WO2014027684A1 - 心筋梗塞の修復再生を誘導する多能性幹細胞 - Google Patents

心筋梗塞の修復再生を誘導する多能性幹細胞 Download PDF

Info

Publication number
WO2014027684A1
WO2014027684A1 PCT/JP2013/071981 JP2013071981W WO2014027684A1 WO 2014027684 A1 WO2014027684 A1 WO 2014027684A1 JP 2013071981 W JP2013071981 W JP 2013071981W WO 2014027684 A1 WO2014027684 A1 WO 2014027684A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
negative
pluripotent stem
muse
Prior art date
Application number
PCT/JP2013/071981
Other languages
English (en)
French (fr)
Inventor
正順 吉田
信也 湊口
真理 出澤
Original Assignee
株式会社Clio
国立大学法人岐阜大学
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/421,754 priority Critical patent/US9844570B2/en
Priority to DK13879518.2T priority patent/DK2886123T3/da
Application filed by 株式会社Clio, 国立大学法人岐阜大学, 国立大学法人東北大学 filed Critical 株式会社Clio
Priority to AU2013303492A priority patent/AU2013303492B2/en
Priority to ES13879518T priority patent/ES2767182T3/es
Priority to IN1616DEN2015 priority patent/IN2015DN01616A/en
Priority to EP13879518.2A priority patent/EP2886123B1/en
Priority to SG11201501185WA priority patent/SG11201501185WA/en
Priority to CN201380043649.5A priority patent/CN104582711B/zh
Priority to CA2882239A priority patent/CA2882239C/en
Priority to JP2014530568A priority patent/JP5968442B2/ja
Priority to PL13879518T priority patent/PL2886123T3/pl
Priority to KR1020157006629A priority patent/KR101730052B1/ko
Priority to EP19202650.8A priority patent/EP3659612B1/en
Publication of WO2014027684A1 publication Critical patent/WO2014027684A1/ja
Priority to US15/802,899 priority patent/US10376544B2/en
Priority to US16/452,376 priority patent/US10639335B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/03Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from non-embryonic pluripotent stem cells

Definitions

  • the present invention relates to a cell preparation in regenerative medicine. More specifically, the present invention relates to a cell preparation containing pluripotent stem cells effective for repair and regeneration of heart tissue damaged by myocardial infarction.
  • Myocardial infarction caused by myocardial necrosis caused by coronary artery occlusion causes acute heart death and chronic heart death, and is therefore an important issue to be solved in clinical medicine.
  • the mortality rate is as high as 35-50%, and 60-70% of deaths are deaths within 1-2 hours after onset.
  • the acute phase is safe, if the myocardial necrosis of the first attack is large, there is a high risk of recurrence of myocardial infarction and associated heart failure. Therefore, in the treatment of myocardial infarction, prompt treatment is required when a seizure occurs, and it is important to keep the size of the necrotized myocardium, that is, the infarct size as small as possible.
  • myocardial infarction such as severe large myocardial infarction
  • recurrent therapy such as thrombolysis and revascularization is performed for myocardial infarction.
  • the cardiomyocytes are damaged due to reperfusion injury or the like, and resuscitation therapy alone does not necessarily provide a satisfactory therapeutic effect.
  • drugs that are expected to have a myocardial protective effect as an adjunct therapy for resuscitation therapy, but no satisfactory drugs have yet been found.
  • severe large myocardial infarction if the necrotic myocardial tissue is regenerated and left ventricular remodeling can be improved, the prognosis is improved.
  • iPS cells have been reported as adult-derived pluripotent stem cells.
  • a specific gene or a specific gene is identified in the dermal fibroblast fraction, which is a mesenchymal cell.
  • iPS cells have a high tumorigenic ability, and therefore there is an extremely high hurdle for clinical application.
  • SSEA-3 Stage-Specific Embryonic Antigen-3
  • Muse cells Multilineage-differentiating Stress Enduring cells; Muse cells
  • Muse cells Muse cells
  • Muse cells can be concentrated by stimulating the mesenchymal cell fraction with various stresses.
  • Patent Document 2 Non-Patent Document 3
  • the expected therapeutic effect can be obtained by using Muse cells for prevention and / or treatment of myocardial infarction such as severe large myocardial infarction and accompanying heart failure.
  • An object of the present invention is to provide a new medical use using pluripotent stem cells (Muse cells) in regenerative medicine. More specifically, an object of the present invention is to provide a cell preparation for treating myocardial infarction (especially severe large myocardial infarction) and preventing and / or treating heart failure associated therewith, comprising Muse cells. .
  • the present inventors used Japanese white rabbits to administer Muse cells by intravenous injection to myocardial infarction induced by coronary ischemia (30 minutes). It has been found that it accumulates in the myocardial tissue and differentiates into myocardial cells within this damaged myocardial tissue, leading to reduction of infarct size and improvement or recovery of cardiac function, thus completing the present invention.
  • the present invention is as follows.
  • a cell preparation for treating myocardial infarction comprising SSEA-3-positive pluripotent stem cells isolated from mesenchymal tissue or cultured mesenchymal cells in a living body.
  • the cell preparation according to [1], wherein the SSEA-3-positive pluripotent stem cell by external stress stimulation contains a concentrated cell fraction.
  • the pluripotent stem cell is a pluripotent stem cell having all of the following properties: (I) low or no telomerase activity; (Ii) has the ability to differentiate into cells of any germ layer of the three germ layers; (Iii) no neoplastic growth; and (iv) self-renewal ability.
  • Muse cells are administered to a subject suffering from myocardial infarction, particularly severe large myocardial infarction, from a vein or the like to selectively accumulate in a damaged myocardial tissue, and the Muse cell differentiates into myocardium in the tissue.
  • Myocardial infarct size can be dramatically reduced by the mechanism of myocardial tissue regeneration.
  • part of a rabbit myocardial infarction model is shown.
  • the infarct site was determined by triphenyltetrazolium chloride (TTC) staining method. A non-stained area surrounded by a broken line is an infarcted part.
  • TTC triphenyltetrazolium chloride
  • the right panel is a tissue section 14 days after reperfusion where reperfusion was performed 30 minutes after ischemia and Muse cells were administered intravenously 24 hours after reperfusion.
  • the left panel is a tissue section in which physiological saline is intravenously administered instead of Muse cells. Muse cell transplantation significantly reduced the infarct site.
  • the infarct site was determined by the TTC staining method, and the infarct size was calculated as the ratio (%) of the infarct region to the ischemic region.
  • staining method is shown. In this MT staining method, the tissue composed of living cells is stained red, while the tissue in the infarcted area that is made into collagenous fibers is not stained and is observed pale.
  • MT Masson trichrome
  • FIG. 5 shows the differentiation of Muse cells into cardiomyocytes in heart tissue. Infarcted sites and non-infarcted sites are distinguished from each other using a broken line in the left panel as a boundary line. Cardiomyocytes were stained red by rhodamine phalloidin staining (middle panel).
  • the cardiac function after Muse cell transplantation shows the results of examining changes in blood pressure over time ( ⁇ dp / dt; p: blood pressure, t: time) as an index.
  • the upper panel shows the measurement result of the cardiac contraction function (+ dp / dt), and the lower panel shows the measurement result of the cardiac expansion function ( ⁇ dp / dt).
  • 2D shows a 2D echocardiogram of the left ventricular parasternal left ventricular long axis.
  • the left panel shows an image of the left ventricle of a rabbit administered with saline (control), and the right panel shows an image of the left ventricle of a rabbit transplanted with Muse cells.
  • LVDd left ventricular end diastolic diameter
  • EF ejection rate
  • FS left ventricular diameter shortening rate
  • FIG. 9 corresponds to the result shown in FIG. 8 and shows photographs in which one is arbitrarily selected from the samples of each transplant group.
  • the result of having examined the differentiation state of the Muse cell accumulated in the infarct site is shown.
  • the presence or absence of expression of troponin I known as a myocardial marker was examined by fluorescent staining in the same manner as in FIG. Green indicates GFP staining (Muse cells), red indicates troponin I staining, and blue indicates DAPI staining (stains cell nuclei).
  • LVDd left ventricular end diastolic diameter
  • LVDs left ventricular end systolic diameter
  • EF ejection rate
  • FS left ventricular diameter shortening rate
  • the present invention relates to a cell preparation for treating myocardial infarction comprising SSEA-3 positive pluripotent stem cells (Muse cells).
  • SSEA-3 positive pluripotent stem cells Muse cells
  • the present invention aims to treat myocardial infarction, particularly severe large myocardial infarction, and accompanying heart failure using a cell preparation containing SSEA-3-positive pluripotent stem cells (Muse cells).
  • myocardial infarction refers to myocardial necrosis caused by occlusion of a coronary artery.
  • Heart failure refers to a syndrome caused by a failure of cardiac function that pushes out a sufficient amount of blood flow, resulting in decreased cardiac output and associated increase in venous pressure, and the various clinical symptoms that result. included.
  • Myocardial infarction causes acute heart death and chronic heart death.
  • the mortality rate is as high as 35-50%, and 60-70% of deaths are deaths within 1-2 hours after onset.
  • the acute phase is safe, if the myocardial necrosis of the first attack is large, the risk of recurrence of myocardial infarction is high. Therefore, in the treatment of myocardial infarction, prompt treatment is required when a seizure occurs, and it is important to keep the size of the necrotic myocardium, that is, the infarct size as small as possible.
  • Such classification includes, for example, classification by time course, morphological classification (intramyocardial range, site, size of necrosis, etc.), myocardial necrosis, ventricular reconstruction after infarction, hemodynamic classification (Related to treatment, prognosis, etc.), classification by clinical severity, etc.
  • morphological classification intramyocardial range, site, size of necrosis, etc.
  • myocardial necrosis ventricular reconstruction after infarction
  • hemodynamic classification Related to treatment, prognosis, etc.
  • classification by clinical severity etc.
  • a myocardial infarction having a high degree of severity and having suffered from myocardial necrosis in a wider area is particularly referred to as “severe large myocardial infarction.
  • severe large myocardial infarction For example, complete occlusion of the proximal part of the left coronary artery.
  • left ventricular remodeling after myocardial infarction refers to hypertrophy and stroma (extracellular matrix) of myocardial cells at the non-infarcted site as a compensation for reduced cardiac function due to non-thinning of the infarcted site after myocardial infarction This refers to a series of changes such as increase in heart rate and enlargement of the heart lumen. Since long-term prognosis after myocardial infarction correlates with the degree of left ventricular dysfunction, suppressing left ventricular remodeling is essential to maintain and preserve left ventricular function.
  • the cell preparation of the present invention can be treated when the time required for reperfusion is very long, or when reperfusion and catheter therapy are not successful. That is, according to the present invention, a cell preparation containing Muse cells for the treatment of myocardial infarction based on myocardial tissue regeneration, including prevention of heart failure due to left ventricular remodeling is provided. .
  • Pluripotent stem cells The pluripotent stem cell used in the cell preparation of the present invention was found by Mr. Dezawa, one of the present inventors, in the human body and named it “Muse (Multilineage-differentiating Stress Ending) cell”. It is a cell. Muse cells can be obtained from skin tissues such as bone marrow fluid and dermal connective tissue, and are also scattered in connective tissues of each organ. In addition, this cell is a cell having the properties of both pluripotent stem cells and mesenchymal stem cells. For example, the cell surface markers “SSEA-3 (Stage-specific embryonic antigen-3)” and “ Identified as "CD105" double positive.
  • SSEA-3 Serial-specific embryonic antigen-3
  • Muse cells or cell populations containing Muse cells can be separated from living tissues using, for example, these antigen markers as indicators.
  • Muse cells are stress-resistant and can be concentrated from mesenchymal tissues or cultured mesenchymal cells by various stress stimuli.
  • a cell fraction in which Muse cells are concentrated by stress stimulation can also be used. Details such as the separation method, identification method, concentration method, and characteristics of Muse cells are disclosed in International Publication No. WO2011 / 007900.
  • pluripotent stem cells separated from living mesenchymal tissue or cultured mesenchymal tissue using SSEA-3 as an antigen marker which can be used in cell preparations for treating myocardial infarction (Muse cells) or a cell population containing Muse cells may be simply referred to as “SSEA-3 positive cells”.
  • Muse cells or cell populations containing Muse cells can be obtained from living tissue (eg, using antibodies against the cell surface marker SSEA-3 alone, or with antibodies against SSEA-3 and CD105, respectively) From mesenchymal tissue).
  • living body means a living body of a mammal. In the present invention, the living body does not include embryos whose developmental stage is earlier than the fertilized egg or blastocyst stage, but includes embryos in the developmental stage after the blastocyst stage including the fetus and blastocyst.
  • Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats, rabbits, guinea pigs, cats, dogs, sheep, pigs, cows, horses, donkeys, goats, ferrets, etc. It is done.
  • Muse cells used in the cell preparation of the present invention are clearly distinguished from embryonic stem cells (ES cells) and embryonic germ stem cells (EG cells) in that they are derived from living tissues.
  • ES cells embryonic stem cells
  • EG cells embryonic germ stem cells
  • “Mesenchymal tissue” refers to tissues such as bone, cartilage, fat, blood, bone marrow, skeletal muscle, dermis, ligament, tendon, heart, and their connective tissues.
  • Muse cells can be obtained from bone marrow or skin.
  • the present invention aims to provide a cell preparation for the purpose of myocardial regeneration.
  • a cell preparation for the purpose of myocardial regeneration For example, it is preferable to collect a mesenchymal tissue from a living body and separate and use Muse cells from this tissue.
  • the Muse cell used may be autologous to the recipient who receives the cell transplant, or may be another family.
  • a Muse cell or a cell population containing a Muse cell can be separated from a living tissue using, for example, SSEA-3 positive and CD105 positive as an index.
  • human adult skin has various types of stem cells. And are known to contain progenitor cells.
  • Muse cells are not the same as these cells.
  • Such stem cells and progenitor cells include skin-derived progenitor cells (SKP), neural crest stem cells (NCSC), melanoblast (MB), perivascular cells (PC), endothelial progenitor cells (EP), adipose-derived stem cells (ADSC). ).
  • Muse cells can be isolated using “non-expression” of a marker unique to these cells as an index.
  • Muse cells are CD34 (EP and ADSC markers), CD117 (c-kit) (MB markers), CD146 (PC and ADSC markers), CD271 (NGFR) (NCSC markers), NG2 (PC marker), vWF factor (von Willebrand factor) (EP marker), Sox10 (NCSC marker), Snai1 (SKP marker), Slug (SKP marker), Tyrp1 (MB marker), and At least one of 11 markers selected from the group consisting of Dct (MB marker), for example 2, 3, 4, 5, 6, 7, 8, 9, 10 The non-expression of individual or eleven markers can be separated into indicators.
  • non-expression of CD117 and CD146 can be separated as an index
  • non-expression of CD117, CD146, NG2, CD34, vWF and CD271 can be separated as an index
  • the non-expression of 11 markers can be separated as an index.
  • the Muse cell having the above characteristics used in the cell preparation of the present invention is as follows: (I) low or no telomerase activity; (Ii) has the ability to differentiate into cells of any germ layer of the three germ layers; It may have at least one property selected from the group consisting of (iii) showing no neoplastic growth; and (iv) having a self-renewal capability.
  • the Muse cell used in the cell preparation of the present invention has all the above properties.
  • telomerase activity is low or absent means that, for example, when telomerase activity is detected using TRAPEZE XL telomerase detection kit (Millipore), it is low or cannot be detected.
  • “Low” telomerase activity means, for example, telomerase activity comparable to that of human fibroblasts, or telomerase activity of 1/5 or less, preferably 1/10 or less, compared to Hela cells. It means that Regarding (ii) above, the Muse cell has the ability to differentiate into three germ layers (endoderm, mesodermal, and ectoderm) in vitro and in vivo, for example, induction culture in vitro Can differentiate into skin, liver, nerve, muscle, bone, fat and the like. In addition, when transplanted to the testis in vivo, it may show the ability to differentiate into three germ layers.
  • Muse cells proliferate at a growth rate of about 1.3 days in suspension culture, but stop growing in about 10 days. Further, when transplanted to the testis, the Muse cells have cancer for at least half a year. It has the property of not becoming Moreover, about said (iv), a Muse cell has self-renewal (self-replication) ability.
  • self-renewal refers to culturing cells contained in an embryoid body-like cell cluster obtained by suspension culture of Muse cells, and forming an embryoid body-like cell cluster again.
  • the self-renewal may be repeated once or multiple times.
  • the cell fraction containing Muse cells used in the cell preparation of the present invention gives an external stress stimulus to living mesenchymal tissue or cultured mesenchymal cells, and is a cell other than cells resistant to the external stress.
  • a cell fraction enriched with SSEA-3 positive and CD105 positive pluripotent stem cells having all of the following properties obtained by a method comprising killing cells and collecting surviving cells: Good.
  • Iv has the ability to differentiate into three germ layers;
  • V) exhibits no neoplastic growth; and
  • vi has the ability to self-renew.
  • the external stress includes protease treatment, culture at low oxygen concentration, culture under low phosphate conditions, culture at low serum concentration, culture under low nutrient conditions, culture under exposure to heat shock, low temperature Incubation in freezing, culture in the presence of harmful substances, culture in the presence of active oxygen, culture under mechanical stimulation, culture under shaking treatment, culture under pressure treatment or physical impact Any one or a plurality of combinations may be used.
  • the treatment time with the protease is preferably 0.5 to 36 hours in total to give external stress to the cells.
  • the protease concentration may be a concentration used when peeling cells adhered to the culture vessel, separating the cell mass into single cells, or collecting single cells from the tissue.
  • the protease is preferably a serine protease, aspartic protease, cysteine protease, metalloprotease, glutamic acid protease or N-terminal threonine protease. Further, the protease is preferably trypsin, collagenase or dispase.
  • the Muse cell having the above-described characteristics used in the cell preparation of the present invention accumulates in damaged myocardial tissue (myocardial infarction site) after intravenous administration and differentiates into myocardial cells in the tissue as described later.
  • the infarct size can be reduced, and the cardiac function can be improved or restored to normal (Examples 2 to 4).
  • the cell preparation of the present invention is not limited, but the Muse cell or the cell population containing Muse cell obtained in (1) above is treated with physiological saline or an appropriate buffer (for example, phosphorous). Acid buffered saline).
  • physiological saline or an appropriate buffer for example, phosphorous. Acid buffered saline.
  • the cells may be cultured before cell transplantation and grown until a predetermined cell concentration is obtained.
  • International Publication No. WO2011 / 007900 pamphlet since Muse cells do not become tumors, even if cells collected from living tissue remain undifferentiated, they may become cancerous. Is low and safe.
  • the culture of the collected Muse cells is not particularly limited, but can be performed in a normal growth medium (for example, ⁇ -minimal essential medium ( ⁇ -MEM) containing 10% calf serum).
  • a normal growth medium for example, ⁇ -minimal essential medium ( ⁇ -MEM) containing 10% calf serum.
  • a medium, additives for example, antibiotics, serum
  • Muse cells at a predetermined concentration can be prepared.
  • the cell preparation of the present invention When the cell preparation of the present invention is administered to a human myocardial infarction subject, a few ml of bone marrow fluid is collected from the human iliac bone, for example, after separating Muse cells using the SSEA-3 antigen marker as an index, After increasing the cells by culturing for an appropriate time (eg, 2-3 weeks) until an effective therapeutic amount is reached, autologous Muse cells can be prepared as a cell preparation.
  • Muse cells when using Muse cells in cell preparations, dimethyl sulfoxide (DMSO), serum albumin, etc. are included in the cell preparations to protect the cells, and antibiotics, etc., are included in the cell preparations to prevent bacterial contamination and growth. May be.
  • DMSO dimethyl sulfoxide
  • other pharmaceutically acceptable ingredients for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, physiological saline, etc.
  • Cells or components other than Muse cells contained in mesenchymal stem cells may be contained in the cell preparation.
  • Muse cells can also be used as pharmaceutical compositions containing various additives.
  • the number of Muse cells contained in the cell preparation prepared above is determined so that the desired effect (for example, reduction in infarct size, improvement in cardiac function) can be obtained in the treatment of myocardial infarction.
  • the desired effect for example, reduction in infarct size, improvement in cardiac function
  • it can be adjusted appropriately.
  • a rabbit myocardial infarction model was created and various effects of Muse cell transplantation were examined.
  • Japanese white rabbits of about 2 to 3 kg 5 SSEA3 positive cells were used. By administering at ⁇ 10 5 cells / head, a very excellent effect was obtained.
  • the cell preparation of the present invention can be used a plurality of times (for example, 2 to 10 times) at appropriate intervals (for example, twice a day, once a day, once a week) until a desired therapeutic effect is obtained.
  • the therapeutically effective dose is preferably, for example, 1 ⁇ 10 3 cells to 1 ⁇ 10 6 cells per individual and 1 to 10 doses.
  • the total administration amount in one individual is not limited, but 1 ⁇ 10 3 cells to 1 ⁇ 10 7 , 1 ⁇ 10 4 cells to 5 ⁇ 10 6 cells, 2 ⁇ 10 4 cells to 2 ⁇ 10 6 cells, 5 ⁇ 10 Examples thereof include 4 cells to 1 ⁇ 10 6 cells.
  • Muse cells used in the cell preparation of the present invention have the property of accumulating at the myocardial infarction site as described above. Therefore, in administration of a cell preparation, the administration site of the cell preparation and the type of blood vessel (venous and artery) to be administered are not limited. Suitable veins for administration include, but are not limited to, the ear vein and the jugular vein. In the case of humans, the cubital vein is preferred.
  • the artery suitable for administration is not limited, but a coronary artery is preferable. However, considering cell transport efficiency, early recovery of the subject after surgery, etc., it is preferable to insert a cardiac catheter percutaneously and directly administer the cell preparation to the coronary artery at the infarcted site.
  • the puncture site of the cardiac catheter includes, but is not limited to, the wrist (radial artery), elbow (brachial artery), and groin (femoral artery).
  • the cell preparation of the present invention is intended for treatment of myocardial infarction such as severe large myocardial infarction, and the administration period is assumed to be in the range of several hours to several weeks after ischemia. Therefore, the administration time of the cell preparation of the present invention is not limited, but is preferably within one month at the latest after ischemia. More preferably within 14 days, even more preferably within 7 days, even more preferably within 72 hours, still more preferably within 48 hours, even more preferably within 24 hours, even more preferably within 12 hours, most preferably 6 Within hours. According to the present invention, when the time required for reperfusion is very long, or when reperfusion and catheter therapy are unsuccessful, it can be treated, so it is very useful for the treatment of myocardial infarction.
  • the number of administrations is not particularly limited, and is desired in the treatment of myocardial infarction. It may be appropriately administered until an effect is obtained.
  • the infarct size can be reduced in the subject of myocardial infarction by administering the cell preparation of the present invention.
  • infarct size is defined as the ratio (%) of the infarct region to the ischemic region.
  • the ischemic region is determined using the Evans blue staining method, and the non-ischemic region is stained with this dye.
  • the infarct area was determined using the triphenyltetrazolium chloride (TTC) staining method.
  • TTC triphenyltetrazolium chloride
  • the reduction ratio relative to the control infarct size ie, (control infarct size ⁇ infarction size after cell transplantation) / control infarct size ⁇ 100
  • the infarct size is preferably reduced by 100% with respect to the non-administered group (control) of the cell preparation. More preferably, the reduction is 10 to 90%, even more preferably 20 to 70%, and still more preferably 30 to 50%.
  • the cell preparation of the present invention can improve or restore normal (or normal value) cardiac function after myocardial infarction.
  • “improving” cardiac function means alleviation of various symptoms associated with myocardial infarction and suppression of progression, preferably alleviating symptoms to such an extent that they do not interfere with daily life. Means.
  • “normally recovering” cardiac function means that all symptoms resulting from myocardial infarction return to the state prior to myocardial infarction.
  • the cell preparation of the present invention can be used for the prevention and / or treatment of (chronic) heart failure after myocardial infarction.
  • the index for evaluating the myocardial function is not limited, but generally, changes in blood pressure over time in the left ventricle ( ⁇ dp / dt; p: blood pressure, t: time), left ventricular end-diastolic diameter (Left Ventricular end-Diistic dimension; LVDd), ejection fraction (EF), left ventricular diameter shortening rate (Fractional Shortening; FS), and left ventricular end-systolic diameter (Left VentricularSensitiveL; Can be mentioned.
  • the improvement or recovery of cardiac function by the cell preparation of the present invention can be determined using at least one of the above five indicators.
  • the ejection fraction (EF) which is one of the indices of cardiac contraction function
  • EF ejection fraction
  • Example 1 Preparation of Rabbit Myocardial Infarction Model
  • the experimental protocol using rabbits in this example was approved by the Ethics Committee on Animal Experiments at Gifu University and was published by the National Institutes of Health (NIH). Furthermore, the “Guidelines for the management and use of experimental animals” (revised 1996) was carried out. Specifically, it is as follows. First, Japanese white rabbits (about 2-3 kg / animal) were anesthetized with 30 mg / kg sodium pentobarbital. In rabbits, arterial gas analysis was performed continuously and ventilation conditions were adjusted as appropriate to maintain arterial gas in the physiological range. The left carotid artery and jugular vein were cannulated and arterial pressure was monitored.
  • Example 2 Effect of reducing myocardial infarct size by Muse cell transplantation (1) Preparation of Muse cells Bone marrow cells were collected from rabbits (about 2 to 3 kg / mouse), and SSEA-3-positive cells (Muse cells) were used using FACS. Separated. More specifically, it was carried out according to the method described in International Publication No. WO2011 / 007900 pamphlet concerning the separation and identification of human Muse cells. The Muse cells used for transplantation are derived from bone marrow cells of rabbits who have developed myocardial infarction. After culturing mesenchymal cells having adhesion from the bone marrow and proliferating, lentivirus -GFP was introduced into the cells.
  • GFP-labeled Muse cells or cell populations containing Muse cells were separated by FACS as double positive cells of GFP and SSEA-3. Then, it adjusted to the predetermined density
  • SSEA-3 All positive cells are known to be CD105 positive cells.
  • rabbits 14 days after reperfusion were treated with heparin (500 U / kg) and euthanized by intravenous injection of an excess amount of pentobarbital.
  • the heart was removed, and the infarct region in the myocardial tissue was determined by triphenyltetrazolium chloride (TTC) staining method. The unstained area is the infarcted area.
  • TTC triphenyltetrazolium chloride
  • Evans Blue dye 4%; Sigma Chemical, St. Louis, MO
  • the left ventricle was cut so that an atrioventricular ring was obtained, and a total of seven tissue sections were obtained. Each tissue was weighed and then incubated in 1% TTC solution at 37 ° C., then the infarct area was visualized and imaged (see Fishbein et al., Am. Heart J., 101, 593-600, 1981). The results are shown in FIG. In the figure, the left panel shows the atrioventricular ring to which physiological saline was administered as a control, and the right panel shows the atrioventricular ring to which Muse cell transplantation was performed.
  • tissue sections a region surrounded by a white broken line (a part of the myocardium and papillary muscle) represents an infarct site that was not stained by TTC.
  • the infarct site was observed as in the control, but it can be seen that the area was very narrow compared to the control.
  • the infarct size was calculated as a ratio (%) of the infarct area to the ischemic area (FIG. 2).
  • This effect was calculated as the reduction rate, Muse cells were able to reduce the infarct size by about 40%.
  • the same test was performed by increasing the number of subjects (FIG. 8).
  • the infarct size reduction effect was examined histochemically by Masson trichrome staining.
  • the excised heart was fixed in 10% formalin solution, and after embedding in paraffin, sections were prepared from each specimen in the cross-sectional direction so that an atrioventricular ring was obtained. Thereafter, Masson trichrome (MT) staining was performed according to a conventional method to visualize the myocardial infarction region (FIGS. 3 and 9).
  • MT staining a tissue composed of living cells is stained red, while a collagen fibrosis tissue is pale and observed as if the color has been lost.
  • collagen fibrotic tissue infarct site
  • the left ventricular tissue of the group of rabbits transplanted with Muse cells the pale part is smaller than the control, indicating that the infarct size has decreased. Characteristically, papillary muscles were also observed to recover from infarction.
  • the left ventricular tissue in rabbits transplanted with MSC cells showed a decrease in infarct size when compared with the control administered with saline, but compared with the Muse cell transplanted group, The size reduction effect was small. Also, the papillary muscle recovery observed in Muse cell transplantation was not seen in tissues transplanted with MSC cells.
  • Example 3 Differentiation of Muse cells in heart tissue It was examined whether the decrease in infarct size caused by Muse cells observed in Example 2 was due to differentiation of cardiomyocytes by Muse cells.
  • Muse cells (5 ⁇ 10 5 cells) transfected with green fluorescent protein (GFP) were injected from the ear vein of a rabbit myocardial infarction model.
  • GFP green fluorescent protein
  • tissue sections were prepared, and the tissues were observed using various fluorescent dyes for tissue staining (FIG. 4). As can be seen in the left panel of FIG. 4, the white broken line indicates the boundary between the infarcted portion and the non-infarcted portion, and the upper right portion indicates the infarcted portion and the lower left portion indicates the non-infarcted portion.
  • the middle panel is a stained red cardiomyocyte by rhodamine phalloidin staining according to a conventional method. By this staining, an infarcted site and a non-infarcted site can be clearly distinguished.
  • the right panel shows a GFP-stained image and shows that Muse cells into which the GFP gene has been introduced (green) are selectively accumulated at the infarct site. An image obtained by superimposing these two images is shown on the left panel. Thereby, there are many cells in which red and green overlap at the infarct site, suggesting that the transplanted Muse cells have differentiated into cardiomyocytes.
  • GFP-positive Muse cells were examined for the presence or absence of expression of atrial natriuretic peptide (ANP) according to a conventional method.
  • ANP atrial natriuretic peptide
  • FIG. 5 green (Muse cells) indicates GFP staining, red indicates ANP staining, and blue indicates DAPI staining (stains cell nuclei).
  • the transplanted Muse cells include cells that are differentiating into cardiomyocytes. Was suggested.
  • troponin I which is known as a myocardial marker
  • mouse anti-human troponin I antibody (Chemical International, Inc) that cross-reacts with rabbit troponin I was used as the primary antibody.
  • green (Muse cells) indicates GFP staining
  • red indicates troponin I staining
  • blue indicates DAPI staining (stains cell nuclei).
  • Example 4 Evaluation of cardiac function improvement by Muse cell transplantation Cardiac function after Muse cell transplantation was examined using blood pressure change with time ( ⁇ dp / dt; p is blood pressure, t is time) as an index, and Judgment was made from left ventricular cross-sectional images by 2D echocardiography.
  • the blood pressure change over time was measured by anesthetizing each rabbit 14 days after reperfusion with 10 mg / kg pentobarbital, and inserting a catheter with a micromanometer (SPR 407; Millar Instruments) into the left ventricle from the carotid artery of the rabbit.
  • the + dp / dt representing the left ventricular systolic function obtained by this catheter and -dp / dt representing the left ventricular diastole function were recorded.
  • the result is shown in FIG.
  • the rabbit group transplanted with Muse cells showed a higher cardiac function than the control group. Significantly improved.
  • FIG. 11 shows the results of examining the cardiac function with the change in blood pressure over time as an index in the same manner as described above, further increasing the number of subjects.
  • the cardiac function was significantly improved.
  • 2D echocardiography was performed to further confirm the cardiac function of the rabbits (control group and Muse cell transplant group).
  • a rabbit heart was imaged using an ultrasonic diagnostic apparatus for animals (SSD2000; Aloka).
  • An image of the left ventricular parasternal left ventricular long-axis cross section obtained by the measurement is shown in FIG.
  • the left panel is the left ventricle of the control rabbit and the right panel is the left ventricle of the rabbit transplanted with Muse cells.
  • the left ventricular end-diastolic dimension (LVDd) was 22.2 mm.
  • the rabbit transplanted with Muse cells is as small as 19.5 mm, it can be seen that the infarct size was reduced by Muse cells.
  • EF ejection fraction
  • FS fractional shortening
  • This left ventricular diameter shortening rate is obtained by measuring the left ventricular end-diastolic diameter and the left ventricular end-systolic diameter using an M-mode echo chart obtained by imaging, and dividing these differences by the left ventricular end-diastolic diameter. It is expressed as a fraction. Usually, the normal value in humans is 30 to 50%. Therefore, the above measurement results suggest that cardiac function was restored to normal by Muse cell transplantation in rabbits compared to controls.
  • LVDd, EF, and LB for control rabbits, rabbits transplanted with MSC cells, and rabbits transplanted with non-Muse cells to confirm that the heart function of the rabbits after transplantation of Muse cells returned to normal.
  • FS described above
  • LPDs left ventricular end-systolic dimension
  • the heart function of rabbits was restored to normal by Muse cell transplantation for all LVDd, EF and FS.
  • LVDs were 18.3 mm on average in the control rabbits, but 13.8 mm on average in the rabbits transplanted with Muse cells, so that cardiac function was improved by Muse cell transplantation. Suggests normal recovery.
  • the myocardium When the cell preparation of the present invention is intravenously administered to a myocardial infarction model, the myocardium can be regenerated at the infarct site, the infarct size can be reduced, and cardiac function can be improved. It can be applied to the treatment of human severe large myocardial infarction and accompanying heart failure.

Abstract

 再生医療において、多能性幹細胞(Muse細胞)を用いた新たな医療用途を提供することを目的とする。 本発明は、生体の間葉系組織又は培養間葉系細胞から分離されたSSEA-3陽性の多能性幹細胞を含む、心筋梗塞、特に重症大型心筋梗塞、及びそれに伴う心不全を治療するための細胞製剤を提供する。本発明の細胞製剤は、上記疾患の対象に対し、Muse細胞を静脈投与することにより、障害心筋組織に選択に集積させ、その組織内でMuse細胞が心筋に分化するという心筋組織再生メカニズムに基づく。

Description

心筋梗塞の修復再生を誘導する多能性幹細胞
 本発明は、再生医療における細胞製剤に関する。より具体的には、心筋梗塞により損傷を受けた心臓組織の修復及び再生に有効な多能性幹細胞を含有する細胞製剤に関する。
 冠動脈の閉塞によってもたらされる心筋壊死に起因した心筋梗塞は、急性心臓死及び慢性心臓死を引き起こすため、臨床医学における解決すべき重要課題となっている。特に、急性心筋梗塞の場合、死亡率は35~50%と高く、その死亡例の60~70%は発症後1~2時間以内の死亡である。また、急性期を無事に過ぎても、初回発作の心筋壊死巣が大きい場合には、心筋梗塞の再発やそれに伴う心不全に陥る危険性が高い。したがって、心筋梗塞の治療においては、発作が起こったときに迅速に処置することが求められ、壊死した心筋の大きさ、すなわち梗塞サイズを可及的小にとどめることが重要とされている。
 例えば、重症大型心筋梗塞などの心筋梗塞では、左室リモデリングが進行し、心不全に陥るため生命予後は悪いことが知られている。一般に、心筋梗塞に対しては、血栓溶解療法や血行再建術などの再開通療法が実施されている。しかし、再開通による効果が得られなかったり、逆に再灌流障害などにより心筋細胞に損傷を与えたりする場合も多く、再開通療法単独では必ずしも満足のいく治療効果が得られていない。そのため、再開通療法の補助療法として心筋保護作用を期待した薬剤の検討が行われているが、満足できる薬剤は未だ見出されていない。また、重症大型心筋梗塞の場合には、壊死心筋組織を再生し、左室リモデリングを改善できれば予後は改善する。しかしながら、上記疾患に対し、現在のところ有効な内科的治療法は存在しない。
 上記のように、心筋梗塞の治療において、発作が起こったときに迅速に処置することが求められているものの、梗塞サイズを小さくとどめるための決定的な治療方法はないことから、壊死した心筋組織の再生に対する取り組みが行われている。その中でも、近年、組織再生に貢献し得る生体由来の細胞が注目されつつある。成体から得られる分化能を有する細胞として、例えば、骨、軟骨、脂肪細胞、神経細胞、骨格筋等への分化能を有する骨髄間葉系細胞画分(MSC)(非特許文献1及び2)が知られているが、これは様々な細胞を含む細胞群であり、その分化能の実体が分かっておらず、治療効果にバラつきが大きかった。また、成体由来の多能性幹細胞としてiPS細胞(特許文献1等)が報告されているが、iPS細胞の樹立には、間葉系細胞である皮膚線維芽細胞画分に特定の遺伝子や特定の化合物を体細胞に導入するという極めて複雑な操作を必要とすることに加え、iPS細胞が高い腫瘍形成能力を有することから、臨床応用への極めて高いハードルが存在している。
 本発明者らの一人である出澤氏の研究により、間葉系細胞画分に存在し、誘導操作なしに得られる、SSEA-3(Stage-Specific Embryonic Antigen-3)を表面抗原として発現している多能性幹細胞(Multilineage-differentiating Stress Enduring cells;Muse細胞)が間葉系細胞画分の有する多能性を担っており、組織再生を目指した疾患治療に応用できる可能性があることが分かってきた。また、Muse細胞は、間葉系細胞画分を種々のストレスで刺激することにより濃縮できることもわかってきた。(特許文献2;非特許文献3)。しかしながら、重症大型心筋梗塞などの心筋梗塞及びそれに伴う心不全の予防及び/又は治療にMuse細胞を使用し、期待される治療効果が得られることを明らかにした例はない。
特許第4183742号公報 国際公開第WO2011/007900号パンフレット
Dezawa,M.,et al.,J.Clin.Invest.,Vol.113,p.1701-1710(2004) Dezawa,M.,et al.,Science,Vol.309,p.314-317(2005) Wakao,S,et al.,Proc.Natl.Acad.Sci.USA,Vol.108,p.9875-9880(2011)
 本発明は、再生医療において、多能性幹細胞(Muse細胞)を用いた新たな医療用途を提供することを目的とする。より具体的には、本発明は、Muse細胞を含む、心筋梗塞(特に重症大型心筋梗塞)の治療、並びにそれに伴う心不全の予防及び/又は治療のための細胞製剤を提供することを目的とする。
 本発明者らは、日本白色種ウサギを用いて、冠動脈虚血(30分間)によって誘導された心筋梗塞に対して、静脈注射によりMuse細胞を投与することにより、Muse細胞が障害心筋組織の局所に集積し、この障害心筋組織内で心筋細胞に分化し、梗塞サイズの縮小及び心機能の改善又は回復をもたらすことを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の通りである。
 [1]生体の間葉系組織又は培養間葉系細胞から分離されたSSEA-3陽性の多能性幹細胞を含む、心筋梗塞を治療するための細胞製剤。
 [2]外的ストレス刺激によりSSEA-3陽性の多能性幹細胞が、濃縮された細胞画分を含む、[1]に記載の細胞製剤。
 [3]ヒトの重症大型心筋梗塞後の心不全を予防及び/又は治療するための、上記[1]及び[2]に記載の細胞製剤。
 [4]前記多能性幹細胞が、CD105陽性である、上記[1]~[3]に記載の細胞製剤。
 [5]前記多能性幹細胞が、CD117陰性及びCD146陰性である、上記[1]~[4]に記載の細胞製剤。
 [6]前記多能性幹細胞が、CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性、及びCD271陰性である、上記[1]~[5]に記載の細胞製剤。
 [7]前記多能性幹細胞が、CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snai1陰性、Slug陰性、Tyrp1陰性、及びDct陰性である、上記[1]~[6]に記載の細胞製剤。
 [8]前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、上記[1]~[7]に記載の細胞製剤:
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ。
 [9]前記多能性幹細胞が、心筋梗塞部位に集積する能力を有する、上記[1]~[8]に記載の細胞製剤。
 [10]前記多能性幹細胞が、血管内皮細胞に分化する能力を有する、上記[1]~[9]に記載の細胞製剤。
 [11]前記多能性幹細胞が、心筋細胞に分化する能力を有する、上記[1]~[9]に記載の細胞製剤。
 [12]虚血後1カ月以内に対象の静脈又は冠動脈に前記多能性幹細胞を治療上有効量として1×10細胞/個体~1×10細胞/個体で1~10回投与する、上記[1]~[11]に記載の細胞製剤。
 [13]非投与対照と比較して、心筋梗塞サイズを縮小させる、上記[1]~[12]に記載の細胞製剤。
 [14]左室における経時的な血圧変化、左室拡張末期径(LVDd)、駆出率(EF)、左室内径短縮率(FS)、及び左室収縮末期径(LVDs)からなる群から選択される少なくとも1つの心機能指標を正常値に回復させる、上記[1]~[13]に記載の細胞製剤。
 本発明は、心筋梗塞、特に重症大型心筋梗塞を患っている対象に対し、Muse細胞を静脈等から投与することにより、障害心筋組織に選択に集積させ、その組織内でMuse細胞が心筋に分化するという心筋組織再生メカニズムによって、心筋梗塞サイズを劇的に縮小させることができる。
ウサギ心筋梗塞モデルの梗塞部位を含む心臓組織の切片を示す。トリフェニルテトラゾリウム・クロリド(TTC)染色法により、梗塞部位を決定した。破線で囲まれた非染色領域が梗塞部位である。右パネルは、虚血30分後に再灌流させ、再灌流24時間後にMuse細胞を静脈投与した、再灌流14日後の組織切片である。左パネルは、Muse細胞の代りに生理食塩水を静脈投与した組織切片である。Muse細胞の移植により、梗塞部位が有意に減少した。 TTC染色法により梗塞部位を決定し、梗塞サイズを虚血領域に対する梗塞領域の割合(%)として算出した。左は生理食塩水の対照(n=3)における梗塞サイズの平均値を示し、右はMuse細胞移植群(n=4)における梗塞サイズの平均値を示す。Muse細胞の移植により、梗塞サイズが有意に縮小した。 マッソントリクローム(MT)染色法により、梗塞サイズの縮小効果を組織化学的に検討した結果を示す。このMT染色法では、生細胞からなる組織は赤く染色され、一方、膠原線維化された梗塞領域の組織は染色されないため青白く観察される。生理食塩水を投与された対照群(n=3)と比較して、Muse細胞移植群(n=4)では梗塞領域が小さく、梗塞サイズが顕著に減少した。また、骨髄間葉系細胞画分(MSC)を移植した組織では、梗塞サイズの減少は観察されたが、Muse細胞移植群と比較して、梗塞サイズの縮小効果は小さかった。 心臓組織におけるMuse細胞の心筋細胞への分化を示す。梗塞部位と非梗塞部位は、左パネルにおける破線を境界線として区別される。ローダミン・ファロイジン染色により心筋細胞は赤色に染色された(中央パネル)。また、緑色蛍光タンパク質(GFP)の遺伝子をレンチウイルスを用いて移植前に予め導入されたMuse細胞は、梗塞部位に局在していることが分かる(右パネル)。これら2つの画像を重ね合わせた画像を左パネルに示す。これにより、梗塞部位において赤色及び緑色が重なり合う細胞が多数存在し、これは、移植されたMuse細胞が心筋細胞に分化したことを示唆する。 梗塞部位に集積したMuse細胞の分化状態を検討した結果を示す。幼若型心筋細胞において発現することが知られている心房性ナトリウム利尿ペプチド(ANP)の発現の有無を蛍光染色により検討した。緑色がGFP染色(Muse細胞)、赤色がANP染色、及び青色がDAPI染色(細胞核を染色する)を示す。左パネルにおいて、これらの3つの蛍光が複数の同一細胞において観察されたことから、移植されたMuse細胞の中には、心筋細胞に分化しつつある細胞が含まれることが示唆された。 Muse細胞移植後の心機能について、経時的な血圧変化(±dp/dt;p:血圧、t:時間)を指標に検討した結果を示す。上段パネルは、心臓収縮機能(+dp/dt)の測定結果を示し、下段パネルは、心臓拡張機能(-dp/dt)の測定結果を示す。これらの結果は、Muse細胞を移植されたウサギ群は、対照群と比較して、心機能が有意に改善されたことを示唆する。 左室の胸骨傍左室長軸断面の2D心エコー画像を示す。左パネルは生理食塩水を投与されたウサギ(対照)の左室の画像を示し、右パネルはMuse細胞を移植されたウサギの左室の画像を示す。心機能の指標とするLVDd(左室拡張末期径)、EF(駆出率)、及びFS(左室内径短縮率)をこれらの画像に基づいて測定した。Muse細胞移植群では、いずれの数値も正常に回復されたことを示す。 マッソントリクローム(MT)染色法により、梗塞部位を決定し、梗塞サイズを左室に対する梗塞領域の割合(%)として算出した。横軸は、左より、各々、生理食塩水の対照(n=10)、MSC細胞(骨髄間葉系細胞画分)移植群(n=10)、Muse細胞移植群(n=10)、及び非Muse細胞(Muse細胞を含まないMSC細胞)移植群(n=4)における各梗塞サイズ(白丸)及びそれらの平均値(黒丸)を示す。図2と同様に、Muse細胞の移植により、梗塞サイズが有意に縮小した。 図3と同様に、マッソントリクローム(MT)染色法により、梗塞サイズの縮小効果を組織化学的に検討した結果を示す。図9は、図8に示される結果に対応し、各移植群の試料から任意に1つを選択した写真を示す。 梗塞部位に集積したMuse細胞の分化状態を検討した結果を示す。心筋マーカーとして知られているトロポニンIの発現の有無を図4と同様にして蛍光染色により検討した。緑色がGFP染色(Muse細胞)、赤色がトロポニンI染色、及び青色がDAPI染色(細胞核を染色する)を示す。右パネルにおいて、これらの3つの蛍光が複数の同一細胞において観察されたことから、移植されたMuse細胞の中には、心筋細胞に分化しつつある細胞が含まれることが示唆された。 図6と同様に、Muse細胞移植後の心機能について、経時的な血圧変化(±dp/dt;p:血圧、t:時間)を指標に検討した結果を示す。+dp/dtは収縮能を示し、-dp/dtは拡張能を示す。これらの結果は、Muse細胞を移植されたウサギ群は、対照群、MSC移植群及び非Muse細胞移植群と比較して、心機能が有意に改善されたことを示唆する。 2D心エコーにより、心機能の指標であるLVDd(左室拡張末期径)、LVDs(左室収縮末期径)、EF(駆出率)、及びFS(左室内径短縮率)を計測した。Muse細胞移植群では、いずれの数値も正常に回復されたことを示す。 梗塞部位に集積したMuse細胞の分化状態を検討した結果を示す。血管内皮細胞マーカーとして知られているCD31の発現の有無を検討した。Muse細胞を移植した組織においては、他の移植群と比較して、梗塞部位においてCD31陽性の微小血管密度が高かったことから、移植されたMuse細胞は、梗塞部位において血管内皮細胞に分化する可能性を示唆する。図の縦軸は、強拡大視野(HPF)における微小血管数を示す。
 本発明は、SSEA-3陽性の多能性幹細胞(Muse細胞)を含む、心筋梗塞を治療するための細胞製剤に関する。本発明を以下に詳細に説明する。
1.適用疾患
 本発明は、SSEA-3陽性の多能性幹細胞(Muse細胞)を含む細胞製剤を用いて、心筋梗塞、特に、重症大型心筋梗塞、及びそれに伴う心不全の治療を目指す。ここで、「心筋梗塞」とは、冠動脈の閉塞によってもたらされる心筋壊死をいう。また、「心不全」とは、十分量の血流を押し出す心機能の不全に原因する症候群をいい、心拍出量の低下とそれに伴う静脈圧の増大、またその結果として生じる種々の臨床症状が含まれる。心筋梗塞は、急性心臓死及び慢性心臓死を引き起こす原因となる。特に、急性心筋梗塞の場合、死亡率は35~50%と高く、その死亡例の60~70%は発症後1~2時間以内の死亡である。また、急性期を無事に過ぎても、初回発作の心筋壊死巣が大きい場合には、心筋梗塞を再発する危険性が高い。したがって、心筋梗塞の治療においては、発作が起きたときに迅速に処置することが求められ、壊死した心筋の大きさ、すなわち梗塞サイズを可及的小にとどめることが重要とされている。また、心筋梗塞の重症度判定には、種々の分類がある。そのような分類としては、例えば、時間的経過による分類、形態学的分類(心筋層内範囲、部位、壊死の大きさなど)、心筋の壊死形態、梗塞後の心室再構築、血行動態的分類(治療、予後などに関連する)、臨床的重症度による分類などが挙げられる。ここで、重症度が高く、より広範囲に心筋壊死に陥った心筋梗塞を特に「重症大型心筋梗塞」という。例えば、左冠動脈の近位部の完全閉塞が挙げられる。また、重症大型心筋梗塞では、心筋の左室リモデリングが進行し、心不全に陥るため生命予後は悪いことが知られている。ここで、心筋梗塞後の「左室リモデリング」とは、心筋梗塞後に生じる梗塞部位の非薄化による心機能低下の代償として起こる非梗塞部位の心筋細胞の肥大、間質(細胞外マトリックス)の増加、心内腔の拡大などの一連の変化を指す。心筋梗塞後の長期予後は、左室機能不全の程度と相関するため、左室リモデリングを抑制することは左室の機能を維持及び保存するために不可欠である。
 一般に、発症6時間以内の心筋梗塞の場合には、積極的に閉塞した冠動脈の再灌流療法を行うことで、心筋の壊死範囲を縮小することが可能である。この療法に限らず、発症から24時間以内の症例では、再灌流療法を行う意義が高いとされる。急性期の場合、カテーテルを用いた冠動脈疾患の治療が行われることが多い。これに対して、本発明の細胞製剤は、再灌流までに要した時間が非常に長かった場合、又は再灌流及びカテーテル療法で上手くいかなかった場合を治療対象とすることができる。すなわち、本発明によれば、左室リモデリングに起因した心不全に陥ることを予防することを含めて、心筋組織再生に基づく心筋梗塞の治療を目的としたMuse細胞を含む細胞製剤が提供される。
2.細胞製剤
(1)多能性幹細胞(Muse細胞)
 本発明の細胞製剤に使用される多能性幹細胞は、本発明者らの一人である出澤氏が、ヒト生体内にその存在を見出し、「Muse(Multilineage-differentiating Stress Enduring)細胞」と命名した細胞である。Muse細胞は、骨髄液や真皮結合組織等の皮膚組織から得ることができ、各臓器の結合組織にも散在する。また、この細胞は、多能性幹細胞と間葉系幹細胞の両方の性質を有する細胞であり、例えば、それぞれの細胞表面マーカーである「SSEA-3(Stage-specific embryonic antigen-3)」と「CD105」のダブル陽性として同定される。したがって、Muse細胞又はMuse細胞を含む細胞集団は、例えば、これらの抗原マーカーを指標として生体組織から分離することができる。また、Muse細胞はストレス耐性であり、間葉系組織又は培養間葉系細胞から種々のストレス刺激により濃縮することができる。本発明の細胞製剤には、ストレス刺激によりMuse細胞が濃縮された細胞画分を用いることもできる。Muse細胞の分離法、同定法、濃縮法、及び特徴などの詳細は、国際公開第WO2011/007900号に開示されている。また、Wakaoら(2011、上述)によって報告されているように、骨髄、皮膚などの間葉系細胞を培養して得たものをMuse細胞の母集団として用いる場合、SSEA-3陽性細胞の全てがCD105陽性細胞であることが分かっている。したがって、本発明における細胞製剤においては、生体の間葉系組織又は培養間葉系細胞からMuse細胞を分離する場合は、単にSSEA-3を抗原マーカーとしてMuse細胞を精製し、使用することができる。なお、本明細書においては、心筋梗塞を治療するための細胞製剤において使用され得る、SSEA-3を抗原マーカーとして、生体の間葉系組織又は培養間葉系組織から分離された多能性幹細胞(Muse細胞)又はMuse細胞を含む細胞集団を単に「SSEA-3陽性細胞」と記載することがある。
 簡単には、Muse細胞又はMuse細胞を含む細胞集団は、細胞表面マーカーであるSSEA-3に対する抗体を単独で用いて、又はSSEA-3及びCD105に対するそれぞれの抗体を用いて、生体組織(例えば、間葉系組織)から分離することができる。ここで、「生体」とは、哺乳動物の生体をいう。本発明において、生体には、受精卵や胞胚期より発生段階が前の胚は含まれないが、胎児や胞胚を含む胞胚期以降の発生段階の胚は含まれる。哺乳動物には、限定されないが、ヒト、サル等の霊長類、マウス、ラット、ウサギ、モルモット等のげっ歯類、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレット等が挙げられる。本発明の細胞製剤に使用されるMuse細胞は、生体の組織由来である点で、胚性幹細胞(ES細胞)や胚性生殖幹細胞(EG細胞)と明確に区別される。また、「間葉系組織」とは、骨、軟骨、脂肪、血液、骨髄、骨格筋、真皮、靭帯、腱、心臓などの組織及びそれらの結合組織をいう。例えば、Muse細胞は、骨髄や皮膚から得ることができる。また、本発明は、心筋再生を目的とする細胞製剤を提供することを目的とし、例えば、生体の間葉系組織を採取し、この組織からMuse細胞を分離し、利用することが好ましい。また、上記分離手段を用いて、培養間葉系細胞からMuse細胞を分離してもよい。なお、本発明の細胞製剤においては、使用されるMuse細胞は、細胞移植を受けるレシピエントに対して自家であってもよく、又は他家であってもよい。
 上記のように、Muse細胞又はMuse細胞を含む細胞集団は、例えば、SSEA-3陽性及びCD105陽性を指標にして生体組織から分離することができるが、ヒト成人皮膚には、種々のタイプの幹細胞及び前駆細胞を含むことが知られている。しかしながら、Muse細胞は、これらの細胞と同じではない。このような幹細胞及び前駆細胞には、皮膚由来前駆細胞(SKP)、神経堤幹細胞(NCSC)、メラノブラスト(MB)、血管周囲細胞(PC)、内皮前駆細胞(EP)、脂肪由来幹細胞(ADSC)が挙げられる。これらの細胞に固有のマーカーの「非発現」を指標として、Muse細胞を分離することができる。より具体的には、Muse細胞は、CD34(EP及びADSCのマーカー)、CD117(c-kit)(MBのマーカー)、CD146(PC及びADSCのマーカー)、CD271(NGFR)(NCSCのマーカー)、NG2(PCのマーカー)、vWF因子(フォンビルブランド因子)(EPのマーカー)、Sox10(NCSCのマーカー)、Snai1(SKPのマーカー)、Slug(SKPのマーカー)、Tyrp1(MBのマーカー)、及びDct(MBのマーカー)からなる群から選択される11個のマーカーのうち少なくとも1個、例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個又は11個のマーカーの非発現を指標に分離することができる。例えば、限定されないが、CD117及びCD146の非発現を指標に分離することができ、さらに、CD117、CD146、NG2、CD34、vWF及びCD271の非発現を指標に分離することができ、さらに、上記の11個のマーカーの非発現を指標に分離することができる。
 また、本発明の細胞製剤に使用される上記特徴を有するMuse細胞は、以下: 
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ
からなる群から選択される少なくとも1つの性質を有してもよい。本発明の一局面では、本発明の細胞製剤に使用されるMuse細胞は、上記性質を全て有する。ここで、上記(i)について、「テロメラーゼ活性が低いか又は無い」とは、例えば、TRAPEZE XL telomerase detection kit(Millipore社)を用いてテロメラーゼ活性を検出した場合に、低いか又は検出できないことをいう。テロメラーゼ活性が「低い」とは、例えば、ヒト線維芽細胞と同程度のテロメラーゼ活性を有しているか、又はHela細胞に比べて1/5以下、好ましくは1/10以下のテロメラーゼ活性を有していることをいう。上記(ii)について、Muse細胞は、in vitro及びin vivoにおいて、三胚葉(内胚葉系、中胚葉系、及び外胚葉系)に分化する能力を有し、例えば、in vitroで誘導培養することにより、皮膚、肝、神経、筋、骨、脂肪等に分化し得る。また、in vivoで精巣に移植した場合にも三胚葉に分化する能力を示す場合がある。さらに、静注により生体に移植することで損傷を受けた臓器(心臓、皮膚、脊髄、肝、筋肉等)に遊走及び生着し、分化する能力を有する。上記(iii)について、Muse細胞は、浮遊培養で増殖速度約1.3日で増殖するが、10日間程度で増殖が止まるという性質を有し、さらに精巣に移植した場合、少なくとも半年間は癌化しないという性質を有する。また、上記(iv)について、Muse細胞は、セルフリニューアル(自己複製)能を有する。ここで、「セルフリニューアル」とは、Muse細胞を浮遊培養することにより得られる胚様体様細胞塊に含まれる細胞を培養し、再度胚様体様細胞塊を形成させることをいう。セルフリニューアルは1回又は複数回のサイクルを繰り返せばよい。
 また、本発明の細胞製剤に使用されるMuse細胞を含む細胞画分は、生体の間葉系組織又は培養間葉系細胞に外的ストレス刺激を与え、該外的ストレスに耐性の細胞以外の細胞を死滅させ、生き残った細胞を回収することを含む方法によって得られる、以下の性質の全てを有する、SSEA-3陽性及びCD105陽性の多能性幹細胞が濃縮された細胞画分であってもよい。
(i)SSEA-3陽性;
(ii)CD105陽性;
(iii)テロメラーゼ活性が低いか又は無い;
(iv)三胚葉に分化する能力を持つ;
(v)腫瘍性増殖を示さない;及び
(vi)セルフリニューアル能を持つ。
 前記外的ストレスは、プロテアーゼ処理、低酸素濃度での培養、低リン酸条件下での培養、低血清濃度での培養、低栄養条件での培養、熱ショックへの暴露下での培養、低温での培養、凍結処理、有害物質存在下での培養、活性酸素存在下での培養、機械的刺激下での培養、振とう処理下での培養、圧力処理下での培養又は物理的衝撃のいずれか又は複数の組み合わせであってもよい。
 前記プロテアーゼによる処理時間は、細胞に外的ストレスを与えるために合計0.5~36時間行うことが好ましい。また、プロテアーゼ濃度は、培養容器に接着した細胞を剥がすとき、細胞塊を単一細胞にばらばらにするとき、又は組織から単一細胞を回収するときに用いられる濃度であればよい。
 前記プロテアーゼは、セリンプロテアーゼ、アスパラギン酸プロテアーゼ、システインプロテアーゼ、金属プロテアーゼ、グルタミン酸プロテアーゼ又はN末端スレオニンプロテアーゼであることが好ましい。更に、前記プロテアーゼがトリプシン、コラゲナーゼ又はジスパーゼであることが好ましい。
 また、本発明の細胞製剤に使用される上記特徴を有するMuse細胞は、後述するように、静脈投与後、障害心筋組織(心筋梗塞部位)に集積し、その組織内で心筋細胞に分化することにより、梗塞サイズを減少させ、さらには心機能を改善又は正常に回復することができる(実施例2~4)。
(2)細胞製剤の調製及び使用
 本発明の細胞製剤は、限定されないが、上記(1)で得られたMuse細胞又はMuse細胞を含む細胞集団を生理食塩水や適切な緩衝液(例えば、リン酸緩衝生理食塩水)に懸濁させることによって得られる。この場合、自家又は他家の組織から分離したMuse細胞数が少ない場合には、細胞移植前に細胞を培養して、所定の細胞濃度が得られるまで増殖させてもよい。なお、すでに報告されているように(国際公開第WO2011/007900号パンフレット)、Muse細胞は、腫瘍化しないため、生体組織から回収した細胞が未分化のまま含まれていても癌化の可能性が低く安全である。また、回収したMuse細胞の培養は、特に限定されないが、通常の増殖培地(例えば、10%仔牛血清を含むα-最少必須培地(α-MEM))において行うことができる。より詳しくは、上記国際公開第WO2011/007900号パンフレットを参照して、Muse細胞の培養及び増殖において、適宜、培地、添加物(例えば、抗生物質、血清)等を選択し、所定濃度のMuse細胞を含む溶液を調製することができる。ヒトの心筋梗塞対象に本発明の細胞製剤を投与する場合には、ヒトの腸骨から数ml程度の骨髄液を採取し、例えば、Muse細胞をSSEA-3の抗原マーカーを指標として分離後、有効な治療量に達するまで細胞を適切な時間(例えば、2~3週間)培養して増やした後、自家のMuse細胞を細胞製剤として調製することができる。
 また、Muse細胞の細胞製剤への使用においては、該細胞を保護するためにジメチルスルフォキシド(DMSO)や血清アルブミン等を、細菌の混入及び増殖を防ぐために抗生物質等を細胞製剤に含有させてもよい。さらに、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)や間葉系幹細胞に含まれるMuse細胞以外の細胞又は成分を細胞製剤に含有させてもよい。当業者は、これら因子及び薬剤を適切な濃度で細胞製剤に添加することができる。このように、Muse細胞は、各種添加物を含む医薬組成物として使用することも可能である。
 上記で調製される細胞製剤中に含有するMuse細胞数は、心筋梗塞の治療において所望の効果(例えば、梗塞サイズの減少、心機能の改善)が得られるように、対象の性別、年齢、体重、患部の状態、使用する細胞の状態等を考慮して、適宜、調整することができる。後述する実施例1~4においては、ウサギ心筋梗塞モデルを作成して、Muse細胞移植による各種の効果を検討したが、約2~3kgの日本白色種ウサギに対しては、SSEA3陽性細胞を5×10細胞/頭で投与することにより、非常に優れた効果が得られた。この結果から哺乳動物一個体あたり1.7~2.5×10細胞/kgを体重換算した細胞量を投与することで優れた効果が得られることが期待される。一方で、血管への細胞投与による閉塞を防ぐために、1回投与分の量として、例えば、SSEA-3陽性細胞を1×10細胞/個体以下で細胞製剤に含有させるとよい。ここで個体はウサギ、ヒトを含むがこれに限定されない。また、本発明の細胞製剤は、所望の治療効果が得られるまで、複数回(例えば、2~10回)、適宜、間隔(例えば、1日に2回、1日に1回、1週間に2回、1週間に1回、2週間に1回)をおいて投与されてもよい。したがって、対象の状態にもよるが、治療上有効量としては、例えば、一個体あたり1×10細胞~1×10細胞で1~10回の投与量が好ましい。一個体における投与総量としては、限定されないが、1×10細胞~1×10、1×10細胞~5×10細胞、2×10細胞~2×10細胞、5×10細胞~1×10細胞などが挙げられる。
 本発明の細胞製剤に使用されるMuse細胞は、上記の通り、心筋梗塞部位に集積する性質を有する。したがって、細胞製剤の投与において、細胞製剤の投与部位、投与される血管の種類(静脈及び動脈)は限定されない。投与に適した静脈としては、耳静脈、頸静脈が挙げられるが、これらに限定されない。ヒトの場合には、肘静脈が好ましい。また、投与に適した動脈としては、限定されないが、冠動脈が好ましい。しかしながら、細胞輸送効率、対象の術後の早期回復等を考慮すると、経皮的に心臓カテーテルを挿入して、梗塞部位の冠動脈に細胞製剤を直接投与することが好ましい。心臓カテーテルの穿刺部位としては、限定されないが、手首(橈骨動脈)、肘(上腕動脈)、及びももの付け根(大腿動脈)が挙げられる。
 本発明の細胞製剤は、重症大型心筋梗塞などの心筋梗塞を治療対象とするが、投与時期としては、虚血後数時間から数週間の範囲を想定している。したがって、本発明の細胞製剤の投与時期としては、限定されないが、虚血後の遅くとも1カ月以内が好ましい。より好ましくは14日以内、さらに好ましくは7日以内、さらにより好ましくは72時間以内、なお好ましくは48時間以内、さらになお好ましくは24時間以内、さらになおより好ましくは12時間以内、最も好ましくは6時間以内である。本発明によれば、再灌流までに要した時間が非常に長かった場合、又は再灌流及びカテーテル療法で上手くいかなかった場合を治療対象とすることができるため、心筋梗塞の治療に非常に有用である。また、使用されるMuse細胞は、他家由来の場合でも免疫応答を惹起しないことが本発明者らの実験で確認されているので、投与回数は特に限定されず、心筋梗塞の治療において所望の効果が得られるまで適宜投与されてもよい。
 本発明の実施形態では、本発明の細胞製剤の投与によって、心筋梗塞の対象において、梗塞サイズを減少させることができる。ここで、本明細書において使用するとき、「梗塞サイズ」とは、虚血領域に対する梗塞領域の割合(%)として定義される。ここで、虚血領域は、エバンスブルー染色法を用いて決定され、この色素により非虚血領域が染色される。一方、梗塞領域は、トリフェニルテトラゾリウム・クロリド(TTC)染色法を用いて決定された。さらに、本発明の細胞製剤による梗塞サイズの縮小効果を検討する場合、対照の梗塞サイズに対する縮小率(すなわち、(対照の梗塞サイズ-細胞移植後の梗塞サイズ)/対照の梗塞サイズ×100)を用いることは有用である。本発明によれば、細胞製剤の非投与群(対照)に対して、梗塞サイズが100%縮小することが好ましい。より好ましくは10~90%縮小、さらにより好ましくは20~70%縮小、さらになお好ましくは30~50%縮小である。なお、後述する実施例2に示されるように、ウサギ心筋梗塞モデルを用いた場合、対照群では、梗塞サイズは平均して30.4%であったのに対して、Muse細胞移植群では、梗塞サイズは平均して18.2%であった。これらの数値から、Muse細胞移植によって、梗塞サイズを(30.4-18.2)/30.4×100=約40%縮小することができたことが分かる。
 本発明の実施形態では、本発明の細胞製剤は、心筋梗塞後の心機能を改善又は正常(又は正常値)に回復することができる。本明細書において使用するとき、心機能の「改善」とは、心筋梗塞に伴う各種の症状の緩和及び進行の抑制を意味し、好ましくは、日常生活に差し支えない程度にまで症状を緩和することを意味する。また、心機能を「正常に回復する」とは、心筋梗塞に起因した全ての症状が心筋梗塞前の状態に戻ることを意味する。なお、本発明の一態様では、本発明の細胞製剤は、心筋梗塞後の(慢性)心不全の予防及び/又は治療に使用することができる。
 ここで、心筋機能を評価する指標としては、限定されないが、一般的なものとして、左室の経時的な血圧変化(±dp/dt;p:血圧、t:時間)、左室拡張末期径(Left Ventricular end-Diastolic dimension;LVDd)、駆出率(Ejection Fraction;EF)、左室内径短縮率(Fractional Shortening;FS)、及び左室収縮末期径(Left Ventricular end-Sytolic dimension;LVDs)が挙げられる。本発明の細胞製剤による心機能の改善又は回復には、上記5つの指標のうちの少なくとも1つを用いて判断することができる。例えば、実施例4に記載されるように、左室経時的な血圧変化(±dp/dt)に関しては、+dp/dtは心臓収縮機能を表し、-dp/dtは左室の心臓拡張機能を表すが、両者の測定値から、細胞移植群では、対照群と比較して、心機能が有意に改善されていることが分かる(図6及び11)。さらに、2D心エコー検査の結果から、LVDdについては、対照群においてはLVDdの増大が見られたが、Muse細胞移植群ではLVDdの増大は観察されず、正常範囲内にあった(図7及び12)。次に、心臓収縮機能の指標の1つである駆出率(EF)は、ヒトにおいて55%以上を正常とするものであるが、ウサギ心筋梗塞モデルにおいて、Muse細胞移植群では60.9%(図7)及び平均59.3%(n=10)(図12)であったことから正常に回復したことを示唆する。また、EFと同様に、心臓収縮機能の指標の1つである左室内径短縮率(FS)についても、Muse細胞を移植されたウサギでは30.4%(図7)及び平均30.0%(n=10)(図12)であった。このFSは、ヒトにおいて正常値は30~50%とされることから、このウサギ心筋梗塞モデルについても正常に回復したことを示唆する。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
実施例1:ウサギ心筋梗塞モデルの作製
 本実施例におけるウサギを用いた実験プロトコールは、岐阜大学の動物実験に関する倫理委員会によって承認されたものであり、米国国立衛生研究所(NIH)によって刊行された「実験動物の管理と使用に関する指針」(1996年改定版)に沿って実施された。具体的には、以下の通りである。まず、日本白色種ウサギ(約2~3kg/匹)は、30mg/kgペントバルビタールナトリウムを用いて麻酔された。ウサギにおいて、連続的に動脈ガス分析を行い、動脈ガスを生理学的範囲に維持するように換気条件を適宜調整した。左頸動脈及び頸静脈にカニュレートし、動脈圧を監視した。3番目の肋間腔において左開胸後、心臓を露出させ、左室の外側前面の中央を下行する大冠動脈枝下で4-0絹糸結紮を行った。縫合糸の両末端に細いビニルチューブを通し、その縫合糸を引くことによって冠動脈枝を閉塞した。次に、モスキート止血鉗子を用いてこのチューブをクランプすることによって固定した。心筋虚血は、局所的チアノーゼ及び心電図の変化によって確認した。閉塞(虚血)時間は適宜調整される。縫合糸を開放後、危険領域全体での心筋の赤色への変化によって確認した(Yasudaら,Am.J.Physiol.Heart.Circ.Physiol.,296:H1558-1565,2009wo参照されたい)。
実施例2:Muse細胞移植による心筋梗塞サイズの縮小効果
(1)Muse細胞の調製
 ウサギ(約2~3kg/匹)から骨髄細胞を回収し、SSEA-3陽性細胞(Muse細胞)をFACSを用いて分離した。より具体的には、ヒトMuse細胞の分離及び同定に関する国際公開第WO2011/007900号パンフレットに記載された方法に準じて行った。なお、移植に使用されるMuse細胞は、心筋梗塞を発症させたウサギの個体の骨髄細胞に由来するものであり、骨髄から接着性を有する間葉系細胞を培養し、増殖を経て、レンチウイルス-GFPを細胞に導入した。GFPで標識されたMuse細胞又はMuse細胞を含む細胞集団をGFPとSSEA-3の二重の陽性細胞としてFACSにて分離した。その後、所定濃度に調整し、静脈注射により心筋梗塞の同一個体のウサギに戻された。なお、上記のように、骨髄細胞などの間葉系細胞を培養して得たものをMuse細胞の母集団として用いる場合、Wakaoら(2011、上述)によって報告されているように、SSEA-3陽性細胞は全て、CD105陽性細胞であることが分かっている。
(2)Muse細胞移植による梗塞サイズの縮小効果
 ウサギにおいて、結紮による梗塞(虚血)時間を30分間(ヒトにおいては虚血3時間に対応する)とし、その後、縫合糸を開放し、再還流を開始した。再還流24時間後に、上記(1)で得た後の生理食塩水で濃度調整されたSSEA-3陽性細胞(5×10細胞)をウサギの耳静脈に投与した。また、比較対照として、骨髄間葉系細胞画分(MSC)(5×10細胞)、及び生理食塩水をそれぞれ別のウサギに投与し、再灌流させた。再還流14日後にMuse細胞による梗塞サイズの縮小効果を比較検討した。
 より具体的には、再灌流14日後のウサギをヘパリン(500U/kg)処理し、過剰量のペントバルビタールを静脈注射することによって安楽死させた。心臓を摘出し、心筋組織における梗塞領域については、トリフェニルテトラゾリウム・クロリド(TTC)染色法により決定した。非染色領域が梗塞部位となる。一方、虚血領域については、エバンスブルー色素(4%;Sigma Chemical,ミズーリ州セントルイス)を大動脈から80mmHgで注射し、虚血領域を決定した。この色素により、虚血に陥っていない組織が青色に染色され、虚血領域はこの色素が毛細血管によって運ばれないため、白色となる。
 房室輪が得られるように左室を切断し、計7つの組織切片を得た。各組織を計量後、1%TTC溶液中、37℃にてインキュベート後、梗塞領域を視覚化し、撮像した(Fishbeinら、Am.Heart J.,101,593-600,1981を参照されたい)。結果を図1に示す。図中、左パネルは、対照として生理食塩水を投与された房室輪を示し、右パネルは、Muse細胞移植を行った房室輪を示す。これらの組織切片において白色破線で囲まれた領域(心筋の一部と乳頭筋)は、TTCによって染色されなかった梗塞部位を表す。Muse細胞移植が行われた組織切片では、対照と同様に梗塞部位は観察されたが、対照と比較してその領域は非常に狭いことが分かる。
 さらに、梗塞サイズは、虚血領域に対する梗塞領域の割合(%)として算出された(図2)。対照群(n=3)においては、梗塞サイズは30.4%であるが、Muse細胞移植(n=4)後の梗塞サイズは18.2%であり、Muse細胞により梗塞サイズを顕著に縮小させたことが分かる。この効果は、縮小率として計算すると、Muse細胞は、梗塞サイズを約40%縮小させることができた。さらに、被検体数を増やして、同様の試験を行った(図8)。梗塞サイズの平均値は、生理食塩水の対照(n=10)では27.0%であり、MSC細胞(骨髄間葉系細胞画分)移植群(n=10)では21.0%であり、Muse細胞移植群(n=10)では13.9%であり、及び非Muse細胞(Muse細胞を含まないMSC細胞)移植群(n=4)では22.8%であった。この結果からも、梗塞サイズの縮小において、Muse細胞の効果を大きいことがわかる。
 また、マッソントリクローム染色により、梗塞サイズの縮小効果を組織化学的に検討した。上記で摘出した心臓を10%ホルマリン液中で固定し、パラフィン包埋後、房室輪が得られるように各標本から横断面方向に切片を作製した。その後、常法に従ってマッソントリクローム(MT)染色し、心筋梗塞領域を視覚化した(図3及び図9)。このMT染色では、生細胞からなる組織では赤く染色され、一方、膠原線維化された組織は青白く、色が抜けたように観察される。生理食塩水を投与された対照群では、MTに染色されない膠原線維化された組織(梗塞部位)が広がっている。一方、Muse細胞を移植されたウサギ群の左室組織は、対照と比較して青白い部分が小さく、梗塞サイズが減少したことが分かる。また、特徴的に、乳頭筋についても梗塞から回復していることが観察された。一方、比較対照として、MSC細胞を移植したウサギにおける左室組織は、生理食塩水を投与された対照と比較すると、梗塞サイズの減少は観察されたが、Muse細胞移植群と比較して、梗塞サイズの縮小効果は小さかった。また、Muse細胞移植において観察された乳頭筋の回復は、MSC細胞を移植した組織では見られなかった。
実施例3:心臓組織におけるMuse細胞の分化
 実施例2において観察されたMuse細胞による梗塞サイズの減少が、Muse細胞による心筋細胞への分化によるものかどうかを検討した。まず、緑色蛍光タンパク質(GFP)を発現するように遺伝子導入されたMuse細胞(5×10個)をウサギ心筋梗塞モデルの耳静脈から注射した。実施例2と同様にして、組織切片を作製し、各種組織染色用の蛍光色素を用いて組織を観察した(図4)。図4の左パネルに見られるように、白色の破線は梗塞部と非梗塞部との境界を示し、それより右上部分は梗塞部位、左下部分は非梗塞部位を示す。中央パネルは、常法に従って、ローダミン・ファロイジン染色により生きた心筋細胞を赤色に染色したものである。この染色により、梗塞部位と非梗塞部位を明確に区別することができる。また、右パネルは、GFP染色画像を示し、GFP遺伝子が導入されたMuse細胞(緑色)が梗塞部位に選択的に集積している様子を示す。これら2つの画像を重ね合わせた画像を左パネル示す。これにより、梗塞部位において赤色及び緑色が重なり合う細胞が多数存在し、これは、移植されたMuse細胞が心筋細胞に分化したことを示唆する。
 さらに、梗塞部位に集積したGFP陽性のMuse細胞の分化状態を調べるために、常法に従って、これらの細胞を心房性ナトリウム利尿ペプチド(ANP)の発現の有無について検討した。このANPは、幼若型心筋細胞が発現することが知られている。図5中、緑色(Muse細胞)がGFP染色、赤色がANP染色、及び青色がDAPI染色(細胞核を染色する)を示す。図5の左パネルからも分かるように、これらの3つの蛍光が複数の同一細胞において観察されたことから、移植されたMuse細胞の中には、心筋細胞に分化しつつある細胞が含まれることが示唆された。
 次に、梗塞部位に集積したGFP陽性のMuse細胞において、心筋マーカーとして知られているトロポニンIの発現の有無を検討した。トロポニンI染色では、ウサギのトロポニンIと交差反応するマウス抗ヒトトロポニンI抗体(Chemical International,Inc)を一次抗体として使用した。図10中、緑色(Muse細胞)がGFP染色、赤色がトロポニンI染色、及び青色がDAPI染色(細胞核を染色する)を示す。図10の右パネルからも分かるように、これらの3つの蛍光が複数の同一細胞において観察されたことから、移植されたMuse細胞の中には、上記の結果(図5)と同様に、心筋細胞に分化しつつある細胞が含まれることが示唆された。
 さらに、梗塞部位に集積したMuse細胞の分化状態を調べるために、血管内皮細胞マーカーとして知られているCD31の発現の有無を検討した。具体的には、ウサギの血管内皮細胞と交差反応するマウス抗ヒトCD31モノクローナル抗体(Dakoより入手)を一次抗体として使用し、組織化学的にCD31を発現した細胞を染色した。図13の写真からも明らかなように、Muse細胞を移植した組織においては、他の移植群と比較して、梗塞部位においてCD31陽性の微小血管密度が高かった。このことから、移植されたMuse細胞は、梗塞部位において血管内皮細胞に分化する可能性が示唆された。
実施例4:Muse細胞移植による心機能改善の評価
 Muse細胞移植後の心機能を経時的な血圧変化(±dp/dt;pは血圧、tは時間を示す)を指標として検討し、さらに、2D心エコー検査によって左室断面の画像から判断した。これらの実験では、再灌流24時間後に、生理食塩水を投与されたウサギ(対照群)(n=3)、及びMuse細胞を投与されたウサギ群(n=4)を用いた。まず、経時的な血圧変化の測定は、再灌流14日後の各ウサギを10mg/kgペントバルビタールで浅麻酔し、ウサギの頸動脈からマイクロマノメーター付きカテーテル(SPR 407;Millar Instruments)を左室に挿入して行われた。このカテーテルにより得られる左室の心臓収縮機能を表す+dp/dt、及び左室の心臓拡張機能を表す-dp/dtを記録した。この結果を図6に示す。心臓収縮機能(+dp/dt)(図6上)、心臓拡張機能(-dp/dt)(図6下)ともに、Muse細胞を移植されたウサギ群は、対照群と比較して、心機能が有意に改善された。
 さらに被検体数を増やし、上記と同様に、心機能を経時的な血圧変化を指標として検討した結果を図11に示す。心臓収縮機能(+dp/dt)(図11上)、心臓拡張機能(-dt/dt)(図11下)ともに、Muse細胞(n=10)を移植されたウサギ群は、対照群(n=10)、MSC細胞移植群(n=10)、及び非Muse細胞移植群(n=9)と比較して、心機能が有意に改善された。
 次に、上記のウサギ(対照群及びMuse細胞移植群)の心機能をさらに確認するために2D心エコー検査を行った。この2D心エコー検査においては、動物用の超音波診断装置(SSD2000;Aloka)を用いて、ウサギの心臓を撮像した。測定により得られた左室の胸骨傍左室長軸断面の画像を図7に示す。左パネルは、対照ウサギの左室であり、右パネルは、Muse細胞を移植されたウサギの左室である。対照では、左室拡張末期径(Left Ventricular end-Diastolic dimension;LVDd)が22.2mmであった。これに対し、Muse細胞を移植されたウサギでは19.5mmと小さいことから、Muse細胞によって、梗塞サイズを縮小したことが分かる。さらに、心臓収縮機能の指標の1つである駆出率(Ejection Fraction;EF)を測定すると、対照では34.1%であり、Muse細胞を移植されたウサギでは60.9%であった。この駆出率は、左室1回排出量の左室拡張末期容積に対する割合で表される。通常、ヒトにおいて、駆出率が55%以上を正常とする。したがって、上記の測定結果は、対照と比較して、ウサギにおいてMuse細胞移植によって心機能が正常に回復したことを示唆する。また、EFと同様に、心臓収縮機能の指標の1つとなる左室内径短縮率(Fractional Shortening;FS)を測定すると、対照では15.1%であり、Muse細胞を移植されたウサギでは30.4%であった。この左室内径短縮率は、撮像して得られたMモードエコー図を用い、左室拡張末期径と左室収縮末期径を計測し、これらの差を左室拡張末期径で除し、100分率で表したものである。通常、ヒトにおいて正常値は30~50%とされる。したがって、上記の測定結果は、対照と比較して、ウサギにおいてMuse細胞移植によって心機能が正常に回復したことを示唆する。
 再度、Muse細胞移植後のウサギの心機能が正常に回復したことを確認するために、対照ウサギ、MSC細胞を移植されたウサギ、及び非Muse細胞を移植されたウサギについて、LVDd、EF、及びFS(上述)、並びに左室収縮末期径(Left Ventricular end-Sytolic dimension;LVDs)を測定した。上記の結果と同様に、LVDd、EF及びFSともに、Muse細胞移植によってウサギの心機能が正常に回復した。また、LVDsについても、対照ウサギでは、平均して18.3mmであったのに対して、Muse細胞を移植されたウサギでは、平均して13.8mmと小さいことから、Muse細胞移植によって心機能が正常に回復したことを示唆する。
 本発明の細胞製剤は、心筋梗塞モデルに経静脈的に投与することにより、梗塞部位において心筋を再生することができ、梗塞サイズを縮小させ、心機能を改善することができ、心筋梗塞、特に、ヒトの重症大型心筋梗塞及びそれに伴う心不全の治療に応用できる。
 本明細書に引用する全ての刊行物及び特許文献は、参照により全体として本明細書中に援用される。なお、例示を目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。

Claims (14)

  1.  生体の間葉系組織又は培養間葉系細胞から分離されたSSEA-3陽性の多能性幹細胞を含む、心筋梗塞を治療するための細胞製剤。
  2.  外部ストレス刺激によりSSEA-3陽性の多能性幹細胞が、濃縮された細胞画分を含む、請求項1に記載の細胞製剤。
  3.  ヒトの重症大型心筋梗塞後の心不全を予防及び/又は治療するための、請求項1又は2に記載の細胞製剤。
  4.  前記多能性幹細胞が、CD105陽性である、請求項1~3のいずれか1項に記載の細胞製剤。
  5.  前記多能性幹細胞が、CD117陰性及びCD146陰性である、請求項1~4のいずれか1項に記載の細胞製剤。
  6.  前記多能性幹細胞が、CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性、及びCD271陰性である、請求項1~5のいずれか1項に記載の細胞製剤。
  7.  前記多能性幹細胞が、CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snai1陰性、Slug陰性、Tyrp1陰性、及びDct陰性である、請求項1~6のいずれか1項に記載の細胞製剤。
  8.  前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、請求項1~7のいずれか1項に記載の細胞製剤:
    (i)テロメラーゼ活性が低いか又は無い;
    (ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
    (iii)腫瘍性増殖を示さない;及び
    (iv)セルフリニューアル能を持つ。
  9.  前記多能性幹細胞が、心筋梗塞部位に集積する能力を有する、請求項1~8のいずれか1項に記載の細胞製剤。
  10.  前記多能性幹細胞が、心筋細胞に分化する能力を有する、請求項1~9のいずれか1項に記載の細胞製剤。
  11.  前記多能性幹細胞が、血管内皮細胞に分化する能力を有する、請求項1~9のいずれか1項に記載の細胞製剤。
  12.  虚血後1カ月以内に対象の静脈又は冠動脈に前記多能性幹細胞を治療上有効量として1×10細胞/個体~1×10細胞/個体で1~10回投与する、請求項1~11のいずれか1項に記載の細胞製剤。
  13.  非投与対照と比較して、心筋梗塞サイズを縮小させる、請求項1~12のいずれか1項に記載の細胞製剤。
  14.  左室における経時的な血圧変化、左室拡張末期径(LVDd)、駆出率(EF)、左室内径短縮率(FS)、及び左室収縮末期径(LVDs)からなる群から選択される少なくとも1つの心機能指標を正常値に回復させる、請求項1~13のいずれか1項に記載の細胞製剤。
PCT/JP2013/071981 2012-08-17 2013-08-15 心筋梗塞の修復再生を誘導する多能性幹細胞 WO2014027684A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
CA2882239A CA2882239C (en) 2012-08-17 2013-08-15 Pluripotent stem cell that induces repair and regeneration after myocardial infarction
CN201380043649.5A CN104582711B (zh) 2012-08-17 2013-08-15 诱导心肌梗塞的修复再生的多能性干细胞
AU2013303492A AU2013303492B2 (en) 2012-08-17 2013-08-15 Pluripotent stem cell that induces repair and regeneration after myocardial infarction
DK13879518.2T DK2886123T3 (da) 2012-08-17 2013-08-15 Pluripotent stamcelle som inducerer reparation og regeneration efter myokardieinfarkt
IN1616DEN2015 IN2015DN01616A (ja) 2012-08-17 2013-08-15
EP13879518.2A EP2886123B1 (en) 2012-08-17 2013-08-15 Pluripotent stem cell that induces repair and regeneration after myocardial infarction
JP2014530568A JP5968442B2 (ja) 2012-08-17 2013-08-15 心筋梗塞の修復再生を誘導する多能性幹細胞
US14/421,754 US9844570B2 (en) 2012-08-17 2013-08-15 Pluripotent stem cell that induces repair and regeneration after myocardial infarction
ES13879518T ES2767182T3 (es) 2012-08-17 2013-08-15 Células madre pluripotentes que inducen reparación y regeneración después de un infarto de miocardio
SG11201501185WA SG11201501185WA (en) 2012-08-17 2013-08-15 Pluripotent stem cell that induces repair and regeneration after myocardial infarction
PL13879518T PL2886123T3 (pl) 2012-08-17 2013-08-15 Pluripotencjalna komórka macierzysta indukująca naprawę i regenerację po zawale mięśnia sercowego
KR1020157006629A KR101730052B1 (ko) 2012-08-17 2013-08-15 심근경색의 수복 재생을 유도하는 다능성 간세포
EP19202650.8A EP3659612B1 (en) 2012-08-17 2013-08-15 Pluripotent stem cell that induces repair and regeneration after myocardial infarction technical field
US15/802,899 US10376544B2 (en) 2012-08-17 2017-11-03 Pluripotent stem cell that induces repair and regeneration after myocardial infarction
US16/452,376 US10639335B2 (en) 2012-08-17 2019-06-25 Pluripotent stem cell that induces repair and regeneration after myocardial infarction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-181029 2012-08-17
JP2012181029 2012-08-17
JPPCT/JP2013/054049 2013-02-19
PCT/JP2013/054049 WO2014027474A1 (ja) 2012-08-17 2013-02-19 心筋梗塞の修復再生を誘導する多能性幹細胞

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/421,754 A-371-Of-International US9844570B2 (en) 2012-08-17 2013-08-15 Pluripotent stem cell that induces repair and regeneration after myocardial infarction
US15/802,899 Continuation US10376544B2 (en) 2012-08-17 2017-11-03 Pluripotent stem cell that induces repair and regeneration after myocardial infarction

Publications (1)

Publication Number Publication Date
WO2014027684A1 true WO2014027684A1 (ja) 2014-02-20

Family

ID=50685515

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/054049 WO2014027474A1 (ja) 2012-08-17 2013-02-19 心筋梗塞の修復再生を誘導する多能性幹細胞
PCT/JP2013/071981 WO2014027684A1 (ja) 2012-08-17 2013-08-15 心筋梗塞の修復再生を誘導する多能性幹細胞

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054049 WO2014027474A1 (ja) 2012-08-17 2013-02-19 心筋梗塞の修復再生を誘導する多能性幹細胞

Country Status (14)

Country Link
US (3) US9844570B2 (ja)
EP (2) EP3659612B1 (ja)
JP (1) JP5968442B2 (ja)
KR (1) KR101730052B1 (ja)
CN (1) CN104582711B (ja)
AU (1) AU2013303492B2 (ja)
CA (1) CA2882239C (ja)
DK (1) DK2886123T3 (ja)
ES (1) ES2767182T3 (ja)
IN (1) IN2015DN01616A (ja)
PL (1) PL2886123T3 (ja)
PT (1) PT2886123T (ja)
SG (2) SG10201800829XA (ja)
WO (2) WO2014027474A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160820A (ja) * 2014-02-26 2015-09-07 株式会社Clio 慢性腎障害治療のための多能性幹細胞
CN107073041A (zh) * 2014-09-05 2017-08-18 国立大学法人东京大学 糖尿病性皮肤溃疡治疗的多功能性干细胞
JP2017151060A (ja) * 2016-02-26 2017-08-31 国立大学法人岐阜大学 急性心筋梗塞の予後マーカー及びその利用
WO2018003997A1 (ja) * 2016-07-01 2018-01-04 国立大学法人東北大学 臓器線維症の予防または治療剤
JP2018162308A (ja) * 2018-07-03 2018-10-18 株式会社生命科学インスティテュート 慢性腎障害治療のための多能性幹細胞
KR20190034552A (ko) 2016-08-03 2019-04-02 가부시키가이샤 세이메이카가쿠 인스티튜트 인비트로로 다능성 간세포를 분화유도하는 방법
JP2019127463A (ja) * 2018-01-25 2019-08-01 国立大学法人岐阜大学 Muse細胞動員剤及び心筋障害への利用
JP2021073305A (ja) * 2021-02-09 2021-05-13 株式会社生命科学インスティテュート 慢性腎障害治療のための多能性幹細胞
WO2021201286A1 (ja) 2020-04-02 2021-10-07 国立大学法人東北大学 ハイポテンシャル多能性幹細胞
KR20220003564A (ko) 2019-08-19 2022-01-10 세루아쿠시아 가부시키가이샤 세포 함유 의약 조성물
US11419899B2 (en) 2016-07-29 2022-08-23 Tohoku University Method of treating aortic aneurysm using muse cells

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027474A1 (ja) 2012-08-17 2014-02-20 株式会社Clio 心筋梗塞の修復再生を誘導する多能性幹細胞
WO2016168993A1 (en) * 2015-04-22 2016-10-27 Innolife Co., Ltd. Methods of tissue repair and regeneration
CA3032917A1 (en) * 2016-08-03 2018-02-08 National University Corporation Nagoya University Amelioration and treatment of chronic lung disease using pluripotent stem cells
EP3494979A4 (en) * 2016-08-03 2020-03-04 Life Science Institute, Inc. REDUCTION AND TREATMENT OF ISCHEMIC REPERFUSION-INDUCED LUNG LESIONS USING PLURIPOTENTIC STEM CELLS
CN106822899B (zh) * 2017-03-10 2020-11-27 北京大学 一种通过抑制自噬促进心肌再生的药物
US20200237828A1 (en) * 2017-10-17 2020-07-30 Hiroshima University Pluripotent stem cells inducing osteochondral repair
CN110302212A (zh) * 2019-07-17 2019-10-08 陶正博 一种用于治疗急性心肌梗死的细胞制剂及其制备方法
EP4026551A1 (en) * 2019-09-05 2022-07-13 Tohoku University Therapeutic agent for myocarditis
CA3156700A1 (en) * 2019-10-31 2021-05-06 Life Science Institute, Inc. Therapy for interstitial cystitis by pluripotent stem cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511094A (ja) * 1997-07-14 2002-04-09 オシリス セラピューティクス,インコーポレイテッド 間葉幹細胞を用いる心筋再生
JP2002521493A (ja) * 1998-07-31 2002-07-16 ジェンザイム コーポレーション 間葉幹細胞移植による心機能の改善
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
US20120094380A1 (en) * 2010-10-18 2012-04-19 Sunshine Biotech Inc. Human multipotent embryonic stem cell-like progenitor cells

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000484A1 (en) * 1992-06-22 1994-01-06 Young Henry E Scar inhibitory factor and use thereof
US20020098167A1 (en) 2000-07-31 2002-07-25 Piero Anversa Methods and compositions for the repair and/or regeneration of damaged myocardium
EP1370642A2 (en) * 2001-01-20 2003-12-17 Cardion AG Pluripotent adult stem cells derived from regenerative tissue
KR101073411B1 (ko) 2001-07-12 2011-10-17 제론 코포레이션 인간 다분화능 줄기 세포로부터 제조된 심근 세포 계통의 세포
US9782439B2 (en) 2005-01-27 2017-10-10 Japan Health Sciences Foundation Cell sheet containing mesenchymal stem cells
CN101517069A (zh) * 2006-07-13 2009-08-26 塞拉帝思股份公司 由人类胚泡来源的干细胞衍生的多能心脏前体细胞新种群
EP2205251B1 (en) 2007-10-01 2017-01-11 University of Miami A method to amplify cardiac stem cells in vitro and in vivo
US8465733B2 (en) 2007-11-02 2013-06-18 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition containing human mesenchymal stem cell
JP5564679B2 (ja) * 2009-04-16 2014-07-30 公益財団法人ヒューマンサイエンス振興財団 心筋細胞分化誘導促進剤およびその使用方法
WO2014027474A1 (ja) 2012-08-17 2014-02-20 株式会社Clio 心筋梗塞の修復再生を誘導する多能性幹細胞

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511094A (ja) * 1997-07-14 2002-04-09 オシリス セラピューティクス,インコーポレイテッド 間葉幹細胞を用いる心筋再生
JP2002521493A (ja) * 1998-07-31 2002-07-16 ジェンザイム コーポレーション 間葉幹細胞移植による心機能の改善
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
US20120094380A1 (en) * 2010-10-18 2012-04-19 Sunshine Biotech Inc. Human multipotent embryonic stem cell-like progenitor cells

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Guidelines for the Care and Use of Laboratory Animals", 1996, U.S. NATIONAL INSTITUTES OF HEALTH
CHUNICHI SHINBUN: "GIFUDAI INKYOJU GA SAISEI IRYO O SHOKAI", MORNING PAPER, 20 February 2012 (2012-02-20), pages 19, XP008178615 *
DEZAWA, M. ET AL., J. CLIN. INVEST., vol. 113, 2004, pages 1701 - 1710
DEZAWA, M. ET AL., SCIENCE, vol. 309, 2005, pages 314 - 317
FISHBEIN ET AL., AM. HEART J., vol. 101, 1981, pages 593 - 600
KURODA Y. ET AL: "UNIQUE MULTIPOTENT CELLS IN ADULT HUMAN MESENCHYMAL CEL POPULATIONS", PROC. NATL. ACAD. SCI, vol. 107, no. 19, 2010, pages 8639 - 8643, XP008152782 *
MARI DEZAWA: "SETTAI YURAI NO KAN'YOKEI SOSHIKI NI NAIHO SARERU MUSE SAIBO NO HAKKEN", EXPERIMENTAL MEDECINE, vol. 29, no. 19, 2011, pages 3077 - 3084, XP008178634 *
See also references of EP2886123A4
WAKAO, S. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 108, 2011, pages 9875 - 9880
YASUDA ET AL., AM. J. PHYSIOL. HEART CIRC. PHYSIOL., vol. 296, 2009, pages 1558 - 1565

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160820A (ja) * 2014-02-26 2015-09-07 株式会社Clio 慢性腎障害治療のための多能性幹細胞
CN107073041A (zh) * 2014-09-05 2017-08-18 国立大学法人东京大学 糖尿病性皮肤溃疡治疗的多功能性干细胞
EP3189844A4 (en) * 2014-09-05 2018-05-02 The University of Tokyo Pluripotent stem cell for treating diabetic skin ulcer
US11000552B2 (en) 2014-09-05 2021-05-11 The University Of Tokyo Pluripotent stem cell for treating diabetic skin ulcer
JP2017151060A (ja) * 2016-02-26 2017-08-31 国立大学法人岐阜大学 急性心筋梗塞の予後マーカー及びその利用
WO2018003997A1 (ja) * 2016-07-01 2018-01-04 国立大学法人東北大学 臓器線維症の予防または治療剤
AU2017287529B2 (en) * 2016-07-01 2022-11-10 Life Science Institute, Inc. Prophylactic or therapeutic agent for organ fibrosis
JPWO2018003997A1 (ja) * 2016-07-01 2019-04-25 国立大学法人東北大学 臓器線維症の予防または治療剤
US11419899B2 (en) 2016-07-29 2022-08-23 Tohoku University Method of treating aortic aneurysm using muse cells
KR20190034552A (ko) 2016-08-03 2019-04-02 가부시키가이샤 세이메이카가쿠 인스티튜트 인비트로로 다능성 간세포를 분화유도하는 방법
JP2019127463A (ja) * 2018-01-25 2019-08-01 国立大学法人岐阜大学 Muse細胞動員剤及び心筋障害への利用
JP7102666B2 (ja) 2018-01-25 2022-07-20 国立大学法人東海国立大学機構 Muse細胞動員剤及び心筋障害への利用
JP7072777B2 (ja) 2018-07-03 2022-05-23 株式会社生命科学インスティテュート 慢性腎障害治療のための多能性幹細胞
JP2018162308A (ja) * 2018-07-03 2018-10-18 株式会社生命科学インスティテュート 慢性腎障害治療のための多能性幹細胞
KR20220003564A (ko) 2019-08-19 2022-01-10 세루아쿠시아 가부시키가이샤 세포 함유 의약 조성물
WO2021201286A1 (ja) 2020-04-02 2021-10-07 国立大学法人東北大学 ハイポテンシャル多能性幹細胞
JP2021073305A (ja) * 2021-02-09 2021-05-13 株式会社生命科学インスティテュート 慢性腎障害治療のための多能性幹細胞

Also Published As

Publication number Publication date
KR101730052B1 (ko) 2017-04-25
US20180050067A1 (en) 2018-02-22
US20150196600A1 (en) 2015-07-16
SG10201800829XA (en) 2018-03-28
US20190307806A1 (en) 2019-10-10
CN104582711A (zh) 2015-04-29
EP2886123B1 (en) 2019-10-23
DK2886123T3 (da) 2020-01-27
KR20150043482A (ko) 2015-04-22
US9844570B2 (en) 2017-12-19
US10639335B2 (en) 2020-05-05
SG11201501185WA (en) 2015-05-28
EP3659612B1 (en) 2023-06-07
AU2013303492A1 (en) 2015-03-12
CA2882239A1 (en) 2014-02-20
ES2767182T3 (es) 2020-06-16
PT2886123T (pt) 2020-01-22
JP5968442B2 (ja) 2016-08-10
PL2886123T3 (pl) 2020-05-18
WO2014027474A1 (ja) 2014-02-20
EP3659612A1 (en) 2020-06-03
AU2013303492B2 (en) 2017-02-16
IN2015DN01616A (ja) 2015-07-03
JPWO2014027684A1 (ja) 2016-07-28
US10376544B2 (en) 2019-08-13
EP2886123A4 (en) 2016-06-22
CA2882239C (en) 2018-05-22
CN104582711B (zh) 2019-12-06
EP2886123A1 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5968442B2 (ja) 心筋梗塞の修復再生を誘導する多能性幹細胞
Bao et al. C-Kit Positive cardiac stem cells and bone marrow–derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner
US20200016210A1 (en) Methods of Reducing Teratoma Formation During Allogeneic Stem Cell Therapy
JP2015159895A (ja) 脳梗塞治療のための多能性幹細胞
JP2020503375A (ja) 周産期組織由来間葉系幹細胞:その作製方法および使用
JP7029729B2 (ja) 血管障害の予防又は治療剤
JP2015160820A (ja) 慢性腎障害治療のための多能性幹細胞
JP7072777B2 (ja) 慢性腎障害治療のための多能性幹細胞
JP6604492B2 (ja) 脳梗塞治療のための多能性幹細胞
WO2021045190A1 (ja) 心筋炎の治療剤
US11963983B2 (en) Methods of cardiac repair
WO2021085639A1 (ja) 多能性幹細胞による間質性膀胱炎の治療
WO2021201286A1 (ja) ハイポテンシャル多能性幹細胞
JP7473207B2 (ja) 末梢血流障害の治療剤
WO2020111249A1 (ja) 末梢血流障害の治療剤
US20200101117A1 (en) Methods of cardiac repair
WO2018003997A1 (ja) 臓器線維症の予防または治療剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014530568

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14421754

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2882239

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013879518

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013303492

Country of ref document: AU

Date of ref document: 20130815

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006629

Country of ref document: KR

Kind code of ref document: A