WO2013092361A1 - Induktives übertragen von energie von einer primärspule zu einer sekundärspule eines elektromobilen kraftfahrzeugs - Google Patents

Induktives übertragen von energie von einer primärspule zu einer sekundärspule eines elektromobilen kraftfahrzeugs Download PDF

Info

Publication number
WO2013092361A1
WO2013092361A1 PCT/EP2012/075333 EP2012075333W WO2013092361A1 WO 2013092361 A1 WO2013092361 A1 WO 2013092361A1 EP 2012075333 W EP2012075333 W EP 2012075333W WO 2013092361 A1 WO2013092361 A1 WO 2013092361A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary coil
coil
motor vehicle
electrical energy
primary coil
Prior art date
Application number
PCT/EP2012/075333
Other languages
English (en)
French (fr)
Inventor
Thomas Röhrl
Jörg Grotendorst
Lutz-Wolfgang Tiede
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2013092361A1 publication Critical patent/WO2013092361A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to the technical field of charging an electrical energy storage of an electromobile vehicle such as an electric or hybrid vehicle.
  • the present invention relates to a device and a method for inductively transmitting electrical energy from a primary coil to a secondary coil of an electromobile motor vehicle having an electrical energy store.
  • the present invention further relates to an electromobile motor vehicle, in particular hybrid or electric vehicle, with such a device for the inductive transmission of electrical energy.
  • electromobility usually refers to the use of electric vehicles for different transport needs. These include rail-bound vehicles for a long time. However, electromobility has recently increasingly spread to motor vehicles that are more likely to be associated with private transport. In the future, a continuation of this trend is expected.
  • Electromobile motor vehicles such as electric and hybrid vehicles typically have an electrochemical and / or an electrostatic energy storage, which supplies an electric motor for driving the relevant electromobile motor vehicle with the necessary energy.
  • an electrochemical energy store such as, for example, a battery with a plurality of energy storage cells connected in series and / or parallel, (a) in the case of a charge, a conversion of electrical energy into chemical energy and (b) a conversion in the case of a discharge from chemical energy to electrical energy.
  • an electrostatic energy storage such as a so-called.
  • Layer capacitor is an electrical charge or an electrical discharge of preferably several double-layer capacitors.
  • An electrical energy store of an electromobile motor vehicle is usually charged by means of a stationary power grid. The charging can be done via cables and / or connectors. Alternatively, however, a charging of an electrical energy store can also take place without contact by means of a so-called inductive (magnetically wireless) charging, as is known, for example (with substantially lower charging powers) in electric toothbrushes.
  • the inductive charging has the undoubted advantage of a significantly higher comfort, but in practice always occurs a more or less large air gap between a stationary charging station associated primary coil and the respective electromobile vehicle associated secondary coil. Since the size of this air gap is a direct measure of the coupling factor or the coupling strength between the energy-emitting primary coil and the energy-absorbing secondary coil, the energy transfer efficiency is impaired by an air gap.
  • the invention has for its object to improve the transmission of energy in an inductive charging an electrical energy storage of an electromobile vehicle.
  • a device for the inductive transfer of electrical energy from a primary coil to a secondary coil of an electric energy storage vehicle having an electromobile motor vehicle, in particular an electric or hybrid vehicle described.
  • the described device comprises (a) a base element which can be attached to the electromobile motor vehicle, (b) the secondary coil which can be energetically coupled to the electrical energy store, at least a part of the secondary coil being movably mounted relative to the base element, and ( c) an actuator, by means of which at least the part of the secondary coil is movable relative to the base element between a first position and a second position, wherein in the first position at least the part of the secondary coil is closer to the base element than in the second position. It is only a part of the secondary coil, in particular a coil core, movable by means of the actuator.
  • the described inductive energy transmission device is based on the finding that the size of an air gap between the primary coil and the secondary coil can be minimized by an adaptive positioning of a secondary coil or a part of a secondary coil in advance or during an inductive charging of an electrical energy store.
  • a minimized air gap then leads in a known way to the fact that the inductive coupling between the primary coil and the secondary coil improves and thus overall the efficiency of the inductive energy transfer is improved.
  • a further advantage of minimizing the air gap can be that the strength of electromagnetic fields which are undesirable for biomedical reasons (so-called EMC smog) is reduced.
  • the term "energetically coupled” is to be understood as meaning not only a direct but in particular also an indirect coupling between the secondary coil and the electrical energy store.
  • the voltage induced in the secondary coil must often be adjusted in height and / or shape, in particular by means of rectification.
  • the charging current which is often required in the flow energy storage, monitored or kept constant. For these additional functions may still be necessary a number of electrical and / or electronic "intermediate components" between the secondary coil and the electrical energy storage.
  • adaptive positioning can be understood in particular to mean that before or during a charging process of the electrical energy store, after the secondary coil or the part of the secondary coil has been brought into the second position relative to the base element by means of the actuator, the secondary coil or the part of Secondary coil with the top (of a housing) of the primary coil, which is integrated, for example, in a driving or standing surface for the electromobile motor vehicle comes into mechanical contact.
  • the second position in the electromobile vehicle (a) by a ground clearance of the electromobile vehicle and (b) by any height difference between (bl) the surface of the driving or standing surface and (b2) of the top (a Housing) of the primary coil is determined.
  • the spatial position of the first position is independent of the dimension and / or the relative spatial arrangement of various components of a system consisting of the electromobile motor vehicle (with the described energy transmission device) and the primary coil.
  • the described energy transmission device should only be designed such that, if at least the secondary coil or the part of the secondary coil is in the first position, a driving movement of the electromobile vehicle can take place without causing damage to the secondary coil on a possibly uneven road surface .
  • the described actuator can not only move the secondary coil or the part of the secondary coil relative to the base element between the two named positions. Rather, the actuator may also be such be configured that more than two positions and in particular one or more intermediate positions between two end positions can be assumed. In principle, any number of intermediate positions can be assumed or even a continuous positioning of the secondary coil or of the part of the secondary coil relative to the basic element can be carried out.
  • Electromobile motor vehicle can be understood as meaning all vehicles which have an electric motor on board, which is at least partly, i. at least in certain operating conditions is used. Electromobile motor vehicles may be in particular electric vehicles or hybrid vehicles. The electromobile motor vehicle may be a two-wheeler or a motor vehicle having three, four or more than four wheels.
  • hybrid vehicle in this document means any vehicle powered solely by electrical energy.
  • An electric vehicle basically drives its wheels by means of an electric motor.
  • the drive energy required for this is carried in the vehicle in particular in the form of rechargeable batteries.
  • hybrid vehicle is understood in this document to mean a vehicle which, in addition to an electric motor, also has at least one further energy converter, in particular an internal combustion engine, in order to realize propulsion of the electromobile vehicle.
  • at least one further energy store in addition to an electrical energy store, at least one further energy store, in particular a fuel tank, must be installed in a hybrid vehicle in order to supply the hybrid vehicle with the necessary energy in all operating situations.
  • the actuator described may be any actuator by which the secondary coil or at least the portion of the secondary coil from the first position to the second position and / or vice versa from the second position to the first position can be moved.
  • the actuator may also be a manually operated control element.
  • the device further comprises an adjusting device, which is coupled to the actuator.
  • the actuator may be any actuator, which in response to suitable electronic signals which z. B. represent commands issued by a control computer, the actuator in a suitable manner mechanically moved, so that the desired change in position of the secondary coil or at least the part of the secondary coil is implemented.
  • the adjusting device described can be, for example, an electric servomotor.
  • a motorized and / or automatic movement can be realized not only by means of an electric servomotor but for example by using a magnetic, pneumatic and / or hydraulic drive.
  • a motorized and / or also automatic movement of the secondary coil or at least of the part of the secondary coil has the advantage over a manually generated actuation of the actuator that a user and in particular a vehicle driver is relieved of manual manipulation.
  • the movement of the secondary coil or of the part of the secondary coil from the first position to the second position can take place, for example, solely by gravity or with the assistance of gravity, which acts on the secondary coil or at least on the part of the secondary coil.
  • the movement of the secondary coil or at least the part of the secondary coil from the second position back to the first position can take place counter to the force of gravity by means of a suitable control of the servomotor.
  • both the movement from the first position to the second position and vice versa from the second position to the first position can be caused by the described servomotor.
  • the procedure suitable for movement between the two positions may be chosen according to the available installation space, the function required and / or the safety requirements ,
  • the device further comprises a return spring, which is coupled to the actuator such that the first position represents a preferred position of at least the part of the secondary coil.
  • a return spring which is coupled to the actuator such that the first position represents a preferred position of at least the part of the secondary coil.
  • This may mean that said secondary coil or portion of the secondary coil is held in the first position without being force applied by the servomotor or pushed or pulled back to the first position after deflection from the first position.
  • the preferred position thus represents before a charging operation, which begins after lowering at least the part of the secondary coil to the primary coil, an initial position, which is preferably also taken during a journey of the electromobile motor vehicle to damage the secondary coil in particular by an uneven road surface reliably avoid.
  • the described return spring can in particular cause a movement (lowering) of the secondary coil or of the part of the secondary coil against the spring force of the return spring takes place by means of the servomotor.
  • the opposite movement from the second position to the first position is then carried out either completely by means of this spring force or together by means of the servomotor and this spring force.
  • the device further comprises a securing mechanism, which is designed such that only after a release of the
  • Securing mechanism at least the part of the secondary coil is movable to the second position.
  • the securing mechanism described can advantageously contribute to preventing inadvertent movement of the secondary coil or at least of the part of the secondary coil into the second position during travel of the electromobile motor vehicle.
  • the securing mechanism described may be any device which allows movement of the secondary coil or at least the portion of the secondary coil away from the first position only after deactivation.
  • the securing mechanism may be electrically, magnetically and / or mechanically (for example by means of a mechanical engagement) act.
  • a lowering of the secondary coil or at least the part of the secondary coil of the described securing mechanism can only be released when the electromobile motor vehicle is in a suitable loading position, in which the secondary coil is spatially aligned with the primary coil.
  • spatially aligned in particular, may mean that the primary coil and the secondary coil lie on a common axis, which runs parallel to the direction of movement from the first position to the second position.
  • the securing mechanism can be configured such that the electromobile motor vehicle is only ready to drive if the secondary coil or at least the part of the secondary coil is retracted and locked in a vehicle floor of the electromobile motor vehicle.
  • the base element has a housing in which at least the part of the secondary coil is accommodated when it is in the first position.
  • the inclusion of the secondary coil or at least the described part of the secondary coil in a housing may have the advantage that the secondary coil and in particular the movable part or the moving parts of the secondary coil can be protected from undesired contamination. As a result, the reliability of the device described can be increased in a simple manner.
  • the entire secondary coil is movable by means of the actuator. This can have the advantage that the inductive coupling between the primary coil and the secondary coil can be maximized and, furthermore, unwanted stray electromagnetic fields can be minimized.
  • the bobbin may be made of any permeable material such as a ferrite.
  • the coil core can be realized in the form of a laminated core, which causes a "guide" of magnetic field lines between the primary coil and the secondary coil in a known manner.
  • the coil core can be realized in a known manner to reduce eddy current losses in the form of a stacked arrangement of flat coil core elements.
  • an electromobile motor vehicle in particular a hybrid or electric vehicle, is described.
  • the electromobile motor vehicle described has (a) a vehicle chassis, (b) an electrical energy store, and (c) a device for inductive transmission of electrical energy described above.
  • the base member is attached to the vehicle chassis and the secondary coil is coupled to the electrical energy storage.
  • the described electromobile motor vehicle is based on the finding that the energy transmission device described above can be easily attached to aggychas sis and preferably on a vehicle floor of the electromobile motor vehicle and that thus in a charging process of an electrical energy storage of the electromobile motor vehicle in a simple way, an air gap minimization (A) a primary coil integrated in a roadway and (b) the secondary coil or the part of the secondary coil can be realized.
  • This air gap minimization then leads, as already described above, the efficiency of the inductive energy transfer between the primary coil and the secondary coil is increased.
  • the primary coil is installed as flat as possible in the road so that driving over the primary coil leads to no damage to the primary coil and / or the described electromobile motor vehicle even with a low ground clearance.
  • the movable part of the energy transmission device described above is installed on the electromobile motor vehicle.
  • the base element is attached to the vehicle chassis such that, when at least the part of the secondary coil is in the first position, the entire device is completely sunk in the electromobile motor vehicle.
  • a device for the inductive transmission of electrical energy from a primary coil to a secondary coil, which is energetically coupled to an electrical energy store of an electromobile motor vehicle.
  • the device described has (a) a base element which can be attached to a roadway for the electromobile motor vehicle, (b) the primary coil which can be energetically coupled to an electrical power supply, wherein at least a part of the primary coil is mounted movably relative to the base element and (c) an actuator by means of which at least the portion of the primary coil is movable relative to the base member between a first position and a second position, wherein in the first position at least the portion of the primary coil is closer to the base member than in the second Position.
  • the described inductive energy transmission device is based on the finding that the size of an air gap between the primary coil and the secondary coil is minimized by an adaptive positioning of a primary coil or of a part of a primary coil relative to a secondary coil in advance or during an inductive charging of an electrical energy store can.
  • roadway can be understood as any type of subsoil or ground on which the electromobile motor vehicle is located during the charging process.
  • the term "electrical power supply” can be understood as any type of device which is capable of exciting the primary coil so that an inductive transfer of electrical energy from the primary coil to the secondary coil is possible.
  • a method for inductively transmitting electrical energy from a primary coil to a secondary coil of an electromobile motor vehicle. The described method comprises (a) positioning the electromobile motor vehicle relative to the primary coil such that the secondary coil is at least approximately spatially aligned with the primary coil, (b) moving at least the portion of the secondary coil relative to the base element from the first position in FIG the second position wherein an air gap between the primary coil and at least the portion of the secondary coil is reduced, and (c) inductively transmitting the electrical energy from the primary coil to the secondary coil.
  • the described method is also based on the finding that the size of an air gap between the primary coil and the secondary coil can be minimized by an adaptive positioning of a secondary coil or a part of a secondary coil in advance or during a charging process of an electrical energy store.
  • a minimized air gap then leads in a known way to the fact that the inductive coupling between the primary coil and the secondary coil improves and thus overall the efficiency of the inductive energy transmission is improved up to the electrical energy storage.
  • moving the secondary coil or the portion of the secondary coil relative to the base member not only a vertical movement (ie parallel or anti-parallel to the direction of gravity) but possibly also a horizontal movement (ie perpendicular to the direction of gravity ). This means that the o.g.
  • Device and in particular the above-mentioned adjusting device has an actuator, which also allows a horizontal orientation of the secondary to the primary coil, so that also in this way the air gap can be reduced.
  • the same actuators are used for vertical and horizontal alignment.
  • Figure 1 shows an electromobile motor vehicle according to a
  • Embodiment of the invention in a charging process.
  • FIG. 2 shows the electromobile motor vehicle during a vehicle
  • FIG. 1 shows an electromobile motor vehicle 100 according to an embodiment of the invention during an inductive
  • Charging in which an electrical energy storage 110 of the motor vehicle 100 is charged.
  • the electromobile vehicle 100 has affychas sis 104, a passenger compartment 106 and four tires 102.
  • affychas sis 104 a passenger compartment 106 and four tires 102.
  • the energy which is inductively fed into the vehicle 100 or into the energy store 110, is provided in a known manner by a primary coil 195 which, according to the embodiment described here, is integrated in a roadway covering 190.
  • the primary coil 195 for example, in a (private) garage also be arranged at least partially above the ground.
  • the inductive energy transfer occurs between the primary coil 195 and a secondary coil 132 of an energy transfer device 130.
  • the energy transfer device 130 has a base element 134, which is attached to a lower part of the vehicle chassis 104. According to the embodiment shown here, the base element is designed as a housing 134.
  • the secondary coil 132 has stationary coil windings 132a and a coil core 132b displaceable along a vertical z-direction.
  • an actuator 136 which can be operated manually or by means of a suitable actuator, the spool core 132b can be moved along the z-axis.
  • a servomotor 138 which is arranged on the housing 134, is used to displace the coil core 132b.
  • the spool core 132b is connected against the spring force of a return spring 137 by the servo motor 138 with the actuator 136 moves down until the bobbin 132 b (gently) rests on the primary coil 195.
  • an air gap between (a) the primary coil 195 on one side and (b) the coil core 132b on the other side is minimized.
  • the inductive energy transfer between the primary coil 195 and the secondary coil 132 is not only particularly efficient but also particularly safe, for example with regard to unwanted magnetic stray fields.
  • the spool core 132b Upon completion of the charging process, the spool core 132b is moved upwardly by the return spring 137 and / or the servomotor 138 in conjunction with the actuator 136 until the spool core 132b is fully retracted in the vehicle floor of the vehicle 100. This condition is illustrated schematically in FIG. It can be seen that no component of the energy transfer device 130 is located more below the vehicle floor. After retraction of the spool core 132b, the vehicle 100 can then be moved or driven without causing damage to the secondary coil on a possibly uneven road surface.
  • the energy transmission device 130 also has a securing mechanism 140, which locks the spool core 132b in the upper position while driving. Only after deactivating the securing mechanism 140, the spool core 132b can then be lowered again for the purpose of a further charging process.
  • the inductive energy transfer device described in this document has the following advantages, among others:
  • EMC problems can be reduced because all coils and high-frequency cables can remain in a shielded housing.
  • the air gap can become so small that even at this point only very small electromagnetic disturbances escape.

Abstract

Es wird eine Vorrichtung (100) zum induktiven Übertragen von elektrischer Energie von einer Primärspule (195) zu einer Sekundärspule (132) eines einen elektrischen Energiespeicher (110) aufweisenden elektromobilen Kraftfahrzeugs (100) beschrieben. Die Vorrichtung (130) weist auf ein Grundelement (134), welches an dem elektromobilen Kraftfahrzeug (100) anbringbar ist, die Sekundärspule (132), welche mit dem elektrischen Energiespeicher (110) energetisch koppelbar ist, wobei ein Teil (132b) der Sekundärspule (132) relativ zu dem Grundelement (134) bewegbar gelagert ist, und ein Stellglied (136), mittels welchem zumindest der Teil (132b) der Sekundärspule (132) relativ zu dem Grundelement (134) zwischen einer ersten Position und einer zweiten Position bewegbar ist, wobei sich in der ersten Position zumindest der Teil (132b) der Sekundärspule (132) näher an dem Grundelement (134) befindet als in der zweiten Position. Es wird ferner ein Kraftfahrzeug (100) mit einer derartigen Vorrichtung (130), eine entsprechende einer Fahrbahn (190) zugeordnete Vorrichtung mit einer bewegbaren Primärspule (195) sowie ein Verfahren zum induktiven Übertragen von elektrischer Energie unter Verwendung einer derartigen Vorrichtung (130) beschrieben.

Description

Beschreibung
Induktives Übertragen von Energie von einer Primärspule zu einer Sekundärspule eines elektromobilen Kraftfahrzeugs
Die vorliegende Erfindung betrifft das technische Gebiet des Ladens eines elektrischen Energiespeichers eines elektromobilen Fahrzeugs wie beispielsweise eines Elektro- oder Hybridfahrzeugs. Die vorliegende Erfindung betrifft insbesondere eine Vorrichtung sowie ein Verfahren zum induktiven Übertragen von elektrischer Energie von einer Primärspule zu einer Sekundärspule eines einen elektrischen Energiespeicher aufweisenden elektromobilen Kraftfahrzeugs. Die vorliegende Erfindung betrifft ferner ein elektromobiles Kraftfahrzeug, insbesondere Hybrid- oder Elektrofahrzeug, mit einer derartigen Vorrichtung zum induktiven Übertragen von elektrischer Energie.
Unter dem Begriff Elektromobilität wird üblicherweise eine Nutzung von Elektrofahrzeugen für unterschiedliche Verkehrsbedürfnisse bezeichnet. Dazu zählen seit langer Zeit schienengebundene Fahrzeuge. In jüngster Zeit erstreckt sich die Elektromobilität jedoch zunehmend auch auf Kraftfahrzeuge, die eher dem Individualverkehr zugeordnet werden. In der Zukunft ist eine Fortsetzung dieses Trends zu erwarten.
Elektromobile Kraftfahrzeuge wie Elektro- und Hybridfahrzeuge weisen typischerweise einen elektrochemischen und/oder einen elektrostatischen Energiespeicher auf, der einen Elektromotor zum Antreiben des betreffenden elektromobilen Kraftfahrzeugs mit der notwendigen Energie versorgt. Bei einem elektrochemischen Energiespeicher wie beispielsweise einer Batterie mit vorzu- geweise einer Mehrzahl von in Serie und/oder parallel geschalteten Energiespeicherzellen erfolgt dabei (a) im Falle einer Ladung eine Umwandlung von elektrischer Energie in chemische Energie und (b) im Falle einer Entladung eine Umwandlung von chemischer Energie in elektrische Energie. Bei einem elektrostatischen Energiespeicher wie zum Beispiel einem sog. Doppel- Schichtkondensator erfolgt eine elektrische Ladung bzw. eine elektrische Entladung von bevorzugt mehreren Doppelschichtkondensatoren . Ein elektrischer Energiespeicher eines elektromobilen Kraftfahrzeugs wird üblicherweise mittels eines stationären Stromnetzes aufgeladen. Das Aufladen kann dabei über Kabel und/oder Steckverbindungen erfolgen. Alternativ kann ein Aufladen eines elektrischen Energiespeichers jedoch auch kontaktlos mittels eines sog. induktiven (magnetisch drahtlosen) Ladens erfolgen, wie es z.B. (mit wesentlichen geringeren Ladeleistungen) bei elektrischen Zahnbürsten bekannt ist.
Das induktive Aufladen hat zwar den unbestrittenen Vorteil eines deutlich höheren Komforts, jedoch tritt in der Praxis stets ein mehr oder weniger großer Luftspalt zwischen einer einer stationären Ladestation zugeordneten Primärspule und einer dem jeweiligen elektromobilen Fahrzeug zugeordneten Sekundärspule auf. Da die Größe dieses Luftspalts ein direktes Maß für den Kopplungsfaktor oder die Kopplungsstärke zwischen der Energie abgebenden Primärspule und der Energie aufnehmenden Sekundärspule ist, wird durch einen Luftspalt der Wirkungsgrad der Energieübertragung verschlechtert .
Der Erfindung liegt die Aufgabe zugrunde, die Übertragung von Energie bei einem induktiven Laden eines elektrischen Energiespeichers eines elektromobilen Fahrzeugs zu verbessern.
Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben. Gemäß einem ersten Aspekt der Erfindung wird eine Vorrichtung zum induktiven Übertragen von elektrischer Energie von einer Primärspule zu einer Sekundärspule eines einen elektrischen Energiespeicher aufweisenden elektromobilen Kraftfahrzeugs, insbesondere eines Elektro- oder Hybridfahrzeugs, beschrieben. Die beschriebene Vorrichtung weist auf (a) ein Grundelement, welches an dem elektromobilen Kraftfahrzeug anbringbar ist, (b) die Sekundärspule, welche mit dem elektrischen Energiespeicher energetisch koppelbar ist, wobei zumindest ein Teil der Sekundärspule relativ zu dem Grundelement bewegbar gelagert ist, und (c) ein Stellglied, mittels welchem zumindest der Teil der Sekundärspule relativ zu dem Grundelement zwischen einer ersten Position und einer zweiten Position bewegbar ist, wobei sich in der ersten Position zumindest der Teil der Sekundärspule näher an dem Grundelement befindet als in der zweiten Position. Es ist lediglich ein Teil der Sekundärspule, insbesondere ein Spulenkern, mittels des Stellglieds bewegbar.
Der beschriebenen induktiven Energieübertragungsvorrichtung liegt die Erkenntnis zugrunde, dass durch ein adaptives Positionieren von einer Sekundärspule oder einem Teil einer Sekundärspule relativ zu einer Primärspule im Vorfeld oder während eines induktiven Ladevorgangs eines elektrischen Energiespeichers die Größe eines Luftspaltes zwischen der Primärspule und der Sekundärspule minimiert werden kann. Ein minimierter Luftspalt führt dann in bekannter Weise dazu, dass die induktive Kopplung zwischen Primärspule und Sekundärspule verbessert und damit insgesamt die Effizienz der induktiven Energieübertragung verbessert wird.
Ein weiterer Vorteil durch eine Minimierung des Luftspaltes kann darin bestehen, dass die Stärke von aus biomedizinischen Gründen unerwünschten elektromagnetischen Streufeldern (sog. EMV-Smog) reduziert wird.
Unter dem Begriff "energetisch koppelbar" ist nicht nur eine direkte sondern insbesondere auch eine indirekte Kopplung zwischen der Sekundärspule und dem elektrischen Energiespeicher zu verstehen. In der Praxis muss nämlich häufig die in der Sekundärspule induzierte Spannung noch in der Höhe und/oder in der Form insbesondere mittels einer Gleichrichtung angepasst werden. Ferner muss häufig auch der Ladestrom, welcher in den elekt- rischen Energiespeicher fließt, überwacht bzw. konstant gehalten werden. Für diese Zusatzfunktionen kann noch eine Reihe von elektrischen und/oder elektronischen "Zwischenkomponenten" zwischen der Sekundärspule und dem elektrischen Energiespeicher notwendig sein.
Unter dem o.g. Begriff "adaptives Positionieren" kann insbesondere verstanden werden, dass im Vorfeld oder während eines Ladevorgangs des elektrischen Energiespeichers, nachdem mittels des Stellglieds die Sekundärspule oder der Teil der Sekundärspule relativ zu dem Grundelement in die zweite Position gebracht worden ist, die Sekundärspule oder der Teil der Sekundärspule mit der Oberseite (eines Gehäuses) der Primärspule, welche beispielsweise in einer Fahr- bzw. Standfläche für das elektromobile Kraftfahrzeug integriert ist, in mechanischem Kontakt kommt. Dies bedeutet, dass die zweite Position bei dem elektromobilen Fahrzeug (a) durch eine Bodenfreiheit des elektromobilen Fahrzeugs und (b) durch einen ggf. vorhandenen Höhenunterschied zwischen (bl) der Oberfläche der Fahr- bzw. Standfläche und (b2) der Oberseite (eines Gehäuses) der Primärspule bestimmt wird.
In diesem Zusammenhang wird darauf hingewiesen, dass die räumliche Lage der ersten Position unabhängig von der Dimension und/oder der relativen räumlichen Anordnung von verschiedenen Komponenten eines Systems bestehend aus dem elektromobilen Kraftfahrzeug (mit der beschriebenen Energieübertragungsvorrichtung) und der Primärspule ist. Die beschriebene Energieübertragungsvorrichtung sollte lediglich derart ausgebildet sein, dass, wenn sich zumindest die Sekundärspule oder der Teil der Sekundärspule in der ersten Position befindet, eine Fahrbewegung des elektromobilen Fahrzeugs erfolgen kann, ohne dass eine Beschädigung der Sekundärspule an einem ggf. unebenen Fahrbahnuntergrund zu besorgen wäre. Es wird ferner darauf hingewiesen, dass das beschriebene Stellglied die Sekundärspule bzw. den Teil der Sekundärspule relativ zu dem Grundelement nicht nur zwischen den beiden genannten Positionen bewegen kann. Vielmehr kann das Stellglied auch derart ausgebildet sein, dass mehr als zwei Positionen und insbesondere eine oder mehrere Zwischenpositionen zwischen zwei Endlagenpositionen angenommen werden können. Im Prinzip kann eine beliebige Anzahl von Zwischenpositionen eingenommen oder sogar eine kontinuierliche Positionierung der Sekundärspule bzw. des Teils der Sekundärspule relativ zu dem Grundelement durchgeführt werden .
Unter dem Begriff "elektromobiles Kraftfahrzeug" können alle Fahrzeuge verstanden werden, welche einen Elektromotor an Bord haben, welcher zumindest teilweise, d.h. zumindest in bestimmten Betriebs zuständen zum Einsatz kommt. Elektromobile Kraftfahrzeuge können insbesondere Elektrofahrzeuge oder Hybridfahrzeuge sein. Bei dem elektromobilen Kraftfahrzeug kann es sich um ein Zweirad oder ein Kraftfahrzeug mit drei, vier oder mehr als vier Rädern handeln.
Unter dem Begriff "Elektrofahrzeug" ist in diesem Dokument jedes ausschließlich mittels elektrischer Energie angetriebenes Fahr- zeug zu verstehen. Ein Elektrofahrzeug treibt seine Räder grundsätzlich mittels eines Elektromotors an. Die dafür notwendige Antriebsenergie wird insbesondere in Form von aufladbaren Akkumulatoren im Fahrzeug mitgeführt. Unter dem Begriff "Hybridfahrzeug" ist in diesem Dokument ein Fahrzeug zu verstehen, das neben einem Elektromotor noch mindestens einen weiteren Energie-Umwandler, insbesondere einen Verbrennungsmotor, aufweist, um einen Vortrieb des elektromobilen Fahrzeugs zu realisieren. Demzufolge muss in einem Hybridfahrzeug neben einem elektrischen Energiespeicher noch mindestens ein weiterer Energiespeicher, insbesondere ein Kraftstofftank, eingebaut sein, um das Hybridfahrzeug in allen Betriebssituationen mit der notwendigen Energie zu versorgen. Das beschriebene Stellglied kann jedes beliebige Stellorgan sein, mittels welchem die Sekundärspule oder zumindest der Teil der Sekundärspule von der ersten Position in die zweite Position und/oder umgekehrt von der zweiten Position in die erste Position bewegt werden kann. Dabei kann das Stellglied auch ein manuell zu betätigendes Bedienorgan sein.
Gemäß einem Ausführungsbeispiel der Erfindung weist die Vorrichtung ferner eine Stellvorrichtung auf, welche mit dem Stellglied gekoppelt ist.
Die Stellvorrichtung kann jeder beliebige Aktor sein, welcher als Antwort auf geeignete elektronische Signale, welche z. B. von einem Steuerungscomputer ausgehende Befehle darstellen, das Stellglied in geeigneter Weise mechanisch bewegt, so dass die gewünschte Positionsänderung der Sekundärspule oder zumindest des Teils der Sekundärspule umgesetzt wird. Die beschriebene Stellvorrichtung kann beispielsweise ein elektrischer Stellmotor sein. Eine motorisierte und/oder automatische Bewegung kann jedoch nicht nur mittels eines elektrischen Stellmotors sondern beispielsweise unter Verwendung von einem magnetischen, pneumatischen und/oder hydraulischen Antrieb realisiert werden.
Ein motorisiertes und/oder auch automatisches Bewegen der Sekundärspule oder zumindest des Teils der Sekundärspule hat gegenüber einer manuell erzeugten Betätigung des Stellglieds den Vorteil, dass ein Benutzer und insbesondere ein Fahrzeuglenker von manuellen Handgriffen entlastet wird.
Die Bewegung der Sekundärspule bzw. des Teils der Sekundärspule von der ersten Position in die zweite Position kann beispielsweise allein durch die Schwerkraft oder mit Unterstützung der Schwerkraft erfolgen, welche auf die Sekundärspule oder zumindest auf den Teil der Sekundärspule wirkt. Die Bewegung der Sekundärspule oder zumindest des Teils der Sekundärspule von der zweiten Position zurück in die erste Position kann entgegen der Schwerkraft mittels einer geeigneten Ansteuerung des Stellmotors erfolgen.
Selbstverständlich kann auch sowohl die Bewegung von der ersten Position in die zweite Position als auch umgekehrt von der zweiten Position in die erste Position von dem beschriebenen Stellmotor veranlasst werden. Die für die Bewegung zwischen den beiden Positionen geeignete Prozedur (entweder Senken mittels der Schwerkraft und aktives Heben mittels des Stellmotors oder aktives Senken und Heben mittels des Stellmotors) kann je nach verfügbarem Bauraum, je nach gewünschter Funktion und/oder je nach vorhandenen Sicherheitsanforderungen gewählt werden.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Vorrichtung ferner eine Rückstellfeder auf, welche derart mit dem Stellglied gekoppelt ist, dass die erste Position eine Vorzugsposition von zumindest dem Teil der Sekundärspule darstellt. Dies kann bedeuten, dass die genannte Sekundärspule oder der genannte Teils der Sekundärspule ohne eine Kraftausübung von dem Stellmotor in der ersten Position gehalten oder zurück nach einer Auslenkung aus der ersten Position zurück in die erste Position gedrückt oder gezogen wird. Die Vorzugsposition stellt somit vor einem Ladevorgang, der nach einem Absenken zumindest des Teils der Sekundärspule auf die Primärspule beginnt, eine Ausgangs- position dar, welche vorzugsweise auch während einer Fahrt des elektromobilen Kraftfahrzeugs eingenommen wird, um eine Beschädigung der Sekundärspule insbesondere durch einen unebenen Fahrbahnbelag zuverlässig zu vermeiden. Die beschriebe Rückstellfeder kann insbesondere dazu führen, dass ein Bewegen (Absenken) der Sekundärspule oder des Teils der Sekundärspule entgegen der Federkraft der Rückstellfeder mittels des Stellmotors erfolgt. Die entgegengesetzte Bewegung von der zweiten Position in die erste Position erfolgt dann entweder vollständig mittels dieser Federkraft oder gemeinsam mittels des Stellmotors und dieser Federkraft.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Vorrichtung ferner einen Sicherungsmechanismus auf, welcher derart ausgebildet ist, dass erst nach einer Freigabe des
Sicherungsmechanismus zumindest der Teil der Sekundärspule in die zweite Position bewegbar ist. Der beschriebene Sicherungsmechanismus kann auf vorteilhafte Weise dazu beitragen, dass während einer Fahrt des elektromobilen Kraftfahrzeugs ein versehentliches Bewegen der Sekundärspule oder zumindest des Teils der Sekundärspule in die zweite Position verhindert wird.
Der beschriebene Sicherungsmechanismus kann jede beliebige Einrichtung sein, welche erst nach einer Deaktivierung eine Bewegung der Sekundärspule oder zumindest des Teils der Sekundärspule weg von der ersten Position erlaubt. Der Sicherungsmechanismus kann elektrisch, magnetisch und/oder mechanisch (beispielsweise mittels eines mechanischen Eingriffs) wirken .
In diesem Zusammenhang wird darauf hingewiesen, dass unabhängig von der Art des verwendeten Stellgliedes eine Verrastung der Sekundärspule oder zumindest des Teils der Sekundärspule in zumindest einer Position relativ zu dem Grundelement insbesondere im Hinblick auf eine mechanisch einfache Realisierung der beschriebenen Vorrichtung hilfreich sein kann.
Insbesondere kann ein Herablassen der Sekundärspule oder zumindest des Teils der Sekundärspule von dem beschriebenen Sicherungsmechanismus erst dann freigegeben werden, wenn sich das elektromobile Kraftfahrzeug in einer geeigneten Ladeposition befindet, bei der die Sekundärspule räumlich mit der Primärspule ausgerichtet ist. In diesem Zusammenhang kann räumlich ausgerichtet insbesondere bedeuten, dass die Primärspule und die Sekundärspule auf einer gemeinsamen Achse liegen, welche parallel zu der Richtung der Bewegung von der ersten Position zur zweiten Position verläuft.
Ferner kann im Sinne einer hohen Betriebssicherheit der Sicherungsmechanismus derart ausgebildet sein, dass das elektromobile Kraftfahrzeug nur dann fahrbereit ist, wenn die Sekundärspule oder zumindest der Teil der Sekundärspule in einem Fahrzeugboden des elektromobile Kraftfahrzeug eingezogen und verriegelt ist. Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Grundelement ein Gehäuse auf, in welchem zumindest der Teil der Sekundärspule aufgenommen ist, wenn es sich in der ersten Position befindet. Die Aufnahme der Sekundärspule oder zumindest des beschriebenen Teils der Sekundärspule in einem Gehäuse kann den Vorteil haben, dass sich die Sekundärspule und insbesondere der bewegliche Teil oder die beweglichen Teile der Sekundärspule vor unerwünschten Verschmutzungen geschützt werden können. Dadurch kann auf einfache Weise die Betriebssicherheit der beschriebenen Vorrichtung erhöht werden.
Gemäß einem weiteren Ausführungsbeispiel geeignet zur Diskussion des technischen Bereichs der Erfindung ist die gesamte Sekundärspule mittels des Stellglieds bewegbar. Dies kann den Vorteil haben, dass die induktive Kopplung zwischen Primärspule und Sekundärspule maximiert und ferner unerwünschte elektromagnetische Streufelder minimiert werden können.
Ferner ist vorgesehen, dass mittels des Stellglieds lediglich ein Teil der Sekundärspule, insbesondere ein Spulenkern, bewegbar ist. Dadurch ist es auf vorteilhafte Weise nicht erforderlich, die gesamte Sekundärspule zu bewegen und insbesondere den elektrischen Teil der Sekundärspule und die dafür notwendigen elektrischen Anschlüsse relativ zu dem Grundelement der beschriebenen Energieübertra- gungsvorrichtung in einer festen räumlichen Position zu belassen. Dadurch können auf einfache Weise mögliche Anschluss- kontaktfehler vermieden werden.
Der Spulenkern kann aus jedem beliebigen permeablen Werkstoff wie z.B. einem Ferrit hergestellt sein. Insbesondere kann der Spulenkern in Form eines Blechpaketes realisiert sein, welches in bekannter Weise eine "Führung" von magnetischen Feldlinien zwischen der Primärspule und der Sekundärspule bewirkt. Dabei kann der Spulenkern in bekannter Weise zur Reduzierung von Wirbelstromverlusten in Form von einer gestapelten Anordnung von flächigen Spulenkernelementen realisiert sein. Gemäß einem weiteren Aspekt der Erfindung wird ein elektromobiles Kraftfahrzeug, insbesondere ein Hybrid- oder Elektrofahrzeug, beschrieben. Das beschriebene elektromobile Kraftfahrzeug weist auf (a) ein Fahrzeugchassis, (b) einen elektrischen Energie- Speicher und (c) eine vorstehend beschriebene Vorrichtung zum induktiven Übertragen von elektrischer Energie. Das Grundelement ist an dem Fahrzeugchassis angebracht und die Sekundärspule ist mit dem elektrischen Energiespeicher gekoppelt. Dem beschriebenen elektromobilen Kraftfahrzeug liegt die Erkenntnis zugrunde, dass die vorstehend beschriebene Energieübertragungsvorrichtung einfach an einem Fahrzeugchas sis und bevorzugt an einem Fahrzeugboden des elektromobilen Kraftfahrzeugs angebracht werden kann und dass damit bei einem Lade- Vorgang eines elektrischen Energiespeichers des elektromobilen Kraftfahrzeugs auf einfache Weise eine Luftspaltminimierung zwischen (a) einer in einer Fahrbahn integrierten Primärspule und (b) der Sekundärspule oder des Teils der Sekundärspule realisiert werden kann. Diese Luftspaltminimierung führt dann dazu, dass, wie bereits vorstehend beschrieben, die Effizienz der induktiven Energieübertragung zwischen der Primärspule und der Sekundärspule erhöht wird.
Bevorzugt ist die Primärspule möglichst eben in der Fahrbahn verbaut, so dass ein Überfahren der Primärspule auch bei einer geringen Bodenfreiheit zu keinen Schäden an der Primärspule und/oder am beschriebenen elektromobilen Kraftfahrzeug führt . Um derartige Schäden zu vermeiden ist der bewegliche Teil der vorstehend beschriebenen Energieübertragungsvorrichtung am elektromobilen Kraftfahrzeug verbaut.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist das Grundelement derart an dem Fahrzeugchassis angebracht, dass die gesamte Vorrichtung, wenn sich zumindest der Teil der Sekundär- spule in der ersten Position befindet, vollständig in dem elektromobilen Kraftfahrzeug versenkt ist . Dies hat den Vorteil, dass während einer Fahrt des beschriebenen elektromobilen Kraftfahrzeugs durch die Energieübertragungsvorrichtung keine zu- sätzlichen abstehenden Komponenten oder Strukturen vorhanden sind, welche beispielsweise bei einem steinigen Untergrund beschädigt werden könnten.
Gemäß einem weiteren Aspekt der Erfindung wird eine Vorrichtung zum induktiven Übertragen von elektrischer Energie von einer Primärspule zu einer Sekundärspule beschrieben, welche energetisch mit einem elektrischen Energiespeicher eines elektro- mobilen Kraftfahrzeugs gekoppelt ist. Die beschriebene Vorrichtung weist auf (a) ein Grundelement, welches an einer Fahrbahn für das elektromobile Kraftfahrzeug anbringbar ist, (b) die Primärspule, welche mit einer elektrischen Energieversorgung energetisch koppelbar ist, wobei zumindest ein Teil der Primärspule relativ zu dem Grundelement bewegbar gelagert ist, und (c) ein Stellglied, mittels welchem zumindest der Teil der Primärspule relativ zu dem Grundelement zwischen einer ersten Position und einer zweiten Position bewegbar ist, wobei sich in der ersten Position zumindest der Teil der Primärspule näher an dem Grundelement befindet als in der zweiten Position.
Auch der beschriebenen induktiven Energieübertragungsvorrichtung liegt die Erkenntnis zugrunde, dass durch ein adaptives Positionieren von einer Primärspule oder von einem Teil einer Primärspule relativ zu einer Sekundärspule im Vorfeld oder während eines induktiven Ladevorgangs eines elektrischen Energiespeichers die Größe eines Luftspaltes zwischen der Primärspule und der Sekundärspule minimiert werden kann.
Unter dem Begriff "Fahrbahn" kann in diesem Zusammenhang jede Art von Untergrund oder Boden verstanden werden, auf dem sich das elektromobile Kraftfahrzeug während des Ladevorgangs befindet.
Unter dem Begriff "elektrische Energieversorgung" kann jede Art von Vorrichtung verstanden werden, welche in der Lage ist, die Primärspule so zu erregen, dass ein induktives Übertragen von elektrischer Energie von der Primärspule zu der Sekundärspule möglich ist. Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum induktiven Übertragen von elektrischer Energie von einer Primärspule zu einer Sekundärspule eines elektromobilen Kraftfahrzeugs beschrieben. Das beschriebene Verfahren weist auf (a) ein Positionieren des elektromobilen Kraftfahrzeugs relativ zu der Primärspule, so dass die Sekundärspule zumindest annähernd mit der Primärspule räumlich ausgerichtet ist, (b) ein Bewegen zumindest des Teils der Sekundärspule relativ zu dem Grundelement von der ersten Position in die zweite Position, wobei ein Luftspalt zwischen der Primärspule und zumindest dem Teil der Sekundärspule verkleinert wird, und (c) ein induktives Übertragen der elektrischen Energie von der Primärspule zu der Sekundärspule .
Auch dem beschriebenen Verfahren liegt die Erkenntnis zugrunde, dass durch ein adaptives Positionieren von einer Sekundärspule oder einem Teil einer Sekundärspule an einer Primärspule im Vorfeld oder während eines Ladevorgangs eines elektrischen Energiespeichers die Größe eines Luftspaltes zwischen der Primärspule und der Sekundärspule minimiert werden kann. Ein minimierter Luftspalt führt dann in bekannter Weise dazu, dass die induktive Kopplung zwischen Primärspule und Sekundärspule verbessert und damit insgesamt die Effizienz der induktiven Energieübertragung bis hin zu dem elektrischen Energiespeicher verbessert wird.
Es wird darauf hingewiesen, dass das Bewegen der Sekundärspule oder des Teils der Sekundärspule relativ zu dem Grundelement nicht nur eine vertikale Bewegung (d.h. parallel oder antiparallel zu der Richtung der Schwerkraft) sondern ggf. auch eine horizontale Bewegung (d.h. senkrecht zu der Richtung der Schwerkraft) umfassen kann. Dies bedeutet, dass das o.g.
Vorrichtung und insbesondere die o.g. Stellvorrichtung eine Aktorik aufweist, welche auch eine horizontale Ausrichtung der Sekundär- zur Primärspule ermöglicht, so dass auch auf diese Weise der Luftspalt verkleinert werden kann. Bevorzugt wird für eine vertikale und für eine horizontale Ausrichtung die gleiche Aktorik verwendet. Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Vorrichtungsansprüchen und andere Ausführungs- formen der Erfindung mit Verfahrensansprüchen beschrieben. Dem Fachmann wird jedoch bei der Lektüre dieser Anmeldung sofort klar werden, dass, sofern nicht explizit anders angegeben, zusätzlich zu einer Kombination von Merkmalen, die zu einem Typ von Erfindungsgegenstand gehören, auch eine beliebige Kombination von Merkmalen möglich ist, die zu unterschiedlichen Typen von Erfindungsgegenständen gehören.
Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung einer derzeit bevorzugten Ausführungsform.
Figur 1 zeigt ein elektromobiles Kraftfahrzeug gemäß einem
Ausführungsbeispiel der Erfindung bei einem Ladevor- gang.
Figur 2 zeigt das elektromobiles Kraftfahrzeug während eines
Fahrbetriebs .
Es wird darauf hingewiesen, dass die nachfolgend beschriebene Ausführungsform lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellt.
Figur 1 zeigt ein elektromobiles Kraftfahrzeug 100 gemäß einem Ausführungsbeispiel der Erfindung während eines induktiven
Ladevorgangs, bei dem ein elektrischer Energiespeicher 110 des Kraftfahrzeugs 100 aufgeladen wird.
Das elektromobile Kraftfahrzeug 100 weist ein Fahrzeugchas sis 104, eine Fahrgastzelle 106 und vier Reifen 102 auf. In der
Schnittdarstellung von Figur 1 sind nur zwei Reifen zu sehen. Die Energie, welche induktiv in das Fahrzeug 100 bzw. in den Energiespeicher 110 eingespeist wird, wird in bekannter Weise von einer Primärspule 195 bereitgestellt, welche gemäß dem hier beschriebenen Ausführungsbeispiel in einem Fahrbahnbelag 190 integriert ist. Alternativ kann die Primärspule 195 beispielsweise in einer (privaten) Garage auch zumindest teilweise oberhalb des Untergrunds angeordnet sein. Die induktive Energieübertragung erfolgt zwischen der Primärspule 195 und einer Sekundärspule 132 einer Energieübertragungsvorrichtung 130. Wie aus Figur 1 ersichtlich, weist die Energieübertragungsvorrichtung 130 ein Grundelement 134 auf, welches an einem unteren Teil des Fahrzeugchassis 104 angebracht ist. Gemäß dem hier dargestellten Ausführungsbeispiel ist das Grundelement als ein Gehäuse 134 ausgebildet.
Die Sekundärspule 132 weist stationäre Spulenwicklungen 132a und einen entlang einer vertikalen z-Richtung verschiebbaren Spulenkern 132b auf. Mittels eines Stellgliedes 136, welches manuell oder mittels eines geeigneten Aktors betätigt werden kann, kann der Spulenkern 132b entlang der z-Achse verschoben werden. Gemäß dem hier dargestellten Ausführungsbeispiel wird zur Verschiebung des Spulenkerns 132b ein Stellmotor 138 verwendet, welcher auf dem Gehäuse 134 angeordnet ist. Zum induktiven Laden des elektrischen Energiespeichers 110 wird, nachdem das Fahrzeug 100 so positioniert wurde, dass sich die Sekundärspule 132 unmittelbar oberhalb der im Fahrbahnbelag 190 integrierten Primärspule 195 befindet, der Spulenkern 132b entgegen der Federkraft einer Rückstellfeder 137 von dem Stell- motor 138 in Verbindung mit dem Stellglied 136 nach unten bewegt, bis der Spulenkern 132b (sanft) an der Primärspule 195 aufliegt. In diesem Fall ist ein Luftspalt zwischen (a) der Primärspule 195 auf der einen Seite und (b) dem Spulenkern 132b auf der anderen Seite minimiert . Dadurch wird die induktive Energieübertragung zwischen der Primärspule 195 und der Sekundärspule 132 nicht nur besonders effizient sondern beispielsweise im Hinblick auf unerwünschte magnetische Streufelder auch besonders sicher. Nach Beendigung des Ladevorgangs wird der Spulenkern 132b von der Rückstellfeder 137 und/oder von dem Stellmotor 138 in Verbindung mit dem Stellglied 136 wieder nach oben bewegt, bis der Spulenkern 132b vollständig im Fahrzeugboden des Fahrzeugs 100 eingezogen ist. Dieser Zustand ist in Figur 2 schematisch illustriert. Es ist ersichtlich, dass sich keine Komponente der Energieübertragungsvorrichtung 130 mehr unterhalb des Fahrzeugbodens befindet . Nach dem Einfahren des Spulenkerns 132b kann das Fahrzeug 100 dann bewegt bzw. gefahren werden, ohne dass eine Beschädigung der Sekundärspule an einem ggf. unebenen Fahrbahnuntergrund zu besorgen wäre . Um ein versehentliches Absenken des Spulenkerns 132b während der Fahrt zu verhindern, weist gemäß dem hier dargestellten Ausführungsbeispiel die Energieübertragungsvorrichtung 130 noch einen Sicherungsmechanismus 140 auf, welcher während der Fahrt den Spulenkern 132b in der oberen Position arretiert. Erst nach einem Deaktivieren des Sicherungsmechanismus 140 kann der Spulenkern 132b dann zum Zwecke eines weiteren Ladevorgangs wieder nach unten abgesenkt werden.
Die in diesem Dokument beschriebene induktive Energieübertra- gungsvorrichtung weist unter anderem folgenden Vorteile auf:
(A) Durch die Möglichkeit des Minimierens des Luftspaltes kann die Effizienz des induktiven Ladevorgangs erheblich verbessert werden, ohne dass die Fahrfunktion und/oder die FahrSicherheit negativ beeinträchtigt und/oder ein umständliches Hantieren eines Benutzers notwendig werden.
(B) Hochstromleitungen oder Hochstrom führende Komponenten müssen relativ zu dem Fahrzeugchassis des Fahrzeugs nicht bewegt werden, wodurch eine besonders hohe funktionale Sicherheit gewährleistet werden kann.
(C) Durch eine Minimierung des Luftspaltes können ferner
EMV-Probleme reduziert werden, da alle Spulen und hochfreguent betriebene Kabel in einem geschirmten Gehäuse verbleiben können. Der Luftspalt kann so klein werden, dass auch an dieser Stelle nur sehr geringe elektromagnetische Störungen austreten.

Claims

Patentansprüche
1. Vorrichtung zum induktiven Übertragen von elektrischer Energie von einer Primärspule (195) zu einer Sekundärspule (132) eines einen elektrischen Energiespeicher (110) aufweisenden elektromobilen Kraftfahrzeugs (100), insbesondere eines
Elektro- oder Hybridfahrzeugs (100), die Vorrichtung (130) auf eisend
ein Grundelement (134), welches an dem elektromobilen Kraftfahrzeug (100) anbringbar ist,
die Sekundärspule (132), welche mit dem elektrischen Energiespeicher (110) energetisch koppelbar ist, wobei zumindest ein Teil (132b) der Sekundärspule (132) relativ zu dem
Grundelement (134) bewegbar gelagert ist, und
ein Stellglied (136), mittels welchem zumindest der Teil (132b) der Sekundärspule (132) relativ zu dem Grundelement (134) zwischen einer ersten Position und einer zweiten Position bewegbar ist, wobei sich in der ersten Position zumindest der Teil (132b) der Sekundärspule (132) näher an dem Grundelement (134) befindet als in der zweiten Position, wobei
mittels des Stellglieds (136) lediglich ein Teil (132b) der Sekundärspule (132), insbesondere ein Spulenkern (132b), bewegbar ist.
2. Vorrichtung gemäß dem vorangehenden Anspruch, ferner auf weisend
eine Stellvorrichtung (138) , welche mit dem Stellglied (136) gekoppelt ist.
3. Vorrichtung gemäß dem vorangehenden Anspruch, ferner aufweisend
eine Rückstellfeder (137) , welche derart mit dem Stellglied (136) gekoppelt ist, dass die erste Position eine Vorzugsposition von zumindest dem Teil der Sekundärspule (132) darstellt.
4. Vorrichtung gemäß einem der vorangehenden Ansprüche, ferner auf eisend einen Sicherungsmechanismus (140), welcher derart aus¬ gebildet ist, dass erst nach einer Freigabe des Sicherungs¬ mechanismus (140) zumindest der Teil (132b) der Sekundärspule (132) in die zweite Position bewegbar ist.
5. Vorrichtung gemäß einem der vorangehenden Ansprüche, wobei das Grundelement ein Gehäuse (134) aufweist, in welchem zumindest der Teil (132b) der Sekundärspule (132) aufgenommen ist, wenn es sich in der ersten Position befindet.
6. Elektromobiles Kraftfahrzeug, insbesondere Hybrid- oder Elektrofahrzeug, das elektromobile Kraftfahrzeug (100) aufweisend
ein Fahrzeugchassis (104),
einen elektrischen Energiespeicher (110),
eine Vorrichtung (130) gemäß einem der vorangehenden Ansprüche, wobei
das Grundelement (134) an dem Fahrzeugchassis (1104) angebracht ist und wobei
die Sekundärspule (132) mit dem elektrischen Energiespeicher (110) gekoppelt ist.
7. Kraftfahrzeug gemäß dem vorangehenden Anspruch, wobei das Grundelement (134) derart an dem Fahrzeugchassis (104) angebracht ist, dass die gesamte Vorrichtung (130), wenn sich zumindest der Teil (132b) der Sekundärspule (132) in der ersten Position befindet, vollständig in dem elektromobilen Kraftfahrzeug (100) versenkt ist.
8. Vorrichtung zum induktiven Übertragen von elektrischer
Energie von einer Primärspule zu einer Sekundärspule, welche energetisch mit einem elektrischen Energiespeicher eines elektromobilen Kraftfahrzeugs gekoppelt ist, die Vorrichtung aufweisend
ein Grundelement, welches an einer Fahrbahn für das elektromobile Kraftfahrzeug anbringbar ist,
die Primärspule, welche mit einer elektrischen Energieversorgung energetisch koppelbar ist, wobei zumindest ein Teil der Primärspule relativ zu dem Grundelement bewegbar gelagert ist, und
ein Stellglied, mittels welchem zumindest der Teil der Primärspule relativ zu dem Grundelement zwischen einer ersten Position und einer zweiten Position bewegbar ist, wobei sich in der ersten Position zumindest der Teil der Primärspule näher an dem Grundelement befindet als in der zweiten Position.
9. Verfahren zum induktiven Übertragen von elektrischer Energie von einer Primärspule (195) zu einer Sekundärspule (132) eines elektromobilen Kraftfahrzeugs (100) gemäß einem der Ansprüche 6 oder 7, das Verfahren aufweisend
Positionieren des elektromobilen Kraftfahrzeugs (100) relativ zu der Primärspule (195) , so dass die Sekundärspule (132) mit der Primärspule (195) zumindest annähernd räumlich ausgerichtet ist,
Bewegen des Teils (132b) der Sekundärspule (132) relativ zu dem Grundelement (134) von der ersten Position in die zweite Position, wobei ein Luftspalt zwischen der Primärspule (195) und zumindest dem Teil der Sekundärspule (132) verkleinert wird, und induktives Übertragen der elektrischen Energie von der Primärspule (195) zu der Sekundärspule (132).
PCT/EP2012/075333 2011-12-21 2012-12-13 Induktives übertragen von energie von einer primärspule zu einer sekundärspule eines elektromobilen kraftfahrzeugs WO2013092361A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011089339A DE102011089339A1 (de) 2011-12-21 2011-12-21 Induktives Übertragen von Energie von einer Primärspule zu einer Sekundärspule eines elektromobilen Kraftfahrzeugs
DE102011089339.3 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013092361A1 true WO2013092361A1 (de) 2013-06-27

Family

ID=47469951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075333 WO2013092361A1 (de) 2011-12-21 2012-12-13 Induktives übertragen von energie von einer primärspule zu einer sekundärspule eines elektromobilen kraftfahrzeugs

Country Status (2)

Country Link
DE (1) DE102011089339A1 (de)
WO (1) WO2013092361A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015067816A1 (en) * 2013-11-11 2015-05-14 Robert Bosch Gmbh Movable magnetic core wireless chargers applicable for electrical vehicles
CN109986976A (zh) * 2017-12-18 2019-07-09 保时捷股份公司 具有次级线圈的、用于进行感应式电荷转移的装置
CN110573373A (zh) * 2017-06-30 2019-12-13 宝马股份公司 用于机动车、尤其是用于汽车的线圈装置
CN110626189A (zh) * 2018-06-05 2019-12-31 许继电气股份有限公司 车辆的充电方法及充电装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013103157A1 (de) * 2013-03-27 2014-10-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kontaktloses Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
DE102013011197A1 (de) * 2013-07-04 2015-01-08 Leopold Kostal Gmbh & Co. Kg Energieübertragungssystem
DE102013214826A1 (de) * 2013-07-30 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit thermoelektrischem Generator
EP2965941B1 (de) 2014-07-09 2017-09-13 Brusa Elektronik AG Primärteil für ein induktives Ladegerät
DE102015202295B4 (de) 2015-02-10 2022-01-27 Vitesco Technologies GmbH Mobile Induktivladestation für Fahrzeuge
EP3065152A1 (de) 2015-03-06 2016-09-07 Brusa Elektronik AG Primärteil eines induktiven ladegeräts
DE102016217063A1 (de) * 2016-09-08 2018-03-08 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug mit induktiver Lademöglichkeit
DE102016120693A1 (de) * 2016-10-28 2018-05-03 Still Gmbh Flurförderzeug mit einem eine Traktionsbatterie aufweisenden batterie-elektrischen Antriebssystem
DE102017001285B4 (de) 2017-02-10 2024-04-18 Audi Ag Kraftfahrzeug und Verfahren zur induktiven Energieübertragung
DE102017215149A1 (de) * 2017-08-30 2019-02-28 Bayerische Motoren Werke Aktiengesellschaft Spule und Verfahren zur Erhöhung des Kopplungsgrades eines induktiven Koppelsystems
DE102019120923A1 (de) * 2019-08-02 2021-02-04 Saf-Holland Gmbh Anhänger, Nutzfahrzeug und Verfahren zum induktiven Koppeln einer Primäreinrichtung und einer Sekundäreinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788212A2 (de) * 1996-01-30 1997-08-06 Sumitomo Wiring Systems, Ltd. Verbindungssystem und -verfahren für ein elektrisch betriebenes Fahrzeug
WO2011084936A2 (en) * 2010-01-05 2011-07-14 Access Business Group International Llc Inductive charging system for electric vehicle
WO2011127455A2 (en) * 2010-04-08 2011-10-13 Qualcomm Incorporated Wireless power antenna alignment adjustment system for vehicles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20305769U1 (de) * 2003-04-09 2003-10-30 Staude Wolfgang Scharnier mit eingebautem Trafo für kontaktlose Energieübertragung
KR100840927B1 (ko) * 2006-03-22 2008-06-24 한국철도기술연구원 선형전동기 및 비접촉 급전시스템을 이용한 철도차량시스템
DE102009023409A1 (de) * 2009-05-29 2010-12-09 Rohde & Schwarz Gmbh & Co. Kg System zur elektischen Energieübertragung
JP2011091882A (ja) * 2009-10-20 2011-05-06 Suri-Ai:Kk 誘導式車両給電装置
CN107040043B (zh) * 2010-05-19 2019-06-11 韦特里西提公司 自适应无线能量传送系统
DE102010042395A1 (de) * 2010-10-13 2012-04-19 Continental Automotive Gmbh Verfahren und Systeme zum induktiven Laden einer Batterie eines Fahrzeuges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788212A2 (de) * 1996-01-30 1997-08-06 Sumitomo Wiring Systems, Ltd. Verbindungssystem und -verfahren für ein elektrisch betriebenes Fahrzeug
WO2011084936A2 (en) * 2010-01-05 2011-07-14 Access Business Group International Llc Inductive charging system for electric vehicle
WO2011127455A2 (en) * 2010-04-08 2011-10-13 Qualcomm Incorporated Wireless power antenna alignment adjustment system for vehicles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015067816A1 (en) * 2013-11-11 2015-05-14 Robert Bosch Gmbh Movable magnetic core wireless chargers applicable for electrical vehicles
CN110573373A (zh) * 2017-06-30 2019-12-13 宝马股份公司 用于机动车、尤其是用于汽车的线圈装置
CN110573373B (zh) * 2017-06-30 2023-02-21 宝马股份公司 用于机动车、尤其是用于汽车的线圈装置
CN109986976A (zh) * 2017-12-18 2019-07-09 保时捷股份公司 具有次级线圈的、用于进行感应式电荷转移的装置
CN110626189A (zh) * 2018-06-05 2019-12-31 许继电气股份有限公司 车辆的充电方法及充电装置

Also Published As

Publication number Publication date
DE102011089339A1 (de) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2013092361A1 (de) Induktives übertragen von energie von einer primärspule zu einer sekundärspule eines elektromobilen kraftfahrzeugs
EP2454120B1 (de) Energieversorgungseinheit, landfahrzeug, austauschstation und verfahren zum austausch einer in einem landfahrzeug enthaltenen energieversorgungseinheit
DE102012013498B3 (de) Vorrichtung zur induktiven Übertragung elektrischer Energie an ein Fahrzeug
DE102018204820A1 (de) Laderoboter und Verfahren zu dessen Betrieb
EP2524834A1 (de) Vorrichtung zum induktiven Laden zumindest eines elektrischen Energiespeichers eines Elektrofahrzeuges
WO2016091441A1 (de) Sicherungssystem für eine anordnung zum bewegen von transportkörpern
DE102009013694A1 (de) Energieübertragungssystem mit mehreren Primärspulen
WO2014122121A1 (de) Spuleneinheit und vorrichtung zur induktiven übertragung elektrischer energie
DE102009023409A1 (de) System zur elektischen Energieübertragung
EP3500449B1 (de) Energiespeichereinrichtung zur bereitstellung elektrischer energie für eine antriebsvorrichtung eines kraftfahrzeuges und kraftfahrzeug
DE102014107153A1 (de) Elektrofahrzeug-Ladestation
WO2017167473A1 (de) Primärspuleneinheit
DE102015004701A1 (de) Elektrofahrzeug mit Schnellladefunktion
EP3357741A1 (de) Vorrichtung zum aufladen eines elektrischen energiespeichers eines einen elektrischen antrieb aufweisenden fahrzeugs
DE102012006836A1 (de) Kombinierte Abstell- und Aufladeeinrichtung für ein Elektro- oder Hybridfahrzeug
DE102011078883A1 (de) Induktive Ladeeinrichtung und Steuerungsverfahren
WO2018095846A1 (de) Induktives bauelement und sekundärresonatoreinrichtung zur montage an einem elektrokraftfahrzeug
DE102016205863B4 (de) Drahtlose Auflademagnetstruktur
WO2015144619A1 (de) Magnetischer kreis zum dynamischen laden von elektrofahrzeugen
DE102014015192A1 (de) Vorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs sowie Kraftfahrzeug
DE102013219714A1 (de) Anordnung einer Elektronik bei einem System zur induktiven Energieübertragung
DE102011115250A1 (de) Induktionsladevorrichtung zum kabellosen Horizontalladen und/oder -entladen eines elektrischen Kraftfahrzeugakkumulators
DE102020000331A1 (de) Kopplungssystem und Verfahren zum induktiven Koppeln einer Primärspule an einer Sekundärspule für ein elektrisch betriebenes Fahrzeug
WO2016055326A1 (de) Induktives energieübertragungssystem mit breiter primäranordnung
DE102018219460A1 (de) Kontaktlose Primärladeeinrichtung zur kontaktlosen Energieübertragung an eine Sekundärladeeinrichtung eines Kraftfahrzeugs und Verfahren zur kontaktlosen Energieübertragung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808772

Country of ref document: EP

Kind code of ref document: A1