WO2015058660A1 - 一种单浸渍管真空精炼装置及其使用方法 - Google Patents
一种单浸渍管真空精炼装置及其使用方法 Download PDFInfo
- Publication number
- WO2015058660A1 WO2015058660A1 PCT/CN2014/088905 CN2014088905W WO2015058660A1 WO 2015058660 A1 WO2015058660 A1 WO 2015058660A1 CN 2014088905 W CN2014088905 W CN 2014088905W WO 2015058660 A1 WO2015058660 A1 WO 2015058660A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dip tube
- molten steel
- slag
- vacuum
- refining
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
Definitions
- the invention belongs to the field of refining outside the molten steel furnace, and particularly relates to a vacuum refining device for simultaneously producing ultra-low carbon and ultra-low sulfur steel.
- the off-site refining method for producing ultra-low carbon and ultra-low sulfur steel on an industrial scale mainly uses RH vacuum refining.
- the problems in the process of using RH vacuum refining to produce ultra-low carbon and ultra-low sulfur steel at the same time are as follows: First, the RH furnace is composed of two impregnated tubes, which are raised and lowered. The inner diameter of the dip tube is small, and the flow rate of the ring is small, resulting in molten steel treatment.
- RH furnace is composed of two immersed tubes, rising and falling, the inner diameter of the immersed tube is small, the interface of steel slag is small, which is not conducive to desulfurization, and the desulfurization rate can only be It is less than 30%.
- the vacuum chamber and the dip tube are severely eroded and the service life is shortened.
- the single-mouth refining furnace disclosed is a driving force for circulating steel in the vacuum process of the ladle at the bottom of the ladle. When the ventilating brick at the bottom of the ladle is clogged, vacuum refining will not be carried out, resulting in production interruption.
- At least one set of traveling wave magnetic field generator is disposed on the periphery of the nozzle of the single-mouth refining furnace disclosed in the Chinese patent "CN101302571A” only to increase the flow rate of the molten steel and to increase the circulating flow rate of the molten steel. But it can't solve steel The top slag layer covers the molten steel surface, which leads to a decrease in the exposed surface of the molten steel and reduces the problem of decarburization and desulfurization efficiency.
- the upstream magnetic field generator of the immersion tube disclosed in the patent "CN101302571A” can only accelerate the flow speed when the molten steel has a circulating flow. Once the bottom of the ladle is blocked and the molten steel is at rest, the traveling wave magnetic field generator will lose its effect. Vacuum refining cannot be carried out, causing production interruption.
- the Chinese patent "a straight-type vacuum refining device and its use method" provides a straight-type vacuum refining device, which is connected to a single straight-type dip tube at the lower part of the vacuum chamber, and the inner diameter of the dip tube is the same as the inner diameter of the vacuum chamber.
- a single-layer or multi-layer blowing system is arranged on the circumference of the inner wall of the circulating pipe, and the permeable brick is arranged at an eccentric position at the bottom of the ladle.
- the blowing system arranged on the circulation pipe is divided into several unit sections to independently control the flow.
- the bottom of the ladle is blown and the air is blown on the circulation pipe to drive the molten steel to circulate between the ladle and the vacuum chamber, and the desulfurization and decarburization process is accelerated by different combinations of blowing at the bottom of the ladle and blowing in the circulation pipe.
- the refining device uses the bottom blowing of the ladle and the blowing on the circulation pipe to drive the molten steel to circulate between the ladle and the vacuum chamber. If the bottom of the ladle is blocked or the bottom blowing is deviated from the dip tube due to the disorder of the steel flow, the refining process will be caused. Interrupted.
- the blowing amount of the nozzle on the circulation pipe is controlled to be strong blowing on one side, and the other half is weakly blown, and the ladle slag is blown to one side of the vacuum chamber, which is easy to cause corrosion of the vacuum chamber of the slag side.
- the object of the present invention is to provide a single dip tube vacuum refining device which changes the molten steel circulation mode of the existing vacuum refining device, overcomes the blockage of the bottom bake bricks or the disorder of the steel flow.
- the bottom blowing is deviated from the single dip tube, which leads to the interruption of the refining process, and also reduces the corrosion resistance of the vacuum chamber and reduces the refining cost.
- the present invention provides a single dip tube vacuum refining device comprising a vacuum chamber and a dip tube, wherein the dip tube is inserted into the ladle of the steel ladle during vacuum refining, characterized in that the single dip tube is circumferentially disposed.
- the air nozzle, the argon gas is blown into the dip tube through a blowing nozzle on the inner wall of the single dip tube; the blowing nozzle is layered and independently controlled, and the nozzle groups of the same layer are independently controlled; the blowing nozzle is layered and independent Control, nozzle grouping in the same layer is controlled independently; vacuum refining process increases the blowing volume of the nozzle of the dip tube, so that the molten steel forms a circulation which rises around the vacuum chamber and descends along the center of the vacuum chamber to realize deep decarburization and deep desulfurization of molten steel. .
- the independently controllable nozzle blowing amount is adjusted to form different blowing combinations to control the flow state of the molten steel in the vacuum process and the state of the ladle slag on the molten steel surface of the vacuum chamber to remove inclusions.
- the invention also provides a refining method for a single dip tube vacuum refining device, which firstly inserts the dip tube slowly In the ladle slag, vacuum the ladle slag into the dip tube slowly, suck the ladle slag into the dip tube as much as possible, continue to insert the dip tube into the molten steel, and then increase the blowing volume of all the nozzles on the circulation tube to form a molten steel.
- a circulation that rises around the vacuum chamber and descends along the center of the vacuum chamber.
- the nozzles arranged along the circumferential direction of the immersion tube are all strongly blown, and the molten steel is driven to rise from the periphery of the vacuum chamber, descending from the central region, and the ladle slag is collected in the center of the vacuum chamber and fully utilizes the highly oxidizing slag in the molten steel surface.
- the oxygen is further deep decarburized.
- a certain amount of lime (or pre-melted refining slag) and aluminum particles are reacted with the top slag on the liquid surface of the vacuum chamber to form a calcium-aluminum-based desulfurization slag system.
- the nozzles are all strongly blown, and the molten steel is driven by the vacuum chamber. It rises around and rises from the central area, allowing the molten steel in the vacuum chamber to fully contact with the desulfurization slag to achieve deep desulfurization under vacuum.
- the blow volume of the circulation pipe is changed to one side slightly larger and one side is small, and the molten steel circulation is not involved in the surface slag of the vacuum chamber, and the inclusions in the steel are promoted to be absorbed by the surface slag.
- the invention is coupled with a single straight cylindrical dip tube at the lower part of the vacuum chamber.
- the inner diameter of the dip tube is the same as the inner diameter of the vacuum chamber, and a single layer or a plurality of air blowing nozzles are arranged on the circumference of the inner wall of the dip tube.
- the blowing nozzle independently controls the amount of blowing in several units, each unit consisting of several blowing nozzles. In vacuum refining, first insert the dip tube into the steel slag, vacuum the ladle slag into the dip tube, then reduce the immersion tube into the molten steel, then increase the blowing volume of all the nozzles, so that the molten steel forms a rise along the vacuum chamber.
- the descending circulation of the center causes the ladle slag to accumulate on the surface of the molten steel in the center of the vacuum chamber, and becomes a part of the oxygen source for the subsequent decarburization of the molten steel and the desulfurization base sulfur capacity slag.
- the blowing flow rate of the nozzle of the dip tube is independently controlled by grouping, so that the molten steel forms various circulating flow states, flow strengths and combinations thereof in the vacuum chamber, so as to realize deep decarburization, deep desulfurization and manufacture of molten steel.
- Various refined metallurgical functions such as functional slag, ladle slag upgrading and removal of inclusions.
- the deep decarburization of the invention fully utilizes the oxygen in the high oxidizing ladle slag accumulated on the surface of the molten steel in the center of the vacuum chamber to further deep decarburize, which can both deep decarburization and reduce the oxidizing property of the ladle slag, which is the next step.
- Desulfurization creates conditions and saves on refining costs. During the desulfurization period, a certain amount of lime (or pre-melted refining slag) and aluminum particles are reacted with the ladle slag on the liquid surface of the vacuum chamber to form a calcium-aluminum-based desulfurization slag system. The nozzles are all strongly blown, and the molten steel is driven by the vacuum chamber.
- the present invention has the following advantages over the prior art.
- Chinese patent 201210302397.0 also adopts a single dip tube, it relies on the bottom of the ladle ventilating brick to form a circulation.
- the molten steel rises along the side of the dip tube and descends along the other side of the dip tube, which greatly washes the inner wall of the dip tube and reduces the dip tube. life.
- the patent also has a major drawback. If the bottom of the ladle blows bricks or the bottom gas blows off the dip tube due to the turbulence of the steel flow, the refining process will be interrupted.
- This patent also has a blowing nozzle in the dip tube, but it is mainly used in the decarburization and desulfurization processes.
- the decarburization is to blow the ladle slag to one side, and to fully expose the molten steel surface and then blow oxygen or add oxidant, which brings two problems.
- the refining cost is increased
- the slag side of the ladle slag is inside the dip tube. Wall refractory materials are prone to corrosion and reduce the life of the refining unit.
- the bottom blowing is strong blowing
- the circulation pipe around the dip tube is all weakly blown
- the bottom blowing is strong blowing, so that the molten steel forms a circulation which rises along the side of the dip tube and descends along the other side, and the circulation tube is all
- the weak blowing will cause the molten steel to form a circulation that rises along the periphery of the vacuum chamber and descends along the center of the vacuum chamber. This will turbulence the circulation, and in severe cases, the bottom blowing will deviate from the dip tube, which will cause the refining process to be interrupted.
- the single-dip tube vacuum refining device passes the strong blowing of all the nozzles on the dip tube, so that the molten steel forms a circulation which rises along the periphery of the vacuum chamber and descends along the center of the vacuum chamber.
- the gas ejected from the nozzles around the dip tube forms a gas curtain, which reduces the flushing of the inner wall of the dip tube by the molten steel and improves the life of the dip tube.
- the decarburization of the present invention does not require oxygen blowing or addition of an additional oxidant, but further deep decarburization using oxygen accumulated in the highly oxidizing ladle slag on the surface of the molten steel in the center of the vacuum chamber, which can both decarburize and reduce
- the oxidizing properties of the ladle slag create conditions for the next step of desulfurization and also save on refining costs.
- the invention has no bottom blowing, and avoids the occurrence of circulation disturbance problems caused by bottom blowing and ring blowing.
- the invention can achieve the target modification of the ladle top slag by adding a certain amount of slag and deoxidizer together with the top slag on the liquid surface of the vacuum chamber in the later stage of refining.
- the nozzle group arranged along the circumferential direction of the dip tube is blown into the same small gas volume or the other side is larger and the other side is smaller gas volume, and the weak circulation of the molten steel is controlled to promote the collision of the inclusions in the steel by the surface slag absorption. It can further remove inclusions in the molten steel.
- Figure 1 A longitudinal cross-sectional view of a molten steel circulation of a single dip tube vacuum refining unit.
- Figure 2 Schematic diagram of slag absorption in a single dip tube vacuum refining unit.
- the single dip tube vacuum refining unit is refined as follows:
- Decarburization was carried out after decarburization for 15 minutes. Firstly add 2.4kg/t steel of deoxidizer aluminum through the feeding device. After 3min, the oxygen is determined at the sampling position, the activity of molten steel is 0.32ppm; then the lime is sprayed with 6.08kg/t steel through the spray gun; after the lime is sprayed, 6min Adjust the blowing flow rate of the circulation pipe on the small dip tube. The blowing volume of each nozzle of the circulation pipe on one side of the dip pipe is equal, the total blowing flow rate is adjusted to 15NL/min per ton of steel, and the blowing volume of each nozzle of the circulating pipe of the opposite side is equal. The total blowing flow rate is adjusted to 5NL/min per ton of steel. After the molten steel is circulated for 6 minutes, the bottom of the ladle is closed and blown, and the temperature is sampled at the sampling position.
- the single dip tube vacuum refining unit is refined as follows:
- Decarburization was carried out after decarburization for 16 minutes. Firstly add 2.5kg/t steel of deoxidizer aluminum through the feeding device. After 3.5min, the oxygen is determined at the sampling position, the activity of molten steel is 0.30ppm; then the 6.16kg/t steel is sprayed by the spray gun; after the lime is sprayed 7min, adjust the blowing flow of the circulation pipe on the small dip tube, the blowing volume of each nozzle of the dip tube is equal, the total blowing flow rate is adjusted to 8NL/min per ton of steel, and after the steel water is cycled for 7min, the bottom of the ladle is closed and broken, at the sampling position. Sample temperature measurement.
- the test result of 86 furnace steel refined by Chinese patent 201210302397.0 is that the activity oxygen (a[O]) in the initial molten steel before the vacuum refining device is between 0.0459 and 0.0823%, with an average of 0.0589%, [C] at 0.025 ⁇ Between 0.050%, the average is 0.032%, [S] is between 0.004% and 0.009%, and the average is 0.0069%.
- vacuum refining for 30-45min average 39min
- the amount of steel and lime added is ton.
- the average is 5.32kg/t -1
- the amount of aluminum particles added per ton is 0.8 ⁇ 3.1kg/t -1
- the average is 1.78kg/t -1
- the vacuum refining end molten steel [C ] Between 0.0005 and 0.0011%, the average is 0.0008%; the molten steel [S] content is 0.0008 to 0.0021%, the average is 0.0013%, the desulfurization rate is 73 to 87%, and the average desulfurization rate is 81.1%.
- the test result of the 23-furnace steel refined by the refining device of the present invention is that the activity oxygen (a [O]) in the initial molten steel before the single-dip tube vacuum refining device is between 0.0572 and 0.0792%, with an average of 0.0578%, [C ] between 0.023 and 0.048%, with an average of 0.031%, [S] between 0.005 and 0.008%, with an average of 0.0062%, in a single dip tube vacuum refining unit vacuum refining for 30 to 45 minutes (average of 42 minutes) refining cycle inner, lime was added in an amount of 3 ⁇ 8kg / t -1, average 5.64kg / t -1, is added per tonne of aluminum particles in an amount of 1.1 ⁇ 3.2kg / t -1, average 1.92kg / t -1,
- the vacuum refining end point molten steel [C] is between 0.0007 and 0.0013%, with an average of 0.0009%; the molten steel [
- the refining device of the present invention has the same decarburization and desulfurization effects as the Chinese patent 201210302397.0.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
一种单浸渍管(1)真空精炼装置,包括真空室(2)和浸渍管(1),真空精炼时浸渍管(1)插入钢包(6)的钢液中,所述单浸渍管(1)周向分层设置吹气喷嘴,同一层的喷嘴分组设置、独立控制,氩气通过单浸渍管(1)内壁上的吹气喷嘴吹入浸渍管(1)。真空精炼过程通过加大浸渍管(1)上喷嘴的吹气量,使钢液形成一个沿真空室(2)四周上升,沿真空室(2)中心下降的环流来实现真空下的深脱碳、深脱硫。
Description
本发明属于钢水炉外精炼领域,特别涉及同时生产超低碳、超低硫钢的真空精炼装置。
目前工业规模生产超低碳、超低硫钢的炉外精炼方法主要是采用RH真空精炼。采用RH真空精炼同时生产超低碳、超低硫钢在工艺上存在的问题主要有:一是RH炉采用上升和下降两个浸渍管构成,浸渍管内径偏小,环流量小,造成钢水处理时间长、浸渍管结瘤严重,浸渍管耐材寿命短的问题;二是RH炉采用上升和下降两个浸渍管构成,浸渍管内径偏小,钢渣界面小,不利于脱硫,脱硫率只能达到30%以下。另外,由于其采用的脱硫剂中含有高达30%CaF2,对真空室和浸渍管耐材侵蚀严重,缩短其使用寿命。
为解决RH炉真空精炼过程出现的问题,中国专利“多功能复吹单嘴精炼炉”(专利号ZL00235854.9)、“一种用单嘴精炼炉冶炼低硫钢的方法”(专利号ZL200910272881.1)和专利“一种用单嘴精炼炉冶炼超低碳钢的方法”(ZL200910272880.7)通过将双浸渍管改为单浸渍管结构以增加浸渍管横截面积,提高真空精炼过程钢液的循环流量,从而提高脱碳、脱硫效率。然而为保证真空室内钢液裸露面足够大以提高脱碳、脱硫反应速率,这些专利首先要严格控制出钢过程下渣量,然后在浸渍管插入钢水前先通过钢包底部透气砖吹氩气或氮气排渣。同时在脱硫时喷吹的脱硫剂可以有效弥散分布于钢液内部增大反应界面、提高脱硫效率。这些专利在真空过程的脱硫原理与RH真空精炼相同,因此必须选择与RH真空精炼过程脱硫同样的高CaF2含量(一般在30%)的脱硫剂,脱硫剂对浸渍管和真空室下部耐材侵蚀严重,降低了浸渍管和真空室下部槽的使用寿命。目前所公开的单嘴精炼炉都是采用钢包底部吹气作为真空过程钢液循环流动的驱动力,当钢包底部透气砖出现堵塞,真空精炼将无法进行,造成生产中断。
中国专利“CN101302571A”公开的单嘴精炼炉的吸嘴外围设置至少一套行波磁场发生器仅仅是为了增大钢液流速,提升钢液的循环流量。但其无法解决钢
包顶渣层覆盖钢液面导致钢液裸露面减小,降低脱碳、脱硫效率的问题。同时专利“CN101302571A”公开的浸渍管上行波磁场发生器只能在钢液有循环流动时促进流动速度加快,一旦钢包底吹堵塞,钢液处于静止状态时,行波磁场发生器就会失去作用,真空精炼无法进行,造成生产中断。
中国专利“一种直筒型真空精炼装置及其使用方法”(申请号201210302397.0)提供一种直筒型真空精炼装置,在真空室下部联接单个直筒型浸渍管,浸渍管的内径和真空室内径相同,在环流管内壁圆周上交叉布置单层或多层吹气系统,钢包底部偏心位置布置透气砖。环流管上布置的吹气系统分为若干单元分段独立控制流量。在真空精炼过程采用钢包底部吹气和环流管上吹气来驱动钢水在钢包与真空室之间循环流动,同时通过钢包底部吹气和环流管吹起的不同组合来加快脱硫脱碳过程。该精炼装置采用钢包底部吹气和环流管上吹气来驱动钢水在钢包与真空室之间循环流动,如果钢包底吹砖堵塞或由于钢流紊乱致底吹气偏离浸渍管,将导致精炼过程中断。另外,该精炼装置脱碳时,环流管上的喷嘴吹气量控制为半边强吹,另半边弱吹,将钢包渣吹向真空室的一边,这容易使有渣的一边真空室耐材腐蚀严重。
发明内容
为克服现有技术存在的问题,本发明的目的是提供一种单浸渍管真空精炼装置,该装置改变了现有真空精炼装置的钢水循环方式,克服了钢包底吹砖堵塞或由于钢流紊乱致底吹气偏离单浸渍管而导致精炼过程中断问题,同时也减少了真空室耐材腐蚀问题,还降低了精炼成本。
为解决上述技术问题,本发明提供一种单浸渍管真空精炼装置,包括真空室和浸渍管,真空精炼时浸渍管插入钢包的钢水中,其特征在于,在所述单浸渍管周向设置吹气喷嘴,氩气通过单浸渍管内壁上的吹气喷嘴吹入浸渍管;所述吹气喷嘴分层设置、独立控制,同一层的喷嘴分组独立控制;所述吹气喷嘴分层设置、独立控制,同一层的喷嘴分组独立控制;真空精炼过程通过加大浸渍管喷嘴的吹气量,使钢液形成一个沿真空室四周上升,沿真空室中心下降的环流,实现钢水深脱碳、深脱硫。调节可独立控制的喷嘴吹气量,形成不同的吹气组合来控制真空过程钢水的流动状态以及真空室钢液面上钢包渣的状态去除夹杂物。
本发明还提供一种单浸渍管真空精炼装置的精炼方法,首先将浸渍管缓慢插
入钢包渣中,抽真空将钢包渣缓慢吸入浸渍管内,尽可能将钢包渣吸入浸渍管内,继续插入浸渍管进钢水中,然后加大环流管上的所有喷嘴的吹气量,使钢液形成一个沿真空室四周上升,沿真空室中心下降的环流。调节沿浸渍管周向分段独立控制的喷嘴吹气量,形成各种吹气组合方式来控制真空过程钢水的流动状态以及真空室钢液面上钢包渣的状态,实现钢水在真空下的深脱碳、深脱硫、去除夹杂物。
在脱碳期,沿浸渍管周向布置的喷嘴全部强吹气,驱动钢液由真空室四周上升,由中心区域下降,钢包渣聚集在真空室中心并充分利用钢液表面高氧化性渣中的氧进一步深脱碳。在脱硫期通过加入一定量的石灰(或预熔精炼渣)和铝粒与真空室钢液面上的顶渣反应形成钙铝系脱硫渣系,喷嘴全部强吹气,驱动钢液由真空室四周上升,由中心区域下降,让真空室中钢液与脱硫渣进行充分接触反应,实现真空下的深脱硫。精炼后期将环流管吹气量改为一侧稍大、一侧很小,控制钢水循环不卷入真空室表面渣,促进钢中夹杂物碰撞上浮被表面渣吸收。
本发明的设计思想是:
本发明在真空室下部联接单个直筒型圆浸渍管,浸渍管的内径和真空室内径相同,在浸渍管内壁圆周上交叉设置单层或多层吹气喷嘴。吹气喷嘴分若干单元独立控制吹气量,每个单元由若干个吹气喷嘴组成。在真空精炼时,先将浸渍管插入钢渣中抽真空将钢包渣吸入浸渍管内,再降低浸渍管插入钢水中,然后加大所有喷嘴的吹气量,使钢液形成一个沿真空室四周上升,沿中心下降的环流,该环流促使钢包渣聚集在真空室中心钢液表面,成为钢液后续脱碳的部分氧源和脱硫基础硫容量熔渣。后续真空精炼过程各阶段通过分组独立调控浸渍管喷嘴的吹气流量,使钢液在真空室内形成各种不同的循环流动状态、流动强度及其组合,实现钢液深脱碳、深脱硫、造功能渣、钢包顶渣改质和去除夹杂等各种精炼冶金功能。本发明的深脱碳,充分利用聚集在真空室中心钢液表面的高氧化性钢包渣中的氧进一步深脱碳,既能深脱碳,又可降低钢包渣的氧化性,为下一步深脱硫创造条件,还能节约精炼成本。在脱硫期加入一定量的石灰(或预熔精炼渣)和铝粒与真空室钢液面上的钢包渣反应形成钙铝系脱硫渣系,喷嘴全部强吹气,驱动钢液由真空室四周上升,由中心区域下降,让真空室中钢液与脱硫渣进行充分接触反应,实现真空下的深脱硫。由于脱硫期脱硫渣系位于真空室中心,减少了
真空室内壁耐材的腐蚀。在精炼末期将沿浸渍管周向布置的喷嘴组吹入相同或不同的较小气量,控制钢液弱循环,促进钢中夹杂物碰撞上浮被表面渣吸收,进一步去除钢液中的夹杂物。
与现有技术相比,本发明具有以下优点。
中国专利201210302397.0虽然也是采用单浸渍管,但其依靠钢包透气砖底吹形成环流,钢液沿浸渍管一侧上升,沿浸渍管另一侧下降,对浸渍管内壁冲刷较大,降低了浸渍管寿命。该专利还存在一个重大缺陷,如果钢包底吹砖堵塞或由于钢流紊乱致底吹气偏离浸渍管,将导致精炼过程中断。该专利在浸渍管也设置吹气喷嘴,但其主要用于脱碳、脱硫工序。其脱碳是将钢包渣向一侧吹开,充分裸露钢液面后吹氧或添加氧化剂,这样会带来两个问题,一方面增加精炼成本,另一方面,钢包渣一侧的浸渍管内壁耐材易腐蚀,降低精炼装置寿命。该发明脱硫期间底吹为强吹,浸渍管周围的环流管全部为弱吹,底吹为强吹将使钢液形成沿浸渍管一侧上升,沿另一侧下降的环流,环流管全部为弱吹将使钢液形成沿真空室四周上升,沿真空室中心下降的环流,这样将使环流紊乱,严重时底吹气偏离浸渍管,将导致精炼过程中断。
本发明提供的单浸渍管真空精炼装置,通过浸渍管上所有喷嘴的强吹,使钢液形成一个沿真空室四周上升,沿真空室中心下降的环流。钢液沿真空室四周上升时,由于浸渍管四周喷嘴喷出的气体形成气幕,减少了钢液对浸渍管内壁的冲刷,提高了浸渍管寿命。本发明的脱碳,不需要吹氧或添加额外的氧化剂,而是利用聚集在真空室中心钢液表面的高氧化性钢包渣中的氧进一步深脱碳,这既能脱碳,又可降低钢包渣的氧化性,为下一步脱硫创造条件,还能节约精炼成本。本发明没有底吹,避免了底吹和环吹引起的环流紊乱问题的发生。本发明在精炼后期通过加入一定量的渣料和脱氧剂与真空室钢液面上的顶渣一并进行组合搅拌,可实现对钢包顶渣的目标改质。本发明在精炼末期将沿浸渍管周向布置的喷嘴组吹入相同较小气量或一侧较大另一侧较小气量,控制钢液弱循环,促进钢中夹杂物碰撞上浮被表面渣吸收,可进一步去除钢液中的夹杂物。
下面结合附图对本发明详细说明:
图1:单浸渍管真空精炼装置钢液环流纵向剖视示图。
图2:单浸渍管真空精炼装置吸渣示意图。
图1:1-浸渍管,2-真空室,3-钢液环流,4-钢包渣、5-法兰。
图2中:1-浸渍管,4-钢包渣,6-钢包,7-钢液。
为验证本发明精炼装置的脱碳、脱硫效果,用中国专利201210302397.0和本发明精炼装置在某钢厂进行了多炉次对比试验,两者脱碳、脱硫效果相当。
下面详细介绍本发明的实施方法.
实施例1
单浸渍管真空精炼装置按如下步骤进行精炼:
(1)、钢水精炼时,先将钢包吊至钢包车上面,钢包车开进单浸渍管真空精炼装置处理工位,然后将浸渍管插入钢包渣中,抽真空吸渣,尽量多吸入钢包渣。
(2)、将浸渍管插入钢水中,浸渍管插入深度400mm,开启浸渍管环流管上的喷嘴阀门,各喷嘴吹气量相等,总吹气流量控制在吨钢13NL/min。
(3)、抽真空使3min后真空度降73Pa。通过真空室摄像图观察真空室钢液面顶渣情况,进一步调整喷嘴总吹气流量至吨钢18NL/min。
(4)、脱碳进行10min后,浸渍管上环流管吹气总流量控制在吨钢28Nl/min。
(5)、脱碳进行到15min后进行脱硫。先通过加料装置加入脱氧剂铝粒2.4kg/t钢,3min后,在取样位置定氧,钢水活度氧为0.32ppm;再通过喷枪喷吹石灰6.08kg/t钢;喷吹完石灰后6min,调小浸渍管上环流管吹气流量,浸渍管一侧半周区域环流管各喷嘴吹气量相等,总吹气流量调整至吨钢15NL/min,相对一侧半周区域环流管各喷嘴吹气量相等,总吹气流量调整至吨钢5NL/min,钢水在循环6min后,关闭钢包底吹,破空,在取样位置取样测温。
实施例2
单浸渍管真空精炼装置按如下步骤进行精炼:
(1)、钢水精炼时,先将钢包吊至钢包车上面,钢包车开进单浸渍管真空精炼装置处理工位,然后将浸渍管插入钢包渣中,抽真空吸渣,尽量多吸入钢包渣。
(2)、将浸渍管插入钢水中,浸渍管插入深度400mm,开启浸渍管环流管上的喷嘴阀门,各喷嘴吹气量相等,总吹气流量控制在吨钢15NL/min。
(3)、抽真空使3min后真空度降70Pa。通过真空室摄像图观察真空室钢液面顶渣情况,进一步调整喷嘴总吹气流量至吨钢20NL/min。
(4)、脱碳进行11min后,浸渍管上环流管吹气总流量控制在吨钢30Nl/min。
(5)、脱碳进行到16min后进行脱硫。先通过加料装置加入脱氧剂铝粒2.5kg/t钢,3.5min后,在取样位置定氧,钢水活度氧为0.30ppm;再通过喷枪喷吹石灰6.12kg/t钢;喷吹完石灰后7min,调小浸渍管上环流管吹气流量,浸渍管各喷嘴吹气量相等,总吹气流量调整至吨钢8NL/min,钢水在循环7min后,关闭钢包底吹,破空,在取样位置取样测温。
实施效果:
在某钢厂用中国专利201210302397.0进行了86炉真空精炼试验,用本发明进行了23炉真空精炼试验,试验结果如下。
采用中国专利201210302397.0精炼的86炉钢试验结果是,进真空精炼装置前初始钢液中活度氧(a[O])在0.0459~0.0823%之间,平均为0.0589%,[C]在0.025~0.050%之间,平均为0.032%,[S]在0.004~0.009%之间,平均为0.0069%,在真空精炼装置真空精炼30~45min(平均为39min)的精炼周期内,吨钢石灰加入量为3~8kg/t-1,平均为5.32kg/t-1,吨钢铝粒加入量为0.8~3.1kg/t-1,平均为1.78kg/t-1,真空精炼终点钢液[C]在0.0005~0.0011%之间,平均为0.0008%;钢液[S]含量在0.0008~0.0021%,平均为0.0013%,脱硫率在73~87%,平均脱硫率达到81.1%。
采用本发明精炼装置精炼的23炉钢试验结果是,进单浸渍管真空精炼装置前初始钢液中活度氧(a[O])在0.0572~0.0792%之间,平均为0.0578%,[C]在0.023~0.048%之间,平均为0.031%,[S]在0.005~0.008%之间,平均为0.0062%,在单浸渍管真空精炼装置真空精炼30~45min(平均为42min)的精炼周期内,吨钢石灰加入量为3~8kg/t-1,平均为5.64kg/t-1,吨钢铝粒加入量为1.1~3.2kg/t-1,平均为1.92kg/t-1,真空精炼终点钢液[C]在0.0007~0.0013%之间,平均为0.0009%;钢液[S]含量在0.0007~0.0025%,平均为0.0014%,脱硫率在69~82%,平均脱硫率达到75.2%。
由此可见,本发明精炼装置和中国专利201210302397.0的脱碳、脱硫效果相当。
Claims (7)
- 一种单浸渍管真空精炼装置,包括真空室和浸渍管,真空精炼时浸渍管插入钢包的钢液中,其特征在于,所述单浸渍管周向分层设置吹气喷嘴,同一层的喷嘴分组设置,各组喷嘴吹气量独立控制,氩气通过单浸渍管内壁上的吹气喷嘴吹入浸渍管。
- 如权利要求1所述的单浸渍管真空精炼装置的使用方法,其特征在于,首先抽真空将钢包渣尽可能吸入浸渍管内,再将浸渍管插入钢液中,然后加大环流管上的所有喷嘴的吹气量,使钢液形成一个沿真空室四周上升,沿真空室中心下降的环流,调节沿浸渍管周向分段独立控制的喷嘴吹气量,形成各种吹气组合方式来控制真空过程钢液的流动状态以及真空室钢液面上钢包渣的状态,实现钢液在真空下的深脱碳、深脱硫、去除夹杂物。
- 如权利要求2所述单浸渍管真空精炼装置的使用方法,其特征在于沿浸渍管周向布置的所有喷嘴组同时全部吹入相同的气量,驱动钢液在真空室形成周边上升,由中心区域下降的环流,并使钢包渣聚集在真空室钢液面中心,通过喷嘴吹气量的调节,可以实现不同的循环强度和熔渣、钢液间反应强度,充分利用钢液表面高氧化性渣中的氧进一步深脱碳。
- 如权利要求2所述单浸渍管真空精炼装置的使用方法,其特征在于,在精炼后期通过加入一定量的石灰或预熔精炼渣和铝粒与真空室钢液面上的顶渣反应形成钙铝系脱硫渣系,喷嘴全部强吹气,进行高强度搅拌,驱动钢液钢液与脱硫渣进行充分接触反应,实现真空下的深脱硫。
- 如权利要求2所述单浸渍管真空精炼装置的使用方法,其特征在于,在精炼后期通过加入一定量的渣料和脱氧剂与真空室钢液面上的顶渣一并进行组合搅拌,实现对钢包顶渣的目标改质。
- 如权利要求2所述单浸渍管真空精炼装置的使用方法,其特征在于,在精炼末期将沿浸渍管周向布置的喷嘴组吹入相同的较小气量,控制钢液弱循环,促进钢中夹杂物碰撞上浮被表面渣吸收,进一步去除钢液中的夹杂物。
- 如权利要求2所述单浸渍管真空精炼装置的使用方法,其特征在于,在精炼末期将沿浸渍管周向布置的喷嘴组吹入的较小气量,其中一侧喷嘴组吹气量稍大、另一侧较小,控制钢液弱循环,促进钢中夹杂物碰撞上浮被表面渣吸收,进一步去除钢液中的夹杂物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310498891.3 | 2013-10-23 | ||
CN201310498891.3A CN103525982B (zh) | 2013-10-23 | 2013-10-23 | 一种单浸渍管真空精炼装置及其使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015058660A1 true WO2015058660A1 (zh) | 2015-04-30 |
Family
ID=49928327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/088905 WO2015058660A1 (zh) | 2013-10-23 | 2014-10-20 | 一种单浸渍管真空精炼装置及其使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103525982B (zh) |
WO (1) | WO2015058660A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097526A (zh) * | 2018-10-26 | 2018-12-28 | 中冶赛迪工程技术股份有限公司 | 一种带感应加热的单嘴真空精炼炉及其精炼方法 |
CN115478133A (zh) * | 2022-10-08 | 2022-12-16 | 首钢股份公司迁安钢铁公司 | 一种rh烘烤装置及方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103525982B (zh) * | 2013-10-23 | 2015-04-01 | 马钢(集团)控股有限公司 | 一种单浸渍管真空精炼装置及其使用方法 |
CN104988285B (zh) * | 2015-07-13 | 2017-07-18 | 北京科技大学 | 一种单管式多功能真空精炼系统及其方法 |
CN108546799B (zh) * | 2018-03-16 | 2020-06-23 | 马鞍山钢铁股份有限公司 | 一种基于直筒真空精炼装置生产超低碳钢的方法 |
CN115232923B (zh) * | 2022-07-27 | 2023-06-02 | 辽宁科技大学 | 一种vd炉精炼钢液的方法 |
CN115305314A (zh) * | 2022-08-18 | 2022-11-08 | 日照钢铁控股集团有限公司 | 一种薄板坯连铸连轧产线lf-rh双联超低碳钢生产方法 |
CN115305316A (zh) * | 2022-08-18 | 2022-11-08 | 日照钢铁控股集团有限公司 | 一种薄板坯连铸连轧产线rh单联超低碳钢生产方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153212A (ja) * | 1986-12-16 | 1988-06-25 | Nkk Corp | 真空脱ガス装置 |
CN102816896A (zh) * | 2012-08-24 | 2012-12-12 | 马钢(集团)控股有限公司 | 直筒型真空精炼装置及其使用方法 |
CN202830077U (zh) * | 2012-08-24 | 2013-03-27 | 马钢(集团)控股有限公司 | 直筒型真空精炼装置 |
CN103525982A (zh) * | 2013-10-23 | 2014-01-22 | 马钢(集团)控股有限公司 | 一种单浸渍管真空精炼装置及其使用方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153213A (ja) * | 1986-07-25 | 1988-06-25 | Asahi Glass Co Ltd | ガス吹込み浸漬管及びガス吹込み方法 |
JPH032314A (ja) * | 1989-05-31 | 1991-01-08 | Nippon Steel Corp | 溶融金属処理用浸漬管 |
CN2432219Y (zh) * | 2000-06-09 | 2001-05-30 | 北京科技大学 | 多功能复吹单嘴精炼炉 |
CN101302571A (zh) * | 2008-07-03 | 2008-11-12 | 山西太钢不锈钢股份有限公司 | 提高单嘴精炼炉循环流量的方法 |
CN101792845B (zh) * | 2009-11-20 | 2012-10-03 | 北京科大三泰科技发展有限公司 | 一种用单嘴精炼炉冶炼超低碳钢的方法 |
CN102312052A (zh) * | 2011-10-18 | 2012-01-11 | 马钢(集团)控股有限公司 | 扁平单管型真空精炼装置 |
CN202717798U (zh) * | 2012-06-29 | 2013-02-06 | 秦皇岛首秦金属材料有限公司 | 一种在一侧带有提升氩气装置的单嘴精炼炉浸渍管 |
-
2013
- 2013-10-23 CN CN201310498891.3A patent/CN103525982B/zh active Active
-
2014
- 2014-10-20 WO PCT/CN2014/088905 patent/WO2015058660A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153212A (ja) * | 1986-12-16 | 1988-06-25 | Nkk Corp | 真空脱ガス装置 |
CN102816896A (zh) * | 2012-08-24 | 2012-12-12 | 马钢(集团)控股有限公司 | 直筒型真空精炼装置及其使用方法 |
CN202830077U (zh) * | 2012-08-24 | 2013-03-27 | 马钢(集团)控股有限公司 | 直筒型真空精炼装置 |
CN103525982A (zh) * | 2013-10-23 | 2014-01-22 | 马钢(集团)控股有限公司 | 一种单浸渍管真空精炼装置及其使用方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097526A (zh) * | 2018-10-26 | 2018-12-28 | 中冶赛迪工程技术股份有限公司 | 一种带感应加热的单嘴真空精炼炉及其精炼方法 |
CN115478133A (zh) * | 2022-10-08 | 2022-12-16 | 首钢股份公司迁安钢铁公司 | 一种rh烘烤装置及方法 |
CN115478133B (zh) * | 2022-10-08 | 2024-05-24 | 首钢股份公司迁安钢铁公司 | 一种rh烘烤装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103525982A (zh) | 2014-01-22 |
CN103525982B (zh) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015058660A1 (zh) | 一种单浸渍管真空精炼装置及其使用方法 | |
CN102010934B (zh) | 一种用于无取向电工钢的rh精炼脱硫工艺 | |
JP5082417B2 (ja) | 極低硫低窒素高清浄度鋼の溶製方法 | |
JP6838419B2 (ja) | 高窒素低酸素鋼の溶製方法 | |
JP2015042777A (ja) | 高窒素鋼の溶製方法 | |
CN110819768A (zh) | 一种用于低碳铝镇静钢提高rh真空槽化冷钢效率的方法 | |
CN104988285B (zh) | 一种单管式多功能真空精炼系统及其方法 | |
CN105624367B (zh) | 一种控制钢水氮含量的精炼装置及方法 | |
CN104561452A (zh) | 一种底喷粉单嘴真空脱气精炼钢液的装置及方法 | |
CN107299192B (zh) | 一种精炼旋转喷吹的脱氧装置及脱氧方法 | |
US9809868B2 (en) | Straight barrel type vacuum refining device and method for use the same | |
CN109468426B (zh) | 铁水罐脱硫脱硅和转炉少渣冶炼低磷硫钢的方法 | |
CN110616293A (zh) | 一种向钢水中加入稀土的方法 | |
CN108546799B (zh) | 一种基于直筒真空精炼装置生产超低碳钢的方法 | |
CN106319156A (zh) | 一种提高脱碳效果的rh精炼装置及其控制方法 | |
CN109576447B (zh) | 一种促进钢水深脱碳的rh精炼装置和方法 | |
JP4345769B2 (ja) | 極低硫高清浄鋼の溶製方法 | |
CN115287407B (zh) | 一种控制连铸浇余回收冒渣喷溅的方法 | |
CN202830077U (zh) | 直筒型真空精炼装置 | |
CN203096117U (zh) | Rh真空精炼装置的一体式浸渍管 | |
CN214458149U (zh) | 一种rh真空室高效无污染喷粉装置 | |
JP2023020853A (ja) | 水素ガスを用いてrh精錬効果を向上させる方法 | |
CN203295549U (zh) | 一种可缩短不锈钢精炼时间的aod炉 | |
CN101760584A (zh) | 一种便于深脱硫真空处理的rh-ds炉 | |
JP6358039B2 (ja) | 溶鋼の脱硫方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14856408 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14856408 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14856408 Country of ref document: EP Kind code of ref document: A1 |