic charging, the range of electrically powered vehicles can be extended. According to the invention, it is provided that the method for inductive
  • Underground standing or moving vehicle is arranged, in three steps expires.
  • a distance between the transmitter coil and / or the substrate and the receiver coil is determined
  • a minimally possible air gap between the transmitter coil and / or the substrate and the receiver coil is calculated from the distance
  • Receiver coil positioned so that the distance corresponds to the minimum possible air gap.
  • the method is that the air gap during the charging process kept as low as possible and thus the efficiency can be kept as high as possible. Furthermore, it is advantageous that the regulated air gap of the
  • the vehicle has at least one sensor, wherein the distance is determined by means of this sensor.
  • These sensors advantageously allow the monitoring of the air gap between the coils while driving, thereby enabling the adjustment of the minimum air gap.
  • the receiver coil is advantageously raised in a further method step D in a rest position when the crizaktorik fails.
  • the actuators comprehensive crizaktorik thus ensures that for safety reasons, a lifting of the coil takes place in the rest position even when the actuators failure. This will damage both the vehicle and the infrastructure
  • the raising of the receiving coil in a rest position is advantageously carried out by springs. So there is no electronics - which may be inoperative due to power failure - necessary to raise the coil.
  • the positioning of the receiver coil is advantageously carried out via the actively controlled damping system arranged in the vehicle. This is advantageous because in this case the vehicle coils can be permanently installed in the vehicle.
  • the positioning of the receiving coils is advantageous to a
  • the engagement distance advantageously corresponds to the distance between the field of view of the sensors and the coil. While covering this distance, the lowered coil (receiver coil) must be removed from the
  • the transmitting coil is arranged in or on the ground.
  • the arrangement of the transmitting coil in the ground has the advantage that it can not be regarded as an obstacle which lies on the road.
  • the arrangement of the transmitting coil on the ground has the advantage that one can easily get to the transmitting coil for repair purposes.
  • FIG. 2 is a schematic representation of a cross section through a
  • FIG. 3 shows a further schematic representation of a cross section through
  • FIG. 5 is a schematic representation of a cross section through a
  • FIG. 1 shows a schematic representation of a method for operating an inductive energy transmission device 21, as used, for example, for
  • Hybrid vehicle can be used.
  • the vehicle / electric vehicle 12 is in a standing or driving state. In a first
  • Method step A a distance between the transmitting coil 10 and / or the substrate 14 and the receiving coil 11 is determined.
  • Step B is from the distance 15 a minimum possible air gap 16 between the transmitting coil 10 and / or the substrate 14 and the
  • Receiving coil 11 is calculated. Furthermore, in step C, the receiving coil 11 is positioned so that the distance 15 corresponds to the minimum possible air gap 16.
  • the inductive charging can also be done while driving, whereby the range of an electrically powered vehicle is considerably expanded.
  • Figure 2 shows a schematic representation of a cross section through a
  • Vehicle 12 with an inductive energy transfer device 21 The inductive energy transfer device 21 is located in a vehicle 12, which is an electric vehicle.
  • the vehicle 12 is standing or driving on the
  • a receiving coil 11 is arranged, which is preferably installed in the underbody of the vehicle 12. Below the vehicle 12 is at least one
  • Transmitting coil 10. This is installed in the underground 14 or lies on this.
  • the vehicle 12 has a crizaktorik 17 and / or an actively controlled damping system 18 with the receiving coil 11 or the vehicle 12 can be lowered or raised, whereby the distance 15 between the transmitting coil 10 and the receiving coil 11 can be adjusted.
  • the car 12 has a distance sensor 13. With this, the distance 15 between the transmitting coil 10 and the receiving coil 11 can be determined.
  • the distance sensor 13 is a radar sensor. If the vehicle 12 is in the state of driving, a constant occurs
  • the distance 15 between the transmitting coil 10 and the receiving coil 11 is readjusted permanently. Accordingly, the roadway during the loading operation while driving is monitored so that the lowered
  • Reception coil 11 is lifted in case of bumps 23 or obstacles 23 in a timely manner to avoid a possible collision between the receiving coil 11 with the respective obstacles or bumps 23.
  • the distance sensor 13 is used. If the vehicle 12 has an actively controlled damping system 18 and corresponding distance sensor 13, it is possible to draw conclusions about the road condition via the damping paths and to correspondingly take into account and adapt the air gap 16 between the coils. As a result, a placement of the receiving coil 11 on the ground / floor 14 is excluded while driving.
  • Engagement distance 22 corresponds to the distance between the field of view of the at least one sensor 13 and the receiving coil 11.
  • the lowered receiver coil 11 must be lifted out of the danger zone.
  • the lowering of the receiving coil 11 is also dependent on the driving speed and the reaction times (tl) of Regelaktorik 17 and / or a reaction time (t2) of the actively controlled
  • the crizaktorik 17 includes actuators that lower the receiving coil / vehicle coil 11 during the loading operation in the direction of the lane 14.
  • a raising of the receiving coil in the rest position takes place; This is done, for example, by springs.
  • the vehicle 12 has an actively controlled chassis (actively controlled damping system) 18, the lowering is also possible by the chassis.
  • the vehicle coils / receiver coils 11 can also be permanently installed in the vehicle.
  • the lowering of the vehicle coil / receiver coil 11 can also be used while charging in the state to increase the efficiency. This makes it possible to prevent living or metallic objects during the charging process in the air gap between the coils
  • Figure 3 shows a schematic representation of the continuation of the method described in Figure 2 for operating an inductive
  • the vehicle 12 is in the state of driving.
  • 14 transmitting coils 10 are arranged in the ground / in the road, over which the vehicle 12 moves while driving.
  • the air gap 16 between the transmitting coil 10 and the at least one receiving coil 11 is constantly monitored while driving by at least one sensor 13 measures the distance between the transmitting coil 10 / the substrate 14 and the receiving coil 11 and from the minimum possible air gap 16 is calculated.
  • the lowering of the coil 11 is carried out as a function of the driving speed and the reaction time (tl) of the actuators.
  • FIG. 4 shows a further schematic representation of a cross section through a vehicle with an inductive energy transmission device as a continuation of the method described in FIGS. 2 and 3.
  • transmitting coil 10 are arranged on the ground or on the roadway 14.
  • FIG. 5 shows a further embodiment of the invention, a cross section through the vehicle 12 with an inductive power transmission device 21 and a crizaktorik 17 for raising or lowering receiving coil 11.
  • the crizaktorik 17 has actuators with which the receiving coil 11 can be raised or lowered, whereby the Air gap between
  • Transmitting coil 10 and receiving coil 11 is set.
  • the receiver coil 11 is raised to the rest position, for example by means of springs 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur induktiven Energieübertragung von einer Sendespule zu einer von der Sendespule beabstandeten Empfangsspule. Die Empfangsspule ist in einem auf einem Untergrund stehenden oder fahrenden Fahrzeug angeordnet, wobei das Fahrzeug mindestens einen Sensor aufweist. In einem ersten Verfahrensschritt (A) wird ein Abstand zwischen der Sendespule und/oder dem Untergrund und der Empfangsspule ermittelt wird, in einem zweiten Verfahrensschritt (B) wird aus dem Abstand ein minimal möglicher Luftspalt zwischen der Sendespule und/oder dem Untergrund und der Empfangsspule berechnet und in einem dritten Verfahrensschritt (C) wird die Empfangsspule so positioniert, dass der Abstand dem minimal möglichen Luftspalt entspricht.

Description

Beschreibung Titel
Verfahren zur induktiven Energieübertragung und Vorrichtung zum Betrieb einer induktiven Energieübertragungsvorrichtung
Die vorliegende Erfindung betrifft ein Verfahren zur induktiven Energieübertragung von einer Sendespule zu einer von der Sendespule beabstandeten
Empfangsspule, sowie eine Vorrichtung zum Betrieb einer induktiven
Energieübertragungsvorrichtung.
Stand der Technik
Elektrofahrzeuge und Hybridfahrzeuge verfügen üblicherweise über einen elektrischen Energiespeicher, beispielsweise eine Traktionsbatterie, die die elektrische Energie für den Antrieb bereitstellt. Ist dieser elektrische
Energiespeicher ganz oder teilweise entladen, so muss das Elektrofahrzeug eine Ladestation ansteuern, an der der Energiespeicher wieder aufgeladen werden kann. Bisher ist es hierzu üblich, dass an einer solchen Ladestation das
Elektrofahrzeug mittels einer Kabelverbindung an die Ladestation angeschlossen wird. Diese Verbindung muss nachteilig von einem Benutzer üblicherweise manuell hergestellt werden. Dabei ist es auch erforderlich, dass Ladestation und Elektrofahrzeug ein zueinander korrespondierendes Verbindungssystem aufweisen.
Ferner sind vereinzelt auch kabellose Ladesysteme für Elektrofahrzeuge bekannt. Beim induktiven Laden der Elektrofahrzeuge sind im oder auf dem Boden eine oder mehrere Spulen (Sendespulen) verbaut. Weiterhin sind im Elektrofahrzeug ebenfalls eine oder mehrere Spulen (Empfangsspule) angeordnet. Wird ein Elektrofahrzeug über der Sendespule abgestellt, sendet diese ein magnetisches Wechselfeld aus. Das magnetische Wechselfeld wird von der Empfangsspule innerhalb des Fahrzeugs aufgenommen und in elektrische Energie umgewandelt. Mittels dieser elektrischen Energie kann daraufhin durch die kontaktlose Energieübertragung eine Traktionsbatterie des Fahrzeugs geladen werden. Bei dem kabellosen Laden einer Batterie eines Elektrofahrzeuges befindet sich zwischen der Sendespule der Ladestation und der Empfangsspule in dem
Fahrzeug ein Luftspalt. Aufgrund der erforderlichen Bodenfreiheit von
Kraftfahrzeugen beträgt dieser Luftspalt einige Zentimeter. Luftspalte sind dabei sehr verbreitet, wenn nicht durch Maßnahmen wie Absenken der fahrzeugfesten Spule, des gesamten Fahrzeugs oder Anheben der ortsfesten Spule oder einer Kombination dieser Maßnahmen ein ideal kleiner Luftspalt erreicht wird. Der Wirkungsgrad der induktiven Energieübertragung hängt unter anderem vom Luftspalt (Abstand) zwischen der/den im Boden und der/den im Fahrzeugboden verbauten Spulen ab. Je kleiner der Luftspalt, desto größer ist der zu erreichende Wirkungsgrad. Weiterhin kann der Energiespeicher des Elektrofahrzeugs auch zur Rückspeisung verwendet werden. Hierzu kann gegebenenfalls eine
Kabelverbindung oder auch eine induktive Leistungsübertragung verwendet werden. Die Druckschrift DE102011010049 AI offenbart ein solches System zum Laden einer Fahrzeugbatterie, bei dem die Energie induktiv übertragen wird.
Nachteilig am Stand der Technik ist, dass das induktive Laden nicht während der Fahrt erfolgt - also statisch geladen wird. Stattdessen muss das Fahrzeug im abgestellten Zustand sein.
Es besteht daher ein Bedarf nach einer induktiven
Energieübertragungsvorrichtung, die zuverlässig das Aufladen des Fahrzeugs während des Stehens und/oder der Fahrt - als dynamisches Ladeverfahren - ermöglicht.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren mit dem Kennzeichen des Anspruchs 1 hat die Vorteile, dass das Fahrzeug sowohl während des Stehens als auch während der Fahrt geladen werden kann. Zusätzlich kann durch diese Art des dynamischen Ladens die Reichweite der elektrisch betriebenen Fahrzeuge erweitert werden. Erfindungsgemäß ist dazu vorgesehen, dass das Verfahren zur induktiven
Energieübertragung von einer Sendespule zu einer von der Sendespule
beabstandeten Empfangsspule, wobei die Empfangsspulen einem auf dem
Untergrund stehenden oder fahrenden Fahrzeug angeordnet ist, in drei Schritten abläuft. Beim ersten Verfahrensschritt wird ein Abstand zwischen der Sendespule und/oder dem Untergrund und der Empfangsspule ermittelt, in einem zweiten Verfahrensschritt wird aus dem Abstand ein minimal möglicher Luftspalt zwischen der Sendespule und/oder dem Untergrund und der Empfangsspule berechnet und in einem dritten Verfahrensschritt wird die Empfangsspule so positioniert, dass der Abstand dem minimal möglichen Luftspalt entspricht. Vorteilhaft an diesem
Verfahren ist, dass der Luftspalt während des Ladevorgangs so gering wie möglich gehalten und somit der Wirkungsgrad möglichst hoch gehalten werden kann. Weiterhin ist vorteilhaft, dass durch den geregelten Luftspalt der
Wirkungsgrad während des dynamischen Ladens verbessert und somit die maximal mögliche Leistung übertragen werden kann.
Durch die in den abhängigen Ansprüchen genannten Maßnahmen sind vorteilhafte Weiterbildungen des in dem unabhängigen Anspruch angegebenen Verfahrens möglich.
Vorteilhaft weist das Fahrzeug mindestens einen Sensor auf, wobei der Abstand mittels dieses Sensors ermittelt wird. Diese Sensoren erlauben vorteilhaft während der Fahrt die Überwachung des Luftspaltes zwischen den Spulen wodurch die Einstellung des minimalen Luftspaltes ermöglicht wird.
Da in modernen Fahrzeugen ein Abstandsradar verbaut ist, ist vorteilhaft, dass als Sensor ein Radarsensor verwendet wird.
Weiterhin ist vorteilhaft, dass der Abstand mittels eines im Fahrzeug
angeordneten, aktiv geregelten Dämpfungssystems ermittelt wird. Dabei kann über die Dämpfungswege Rückschlüsse auf den Fahrbahnzustand gezogen werden und der Luftspalt zwischen der Sende- und Empfangsspule entsprechend berücksichtigt werden. Es ist vorteilhaft, dass die Positionierung der Empfangsspule über im Fahrzeug angeordnete Regelaktoren erfolgt. Da der aktuelle Abstand der Fahrzeugspulen zum Boden im Regelsystem stets bekannt ist, wird ein Aufsetzen der Spule während der Fahrt am Boden ausgeschlossen.
Die Empfangsspule wird vorteilhaft in einem weiteren Verfahrensschritt D in eine Ruhelage angehoben, wenn die Regelaktorik ausfällt. Die Aktuatoren umfassende Regelaktorik gewährleistet somit, dass aus Sicherheitsgründen auch beim Ausfall der Aktuatoren ein Anheben der Spule in die Ruhelage erfolgt. Auf diese Weise werden Schäden sowohl für das Fahrzeug als auch für die Infrastruktur
vermieden.
Das Anheben der Empfangsspule in eine Ruhelage erfolgt vorteilhaft durch Federn. Es ist also keine Elektronik - die möglicherweise durch Stromausfall funktionsunfähig ist - notwendig, um die Spule anzuheben.
Die Positionierung der Empfangsspule wird über das im Fahrzeug angeordnete aktiv geregelte Dämpfungssystem vorteilhaft ausgeführt. Dies ist vorteilhaft, da hierbei die Fahrzeugspulen fest im Fahrzeug verbaut werden können.
Weiterhin wird die Positionierung der Empfangsspulen vorteilhaft an eine
Fahrgeschwindigkeit des Fahrzeugs gekoppelt. Der aktuelle Abstand der
Fahrzeugspulen zum Boden muss im Regelsystem stets bekannt sein. Durch die Regelung wird ein Aufsetzen der Spule am Boden während der Fahrt
ausgeschlossen. Die Eingriffsdistanz entspricht hierbei vorteilhaft der Entfernung zwischen dem Sichtfeld der Sensoren und der Spule. Während des Zurücklegens dieser Distanz muss die abgesenkte Spule (Empfangsspule) aus dem
Gefahrenbereich angehoben werden. Die Absenkung der Spule ist somit vorteilhaft abhängig von der Fahrgeschwindigkeit aber auch von der Reaktionszeit der Aktoren zum Anheben. Vorteilhaft ist die Sendespule im oder auf dem Untergrund angeordnet. Die Anordnung der Sendespule im Untergrund hat den Vorteil dass diese nicht als Hindernis, welches auf der Straße liegt, angesehen werden kann. Wohingegen die Anordnung der Sendespule auf dem Untergrund den Vorteil hat, dass man zu Reparaturzwecken einfach an die Sendespule gelangen kann.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung in Bezug auf die beigefügten
Zeichnungen.
Kurze Beschreibung der Zeichnungen
Es zeigen: Fig. 1: ein schematisches Diagramm der unterschiedlichen Schritte
bezüglich des Verfahrens zum Betrieb einer induktiven Energieübertragungsvorrichtung gemäß einer Ausführungsform der Erfindung; Fig. 2: eine schematische Darstellung eines Querschnitts durch ein
Fahrzeug mit einer induktiven Energieübertragungsvorrichtung gemäß einer Ausführungsform der Erfindung;
Fig. 3: eine weitere schematische Darstellung eines Querschnitts durch
Fahrzeug mit einer induktiven Energieübertragungsvorrichtung gemäß einer Ausführungsform der Erfindung;
Fig. 4: eine weitere schematische Darstellung eines Querschnitts durch
Fahrzeug mit einer induktiven Energieübertragungsvorrichtung gemäß einer Ausführungsform der Erfindung; Fig. 5: eine schematische Darstellung eines Querschnitts durch ein
Fahrzeug mit einer induktiven Energieübertragungsvorrichtung und einer Regelaktorik zum Anheben oder Absenken der Empfangsspule. Die in den Figuren dargestellten Zeichnungen sind aus Gründen der
Übersichtlichkeit nicht notwendigerweise maßstabsgetreu abgebildet. Gleiche Bezugszeichen bezeichnen im Allgemeinen gleichartige oder gleichwirkende Komponenten. Figur 1 zeigt eine schematische Darstellung eines Verfahrens zum Betrieb einer induktiven Energieübertragungsvorrichtung 21, wie sie beispielsweise zum
Aufladen einer Traktionsbatterie in einem Fahrzeug, Elektrofahrzeug oder
Hybridfahrzeug eingesetzt werden kann. Das Fahrzeug/Elektrofahrzeug 12 befindet sich im stehenden oder fahrenden Zustand. In einem ersten
Verfahrensschritt A wird ein Abstand zwischen der Sendespule 10 und/oder dem Untergrund 14 und der Empfangsspule 11 ermittelt. In einem zweiten
Verfahrensschritt B wird aus dem Abstand 15 ein minimal möglicher Luftspalt 16 zwischen der Sendespule 10 und/oder dem Untergrund 14 und der
Empfangsspule 11 berechnet. Weiterhin wird in Schritt C die Empfangsspule 11 so positioniert, dass der Abstand 15 dem minimal möglichen Luftspalt 16 entspricht. Durch dieses Verfahren kann das induktive Laden auch während der Fahrt erfolgen, wodurch die Reichweite eines elektrisch betriebenen Fahrzeuges erheblich erweitert wird. Durch Sensoren im Fahrzeug 12 wird während der Fahrt der mögliche minimale Luftspalt 16 zwischen der Sendespule 10 und der
Empfangsspule 11 überwacht und durch eine Regelaktorik 17 bei Bedarf angepasst. Dadurch wird der Luftspalt 16 während des Ladevorgangs so gering wie möglich gehalten und der Wirkungsgrad möglichst hoch gehalten bzw.
maximiert. Der Kontakt der Empfangsspule mit dem Untergrund 14 bzw. der Fahrbahn 14 wird so sicher vermieden.
Figur 2 zeigt eine schematische Darstellung eines Querschnitts durch ein
Fahrzeug 12 mit einer induktiven Energieübertragungsvorrichtung 21. Die induktive Energieübertragungsvorrichtung 21 befindet sich in einem Fahrzeug 12, welches ein Elektrofahrzeug ist. Das Fahrzeug 12 steht bzw. fährt auf dem
Untergrund 14, der eine Straße oder ein Parkplatz ist. Im Fahrzeug 12 ist eine Empfangsspule 11 angeordnet, die vorzugsweise im Unterboden des Fahrzeugs 12 verbaut ist. Unterhalb des Fahrzeugs 12 befindet sich mindestens eine
Sendespule 10. Diese ist im Untergrund 14 verbaut bzw. liegt auf diesem auf. Das Fahrzeug 12 verfügt über eine Regelaktorik 17 und/oder über ein aktiv geregeltes Dämpfungssystem 18 mit dem die Empfangsspule 11 oder das Fahrzeug 12 abgesenkt oder angehoben werden kann, wodurch der Abstand 15 zwischen der Sendespule 10 und der Empfangsspule 11 angepasst werden kann. Weiterhin verfügt das Auto 12 über einen Abstandssensor 13. Mit diesem kann der Abstand 15 zwischen der Sendespule 10 und der Empfangsspule 11 ermittelt werden. Vorzugsweise ist der Abstandssensor 13 ein Radarsensor. Befindet sich das Fahrzeug 12 im Zustand des Fahrens, ereignet sich ein ständiger
Positionswechsel der Empfangsspule 11 über den auf dem Untergrund bzw. im Untergrund 14 befindlichen Sendespulen 10. Zur Optimierung des Wirkungsgrads beim dynamischen Laden, wird der Abstand 15 zwischen Sendespule 10 und Empfangsspule 11 permanent nachgeregelt. Entsprechend wird die Fahrbahn beim Ladebetrieb während der Fahrt so überwacht, dass die abgesenkte
Empfangsspule 11 bei Unebenheiten 23 oder Hindernissen 23 rechtzeitig angehoben wird, um eine mögliche Kollision zwischen Empfangsspule 11 mit den jeweiligen Hindernissen bzw. Unebenheiten 23 zu vermeiden. Diesbezüglich wird der Abstandssensor 13 verwendet. Verfügt das Fahrzeug 12 über ein aktiv geregeltes Dämpfungssystem 18 und entsprechenden Abstandssensor 13, kann über die Dämpfungswege Rückschlüsse auf den Fahrbahnzustand gezogen werden und der Luftspalt 16 zwischen den Spulen entsprechend berücksichtigt und angepasst werden. Dadurch wird während der Fahrt ein Aufsetzen der Empfangsspule 11 auf dem Untergrund/Boden 14 ausgeschlossen. Die
Eingriffsdistanz 22 entspricht hierbei der Entfernung zwischen dem Sichtfeld des mindestens einen Sensors 13 und der Empfangsspule 11. Während des
Zurücklegens dieser Distanz muss die abgesenkte Empfangsspule 11 aus dem Gefahrenbereich angehoben werden. Somit ist die Absenkung der Empfangsspule 11 auch abhängig von der Fahrgeschwindigkeit und der Reaktionszeiten (tl) der Regelaktorik 17 und/oder einer Reaktionszeit (t2) des aktiv geregelten
Dämpfungssystems 18.
Die Regelaktorik 17 umfasst Aktuatoren, die die Empfangsspule/Fahrzeugspule 11 während des Ladebetriebs in Richtung der Fahrbahn 14 absenken. Aus
Sicherheitsgründen (wie zum Beispiel beim Ausfall der Aktuatoren) erfolgt ein Anheben der Empfangsspule in die Ruhelage; dies erfolgt beispielsweise durch Federn. Verfügt das Fahrzeug 12 über ein aktiv geregeltes Fahrwerk (aktiv geregeltes Dämpfungssystem) 18, ist das Absenken auch durch das Fahrwerk möglich. In diesem Fall können die Fahrzeugspulen/Empfangsspulen 11 auch fest im Fahrzeug verbaut werden.
Die Absenkung der Fahrzeugspule/Empfangsspule 11 kann natürlich auch während des Ladens im Stand zur Steigerung des Wirkungsgrades benutzt werden. Hierdurch ist es möglich zu verhindern, dass lebende oder metallische Objekte während des Ladevorgangs in den Luftspalt zwischen den Spulen
(Sendespulen und Empfangsspulen) gelangen. Somit wäre eine
Fremdobjekterkennung schon während des Ladens nicht notwendig.
Figur 3 zeigt eine schematische Darstellung der Fortsetzung des in Figur 2 beschriebenen Verfahrens zum Betrieb einer induktiven
Energieübertragungsvorrichtung 21. Gleiche Elemente in Bezug auf Figur 2 sind mit gleichen Bezugszeichen versehen und werden nicht näher erläutert. In diesem Ausführungsbeispiel befindet sich das Fahrzeug 12 im Zustand des Fahrens. Hier sind im Untergrund/in der Fahrbahn 14 Sendespulen 10 angeordnet, über die das Fahrzeug 12 sich während des Fahrens bewegt. Der Luftspalt 16 zwischen den Sendespule 10 und der mindestens einen Empfangsspule 11 wird während der Fahrt permanent überwacht, indem mindestens ein Sensor 13 den Abstand zwischen der Sendespule 10/dem Untergrund 14 und der Empfangsspule 11 misst und daraus der minimal mögliche Luftspalt 16 errechnet wird. Die Absenkung der Spule 11 wird in Abhängigkeit von der Fahrgeschwindigkeit und der Reaktionszeit (tl) der Aktoren vorgenommen.
Figur 4 zeigt eine weitere schematische Darstellung eines Querschnitts durch ein Fahrzeug mit einer induktiven Energieübertragungsvorrichtung als Fortsetzung des in Figur 2 und 3 beschriebenen Verfahrens. Gleiche Elemente in Bezug auf Figur 2 und 3 sind mit gleichen Bezugszeichen versehen und werden nicht näher erläutert. In diesem Ausführungsbeispiel sind Sendespule 10 auf dem Untergrund bzw. auf der Fahrbahn 14 angeordnet.
Figur 5 zeigt als weiteres Ausführungsbeispiel der Erfindung einen Querschnitt durch das Fahrzeug 12 mit einer induktiven Energieübertragungsvorrichtung 21 und eine Regelaktorik 17 zum Anheben oder Absenken Empfangsspule 11. Die Regelaktorik 17 verfügt über Aktuatoren, mit denen die Empfangsspule 11 angehoben oder abgesenkt werden kann, wodurch der Luftspalt zwischen
Sendespule 10 und Empfangsspule 11 eingestellt wird. Im Fehlerfall (zum Beispiel beim Ausfallen der Regelaktorik 17 bzw. der Aktuatoren) erfolgt das Anheben der Empfangsspule 11 in die Ruhelage beispielsweise durch Federn 19.

Claims

Ansprüche
1. Verfahren zur induktiven Energieübertragung von einer Sendespule (10) zu einer von der Sendespule (10) beabstandeten Empfangsspule (11), wobei die Empfangsspule (11) in einem auf einem Untergrund (14) stehenden oder fahrenden Fahrzeug (12) angeordnet ist, dadurch gekennzeichnet, dass
- in einem ersten Verfahrensschritt (A) ein Abstand (15) zwischen der Sendespule (10) und/oder dem Untergrund (14) und der Empfangsspule (11) ermittelt wird,
- in einem zweiten Verfahrensschritt (B) aus dem Abstand (15) ein minimal möglicher Luftspalt (16) zwischen der Sendespule (10) und/oder dem Untergrund (14) und der Empfangsspule (11) berechnet wird und
- in einem dritten Verfahrensschritt (C) die Empfangsspule (11) so positioniert wird, dass der Abstand (15) dem minimal möglichen Luftspalt (16) entspricht.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Fahrzeug mindestens einen Sensor (13) aufweist, wobei der Abstand (15) mittels des Sensors (13) ermittelt wird.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass der Sensor (13) ein Radarsensor ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand (15) mittels eines im Fahrzeug (12) angeordneten aktiv geregelten
Dämpfungssystems (18) ermittelt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Positionierung der Empfangsspule (11) über eine im Fahrzeug (12) angeordnete Regelaktorik (17) erfolgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Empfangsspule (11) beim Ausfall der
Regelaktorik (17) in einem weiteren Verfahrensschritt (D) in eine Ruhelage angehoben wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Anheben der Empfangsspule (11) in eine Ruhelage durch Federn (19) erfolgt.
8. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Positionierung der Empfangsspule (11) über das im Fahrzeug (12) angeordnete aktiv geregelte Dämpfungssystem (18) erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche dadurch
gekennzeichnet, dass die Positionierung der Empfangsspule (11) abhängig von einer Fahrgeschwindigkeit des Fahrzeugs (12) ist.
10. Verfahren nach einem der vorhergehenden Ansprüche dadurch
gekennzeichnet, dass die Positionierung der Empfangsspule (11) abhängig von einer Reaktionszeit (tl) der Regelaktorik (17) und/oder einer
Reaktionszeit (t2) des aktiv geregelten Dämpfungssystems (18) ist.
11. Verfahren nach einem der vorhergehenden Ansprüche dadurch
gekennzeichnet, dass die Sendespule (10) im oder auf dem Untergrund (14) angeordnet ist.
12. Vorrichtung zur induktiven Energieübertragung nach einem der vorherigen Ansprüche 1 bis 9.
PCT/EP2016/066500 2015-09-10 2016-07-12 Verfahren zur induktiven energieübertragung und vorrichtung zum betrieb einer induktiven energieübertragungsvorrichtung WO2017041932A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/759,318 US11554673B2 (en) 2015-09-10 2016-07-12 Method for inductive energy transmission and device for operating an inductive energy transmission device
JP2018512968A JP6636138B2 (ja) 2015-09-10 2016-07-12 誘導的なエネルギー伝送方法、及び、誘導的なエネルギー伝送装置を駆動する装置
KR1020187009675A KR102612778B1 (ko) 2015-09-10 2016-07-12 유도성 에너지 전송 방법 및 유도성 에너지 전송 장치를 작동하기 위한 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015217274.0 2015-09-10
DE102015217274.0A DE102015217274A1 (de) 2015-09-10 2015-09-10 Verfahren zur induktiven Energieübertragung und Vorrichtung zum Betrieb einer induktiven Energieübertragungsvorrichtung

Publications (1)

Publication Number Publication Date
WO2017041932A1 true WO2017041932A1 (de) 2017-03-16

Family

ID=56609845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/066500 WO2017041932A1 (de) 2015-09-10 2016-07-12 Verfahren zur induktiven energieübertragung und vorrichtung zum betrieb einer induktiven energieübertragungsvorrichtung

Country Status (5)

Country Link
US (1) US11554673B2 (de)
JP (1) JP6636138B2 (de)
KR (1) KR102612778B1 (de)
DE (1) DE102015217274A1 (de)
WO (1) WO2017041932A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010451A (ja) * 2018-07-04 2020-01-16 三菱自動車工業株式会社 車両の充電装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018200252A1 (de) * 2018-01-10 2019-07-11 Audi Ag Induktive Ladeanordnung für einen Fahrzeugakkumulator
US10513198B2 (en) * 2018-03-14 2019-12-24 Ford Global Technologies, Llc Electrified vehicle wireless charging system and charging method
DE102018215181A1 (de) * 2018-09-06 2020-01-02 Continental Automotive Gmbh Resonator für eine induktive Ladevorrichtung mit vergrößerter Resonatorspule
CN109664778A (zh) * 2018-12-19 2019-04-23 国网江苏省电力有限公司 一种基于短分段线圈的电动汽车动态无线充电系统
DE102019201821A1 (de) * 2019-02-12 2020-08-13 Audi Ag Verfahren zum Koordinieren zweier Aktuatoreinrichtungen, Schnittstelleinrichtung, Servereinrichtung zum Betreiben im Internet, Kraftfahrzeug, und System
JP7379195B2 (ja) * 2020-02-05 2023-11-14 東芝テック株式会社 カート型商品登録装置及びカート給電装置
US11505077B2 (en) * 2020-05-27 2022-11-22 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for wireless vehicle power transfer and misalignment estimation
DE102020212069B4 (de) 2020-09-25 2024-10-02 Volkswagen Aktiengesellschaft Straßengeführtes Kraftfahrzeug mit mindestens einem Stromabnehmer für mindestens eine Oberleitung und Verfahren zum Ansteuern eines Stromabnehmers
US11565594B2 (en) 2021-05-27 2023-01-31 Ford Global Technologies, Llc Vehicle and battery charging system for a vehicle
DE102021206114A1 (de) 2021-06-15 2022-12-15 Continental Automotive Gmbh Kraftfahrzeug mit sicherheitsrelevanter Komponente an der Unterseite des Kraftfahrzeugs sowie einem Sensor zum Erfassen eines erfolgenden oder drohenden Kontakts
CN113765236B (zh) * 2021-09-18 2024-04-12 枣庄和顺达机电科技股份有限公司 一种矿用无线充电辅助装置
CN115366722A (zh) * 2022-07-20 2022-11-22 广西电网有限责任公司电力科学研究院 一种无线充电系统功率发射模块顶升装置
FR3143142A1 (fr) * 2022-12-13 2024-06-14 Safran Electronics & Defense Véhicule terrestre autonome
DE102024103572A1 (de) * 2023-03-07 2024-09-12 Sew-Eurodrive Gmbh & Co Kg Transportfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177915A (ja) * 1999-12-10 2001-06-29 Toyota Motor Corp エネルギー授受装置
US20120025761A1 (en) * 2010-07-29 2012-02-02 Toyota Jidosha Kabushiki Kaisha Resonance type non-contact power supply system for vehicle and electric vehicle
DE102010054909A1 (de) * 2010-12-17 2012-06-21 Daimler Ag Kraftfahrzeugvorrichtung mit einer Lade- und/oder Entladeeinheit
DE102012217779A1 (de) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Ladesteuereinheit und Verfahren zur Einstellung eines Abstands für einen induktiven Ladevorgang

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217404A (ja) * 1993-01-12 1994-08-05 Toshiba Corp 磁気浮上式鉄道の誘導集電コイル制御装置
US5595271A (en) * 1995-08-07 1997-01-21 Tseng; Ling-Yuan Electric vehicle pick-up position control
JP2001177916A (ja) * 1999-12-10 2001-06-29 Toyota Motor Corp エネルギー供給装置
JP2008011656A (ja) * 2006-06-29 2008-01-17 Equos Research Co Ltd 制御装置及び車両
JP2010246348A (ja) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd 受電装置、及び送電装置
JP2011193617A (ja) * 2010-03-15 2011-09-29 Hino Motors Ltd 車両の非接触給電装置及び方法
KR101842308B1 (ko) * 2010-10-29 2018-03-26 퀄컴 인코포레이티드 커플링된 기생 공진기들을 통한 무선 에너지 전송
DE102011010049A1 (de) 2011-02-01 2011-11-03 Daimler Ag Ladevorrichtung und Verfahren zum Laden einer Batterie eines Fahrzeugs
WO2014114762A2 (en) * 2013-01-24 2014-07-31 Jaguar Land Rover Limited Charging indicator
GB201403547D0 (en) * 2014-02-28 2014-04-16 Bombardier Transp Gmbh Inductive power transfer pad, system for inductive power transfer and method of operating an inductive power transfer pad
CN105189184B (zh) * 2013-04-26 2017-07-21 丰田自动车株式会社 受电装置、送电装置、电力传送系统及停车辅助装置
JP6125948B2 (ja) * 2013-08-12 2017-05-10 本田技研工業株式会社 非接触充電装置
KR20160021332A (ko) * 2014-08-14 2016-02-25 현대자동차주식회사 무선 충전 장치의 제어 방법
US9944190B2 (en) * 2015-03-07 2018-04-17 Hyundai Motor Company Interoperable EV wireless charging system based on air gap between primary and secondary coils
MX360378B (es) * 2015-04-07 2018-10-31 Nissan Motor Dispositivo de estimacion de temperatura y metodo de estimacion de temperatura para dispositivo de recepcion de energia sin contacto.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177915A (ja) * 1999-12-10 2001-06-29 Toyota Motor Corp エネルギー授受装置
US20120025761A1 (en) * 2010-07-29 2012-02-02 Toyota Jidosha Kabushiki Kaisha Resonance type non-contact power supply system for vehicle and electric vehicle
DE102010054909A1 (de) * 2010-12-17 2012-06-21 Daimler Ag Kraftfahrzeugvorrichtung mit einer Lade- und/oder Entladeeinheit
DE102012217779A1 (de) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Ladesteuereinheit und Verfahren zur Einstellung eines Abstands für einen induktiven Ladevorgang

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010451A (ja) * 2018-07-04 2020-01-16 三菱自動車工業株式会社 車両の充電装置

Also Published As

Publication number Publication date
JP2018534896A (ja) 2018-11-22
JP6636138B2 (ja) 2020-01-29
DE102015217274A1 (de) 2017-03-16
US11554673B2 (en) 2023-01-17
US20180194239A1 (en) 2018-07-12
KR20180050715A (ko) 2018-05-15
KR102612778B1 (ko) 2023-12-13

Similar Documents

Publication Publication Date Title
WO2017041932A1 (de) Verfahren zur induktiven energieübertragung und vorrichtung zum betrieb einer induktiven energieübertragungsvorrichtung
DE102015113624A1 (de) Selbstpositionierendes Mehrfachspulensystem für drahtloses Fahrzeugladen
DE102015113625A1 (de) Automatisch selbstpositionierende Sendespule für drahtloses Fahrzeugladen
DE102012217779A1 (de) Ladesteuereinheit und Verfahren zur Einstellung eines Abstands für einen induktiven Ladevorgang
DE102018204986B3 (de) Vorrichtung zur Positionierung eines Kraftfahrzeugs auf einem Stellplatz für induktives Laden
EP3031658A1 (de) Ladeverfahren für einen Energiespeicher eines Fahrzeugs
DE102017211314A1 (de) Betriebsverfahren, Gespann, Kraftfahrzeug und Zugfahrzeug
DE102013103157A1 (de) Kontaktloses Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
DE102011114321A1 (de) Steckereinrichtung, Steckeraufnahme und System zur elektrischen Kopplung eines Fahrzeugs mit einer Ladestation sowie entsprechendes Verfahren
EP3221178B1 (de) Vorrichtung zur induktiven energieübertragung mit einer überwachungsvorrichtung
DE102013217713A1 (de) Sendespule zur induktiven Energieübertragung, Ladestation, Verfahren zum Positionieren einer induktiven Energieübertragungsvorrichtung und Verfahren zum Detektieren eines Fremdobjekts zwischen einer Sendespule und einer Empfangsspule
WO2015010834A1 (de) Kabellose ladevorrichtung zum laden einer batterie eines fahrzeugs, mit in getriebeölwanne integrierte fahrzeugseitige spule
WO2018010882A1 (de) Verfahren zum betrieb einer sicherheitsvorrichtung
DE102011108544A1 (de) Anordnung der Ladespulen beim induktiven Laden in einem Fahrzeug
WO2016055181A1 (de) Verfahren zur steuerung eines systems zur induktiven energieübertragung
DE102019202782B4 (de) Verfahren zum Energiemanagement eines Gespanns
DE102017212894A1 (de) Vorrichtung zum Laden
DE102019207447A1 (de) Verfahren zum Betreiben eines Elektrofahrzeugs und Elektrofahrzeug
DE102011108543A9 (de) Ladevorrichtung zum induktiven Laden eines Fahrzeugs
DE102015221585B3 (de) Verfahren zum Betreiben einer Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, Ladevorrichtung sowie Anordnung
DE102012105687A1 (de) Verfahren zur induktiven Energieerzeugung für ein Fahrzeug sowie Vorrichtung zur induktiven Energieerzeugung für ein Fahrzeug
DE202012102391U1 (de) Vorrichtung zur induktiven Energieerzeugung für ein Fahrzeug, Fahrzeug mit einer derartigen Vorrichtung, System mit einem derartigen Fahrzeug
WO2013045007A1 (de) Induktionsladevorrichtung zum kabellosen horizontalladen und/oder -entladen eines elektrischen kraftfahrzeugakkumulators
DE202011105359U1 (de) Vorrichtung zum drahtlosen Übertragen elektrischer Energie auf Fahrzeuge in der Art "mobiler Zapfsäulen"
DE102018219460A1 (de) Kontaktlose Primärladeeinrichtung zur kontaktlosen Energieübertragung an eine Sekundärladeeinrichtung eines Kraftfahrzeugs und Verfahren zur kontaktlosen Energieübertragung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16747862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018512968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009675

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16747862

Country of ref document: EP

Kind code of ref document: A1