WO2014029325A1 - 直筒型真空精炼装置及其使用方法 - Google Patents

直筒型真空精炼装置及其使用方法 Download PDF

Info

Publication number
WO2014029325A1
WO2014029325A1 PCT/CN2013/081890 CN2013081890W WO2014029325A1 WO 2014029325 A1 WO2014029325 A1 WO 2014029325A1 CN 2013081890 W CN2013081890 W CN 2013081890W WO 2014029325 A1 WO2014029325 A1 WO 2014029325A1
Authority
WO
WIPO (PCT)
Prior art keywords
blowing
tube
ladle
circulation
molten steel
Prior art date
Application number
PCT/CN2013/081890
Other languages
English (en)
French (fr)
Inventor
乌力平
沈昶
胡玉畅
潘远望
浦绍敏
王勇
解养国
Original Assignee
马钢(集团)控股有限公司
马鞍山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210302397.0A external-priority patent/CN102816896B/zh
Application filed by 马钢(集团)控股有限公司, 马鞍山钢铁股份有限公司 filed Critical 马钢(集团)控股有限公司
Priority to PL13830632T priority Critical patent/PL2889385T3/pl
Priority to EP13830632.9A priority patent/EP2889385B1/en
Priority to BR112015003817A priority patent/BR112015003817A2/pt
Priority to US14/422,929 priority patent/US9809868B2/en
Priority to ES13830632.9T priority patent/ES2666848T3/es
Priority to JP2015527776A priority patent/JP6078154B2/ja
Publication of WO2014029325A1 publication Critical patent/WO2014029325A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the invention belongs to the field of refining outside the molten steel furnace, and particularly relates to a vacuum refining device for simultaneously producing ultra-low carbon and ultra-low sulfur steel.
  • the off-site refining method for producing ultra-low carbon and ultra-low sulfur steel on an industrial scale mainly uses RH vacuum refining.
  • the problems in the process of using RH vacuum refining to produce ultra-low carbon and ultra-low sulfur steel are as follows: First, the RH vacuum decarburization rate is low because the vacuum is the same under the conditions of molten steel oxygen, carbon content and vacuum.
  • the reaction rate of decarburization depends mainly on the circulating flow rate of the molten steel, and the circulating flow rate of the molten steel is in the relationship of the inner diameter of the dip tube.
  • the RH furnace is composed of two dip tubes which are raised and lowered, and the inner diameter of the dip tube is biased. Small, the decarburization rate is limited by the inner diameter of the dip tube and is difficult to improve by process optimization.
  • the desulfurization rate of the RH furnace vacuum refining process is low and unstable, and the desulfurizing agent is seriously eroded by the refractory pipe and the lower tank of the vacuum chamber.
  • the reason is that the desulfurization in the vacuum process of the RH furnace mainly uses the added desulfurizing agent to distribute the desulfurizing agent in the molten steel with the circulating motion of the molten steel, forming a reaction interface to achieve the purpose of desulfurization. This requires 1) the desulfurizing agent is added in a gas-liquid two-phase flow mixture into the vacuum chamber molten pool to facilitate the dispersion of the desulfurizing agent in the molten steel; 2) the desulfurizing agent must be a mixture of high sulfur content and low melting point.
  • the molten steel circulation flow rate is large enough to ensure that more molten steel enters the vacuum chamber and the desulfurizer during the same dusting time. Contact with powder particles to improve desulfurization efficiency.
  • the desulfurization rate depends on the degree to which the desulfurizer is dispersed in the molten steel, the desulfurization rate is unstable; 2) the desulfurization rate is greatly affected by the circulating flow rate of the molten steel, in the RH The circulation flow rate of the molten steel under such two dip tube conditions is small, so the desulfurization rate is not high; 3) Since the desulfurizer contains up to 30% CaF 2 , the corrosion resistance of the vacuum chamber and the dip tube is severe, and the service life is shortened. .
  • patent number disclosed in China is ZL00235854.
  • 9 Multifunctional double-blowing single-nosed refining furnace
  • patent CN101701279B - method for smelting low-sulfur steel with single-mouth refining furnace
  • patent CN101792845B one with single mouth refining
  • the method of smelting ultra-low carbon steel in furnaces, these patents increase the circulation flow rate of the molten steel in the vacuum refining process by increasing the cross-sectional area of the dip tube, thereby improving the decarburization efficiency.
  • the slag layer on the surface of the molten steel is thick, and the slagging operation before the immersion tube is inserted into the molten steel is difficult to carry out.
  • the desulfurization principle of these patents in the vacuum process is the same as that of RH vacuum refining. Therefore, it is necessary to select the desulfurization agent with the same high CaF 2 content (generally 30%) as the desulfurization process in the RH vacuum refining process.
  • the desulfurizing agent is resistant to the dip tube and the lower chamber of the vacuum chamber. The material is seriously corroded, reducing the service life of the dip tube and the lower tank of the vacuum chamber.
  • the single-mouth refining furnace disclosed is a driving force for circulating steel liquid in the vacuum process of the ladle bottom.
  • the ventilating brick at the bottom of the ladle is clogged, vacuum refining will not be carried out, resulting in production interruption.
  • the single-nozzle refining furnace disclosed in the patent "CN101302571A” is provided with at least one set of traveling wave magnetic field generators only for increasing the flow rate of the molten steel and increasing the circulating flow rate of the molten steel. It is impossible to solve the problem that the molten steel surface of the ladle slag layer covers the molten steel surface, which reduces the exposed surface of the molten steel and reduces the decarburization and desulfurization efficiency.
  • the upstream magnetic field generator of the immersion tube disclosed in the patent "CN101302571A” can only accelerate the flow speed when the molten steel has a circulating flow. Once the bottom of the ladle is blocked and the molten steel is at rest, the traveling magnetic field generator will lose its effect. Vacuum refining cannot be carried out, causing production interruption.
  • the object of the present invention is to provide a straight-type vacuum refining device, which is to solve the problem of decarburization and desulfurization in the single-nozzle refining furnace disclosed in the prior patent before inserting the dip tube into the molten steel. It is necessary to carry out slagging to minimize the entry of the ladle top slag into the vacuum chamber. Therefore, it is required that the surface slag layer of the ladle molten steel is as thin as possible, that is, the problem that the slag amount in the tapping process is as small as possible or not. .
  • the second is to solve the single-mouth refining furnace disclosed in the prior patent and the RH can only select the high-fluorine content (30% CaF2) desulfurizing agent, which causes the desulfurizing agent to seriously erode the refractory pipe and the lower tank of the vacuum chamber, greatly shortening its use.
  • the problem of longevity; the third is to solve the problem that the entire vacuum refining process cannot be carried out when the single-mouth refining furnace disclosed in the prior patent is clogged at the bottom of the ladle, causing production interruption.
  • the present invention provides a straight-type vacuum refining device comprising a vacuum chamber and a dip tube, wherein the dip tube is inserted into the ladle of the ladle during vacuum refining, characterized in that a circulation tube is arranged in the circumferential direction of the dip tube, Argon gas is blown into the dip tube through nozzles on the inner wall of the circulation tube; the circulation tube is layered, and the nozzle groups on the same layer of the circulation tube are independently controlled; an eccentric gas permeable brick is arranged at the bottom of the ladle, and argon gas is blown through the eccentric gas permeable brick Into the ladle, using the ladle bottom blowing and the loop control system of the individual control unit Combined with the blowing flow to drive the molten steel to circulate between the ladle and the vacuum chamber.
  • the circulation tube is provided with a layer, and the nozzles on the circulation tube are distributed at equal central angles, and the central angle between the nozzles is 10° to 30°; or the nozzles on the circulation tube are distributed at equal distances.
  • the number of nozzles is 8 ⁇ 30.
  • the circulation tube is provided with two layers, and the nozzles on each circulation tube are distributed equidistantly, and the number of nozzles per layer is 6 to 15, and the nozzles of the upper and lower layers are arranged at intersection.
  • the circulation tube is provided with three layers, and the nozzles on each circulation tube are distributed equidistantly, and the number of nozzles per layer is 6 to 12, and the nozzles of adjacent layers are arranged at the same time;
  • the layer is equally spaced between the layers, the distance is 150mnT400mm.
  • the cross-sectional shape of the dip tube is approximately circular, consisting of a large circular arc surface and a small circular arc surface.
  • the radius of curvature of the large circular arc surface is the same as that of the vacuum chamber, and the curvature of the small circular arc surface is the same.
  • the radius is larger than the vacuum chamber, and the ratio of the radius of curvature of the large arc surface to the small arc surface is 1: wide.
  • the invention also provides a refining method of the straight-type vacuum refining device, wherein the vacuum refining process adopts a ladle eccentric ventilating brick and a immersed tube circulating pipe composite blowing mode; the bottom blowing and the circulation pipe on the same side as the bottom blowing during decarburization are Strong blowing, the other side of the circulating pipe is weak blowing; the bottom blowing is strong blowing during desulfurization, the circulation pipe around the dip pipe is all weak blowing; the small circulation pipe volume and the bottom blowing amount are adjusted in the later stage of refining, and the net circulation of molten steel is controlled and not rolled.
  • the slag is introduced into the surface of the vacuum chamber, and at the same time, the inclusions in the steel collide and float up and are absorbed by the surface slag.
  • the present invention also provides a refining method for the cylindrical vacuum refining device when the bottom of the ladle is blown or the bottom of the ladle is blown according to the smelting needs:
  • the blow volume of the circulation pipe is changed to one side slightly larger and one side is small, and the molten steel circulation is controlled not to be immersed in the surface slag of the vacuum chamber, and at the same time, the inclusions in the steel collide and float up and are absorbed by the surface slag.
  • the design idea of the invention is: The invention is coupled with a single straight-type dip tube at the lower part of the vacuum chamber.
  • the inner diameter of the dip tube is the same as the inner diameter of the vacuum chamber, and a single-layer or multi-layer circulation tube is arranged on the circumference of the inner wall of the circulation tube, and the ventilating brick is arranged at an eccentric position at the bottom of the ladle.
  • the nozzles provided on the circulation pipe are provided in groups of two, and the independent sections independently control the injection flow rate. In the vacuum refining process, the bottom of the ladle is blown and the air is blown on the circulation pipe to drive the molten steel to circulate between the ladle and the vacuum chamber.
  • the air is blown through the bottom of the ladle.
  • the different blowing combinations controlled by the independent control units on the circulation pipe to control the state of the top slag on the molten steel surface of the vacuum chamber.
  • the straight-type vacuum refining device of the present invention it is not necessary to discharge the molten steel surface slag out of the dip tube, and instead, the molten steel surface slag entering the vacuum chamber can be fully utilized for decarburization, desulfurization and removal of inclusions.
  • the refining method is as follows: (1) Expanding the exposed area of the molten steel in the vacuum chamber to achieve rapid deep decarburization through the different combinations of the separately controlled blowing system and the bottom blowing on the circulation tube, and utilizing the high oxidation property on the molten steel surface The oxygen in the slag further deep decarburizes the molten steel; (2) the bottom blowing is strong blowing during desulfurization, and the circulation pipe around the dip tube is all weakly blown, which can effectively increase the reaction area of the slag gold, improve the desulfurization effect, and simultaneously impregnate
  • the weakly blowing gas around the tube can form a gas barrier between the steel slag in the vacuum chamber and the inner wall of the vacuum chamber to reduce the erosion of the steel slag on the refractory material and improve the life of the refractory material.
  • the straight-type vacuum refining device of the present invention when the bottom of the ladle blows up or the bottom of the ladle is blown according to the smelting needs, the vacuum decarburization and desulfurization can still proceed normally without causing production interruption.
  • the principle is that the nozzles arranged on the circulation pipe of the present invention adopt a sub-area to independently control the flow rate.
  • the refining method is as follows: (1) During the decarburization, one side of the circulation pipe is blown by the atmosphere, and the other side is blown by a small amount of gas, and the two half-circumferential regions form a rising pipe and a descending pipe similar to RH.
  • the molten steel rises from the strong blowing side, the weak blowing side drops, drives the molten steel to circulate in the vacuum chamber and the ladle, and at the same time, due to the strong blowing on one side and the weak blowing on the other side, the vacuum chamber is on the molten steel surface.
  • the ladle slag will be compressed to the weak blow side area, ensuring that the molten steel exposed surface in the vacuum chamber is large enough for fast deep decarburization; (2) during desulfurization, the nozzles are all strongly blown, driving the molten steel
  • the dip tube rises around, descends from the central area, and uses the full mixing of ladle slag and molten steel under vacuum to achieve deep desulfurization of molten steel.
  • the present invention provides a straight type vacuum refining device, and the first is to solve the existing specialization.
  • the slag discharge is required to reduce the slag slag into the vacuum chamber before the immersion tube is inserted into the molten steel. Therefore, the surface slag layer of the ladle steel is required to be as thin as possible. That is to say, the problem that the amount of slag in the tapping process is as small as possible or not.
  • the invention controls the state of the slag on the molten steel surface of the vacuum chamber by different nozzle blowing modes according to the nozzles independently controlled in the circumferential direction of the immersing pipe, which is adjusted by the different stages of the vacuum refining process, that is, by adjusting the circulation pipe
  • the present invention not only does not require the thickness of the ladle top slag, but also hopes to cover the molten steel surface slag into the dip tube before the immersion tube is inserted into the molten steel as much as possible, and fully utilize the top slag for deep decarburization and deep desulfurization.
  • the second is to solve the single-mouth refining furnace disclosed in the prior patent and the RH can only select the high-fluorine content (30% CaF2) desulfurizing agent, which causes the desulfurizing agent to seriously erode the refractory pipe and the lower tank of the vacuum chamber, greatly shortening its use.
  • the problem of the life; the third is to solve the problem that the entire vacuum refining process cannot be carried out when the single-mouth refining furnace disclosed in the prior patent is blocked by the bottom blowing element of the ladle, causing production interruption.
  • Figure 1 is a schematic view showing the structure of a straight type vacuum refining device.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1.
  • Figure 1 1-top gun, 2-vacuum pumping system, 4-feeding device, 5-vacuum chamber, 6-connecting flange, 7-dip tube, 8-ring tube, 9-ladle, 10-steel package Bottom argon ventilated brick, 11-steel charter;
  • the straight vacuum refining device is mainly composed of a vacuum chamber 5, a dip tube 7, a ladle 9 and a ladle car 11, and the vacuum chamber and the dip tube are connected by a flange 6, and the dip tube is located in the ladle.
  • the ladle is placed on the ladle car.
  • a circulation pipe 8 is arranged around the dip tube, which can be used to inject inertness into the molten steel
  • the gas realizes a plurality of functions, the circulation pipe is located at the upper part of the immersion pipe, the immersion pipe is arranged in a vertical direction, and the nozzles on the circulation pipe are distributed at equal central angles, and the central angle between the nozzles is 10 ° ⁇ 30 °; or, the circulation pipe
  • the nozzles on the top are distributed equidistantly, and the number of nozzles is 8 to 30.
  • the eccentric position of the bottom of the ladle is provided with a bottom permeable brick 10, and the argon gas enters the molten steel from the permeable brick.
  • the ladle 9 When the molten steel is refined, the ladle 9 is hung on the ladle 11 and the ladle is driven into the processing station.
  • the jacking ladle allows the dip tube 7 to be inserted into the molten steel, and the vacuum pumping system 2 is opened for vacuuming, blowing from the gas permeable brick 10 Argon gas, simultaneously open the circulation pipe 8 to blow argon into the molten steel, the flow rate and pressure of the argon gas blown are adjusted as needed, and the temperature measuring sampling mechanism 12 performs the temperature sampling operation, and when the composition and temperature reach the requirement, the air is broken.
  • the ladle is lowered to the original position and the vacuum processing refining process ends.
  • the straight vacuum refining device is mainly composed of a vacuum chamber 5, a dip tube 7, a ladle 9 and a ladle car 11, and the vacuum chamber and the dip tube are connected by a flange 6, and the dip tube is located in the ladle.
  • the ladle is placed on the ladle car.
  • a circulation pipe 8 is arranged around the dip tube, which can be used for blowing inert gas into the molten steel to realize various functions.
  • the circulation pipe is located at the upper part of the dip pipe.
  • a two-layer circulation pipe is arranged in the vertical direction of the dip pipe, and each circulation pipe is provided.
  • the nozzles on the top are distributed equidistantly, and the number of nozzles per layer is 6 ⁇ 15, and the nozzles of the upper and lower layers are arranged at the intersection.
  • Three layers of circulating tubes can also be arranged in the vertical direction of the dip tube.
  • the nozzles on each circulating tube are distributed equidistantly.
  • the number of nozzles in each layer is 6 ⁇ 12, the nozzles of adjacent layers are arranged at the same time; the distance between the layers is equidistant.
  • the distance is 150mnT400mm.
  • the bottom layer of the circulation tube is at a distance of 100 mn T500 mm from the bottom of the immersion tube.
  • the eccentric position of the bottom of the ladle is provided with a bottom permeable brick 10, and the argon gas enters the molten steel from the permeable brick.
  • the ladle 9 When the molten steel is refined, the ladle 9 is hung on the ladle 11 and the ladle is driven into the processing station.
  • the jacking ladle allows the dip tube 7 to be inserted into the molten steel, and the vacuum pumping system 2 is opened for vacuuming, blowing from the gas permeable brick 10 Argon gas, simultaneously open the circulation pipe 8 to blow argon into the molten steel, the flow rate and pressure of the argon gas blown are adjusted as needed, and the temperature measuring sampling mechanism 12 performs the temperature sampling operation, and the feeding device 4 is passed according to the requirements of the steel type in the refining process. Add the required alloy or slag, when the composition and temperature meet the requirements, break the air, lower the ladle to the original position, and end the vacuum refining process.
  • the ladle 9 When the molten steel is refined, the ladle 9 is hung on the ladle 11 and the ladle is driven into the processing station.
  • the jacking ladle allows the dip tube 7 to be inserted into the molten steel, and the vacuum pumping system 2 is opened for vacuuming, blowing from the gas permeable brick 10 Argon gas, simultaneously open the circulation pipe 8 to blow argon into the molten steel, the flow rate and pressure of the argon gas blown are adjusted as needed, the bottom blowing in the decarburization period and the circulation pipe on the same side as the bottom blowing are strong blowing, and the other side circulation
  • the tube is weakly blown; during the desulfurization, the bottom blowing is strong blowing, and the circulation pipe around the dip tube is all weakly blown; the temperature sampling mechanism 12 performs the temperature sampling operation, and the refining process is added by the feeding device 4 according to the requirements of the steel type. Alloy or slag, when the composition and temperature meet the requirements,
  • the other structure of the refining device is the same as that of Embodiment 1 or 2 or 3.
  • the cross-sectional shape of the dip tube is approximately circular, consisting of a large arc 13 (arc ABC) and small
  • the arc 15 (arc ADC) is composed of two parts.
  • the large arc radius R1 is the same as the vacuum chamber.
  • the small arc radius R2 is larger than the vacuum chamber.
  • the ratio of the radius of the large arc to the small arc is 1: wide.
  • the ratio of the ratio of the distance r to the large arc radius R1 is 0. 2 ⁇ 0. 7.
  • the ladle 9 When the molten steel is refined, the ladle 9 is hung on the ladle 11 and the ladle is driven into the processing station.
  • the jacking ladle allows the dip tube 7 to be inserted into the molten steel, and the vacuum pumping system 2 is opened for vacuuming, blowing from the gas permeable brick 10 Argon gas, simultaneously open the circulation pipe 8 to blow argon into the molten steel, the flow rate and pressure of the argon gas blown are adjusted as needed, the bottom blowing in the decarburization period and the circulation pipe on the same side as the bottom blowing are strong blowing, and the other side circulation
  • the tube is weakly blown; during the desulfurization, the bottom blowing is strong blowing, and the circulation pipe around the dip tube is all weakly blown; the temperature sampling mechanism 12 performs the temperature sampling operation, and the refining process is added by the feeding device 4 according to the requirements of the steel type. Alloy or slag, when the composition and temperature meet the requirements,
  • the eccentric ventilating brick at the bottom of the ladle is blown or the refining method when the bottom of the ladle is blown according to the smelting needs -
  • the ladle 9 is hung on the ladle 11 and the ladle is driven into the processing station of the straight vacuum refining device.
  • the dip tube is blown by the same side of the ladle at the same side of the ladle.
  • the amount of pipe blowing is equal, the total blowing flow rate is controlled at 13NL/min per ton of steel, and the blowing volume of the three groups of the semicircular area is controlled by a separate flow agent.
  • the total blowing flow of the circulation pipe is controlled at 7NL/min per ton of steel.
  • the activity oxygen (& [()] ) in the initial molten steel before the direct-flow vacuum refining device is 0. 0459
  • the average is 0. 0589%
  • [C] is between 0 ⁇ 025 ⁇ 0 ⁇ 050%
  • the average is 0 ⁇ 032%
  • [S] is between 0 ⁇ 004 ⁇ 0 ⁇ 009%
  • the average is 0. 0069%, in the refining cycle of the straight vacuum refining unit vacuum refining 3 (T45min (average 39min), the amount of steel per ton added; T8kg / t - the average is 5.32 kg / t - 1 , per tonne of aluminum particles added in an amount of 0. 8 ⁇ 3. 1 kg / t- 1 , an average of 1.
  • the furnace is only used in the circulation pipe on the dip tube.
  • the test result is that the active oxygen (a K ) in the initial molten steel before the straight-type vacuum refining device is between 0. 0572 and .0792%, with an average of 0. 0578%, [C] between 0. 023 ⁇ 0. 048%, the average is 0. 031%, [S] between 0. 005 ⁇ 0. 008%, the average is 0. 0062%, in the straight type Vacuum refining unit vacuum refining 3 (T45min (average 42min) refining cycle, the amount of steel and lime added is 3 ⁇ 8kg/t- ⁇ , the average is 5.64 kg/t- 1 , and the amount of aluminum in the steel is 1. ⁇ 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种直筒型真空精炼装置,包括真空室(5)和浸渍管(7),真空精炼时浸渍管(7)插入钢包(9)的钢水中,其特征在于,在所述浸渍管(7)周向设置环流管(8),氩气通过环流管(8)内壁上的喷嘴吹入浸渍管(7);所述环流管(8)分层设置,同一层环流管(8)上的喷嘴2~6个为一组独立控制;在所述钢包底部设置偏心透气砖(10),氩气通过偏心透气砖(10)吹入钢包,采用钢包底部吹气和环流管(8)吹气系统各独立控制单元的不同吹气流量组合来驱动钢水在钢包与真空室(5)之间循环流动。直筒型真空精炼装置的使用方法为:真空精炼过程采用钢包底部偏心透气砖(10)和浸渍管(7)环流管(8)复合吹气模式,脱碳期间底吹和与底吹同一侧的环流管(8)为强吹,另一侧环流管(8)为弱吹;脱硫期间底吹为强吹,浸渍管(7)周围的环流管(8)全部为弱吹。

Description

直筒型真空精炼装置及其使用方法 技术领域
本发明属于钢水炉外精炼领域,特别涉及同时生产超低碳、超低硫钢的真空 精炼装置。
背景技术
目前工业规模生产超低碳、 超低硫钢的炉外精炼方法主要是采用 RH真空精 炼。 采用 RH真空精炼同时生产超低碳、 超低硫钢在工艺上存在的问题主要有: 一是 RH真空脱碳速率低, 因为在钢液活度氧、 碳含量以及真空度相同的条 件下真空脱碳的反应速率主要取决于钢液的循环流量,而钢液循环流量与浸渍管 内径成 1. 5次方的关系, 由于 RH炉是由上升和下降两个浸渍管构成, 浸渍管内 径偏小, 脱碳速率受到浸渍管内径尺寸的限制难以通过工艺优化提高。
二是 RH炉真空精炼过程脱硫率偏低且不稳定, 脱硫剂对浸渍管和真空室下 部槽耐材侵蚀严重。 原因是 RH炉真空过程中脱硫主要是利用加入的脱硫剂随钢 液的循环运动将脱硫剂弥散分布于钢液内部, 形成反应界面以达到脱硫的目的。 这就要求 1 )脱硫剂加入方式要是以气粉两相流混合喷入真空室熔池, 以利于脱 硫剂弥散分布于钢液内部; 2 ) 脱硫剂必须是高硫熔量、 低熔点的混合物 (也就 是现在常用的含 30%CaF2和 70%Ca0的混合物); 3 ) 钢液循环流量足够大, 以保 证在相同的喷粉时间内,有更多的钢液进入真空室与脱硫剂粉粒接触,提高脱硫 效率。 鉴于此, RH真空过程中脱硫存在以下固有缺陷: 1 ) 由于脱硫率取决于脱 硫剂弥散分布于钢液的程度, 因此脱硫率不稳定; 2 ) 脱硫率受钢液循环流量影 响大, 在 RH这种两个浸渍管条件下钢液的循环流量较小, 因此脱硫率不高; 3 ) 由于脱硫剂中含有高达 30%CaF2, 对真空室和浸渍管耐材侵蚀严重, 缩短其使用 寿命。
目前国内所公开的专利号为 ZL00235854. 9的 "多功能复吹单嘴精炼炉"、专 利 CN101701279B "—种用单嘴精炼炉冶炼低硫钢的方法"和专利 CN101792845B "一种用单嘴精炼炉冶炼超低碳钢的方法", 这些专利通过增加浸渍管的横截面 积, 提高真空精炼过程钢液的循环流量, 从而提高脱碳效率。然而为保证真空室 内钢液裸露面足够大以提高脱碳反应速率,这些专利都要求在浸渍管插入钢水前 将钢包渣排出浸渍管, 增大钢液裸露面, 提高脱碳反应速率。 同时在脱硫时喷吹 的脱硫剂可以有效弥散分布于钢液内部增大反应界面、提高脱硫效率。因此这些 专利对转炉(或电炉) 出钢过程的下渣量要求非常严格。 钢液表面渣层厚, 浸渍 管插入钢水前的排渣操作就难以实施。 这些专利在真空过程的脱硫原理与 RH真 空精炼相同, 因此必须选择与 RH真空精炼过程脱硫同样的高 CaF2含量 (一般在 30%) 的脱硫剂, 脱硫剂对浸渍管和真空室下部槽耐材侵蚀严重, 降低了浸渍管 和真空室下部槽的使用寿命。目前所公开的单嘴精炼炉都是采用钢包底部吹气作 为真空过程钢液循环流动的驱动力, 当钢包底部透气砖出现堵塞,真空精炼将无 法进行, 造成生产中断。
专利 "CN101302571A"公开的单嘴精炼炉的吸嘴外围设置至少一套行波磁场 发生器仅仅是为了增大钢液流速,提升钢液的循环流量。无法解决钢包顶渣层覆 盖钢液面导致钢液裸露面减小, 降低脱碳、 脱硫效率的问题。 同时专利 "CN101302571A"公开的浸渍管上行波磁场发生器只能在钢液有循环流动时促进 流动速度加快, 一旦钢包底吹堵塞, 钢液处于静止状态时, 行波磁场发生器就会 失去作用, 真空精炼无法进行, 造成生产中断。
发明内容
为了解决现有技术存在的问题,本发明的目的是提供一种直筒型真空精炼装 置,一是解决现有专利公开的单嘴精炼炉为了保证脱碳和脱硫效果,在浸渍管插 入钢液前需要进行排渣以尽可能减少钢包顶渣进入真空室,因此要求钢包钢液表 面渣层尽可能薄, 即要求出钢过程下渣量尽可能少甚至不下渣的问题。。 二是解 决现有专利公开的单嘴精炼炉以及 RH只能选择高氟含量 (30%CaF2 ) 的脱硫剂, 从而导致脱硫剂对浸渍管和真空室下部槽耐材侵蚀严重,大大缩短其使用寿命的 问题;三是解决现有专利公开的单嘴精炼炉在钢包底吹元件堵塞时整个真空精炼 过程无法进行, 造成生产中断的问题。
为了解决上述技术问题,本发明提供一种直筒型真空精炼装置,包括真空室 和浸渍管, 真空精炼时浸渍管插入钢包的钢水中, 其特征在于, 在所述浸渍管周 向设置环流管,氩气通过环流管内壁上的喷嘴吹入浸渍管;所述环流管分层设置, 同一层环流管上的喷嘴组独立控制; 在所述钢包底部设置偏心透气砖,氩气通过 偏心透气砖吹入钢包,采用钢包底部吹气和环流管吹气系统各独立控制单元的不 同吹气流量组合来驱动钢水在钢包与真空室之间循环流动。
本发明的进一步改进是,所述环流管设置一层,环流管上的喷嘴按等圆心角 分布, 喷嘴之间圆心角为 10° 〜30° ; 或者, 环流管上的喷嘴按等距离分布, 喷 嘴个数为 8^30个。
本发明的进一步改进是,所述环流管设置二层, 每环流管上的喷嘴按等距离 分布, 每层喷嘴个数为 6〜15个, 且上下层的喷嘴交叉布置。
本发明的进一步改进是,所述环流管设置三层, 每环流管上的喷嘴按等距离 分布, 每层喷嘴个数为 6〜12个, 相邻层的喷嘴交叉布置; 同一层喷嘴 2 个为 一组独立控制; 层与层之间等距离分布, 距离为 150mnT400mm。
本发明的进一步改进是,所述浸渍管的横截面形状为近似圆形, 由大圆弧面 和小圆弧面两部分组成, 大圆弧面曲率半径和真空室相同, 小圆弧面曲率半径大 于真空室, 大圆弧面与小圆弧面的曲率半径之比为 1 :广∞。
本发明还提供了所述直筒型真空精炼装置的精炼方法,真空精炼过程采用钢 包底部偏心透气砖和浸渍管环流管复合吹气模式;脱碳期间底吹和与底吹同一侧 的环流管为强吹, 另一侧环流管为弱吹; 脱硫期间底吹为强吹, 浸渍管周围的环 流管全部为弱吹; 精炼后期调小环流管气量和底吹气量,控制钢水净循环且不卷 入真空室表面渣, 同时促进钢中夹杂物碰撞上浮被表面渣吸收。
本发明还提供了在钢包底吹堵塞或者根据冶炼需要关闭钢包底吹时所述直 筒型真空精炼装置的精炼方法:
( 1 ) 在脱碳期间, 环流管一侧采用大气量吹气, 对应另一侧采用小气量吹 气, 这两个半周区域就形成了类似 RH的上升管和下降管, 实现钢液由强吹气一 侧上升, 弱吹气一侧下降, 驱动钢液在真空室和钢包中循环流动, 同时由于一侧 强吹气另一侧弱吹气, 真空室钢液面上的钢包渣就会被压缩到弱吹气一侧区域, 确保真空室中钢液裸露面足够大以实现快速深脱碳的目的;
( 2) 脱硫期间, 喷嘴全部强吹气, 驱动钢液由浸渍管四周上升, 由中心区 域下降, 并利用真空条件下钢包渣与钢水的充分混合, 实现钢液深脱硫;
( 3) 精炼后期将环流管吹气量改为一侧稍大、 一侧很小, 控制钢水循环不 卷入真空室表面渣, 同时促进钢中夹杂物碰撞上浮被表面渣吸收。
本发明的设计思想是: 本发明在真空室下部联接单个直筒型浸渍管,浸渍管的内径和真空室内径相 同,在环流管内壁圆周上交叉布置单层或多层环流管,钢包底部偏心位置布置透 气砖。环流管上设置的喷嘴 2 ^个为一组, 独立分段独立控制喷吹流量。在真空 精炼过程采用钢包底部吹气和环流管上吹气来驱动钢水在钢包与真空室之间循 环流动, 同时根据真空精炼过程不同阶段的主要任务(脱碳、 脱硫等)通过钢包 底部吹气和环流管上各独立控制单元分段控制的不同吹气组合来控制真空室钢 液面上顶渣的状态。
采用本发明的直筒型真空精炼装置, 不需要将钢液表面渣排出浸渍管, 反而 可以充分利用进入真空室的钢水表面渣进行脱碳、脱硫和去除夹杂物。其精炼方 法为: (1 )通过环流管上分段独立控制的吹气系统与底吹的不同组合方式, 扩大 真空室钢液裸露面积实现快速深脱碳,并利用钢液面上高氧化性渣中的氧进一步 对钢液进行深脱碳;(2)脱硫期间底吹为强吹,浸渍管周围的环流管全部为弱吹, 这样可以有效增加渣金反应面积,提高脱硫效果, 同时浸渍管周围的环流管弱吹 气体可以在真空室内钢渣和真空室内壁之间形成气体隔离带,减少钢渣对耐材的 侵蚀, 提高耐材寿命; (3)精炼后期调小环流管气量和底吹气量, 控制钢水净循 环且不卷入真空室表面渣, 同时促进钢中夹杂物碰撞上浮被表面渣吸收。
采用本发明的直筒型真空精炼装置,当钢包底吹出现堵塞或者根据冶炼需要 关闭钢包底吹时, 真空脱碳、 脱硫仍然可以正常进行, 不会导致生产中断。 其原 理是本发明在环流管上布置的喷嘴采用分区域独立控制流量的方式。其精炼方法 为: (1 )在脱碳期间,环流管一侧采用大气量吹气,对应另一侧采用小气量吹气, 这两个半周区域就形成了类似 RH的上升管和下降管, 实现钢液由强吹气一侧上 升, 弱吹气一侧下降, 驱动钢液在真空室和钢包中循环流动, 同时由于一侧强吹 气另一侧弱吹气,真空室钢液面上的钢包渣就会被压缩到弱吹气一侧区域,确保 真空室中钢液裸露面足够大以实现快速深脱碳的目的; (2)脱硫期间, 喷嘴全部 强吹气, 驱动钢液由浸渍管四周上升, 由中心区域下降, 并利用真空条件下钢包 渣与钢水的充分混合, 实现钢液深脱硫; (3)精炼后期将环流管吹气量改为一侧 稍大、一侧很小, 控制钢水循环不卷入真空室表面渣, 同时促进钢中夹杂物碰撞 上浮被表面渣吸收。
与现有技术相比,本发明提供了一种直筒型真空精炼装置,一是解决现有专 利公开的单嘴精炼炉为了保证脱碳和脱硫效果,在浸渍管插入钢液前需要进行排 渣以尽可能减少钢包顶渣进入真空室, 因此要求钢包钢液表面渣层尽可能薄, 即 要求出钢过程下渣量尽可能少甚至不下渣的问题。本发明通过设置在浸渍管周向 上环流管的分段独立控制的喷嘴,根据真空精炼过程不同阶段通过不同的吹气组 合方式来控制真空室钢液面上渣的状态,即通过调节环流管上分段控制的喷嘴的 吹气流量, 在脱碳期将钢包渣向一侧吹开或向中心吹开, 充分裸露钢液面, 并充 分利用钢液表面高氧化性渣中的氧进一步深脱碳,在脱硫期通过加入一定量的石 灰和铝粒 (或预熔精炼渣) 与真空室钢液面上的顶渣反应形成钙铝系脱硫渣系, 并让真空室中钢液与顶渣进行充分接触反应, 以实施真空下的深脱硫。因此本发 明不仅对钢包顶渣厚度没有要求,同时希望尽可能将钢液表面渣在浸渍管插入钢 水之前罩进浸渍管内, 充分利用顶渣来进行深脱碳和深脱硫。二是解决现有专利 公开的单嘴精炼炉以及 RH只能选择高氟含量(30%CaF2 )的脱硫剂, 从而导致脱 硫剂对浸渍管和真空室下部槽耐材侵蚀严重, 大大缩短其使用寿命的问题; 三是 解决现有专利公开的单嘴精炼炉在钢包底吹元件堵塞时整个真空精炼过程无法 进行, 造成生产中断的问题。
附图说明
下面结合附图对本发明详细说明:
图 1是直筒型真空精炼装置结构示意图。
图 2是图 1之 A-A截面图。
图 3是图 1之 B-B截面图。
图 1中: 1-顶枪, 2-真空抽气系统, 4-加料装置, 5-真空室, 6-连接法兰, 7-浸渍管, 8-环流管, 9-钢包, 10-钢包偏心底吹氩透气砖, 11-钢包车;
图 2中: 13-浸渍管大圆弧面, 15-浸渍管小圆弧面;
图 3中: 12-钢包测温取样点。
具体实施方式
实施例 1
由图 1、图 2、图 3可以看出直筒型真空精炼装置主要由真空室 5、浸渍管 7、 钢包 9和钢包车 11组成, 真空室和浸渍管由法兰 6连接, 浸渍管位于钢包正上 方, 钢包置于钢包车上。 浸渍管四周设置有环流管 8, 可用于向钢液中吹入惰性 气体实现多种功能, 环流管位于浸渍管上部, 浸渍管垂直方向设置一层环流管, 环流管上的喷嘴按等圆心角分布, 喷嘴之间圆心角为 10 ° 〜30 ° ; 或者, 环流管 上的喷嘴按等距离分布, 喷嘴个数为 8〜30个。 钢包底部偏心位置设底部透气砖 10, 氩气由透气砖进入钢液。
钢水精炼时, 将钢包 9吊至钢包车 11上面, 钢包车开进处理工位, 顶升钢 包让浸渍管 7插入到钢水里面, 开启真空抽气系统 2进行抽真空, 从透气砖 10 吹入氩气, 同时开启环流管 8向钢水吹入氩气, 吹入氩气的流量和压力根据需要 进行调节, 测温取样机构 12进行测温取样操作, 当成分和温度达到要求时, 破 空, 将钢包降至原位, 真空处理精炼过程结束。
实施例 2
由图 1、图 2、图 3可以看出直筒型真空精炼装置主要由真空室 5、浸渍管 7、 钢包 9和钢包车 11组成, 真空室和浸渍管由法兰 6连接, 浸渍管位于钢包正上 方, 钢包置于钢包车上。 真空室上部设有加料装置 4可添加物料, 抽真空系统 2 负责抽真空, 顶枪 1可吹氧。 浸渍管四周设置有环流管 8, 可用于向钢液中吹入 惰性气体实现多种功能, 环流管位于浸渍管上部, 为提高脱氧脱硫效率, 浸渍管 垂直方向设置二层环流管, 每环流管上的喷嘴按等距离分布, 每层喷嘴个数为 6^15 个, 且上下层的喷嘴交叉布置。 浸渍管垂直方向还可设置三层环流管, 每 环流管上的喷嘴按等距离分布, 每层喷嘴个数为 6〜12个, 相邻层的喷嘴交叉布 置;层与层之间等距离分布, 距离为 150mnT400mm。 所述环流管最下面一层距浸 渍管底部距离为 100mnT500mm。钢包底部偏心位置设底部透气砖 10,氩气由透气 砖进入钢液。
钢水精炼时, 将钢包 9吊至钢包车 11上面, 钢包车开进处理工位, 顶升钢 包让浸渍管 7插入到钢水里面, 开启真空抽气系统 2进行抽真空, 从透气砖 10 吹入氩气, 同时开启环流管 8向钢水吹入氩气, 吹入氩气的流量和压力根据需要 进行调节, 测温取样机构 12进行测温取样操作, 精炼过程中根据钢种要求通过 加料装置 4加入所需的合金或渣料, 当成分和温度达到要求时, 破空, 将钢包降 至原位, 真空处理精炼过程结束。
实施例 3
精炼装置的其他结构和实施例 1和 2, 为了进一步提高脱碳效率, 环流管上 同一层喷嘴 2〜6个为一组独立控制。
钢水精炼时, 将钢包 9吊至钢包车 11上面, 钢包车开进处理工位, 顶升钢 包让浸渍管 7插入到钢水里面, 开启真空抽气系统 2进行抽真空, 从透气砖 10 吹入氩气, 同时开启环流管 8向钢水吹入氩气, 吹入氩气的流量和压力根据需要 进行调节, 脱碳期底吹和与底吹同一侧的环流管为强吹, 另一侧环流管为弱吹; 脱硫期间底吹为强吹, 浸渍管周围的环流管全部为弱吹; 测温取样机构 12进行 测温取样操作, 精炼过程中根据钢种要求通过加料装置 4 加入所需的合金或渣 料, 当成分和温度达到要求时,破空,将钢包降至原位,真空处理精炼过程结束。 实施例 4
精炼装置的其他结构和实施例 1或 2或 3相同, 为方便精炼过程中测温、取 样操作, 所述浸渍管的横截面形状为近似圆形, 由大圆弧 13 (弧 ABC)和小圆弧 15 (弧 ADC)两部分组成, 大圆弧半径 R1和真空室相同, 小圆弧半径 R2大于真 空室, 大圆弧与小圆弧的半径之比为 1 :广∞。 透气砖 10距离大圆弧 13中心的 距离 r与大圆弧半径 R1之比为 0. 2^0. 7。
钢水精炼时, 将钢包 9吊至钢包车 11上面, 钢包车开进处理工位, 顶升钢 包让浸渍管 7插入到钢水里面, 开启真空抽气系统 2进行抽真空, 从透气砖 10 吹入氩气, 同时开启环流管 8向钢水吹入氩气, 吹入氩气的流量和压力根据需要 进行调节, 脱碳期底吹和与底吹同一侧的环流管为强吹, 另一侧环流管为弱吹; 脱硫期间底吹为强吹, 浸渍管周围的环流管全部为弱吹; 测温取样机构 12进行 测温取样操作, 精炼过程中根据钢种要求通过加料装置 4 加入所需的合金或渣 料, 当成分和温度达到要求时,破空,将钢包降至原位,真空处理精炼过程结束。 实施例 5
钢包底部偏心透气砖吹堵塞或者根据冶炼需要关闭钢包底吹时的精炼方 法-
( 1 )钢水精炼时, 将钢包 9吊至钢包车 11上面, 钢包车开进直筒型真空精 炼装置处理工位,浸渍管上与钢包底吹同一侧半周区域分 3组单独流量剂控制的 环流管吹气量相等, 总吹气流量控制在吨钢 13NL/min, 相对一侧半圆区域分 3 组采用单独流量剂控制的环流管吹气量相等, 环流管总吹气流量控制在吨钢 7NL/min; ( 2 ) 将浸渍管插入钢水中, 浸渍管插入深度 400mm, 同时抽真空使 3min 后真空度降 73Pa。 通过真空室摄像图观察真空室钢液面顶渣情况, 进一步调整 浸渍管上与钢包底吹同一侧环流管总吹气流量至吨钢 18NL/min;
( 3 )脱碳进行 lOmin后,浸渍管上所有采用单独流量剂控制的环流管吹气 量都调整到相同, 总流量控制在吨钢 28Nl/min;
( 4) 脱碳进行到 15min后, 通过加料装置 4加入脱氧剂铝粒 2. 4kg/t钢, 3min 后, 在取样位置 12 定氧, 钢水活度氧为 0. 32ppm。 通过喷枪喷吹石灰 6. 08kg/ 钢;
( 5 ) 喷吹完石灰后 6min, 调小浸渍管上的环流管吹气流量, 与钢包底吹同 一侧半周区域分 3组采用单独流量剂控制的环流管吹气量相等,总吹气流量调整 至吨钢 15NL/min, 相对一侧半周区域分 3组采用单独流量剂控制的环流管吹气 量相等, 环流管总吹气流量调整至吨钢 5NL/min, 钢水在循环 6min后, 关闭钢 包底吹, 破空, 在取样位置 12取样测温。
实施效果:
在某钢厂进行了 86 炉钢包底部吹与浸渍管上的环流管喷吹组合吹气精炼试 验和 23炉只采用浸渍管环流管喷吹精炼试验, 试验结果如下。
86炉钢包钢包底部吹与浸渍管上的环流管喷吹组合吹气试验结果是, 进直筒 型真空精炼装置前初始钢液中活度氧(&[()])在 0. 0459、. 0823%之间, 平均为 0. 0589%, [C]在 0· 025〜0· 050%之间,平均为 0· 032%, [S] 在 0· 004〜0· 009%之间, 平均为 0. 0069%, 在直筒型真空精炼装置真空精炼 3(T45min (平均为 39min) 的 精炼周期内, 吨钢石灰加入量为 ; T8kg/t— 平均为 5. 32 kg/t-1, 吨钢铝粒加入 量为 0. 8〜3. 1 kg/t—1 , 平均为 1. 78 kg/t—1 , 真空精炼终点钢液 [C]在 0. 0005〜0· 0011%之间, 平均为 0. 0008%; 钢液 [S]含量在 0. 0008〜0· 0021%, 平均 为 0. 0013%, 脱硫率在 73〜87%, 平均脱硫率达到 81. 1%。
23 炉只采用浸渍管上的环流管喷吹试验结果是, 进直筒型真空精炼装置前 初始钢液中活度氧(aK])在 0. 0572、. 0792%之间, 平均为 0. 0578%, [C]在 0. 023〜0. 048%之间,平均为 0. 031%, [S] 在 0. 005〜0. 008%之间,平均为 0. 0062%, 在直筒型真空精炼装置真空精炼 3(T45min (平均为 42min)的精炼周期内, 吨钢 石灰加入量为 3〜8kg/t—丄,平均为 5. 64 kg/t—1,吨钢铝粒加入量为 1. Γ3. 2 kg/t—1, 平均为 1.92 kg/t—1, 真空精炼终点钢液 [C]在 0.0007、.0013%之间, 平均为 0.0009%; 钢液 [S]含量在 0.0007〜0.0025%, 平均为 0.0014%, 脱硫率在 69〜82%, 平均脱硫率达到 75.2%。

Claims

O 2014/029325 权禾 |J要求书 PCT/CN2013/081890
1、 一种直筒型真空精炼装置, 包括真空室和浸渍管, 真空精炼时浸渍管插入钢 包的钢水中, 其特征在于, 在所述浸渍管周向设置环流管, 氩气通过环流管内壁 上的喷嘴吹入浸渍管; 所述环流管分层设置, 同一层环流管上的喷嘴分组独立控 制; 在所述钢包底部设置偏心透气砖, 氩气通过偏心透气砖吹入钢包, 采用钢包 底部吹气和环流管吹气系统各独立控制单元的不同吹气流量组合来驱动钢水在 钢包与真空室之间循环流动。
2、 如权利要求 1所述的直筒型真空精炼装置, 其特征在于, 所述环流管设置一 层, 环流管上的喷嘴按等圆心角分布, 喷嘴之间圆心角为 10 ° 〜30 ° ; 或者, 环 流管上的喷嘴按等距离分布, 喷嘴个数为 8〜30个。
3、 如权利要求 1所述的直筒型真空精炼装置, 其特征在于, 所述环流管设置二 层, 每环流管上的喷嘴按等距离分布, 每层喷嘴个数为 6〜15个, 且上下层的喷 嘴交叉布置; 所述环流管最下面一层距浸渍管底部距离为 100mnT500mm。
4、 如权利要求 1所述的直筒型真空精炼装置, 其特征在于, 所述环流管设置三 层, 每环流管上的喷嘴按等距离分布, 每层喷嘴个数为 6〜12个, 相邻层的喷嘴 交叉布置, 层与层之间等距离分布, 距离为 150mnT400mm; 所述环流管最下面一 层距浸渍管底部距离为 100mnT500mm。
5、 如权利要求 1所述的直筒型真空精炼装置, 其特征在于, 所述浸渍管外径与 所述钢包内径之间的距离为 100mnT400mm。
6、 如权利要求 1或 5所述的直筒型真空精炼装置, 其特征在于, 所述浸渍管的 横截面形状为近似圆形, 由大圆弧和小圆弧两部分组成, 大圆弧半径和真空室相 同, 小圆弧半径大于真空室, 大圆弧与小圆弧的半径之比为 1 :广∞。
7、 一种如权利要求 1所述的直筒型真空精炼装置的使用方法, 其特征在于, 真空精炼过程采用钢包底部偏心透气砖和浸渍管环流管复合吹气模式;脱碳期间 底吹和与底吹同一侧的环流管为强吹, 另一侧环流管为弱吹; 脱硫期间底吹为强 吹, 浸渍管周围的环流管全部为弱吹; 精炼后期调小环流管气量和底吹气量, 控 制钢水净循环且不卷入真空室表面渣,同时促进钢中夹杂物碰撞上浮被表面渣吸 收。
8、 如权利要求 1所述的直筒型真空精炼装置的使用方法, 其特征在于, 当真空 精炼过程发生钢包底吹堵塞时或者根据冶炼需要关闭钢包底吹时, 精炼方法如 下:
( 1 ) 在脱碳期间, 环流管一侧采用大气量吹气, 对应另一侧采用小气量吹 气, 这两个半周区域就形成了类似 RH的上升管和下降管, 实现钢液由强吹气一 侧上升, 弱吹气一侧下降, 驱动钢液在真空室和钢包中循环流动, 同时由于一侧 强吹气另一侧弱吹气, 真空室钢液面上的钢包渣就会被压缩到弱吹气一侧区域, 确保真空室中钢液裸露面足够大以实现快速深脱碳的目的;
( 2) 脱硫期间, 喷嘴全部强吹气, 驱动钢液由浸渍管四周上升, 由中心区 域下降, 并利用真空条件下钢包渣与钢水的充分混合, 实现钢液深脱硫;
( 3) 精炼后期将环流管吹气量改为一侧稍大、 一侧很小, 控制钢水循环不 卷入真空室表面渣, 同时促进钢中夹杂物碰撞上浮被表面渣吸收。
PCT/CN2013/081890 2012-08-24 2013-08-20 直筒型真空精炼装置及其使用方法 WO2014029325A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL13830632T PL2889385T3 (pl) 2012-08-24 2013-08-20 Urządzenie typu prostej tulei do rafinacji próżniowej i sposób jego stosowania
EP13830632.9A EP2889385B1 (en) 2012-08-24 2013-08-20 Straight barrel type vacuum refining device and method for use the same
BR112015003817A BR112015003817A2 (pt) 2012-08-24 2013-08-20 dispositivo de refinação à vácuo do tipo barril reto e método para usar o mesmo
US14/422,929 US9809868B2 (en) 2012-08-24 2013-08-20 Straight barrel type vacuum refining device and method for use the same
ES13830632.9T ES2666848T3 (es) 2012-08-24 2013-08-20 Dispositivo de afino al vacío de tipo cilindro recto y método para usarlo
JP2015527776A JP6078154B2 (ja) 2012-08-24 2013-08-20 真空精錬方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210302397.0A CN102816896B (zh) 2012-08-24 直筒型真空精炼装置及其使用方法
CN201210302397.0 2012-08-24

Publications (1)

Publication Number Publication Date
WO2014029325A1 true WO2014029325A1 (zh) 2014-02-27

Family

ID=47301340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081890 WO2014029325A1 (zh) 2012-08-24 2013-08-20 直筒型真空精炼装置及其使用方法

Country Status (7)

Country Link
US (1) US9809868B2 (zh)
EP (1) EP2889385B1 (zh)
JP (1) JP6078154B2 (zh)
BR (1) BR112015003817A2 (zh)
ES (1) ES2666848T3 (zh)
PL (1) PL2889385T3 (zh)
WO (1) WO2014029325A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793734B (zh) * 2020-06-29 2023-11-17 洛阳利尔功能材料有限公司 一种3d打印透气砖及其制备方法
CN112646954B (zh) * 2020-11-23 2022-12-13 首钢集团有限公司 一种提高超低碳钢夹杂物去除率的rh精炼方法
CN115026273B (zh) * 2022-06-16 2023-10-13 莱芜钢铁集团银山型钢有限公司 一种钢包吹氩水口座砖及其吹氩冶金方法
CN117604311B (zh) * 2024-01-24 2024-04-19 北京航空航天大学 一种基于三通道转子的铝合金旋转喷吹精炼方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649528A (ja) * 1992-08-05 1994-02-22 Nippon Steel Corp 極低炭素鋼の減圧脱炭精錬方法
JPH0741834A (ja) * 1993-06-28 1995-02-10 Nippon Steel Corp 高い環流特性を有する溶鋼の真空精錬方法
JPH0754034A (ja) * 1993-08-18 1995-02-28 Nippon Steel Corp 極低炭素鋼の溶製方法
CN101302571A (zh) 2008-07-03 2008-11-12 山西太钢不锈钢股份有限公司 提高单嘴精炼炉循环流量的方法
CN101701279B (zh) 2009-11-20 2011-04-13 北京科大三泰科技发展有限公司 一种用单嘴精炼炉冶炼低硫钢的方法
CN101792845B (zh) 2009-11-20 2012-10-03 北京科大三泰科技发展有限公司 一种用单嘴精炼炉冶炼超低碳钢的方法
CN102816896A (zh) * 2012-08-24 2012-12-12 马钢(集团)控股有限公司 直筒型真空精炼装置及其使用方法
CN202830077U (zh) * 2012-08-24 2013-03-27 马钢(集团)控股有限公司 直筒型真空精炼装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252110A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Equipment for refining molten metal outside furnace
JPH04325622A (ja) * 1991-04-26 1992-11-16 Nippon Steel Corp 極低炭素鋼の製造方法
JPH08120324A (ja) * 1994-10-25 1996-05-14 Sumitomo Metal Ind Ltd 溶鋼の真空精錬装置および方法
US5603749A (en) * 1995-03-07 1997-02-18 Bethlehem Steel Corporation Apparatus and method for vacuum treating molten steel
CN2432219Y (zh) 2000-06-09 2001-05-30 北京科技大学 多功能复吹单嘴精炼炉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649528A (ja) * 1992-08-05 1994-02-22 Nippon Steel Corp 極低炭素鋼の減圧脱炭精錬方法
JPH0741834A (ja) * 1993-06-28 1995-02-10 Nippon Steel Corp 高い環流特性を有する溶鋼の真空精錬方法
JPH0754034A (ja) * 1993-08-18 1995-02-28 Nippon Steel Corp 極低炭素鋼の溶製方法
CN101302571A (zh) 2008-07-03 2008-11-12 山西太钢不锈钢股份有限公司 提高单嘴精炼炉循环流量的方法
CN101701279B (zh) 2009-11-20 2011-04-13 北京科大三泰科技发展有限公司 一种用单嘴精炼炉冶炼低硫钢的方法
CN101792845B (zh) 2009-11-20 2012-10-03 北京科大三泰科技发展有限公司 一种用单嘴精炼炉冶炼超低碳钢的方法
CN102816896A (zh) * 2012-08-24 2012-12-12 马钢(集团)控股有限公司 直筒型真空精炼装置及其使用方法
CN202830077U (zh) * 2012-08-24 2013-03-27 马钢(集团)控股有限公司 直筒型真空精炼装置

Also Published As

Publication number Publication date
CN102816896A (zh) 2012-12-12
ES2666848T3 (es) 2018-05-08
BR112015003817A2 (pt) 2017-07-04
EP2889385A4 (en) 2016-04-13
JP6078154B2 (ja) 2017-02-08
EP2889385B1 (en) 2018-04-04
PL2889385T3 (pl) 2018-07-31
US20150240323A1 (en) 2015-08-27
JP2015526598A (ja) 2015-09-10
US9809868B2 (en) 2017-11-07
EP2889385A1 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2015058660A1 (zh) 一种单浸渍管真空精炼装置及其使用方法
TWI448555B (zh) Method of refining molten iron
WO2014029325A1 (zh) 直筒型真空精炼装置及其使用方法
CN108866277B (zh) 一种冶炼超低碳不锈钢的单嘴精炼炉及精炼工艺
CN107245544B (zh) 一种钢包渣改质用旋转喷粉装置及改质方法
KR100334947B1 (ko) 용강의진공탈탄/정련방법및그장치
CN102191357B (zh) 一种快速氩氧精炼低碳铬铁合金的方法及其改进装置
CN104561452A (zh) 一种底喷粉单嘴真空脱气精炼钢液的装置及方法
CN103966402B (zh) 用于钢水脱硫的rh真空精炼系统及脱硫方法
CN101905319A (zh) 钢铁浇注方法及下水口砖
CN202830077U (zh) 直筒型真空精炼装置
CN207498409U (zh) 一种rh精炼炉用浸渍管
JP6421731B2 (ja) 転炉の操業方法
JP4360270B2 (ja) 溶鋼の精錬方法
CN202808862U (zh) 一种脱硫喷枪
CN201880912U (zh) 钢铁浇注用下水口砖
CN208717372U (zh) 一种冶炼超低碳不锈钢的单嘴精炼炉
CN109706288B (zh) 一种钢包侧吹喷粉精炼钢液装置及方法
CN103498057B (zh) 一种底铅少扰动的底吹还原炼铅装置及方法
RU2576281C2 (ru) Способ и система для удаления наслоения настыли в печи
CN102816896B (zh) 直筒型真空精炼装置及其使用方法
JP6358039B2 (ja) 溶鋼の脱硫方法
JPH0953109A (ja) 溶鋼の昇熱精錬方法
CN217324159U (zh) 一种利用co2喷吹钢包顶渣改质剂的装置
JP6790796B2 (ja) 真空脱ガス処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422929

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015527776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013830632

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015110452

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015003817

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015003817

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150223