WO2014027586A1 - ポリエステルカーボネートの製造方法 - Google Patents

ポリエステルカーボネートの製造方法 Download PDF

Info

Publication number
WO2014027586A1
WO2014027586A1 PCT/JP2013/071281 JP2013071281W WO2014027586A1 WO 2014027586 A1 WO2014027586 A1 WO 2014027586A1 JP 2013071281 W JP2013071281 W JP 2013071281W WO 2014027586 A1 WO2014027586 A1 WO 2014027586A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
represented
hydrogen atom
Prior art date
Application number
PCT/JP2013/071281
Other languages
English (en)
French (fr)
Inventor
真治 和田
岡添 隆
岡本 秀一
厚史 藤森
柏木 王明
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014027586A1 publication Critical patent/WO2014027586A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups

Definitions

  • the present invention relates to a method for producing polyester carbonate.
  • Polyester carbonate obtained by condensation polymerization of diols, dicarboxylic acids, and carbonates. Polyester carbonate is used for lenses, light covers and the like because of its excellent heat resistance, transparency and impact resistance.
  • polyester carbonates Various methods for producing these polyester carbonates are known, but the general method is an interfacial polycondensation method in which phosgene and dicarboxylic acid dichloride are dissolved in an organic solvent such as methylene chloride and contacted with an aqueous alkali solution of diols. It is.
  • This interfacial polycondensation method can be carried out at a low temperature, is easy to obtain a high molecular weight product, and the resulting polymer is also characterized by low coloration.
  • complicated operations are required for the synthesis and purification of phosgene and dicarboxylic acid dichloride which are raw materials, there is a problem that the production cost is increased.
  • methylene chloride which is usually used as a reaction solvent, is a chemical substance that has environmental and hygienic problems, and must be handled with great care.
  • the boiling point is very low at 40 ° C., it is difficult to make a closed system that can completely recycle methylene chloride used in the production of polyester carbonate, and there is a problem that it is very expensive, and it has evaporated.
  • Another problem is that methylene chloride adversely affects the environment and hygiene.
  • inorganic salts such as sodium chloride produced as a by-product by the reaction must be washed away, and there are problems such as the need for complicated processes such as purification of the polymer after the reaction and solvent recovery.
  • a melt polycondensation method in which diols, carbonic acid diesters and dicarboxylic acid diesters are polymerized in a molten state by a transesterification method is also known.
  • This melt polycondensation method is characterized by the fact that it does not use a solvent and basically does not use a halogen-based raw material, but it is difficult to obtain a high molecular weight, and a side reaction or the like occurs during polycondensation because it reacts at a high temperature. It occurs and has the problem that the resulting polymer is highly colored. Moreover, if distillates such as monomers and elimination alcohol remain in the polymer, it causes a decrease in strength of the polyester carbonate.
  • the present invention provides a method capable of producing high-purity and high-molecular weight polyester carbonate with little coloration without using a toxic compound such as phosgene.
  • the method for producing a polyester carbonate of the present invention comprises a compound represented by the following formula (1), a compound represented by the following formula (2) and a compound represented by the following formula (3) in the presence of a catalyst. At least one compound selected from the group consisting of a compound represented by the following formula (4), a compound represented by the following formula (5) and a compound represented by the following formula (6): Polyester carbonate is obtained by transesterification with diol compound.
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • R 1 is a group represented by CX 1 Y 1 R 4
  • two R 1 may be the same or different
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • two R 2 may be the same or different
  • R 3 is a hydrogen atom or a group represented by CX 3 Y 3 R 6
  • X 1 to X 3 are each a hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or an alkyl group having 1 to 6 carbon atoms
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • R 1 is a group represented by CX 1 Y 1 R 4
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or a group represented by CX 3 Y 3 R 6
  • R 7 is a C 1-5 perfluoroalkylene group (however, it may contain etheric oxygen)
  • X 1 to X 3 are each a hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or an alkyl group having 1 to 6 carbon atoms
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • R 7 is a perfluoroalkylene group having 1 to 5 carbon atoms (however, it may contain etheric oxygen), and the two R 7 may be the same or different.
  • R 11 is a group represented by CX 11 Y 11 R 14 , and two R 11 may be the same or different, R 12 is a hydrogen atom or a group represented by CX 12 Y 12 R 15 , and two R 12 may be the same or different, R 13 is a hydrogen atom or a group represented by CX 13 Y 13 R 16 , and two R 13 may be the same or different, X 11 to X 13 are each a hydrogen atom, a fluorine atom or R f1 , Y 11 to Y 13 are each a fluorine atom or R f1 , R 14 to R 16 are each a fluorine atom, R f1 , OR f1 or an alkyl group having 1 to 6 carbon atoms, R f1 is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • R 11 is a group represented by CX 11 Y 11 R 14 ;
  • R 12 is a hydrogen atom or a group represented by CX 12 Y 12 R 15 ;
  • R 13 is a hydrogen atom or a group represented by CX 13 Y 13 R 16 ;
  • R 17 is a C 1-5 perfluoroalkylene group (however, it may contain etheric oxygen);
  • X 11 to X 13 are each a hydrogen atom, a fluorine atom or R f1
  • Y 11 to Y 13 are each a fluorine atom or R f1
  • R 14 to R 16 are each a fluorine atom, R f1 , OR f1 or an alkyl group having 1 to 6 carbon atoms
  • R f1 is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • R 17 is a C 1-5 perfluoroalkylene group (which may contain etheric oxygen), and two R 17 may be the same or different.
  • the mass average molecular weight (Mw) of the polyester carbonate is preferably from 10,000 to 300,000, more preferably from 15,000 to 200,000, and even more preferably from 20,000 to 100,000.
  • the compound represented by the formulas (1) to (3) is at least one fluorine-containing alcohol selected from the group consisting of a compound represented by the following formula (7) and a compound represented by the following formula (8): Preferably obtained by a reaction using as starting material.
  • R 1 is a group represented by CX 1 Y 1 R 4
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or a group represented by CX 3 Y 3 R 6
  • R 7 is a C 1-5 perfluoroalkylene group (however, it may contain etheric oxygen)
  • X 1 to X 3 are each a hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or an alkyl group having 1 to 6 carbon atoms
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • the compound represented by the formulas (4) to (6) is at least one fluorine-containing alcohol selected from the group consisting of a compound represented by the following formula (9) and a compound represented by the following formula (10): Preferably obtained by a reaction using as starting material.
  • R 11 is a group represented by CX 11 Y 11 R 14, R 12 is a hydrogen atom or a group represented by CX 12 Y 12 R 15 ; R 13 is a hydrogen atom or a group represented by CX 13 Y 13 R 16 ; R 17 is a C 1-5 perfluoroalkylene group (however, it may contain etheric oxygen);
  • X 11 to X 13 are each a hydrogen atom, a fluorine atom or R f1
  • Y 11 to Y 13 are each a fluorine atom or R f1
  • R 14 to R 16 are each a fluorine atom, R f1 , OR f1 or an alkyl group having 1 to 6 carbon atoms
  • R f1 is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • the number of carbon atoms in the fluorinated alcohol is preferably 2 to 10.
  • R 2 in the formula (7) is preferably a group represented by CX 2 Y 2 R 5 .
  • R 12 in the formula (9) is preferably a group represented by CX 12 Y 12 R 15 .
  • the pKa of the fluorinated alcohol is preferably less than 15.
  • the pKa of the fluorinated alcohol is preferably less than 13.
  • the fluorine-containing alcohol includes 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 2,2,3,3,3-pentafluoro-1-propanol, 1, 1,1,3,3,3-hexafluoro-2-propanol, 2-fluoro-1-propanol, 2,2,3,4,4,4-hexafluoro-1-butanol, 2,2,3, 3,4,4,5,5-octafluoro-1-pentanol, 2,2,3,3,4,4,5,5-octafluorocyclopentanol, perfluoro (t-butyl) alcohol, and 2 , 2,3,3,4,4,5,5,6,6-decafluorocyclohexanol is preferably at least one selected from the group consisting of
  • the diol compound is preferably an aliphatic diol compound or an aromatic diol compound.
  • the diol compound is preferably bisphenol A.
  • the diol compound is preferably an aliphatic diol compound having 2 to 10 carbon atoms.
  • polyester carbonate of the present invention high-purity and high-molecular weight polyester carbonate can be produced with little coloration.
  • a compound represented by the formula (1) is referred to as a compound (1).
  • the method for producing a polyester carbonate of the present invention is a method for obtaining a polyester carbonate by an ester exchange reaction between a specific fluorine-containing dicarboxylic acid ester compound, a fluorine-containing carbonate, and a diol compound in the presence of a catalyst.
  • the catalyst examples include known transesterification reaction catalysts.
  • specific examples of the catalyst include alkali metal or alkaline earth metal carbonates (sodium carbonate, sodium hydrogen carbonate, potassium carbonate, calcium carbonate, etc.), alkali metal or alkaline earth metal hydroxides (lithium hydroxide, water, etc.) Sodium oxide, potassium hydroxide, calcium hydroxide, etc.), boron or aluminum hydride alkali metal salt, alkaline earth metal salt, or quaternary ammonium salt (lithium aluminum hydride, sodium borohydride, borohydride) Potassium, tetramethylammonium borohydride), alkali metal or alkaline earth metal hydride (lithium hydride, sodium hydride, calcium hydride, etc.), alkali metal or alkaline earth metal alkoxide (lithium methoxide, Sodium ethoxide, Cie um methoxide), an alkali metal or alkaline earth metal aryl
  • Quaternary arsonium salts, etc. antimony compounds (antimony oxide, antimony acetate, etc.), manganese compounds (manganese acetate, manganese carbonate, manganese borate, etc.), titanium compounds (titanium oxide, titanium alkoxides, aryloxides, etc.), zirconation Things (zirconium acetate, zirconium oxide, zirconium alkoxide or aryloxide, zirconium acetylacetone) and the like.
  • Catalysts include alkali metal salts or alkaline earth metal salts (carbonates, hydroxides, boron or aluminum hydride salts, hydrogen compounds, alkoxides from the viewpoint of heat resistance, weather resistance, and coloration resistance of polyester carbonate. , Aryloxides and organic acid salts) are preferred, and alkali metal or alkaline earth metal carbonates, hydroxides, boron or aluminum hydride salts are more preferred because they are readily available and relatively inexpensive.
  • alkali metal salts or alkaline earth metal salts carbonates, hydroxides, boron or aluminum hydride salts, hydrogen compounds, alkoxides from the viewpoint of heat resistance, weather resistance, and coloration resistance of polyester carbonate.
  • Aryloxides and organic acid salts are preferred, and alkali metal or alkaline earth metal carbonates, hydroxides, boron or aluminum hydride salts are more preferred because they are readily available and relatively inexpensive.
  • a catalyst may be used individually by 1 type and may be used in combination of 2 or more type.
  • the amount of the catalyst is usually 10 ⁇ 8 to 1% by mass with respect to the raw material diol compound. From the viewpoint of the polymerization rate (productivity) and the decrease in physical properties due to residual in the polyester carbonate, the amount of the catalyst is 10 ⁇ 7 to 10 ⁇ 1 mass% is preferable.
  • the fluorine-containing dicarboxylic acid ester compound is at least one selected from the group consisting of compound (1), compound (2) and compound (3).
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • R 1 is represented by CX 1 Y 1 R 4.
  • Two R 1 s may be the same or different
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • two R 2 are the same
  • R 3 is a hydrogen atom or a group represented by CX 3 Y 3 R 6
  • two R 3 s may be the same or different
  • X 1 to X 3 are each A hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or a carbon number of 1 to 6 an alkyl group
  • R f is C 1-4 fluoroalkyl group (carbon, et Contain ether oxygen is good
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • R 1 is represented by CX 1 Y 1 R 4.
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or a group represented by CX 3 Y 3 R 6
  • R 7 is ,
  • X 1 to X 3 are each a hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are Are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or an alkyl group having 1 to 6 carbon atoms
  • R f is a fluoroalkyl having 1 to 4 carbon atoms Group (but
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • R 7 is a perfluoroalkylene group having 1 to 5 carbon atoms. (However, etheric oxygen may be included.), And two R 7 may be the same or different.
  • Ar represents one or more hydrogen atoms other substituents that do not adversely influence the reaction (for example, halogen atom, alkyl group having 1 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms, phenyl group, phenoxy group) , Vinyl group, cyano group, ester group, amide group, nitro group, etc.).
  • Specific examples of Ar include a phenylene group, a toluylene group, a xylylene group, a biphenylene group, a naphthylene group, a furylene group, a thienylene group, a pyrrolylene group, and a pyridylene group.
  • 6 A group having at least a member ring is preferable, and a group represented by the following formula (11) is more preferable from the viewpoint of heat resistance of the obtained polyester carbonate and availability of raw materials.
  • R 19 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 members, or phenyl. And a plurality of R 19 in the case where p is 2 to 4 may be the same or different.
  • Specific examples of the group represented by the formula (11) include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 3-methyl-1,2-phenylene group, 4-methyl -1,2-phenylene group, 2-methyl-1,3-phenylene group, 4-methyl-1,3-phenylene group, 5-methyl-1,3-phenylene group, 2-methyl-1,4-phenylene Group, 3-phenyl-1,2-phenylene group, 4-phenyl-1,2-phenylene group, 2-phenyl-1,3-phenylene group, 4-phenyl-1,3-phenylene group, 5-phenyl- 1,3-phenylene group, 2-phenyl-1,4-phenylene group, 3-t-butyl-1,2-phenylene group, 4-t-butyl-1,2-phenylene group, 2-t-butyl- 1,3-phenylene group, 4-tert-butyl-1,3-phenyle Group, 5-t-butyl-1,3-phenylene group, 2-t-but
  • the fluorine-containing dicarboxylic acid ester compound can be obtained by a reaction using at least one fluorine-containing alcohol selected from the group consisting of the compound (7) and the compound (8) as a starting material.
  • R 1 is a group represented by CX 1 Y 1 R 4
  • R 2 is a group represented by hydrogen or CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or CX 3 Y 3
  • R 6 is a group
  • R 7 is a C 1-5 perfluoroalkylene group (which may contain etheric oxygen)
  • X 1 -X 3 are each a hydrogen atom
  • a fluorine atom or R f , Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are a fluorine atom, R f , OR f, or an alkyl group having 1 to 6 carbon atoms, respectively.
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • the fluorine-containing alcohol those having an acid dissociation degree higher than the acid dissociation degree of the diol compound are preferable from the viewpoint of improving the transesterification reaction rate. Therefore, a compound in which a fluoroalkyl group is directly bonded to the ⁇ -position carbon atom of the hydroxyl group (hereinafter also referred to as ⁇ -carbon) is preferable.
  • ⁇ -carbon a compound in which a fluorine atom is directly bonded to ⁇ -carbon is not preferable because a decomposition reaction due to a dehydrofluorination reaction easily occurs.
  • pKa of a fluorinated alcohol is used.
  • the pKa of the fluorinated alcohol is preferably less than 10 or close to 10 since the pKa of the phenol is about 10.
  • the pKa of the fluorinated alcohol is preferably less than 15 and more preferably less than 13 since the pKa of the aliphatic alcohol is about 15 to 16.
  • R 2 is a group represented by CX 2 Y 2 R 5 , that is, 2 Preferred is a tertiary or tertiary fluorine-containing alcohol
  • R 2 and R 3 are each a group represented by CX 2 Y 2 R 5 and a group represented by CX 3 Y 3 R 6 , that is, tertiary. More preferred is a fluorine-containing alcohol.
  • the carbon number of the fluorinated alcohol is preferably 2 to 10. If the fluorine-containing alcohol has 2 or more carbon atoms, a stable fluorine-containing alcohol in which a fluorine atom is not directly bonded to the ⁇ -position of the hydroxyl group can be selected. If the fluorine-containing alcohol has 10 or less carbon atoms, when boiling off the fluorine-containing alcohol that dissociates during the transesterification reaction, the boiling point can be easily removed under mild conditions, so it is necessary to apply a high temperature during the transesterification reaction. And high-quality polyester carbonate can be produced.
  • fluorinated alcohol examples include 2,2,2-trifluoroethanol (pKa: 12.4 * 2 ), 2,2,3,3,3-pentafluoro-1-propanol (pKa: 12.5). * 2 ), 2,2,3,3-tetrafluoro-1-propanol (pKa: 12.7 * 3 ), 1,1,1,3,3,3-hexafluoro-2-propanol (pKa: 9) .4 * 1 ), 2-fluoro-1-propanol (pKa: 14.0 * 3 ), 2,2,3,4,4,4-hexafluoro-1-butanol (pKa: 12.5 * 3 ) 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (pKa: 12.5 * 3 ), perfluoro (t-butyl) alcohol (pKa: 5.3 * 1 ) 2,2,3,3,4,4,5,5-octafull Orocyclopentanol (pKa:
  • 2,2,2-trifluoroethanol and 2,2,3,3,3-pentafluoro-1-propanol are easy to recover alcohol at the polymerization temperature and are easily available industrially.
  • 2,2,3,3-tetrafluoro-1-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3-tetrafluoro-1-propanol preferable.
  • the pKa values (* 1 to * 3) of the fluorine-containing alcohol described above are values (* 1), literature values (* 2), or values (* 3) based on the estimation method described below.
  • PKa The pKa of a fluorinated alcohol having a high degree of acid dissociation (strong acid strength) is determined based on the following.
  • PKa is measured as the degree of acid dissociation in an aqueous solution of a fluorinated alcohol.
  • HA fluorinated alcohol
  • S water
  • HS + conjuggate acid of water
  • a ⁇ conjuggate base of fluorine-containing alcohol
  • Ka [HS + ] [A ⁇ ] / [HA] [S]
  • [S] can be approximated by 1.
  • Ka [HS + ] [A ⁇ ] / [HA]
  • pKa log [HA] / [HS + ]
  • [A ⁇ ] ⁇ log [HS + ] ⁇ log [A ⁇ ] / [HA] Since it is the degree of acid dissociation in an aqueous solution, -log [HS + ] is equal to pH.
  • Examples of a method for obtaining a fluorine-containing dicarboxylic acid ester compound by a reaction using a fluorine-containing alcohol as a starting material include the following methods (a) to (c). From the viewpoint of high yield, the method (c) is preferable.
  • (A) A method of obtaining a fluorinated dicarboxylic acid ester compound by a transesterification reaction between the compound (12) and a fluorinated alcohol in the presence of a catalyst.
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • R 18 is an alkyl group or aryl having 1 to 10 carbon atoms It is a group.
  • the alkyl group may be branched and may contain etheric oxygen.
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms
  • X 11 to X 13 are a hydrogen atom or a halogen atom, respectively.
  • at least one of X 11 to X 13 is a halogen atom
  • X 14 to X 16 are each a hydrogen atom or a halogen atom
  • at least one of X 14 to X 16 is a halogen atom .
  • X 11 to X 16 are preferably all halogen atoms, more preferably fluorine atoms or chlorine atoms, and most preferably all chlorine atoms from the viewpoint that industrially useful chloroform can be co-produced as a by-product. .
  • Ar is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or an aliphatic alkylene group having 1 to 10 carbon atoms, and Z is a halogen atom.
  • alkali metal alkaline earth metal
  • alkali metal hydride alkaline earth metal hydride
  • alkali metal hydroxide alkaline earth metal hydroxide
  • phase transfer catalyst alkali Alkali earth metal halide
  • Ammonia halide Ion exchange resin
  • the ratio of the number of moles of the first charge of the fluorinated alcohol and the number of moles of the first charge of the compound (14) in the method of (c) (fluorinated alcohol / compound (14)) is the fluorine-containing dicarboxylic acid ester compound. Is more than 2, more preferably 2.5 or more, and particularly preferably 3 or more.
  • a solvent may be used for the purpose of adjusting the viscosity of the reaction system and the calorific value.
  • the reaction temperature in the method (c) is preferably 40 to 200 ° C.
  • the reaction pressure in the method (c) is usually atmospheric pressure.
  • the fluorine-containing carbonate is at least one selected from the group consisting of the compound (4), the compound (5) and the compound (6).
  • R 11 is a group represented by CX 11 Y 11 R 14
  • two R 11 may be the same or different
  • R 12 is a hydrogen atom or CX 12 Y 12 R 15
  • the two R 12 groups may be the same or different
  • R 13 is a hydrogen atom or a group represented by CX 13 Y 13 R 16 , and the two R 13 groups are the same.
  • X 11 to X 13 are each a hydrogen atom, a fluorine atom or R f1 , Y 11 to Y 13 are each a fluorine atom or R f1 , and R 14 to R 16 are Each is a fluorine atom, R f1 , OR f1 or an alkyl group having 1 to 6 carbon atoms, and R f1 is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • R 11 is a group represented by CX 11 Y 11 R 14
  • R 12 is a hydrogen atom or a group represented by CX 12 Y 12 R 15
  • R 13 is a hydrogen atom or CX 13 Y 13 R 16
  • R 17 is a perfluoroalkylene group having 1 to 5 carbon atoms (which may contain etheric oxygen)
  • X 11 to X 13 are each hydrogen.
  • An atom, a fluorine atom or R f1 , Y 11 to Y 13 are each a fluorine atom or R f1
  • R 14 to R 16 are a fluorine atom, R f1 , OR f1 or an alkyl having 1 to 6 carbon atoms, respectively.
  • R f1 is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • R 17 is a C 1-5 perfluoroalkylene group (which may contain etheric oxygen), and two R 17 may be the same or different.
  • Fluorocarbonates are often low-viscosity liquids at room temperature, which is advantageous when performing a polycondensation reaction.
  • many of them have a boiling point in the range of 80 to 250 ° C. and have high thermal stability, so it is easy to obtain high-purity fluorinated carbonate by distillation purification, which is advantageous for producing high-quality polycarbonate. is there.
  • the fluorine-containing carbonate can be obtained by a reaction using at least one fluorine-containing alcohol selected from the group consisting of the compound (9) and the compound (10) as a starting material.
  • R 11 is a group represented by CX 11 Y 11 R 14
  • R 12 is a hydrogen atom or a group represented by CX 12 Y 12 R 15
  • R 13 is a hydrogen atom or CX 13 A group represented by Y 13 R 16 , wherein R 17 is a perfluoroalkylene group having 1 to 5 carbon atoms (which may contain etheric oxygen), and X 11 to X 13 are each a hydrogen atom
  • a fluorine atom or R f1 , Y 11 to Y 13 are each a fluorine atom or R f1
  • R 14 to R 16 are a fluorine atom, R f1 , OR f1, or an alkyl group having 1 to 6 carbon atoms, respectively.
  • R f1 is a fluoroalkyl group having 1 to 4 carbon atoms (which may contain etheric oxygen).
  • the fluorine-containing alcohol those having an acid dissociation degree higher than the acid dissociation degree of the diol are preferable from the viewpoint of improving the transesterification reaction rate. Therefore, a compound in which a fluoroalkyl group is directly bonded to the ⁇ -position carbon atom of the hydroxyl group (hereinafter also referred to as ⁇ -carbon) is preferable.
  • ⁇ -carbon a compound in which a fluorine atom is directly bonded to the ⁇ carbon atom of the hydroxyl group
  • an alcohol in which a fluorine atom is directly bonded to the ⁇ carbon is not preferable because a decomposition reaction due to a deHF reaction is likely to occur.
  • pKa of fluorinated alcohol is used.
  • the pKa of the fluorinated alcohol is preferably less than 10 because the pKa of the phenol is approximately 10.
  • the pKa of the fluorinated alcohol is preferably less than 15, more preferably less than 13, since the pKa of the aliphatic alcohol is about 15 to 16.
  • R 12 is a group represented by CX 12 Y 12 R 15 (that is, Preferably a secondary or tertiary fluorine-containing alcohol), and R 12 and R 13 are a group represented by CX 12 Y 12 R 15 and a group represented by CX 13 Y 13 R 16 respectively (ie, More preferably, it is a tertiary fluorine-containing alcohol.
  • the carbon number of the fluorinated alcohol is preferably 2 to 10. If the fluorine-containing alcohol has 2 or more carbon atoms, it is possible to select a stable fluorine-containing alcohol in which a fluorine atom is not directly bonded to the ⁇ -position of the hydroxyl group. If the fluorine-containing alcohol has 10 or less carbon atoms, the boiling point of the fluorine-containing alcohol that is dissociated during the synthesis of the polycarbonate by polymerization becomes a boiling point that can be easily removed under mild conditions. There is no need to synthesize high-quality polycarbonate.
  • fluorinated alcohol examples include 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, and 2,2,3,3-tetrafluoro-1-propanol.
  • Specific methods for obtaining a fluorinated carbonate by a reaction using a fluorinated alcohol as a starting material include the following methods (d) to (f), and the yield can be obtained without using a toxic compound such as phosgene. From the viewpoint of high, the method (f) is preferable.
  • E A method of obtaining a fluorinated carbonate by a transesterification reaction between a dialkyl carbonate and a fluorinated alcohol.
  • F A method of obtaining a fluorinated carbonate by reacting the compound (15) with a fluorinated alcohol in the presence of a catalyst.
  • X 1 to X 3 are each a hydrogen atom or a halogen atom, at least one of X 1 to X 3 is a halogen atom, and X 4 to X 6 are each a hydrogen atom or a halogen atom. At least one of X 4 to X 6 is a halogen atom.
  • X 1 to X 6 are preferably all halogen atoms, more preferably fluorine atoms or chlorine atoms, and most preferably all chlorine atoms since chloroform is obtained as a by-product.
  • hexachloroacetone pentachloroacetone, tetrachloroacetone, 1,1,2-trichloroacetone, hexafluoroacetone, pentafluoroacetone, 1,1,3,3-tetrafluoroacetone, 1,1 , 2-trifluoroacetone, 1,1,3,3-tetrachloro-1,3-difluoroacetone, 1,1,1-trichloro-3,3,3-trifluoroacetone, 1,3-dichloro-1 1,3,3-tetrafluoroacetone, tetrabromoacetone, pentabromoacetone, hexabromoacetone, and the like.
  • Hexachloroacetone is preferred because industrially useful chloroform can be produced in high yield.
  • chloroacetones can be easily produced by the method of chlorinating acetone described in Japanese Patent Publication No. 60-52741 and Japanese Patent Publication No. 61-16255.
  • a partially fluorinated compound can be easily produced by the method of fluorinating chloroacetones with hydrogen fluoride described in US Pat. No. 6,235,950.
  • the ratio between the number of moles of the initial charge of the fluorinated alcohol and the number of moles of the first charge of the compound (15) (fluorinated alcohol / compound (15)) is from the point of improving the yield of the fluorinated carbonate, More than 2, preferably 2.5 or more, more preferably 3 or more.
  • Examples of the catalyst used in the method (f) include catalysts used in the polycondensation reaction described later.
  • the amount of the catalyst is variously selected depending on the catalyst, but is preferably 0.01 to 30% by mass with respect to the substrate, and more preferably 0.1 to 10% by mass considering the reaction activity and the catalyst removal step after the reaction. .
  • a solvent may be used for the purpose of promoting the reaction.
  • the reaction temperature in the method (f) is preferably 40 to 200 ° C.
  • the reaction pressure in the method (f) is usually atmospheric pressure.
  • diol compound examples include an aliphatic diol compound and an aromatic diol compound, and an aromatic diol compound is preferable because an industrially useful polyester carbonate can be obtained.
  • the aliphatic diol compound is preferably an aliphatic diol compound having 2 to 12 carbon atoms, more preferably an aliphatic diol compound having 2 to 10 carbon atoms, from the viewpoint of heat resistance, chemical resistance and mechanical properties of the polyester carbonate. .
  • aliphatic diol compound examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol, cyclohexanediol, 1, 2-propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,4-butenediol, 2- Methyl-2,4-pentanediol (hexylene glycol), 3-methyl-1,5-pentanediol, 1,5-pentanediol, 1,6-hexanediol, fluorine-containing diol (3,3,3-tri Fluoro-1,2-propanediol, etc.) That.
  • the aromatic diol compound is preferably an aromatic diol compound having 6 to 20 carbon atoms from the viewpoint of heat resistance, chemical resistance, mechanical properties and moldability of the polyester carbonate.
  • Specific examples of the aromatic diol compound include resorcinol, catechol, hydroquinone, 2,2-bis (4-hydroxyphenyl) propane [alias: bisphenol A], 2,2-bis (4-hydroxyphenyl) hexafluoropropane [ Alias: bisphenol AF], bis (4-hydroxyphenyl) methane, 4,4'-dihydroxybiphenyl, bis (4-hydroxybiphenyl) ether, dihydroxynaphthalene, phloroglicinol, and phenol condensates.
  • Bisphenol A is preferred from the standpoint of availability and availability of polyarylate.
  • the following method (A) or (B) is a specific method for obtaining a polyester carbonate by transesterifying a fluorine-containing dicarboxylic acid ester compound, a fluorine-containing carbonate and a diol compound in the presence of a catalyst.
  • the method (A) is preferable because it can be manufactured by a simple process.
  • a method in which a fluorine-containing dicarboxylic acid ester compound, a fluorine-containing carbonate, and a diol compound are melt polycondensed in the presence of a catalyst.
  • B A method of subjecting a fluorine-containing dicarboxylic acid ester compound, a fluorine-containing carbonate, and a diol compound to solution polycondensation in the presence of a catalyst.
  • the reaction temperature in the method (A) is preferably not less than the melting point of the diol compound, fluorine-containing dicarboxylic acid ester compound and fluorine-containing carbonate in the early stage of reaction, and more preferably not less than the melting point of polyester carbonate in the later stage of the reaction.
  • the reaction temperature in the method (A) is preferably 300 ° C. or less from the viewpoint of suppressing the coloration of the polyester carbonate.
  • a fluorine-containing dicarboxylic acid ester compound, a fluorine-containing carbonate, and a diol compound are subjected to an ester exchange reaction in the presence of a catalyst.
  • the fluorine-containing dicarboxylic acid ester compound and the fluorine-containing carbonate are copolymerized to obtain a polyester carbonate.
  • either block polymerization or random polymerization may be used.
  • polyester carbonate can also be polymerized by combining both block polymerization and random polymerization.
  • the ratio between the number of moles of the initial charge of the fluorinated dicarboxylic acid ester compound and the number of moles of the first charge of the fluorinated carbonate depends on the target molecular weight of the polyester carbonate. What is necessary is just to select suitably.
  • the ratio of the diol compound to the initial number of moles charged may be appropriately selected according to the target molecular weight of the polyester carbonate.
  • the fluorine-containing dicarboxylic acid ester compound / fluorinated carbonate (molar ratio) is preferably 1/99 to 99/1.
  • the total / diol compound ratio (molar ratio) of the fluorinated dicarboxylic acid ester compound and the fluorinated carbonate is preferably 52/48 to 48/52, and preferably 51/49 to 49/49 from the viewpoint of obtaining a polyester carbonate having an Mw of 10,000 to 300,000. 51 is more preferable.
  • polyester carbonate of the present invention In the method for producing polyester carbonate of the present invention described above, the degree of dissociation of the ester moiety is high due to the effect of electron withdrawing by fluorine atoms, and transesterification with aromatic diol compounds and aliphatic diol compounds is easy. Certain fluorine-containing dicarboxylic acid ester compounds and fluorine-containing carbonate compounds are used. Therefore, the polymerization reaction rate is fast and the polymerization is possible at a low temperature. Moreover, it is not necessary to use a solvent. Therefore, high purity, high molecular weight polyester carbonate without coloring can be produced by a simple process.
  • the transesterification rate which is an equilibrium reaction
  • the production method of the polyester carbonate of the present invention using the fluorine-containing dicarboxylic acid ester compound and the fluorine-containing carbonate compound says that it is difficult to obtain a high molecular weight material that has been a problem of the conventional polyester carbonate production method by the transesterification method. It is a production method that can solve problems and problems such as coloring caused by long-time reaction at high temperature.
  • the molecular weight of the synthesized polyester carbonate was determined by analyzing it under the following conditions using the following apparatus and converting it to polystyrene as a standard material.
  • Apparatus manufactured by Tosoh Corporation, HLC-8220GPC, Guard column: TSK guard column Super MPHZ-M, Column: 3 TSKgel SuperMultipore HZ-M, Mobile phase: tetrahydrofuran, Flow rate: 0.35 mL / min, Detection method: RI detection, Column temperature: 40 ° C.
  • NMR analysis NMR analysis was performed using the following apparatus under the following conditions. Apparatus: manufactured by JEOL Ltd., AL300, 1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS), 19 F-NMR (282.65 MHz, solvent: CDCl 3 , standard: CFCl 3 ).
  • GC analysis Gas chromatography (GC) analysis
  • Equipment GC-17A, manufactured by Shimadzu Corporation
  • Detection method FID detection.
  • GC-Mass analysis Gas chromatography mass (GC-Mass) analysis was performed using the following apparatus under the following conditions. Equipment: Shimadzu Corporation GC-17A / QP-5050A system, Detection method: EI detection.
  • the mixture was stirred at 100 ° C. for 1 hour, then heated to 140 ° C. while watching the generation of hydrogen chloride gas, and heated for a total of 9 hours.
  • the crude liquid was cooled to room temperature, and a part of the crude liquid was collected and subjected to 1 H-NMR analysis. As a result, it was confirmed that the compound (1-1) was formed as a main product (yield 41.8% based on the compound (7-1)).
  • the product compound (1-1) was obtained in a yield of 93.5%.
  • the product compound (1-1) was assigned a structure by 19 F-NMR analysis and GC-Mass analysis in addition to 1 H-NMR analysis.
  • the results of 1 H-NMR, 19 F-NMR and Mass fragment of the compound (1-1) are shown below.
  • polyester carbonate 1 In a reactor of a 300 mL melt polymerization apparatus, 30.00 g (0.132 mol) of bisphenol A (compound (16)), 5.760 g (0.015 mol) of compound (1-1), compound (4-1) Of 39.00 g (0.134 mol) and 0.0011 g (1.31 ⁇ 10 ⁇ 5 mol) of sodium hydrogen carbonate were charged. The following deoxygenation step was repeated three times. Deoxygenation step: Oxygen is removed by evacuating the reactor to about 0.1 hPa at 0 ° C., and then the reactor is again filled with nitrogen to atmospheric pressure.
  • the reactor was immersed in an oil bath preheated to 180 ° C. Stirring was performed at an oil bath temperature of 180 ° C. and a stirring speed of 200 rpm. After 10 minutes, the mixture was thermally equilibrated and the solids were completely melted to form a colorless and uniform liquid. Thereafter, the pressure in the reactor was kept at 800 hPa and stirred for 1 hr. Thereafter, when the temperature in the reactor was raised to 190 ° C. and the reaction was continued for 10 minutes, tetrafluoropropyl alcohol was exhausted from the reaction vessel and started to distill into the receiving flask. Thereafter, the temperature in the reactor was appropriately increased from 200 ° C.
  • the molar ratio of the content (m) of the unit represented by the formula (17) and the content (n) of the unit represented by the formula (18) ( m / n) was 9/1.
  • the mass mean molecular weight (Mw) by GPC analysis was 35917
  • the number average molecular weight (Mn) was 13375
  • dispersion degree (Mw / Mn) was 2.685.
  • the polyester carbonate was not colored and was found to be of high purity.
  • the reactor was immersed in an oil bath preheated to 180 ° C. Stirring was performed at an oil bath temperature of 180 ° C. and a stirring speed of 200 rpm. After 10 minutes, the mixture was thermally equilibrated and the solids were completely melted to form a colorless and uniform liquid. Thereafter, the pressure in the reactor was kept at 800 hPa and stirred for 1 hr. Thereafter, when the temperature in the reactor was raised to 190 ° C. and the reaction was continued for 10 minutes, phenol was exhausted from the reaction vessel and began to distill into the receiving flask. Thereafter, the temperature in the reactor was appropriately increased from 200 ° C.
  • the pressure in the reactor was appropriately decreased from 800 hPa to 10 hPa. Thereafter, the pressure in the reactor was kept at 0.1 hPa, and the reaction was continued for 1 hr. Then, superposition
  • polyester carbonate Mw by GPC analysis of the obtained polyester carbonate was 36351, Mn was 15343, and Mw / Mn was 2.369.
  • the polyester carbonate was not colored and was found to be of high purity.
  • Example 1 using a fluorinated dicarboxylic acid ester compound and a fluorinated carbonate is equivalent to a lower polymerization temperature compared to Comparative Example 1 using diphenylisophthalate and diphenyl carbonate which are usually used in the conventional melting method. Polyester carbonate could be synthesized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 本発明は、触媒の存在下に、下式(1)~(3)で表される化合物からなる群から選ばれる少なくとも1種の化合物、下式(4)~(6)で表わされる化合物からなる群から選ばれる少なくとも1種の化合物、およびジオール化合物とのエステル交換反応によってポリエステルカーボネートを得る、ポリエステルカーボネートの製造方法に関する。 Arは、2価の芳香族炭化水素基等;RはCX;R11はCX111114;RはCX等;R12はCX121215等;RはCX等;R13はCX131316等;RはC1~5のペルフルオロアルキレン基;R17はC1~5のペルフルオロアルキレン基;X~XはF等;X11~X13はF等;Y~YはF、R;Y11~Y13はF、Rf1;R~RはR等;R14~R16はRf1等;R、Rf1はC1~4のフルオロアルキル基。

Description

ポリエステルカーボネートの製造方法
 本発明はポリエステルカーボネートの製造方法に関する。
 耐熱性が高く機械的強度の優れたエンジニアリングプラスチックに対する要求性能が高まっている。そのようなエンジニアリングプラスチックの一つとして、ジオール類、ジカルボン酸類、及びカーボネート類を縮合重合させたポリエステルカーボネートがある。ポリエステルカーボネートは耐熱性、透明性、耐衝撃性に優れることから、レンズやライトカバーなどに利用されている。
 これらポリエステルカーボネートを製造する方法は種々知られているが、その一般的な方法はホスゲンおよびジカルボン酸ジクロライドを塩化メチレン等の有機溶媒中に溶解し、ジオール類のアルカリ水溶液と接触させる界面重縮合法である。
 この界面重縮合法は低温で実施でき、高分子量体が得やすく、得られるポリマーも低着色であるという特徴を有している。しかし、原料であるホスゲン及びジカルボン酸ジクロライドの合成及び精製に複雑な操作が必要であるため製造コストが高くなるという問題点を有する。
 また、有毒なホスゲンを用いるという問題点もある。さらに反応溶媒として通常用いられている塩化メチレンは、環境、衛生上の問題がある化学物質であり、その取り扱いには十分な注意が必要である。また、その沸点が40℃と非常に低いため、ポリエステルカーボネートの製造時に使用した塩化メチレンを完全にリサイクルできる閉鎖系にすることは設備面で難しく、また多大な費用がかかるという問題点、蒸発した塩化メチレンが環境面、衛生面に悪影響を及ぼすという問題点も有する。
 その上、反応により副生する塩化ナトリウム等の無機塩を洗浄除去しなくてはならず、また反応後のポリマーの精製、溶媒回収等の複雑なプロセスが必要となるなどの問題点も有する。
 エステル交換法によりジオール類と炭酸ジエステル類およびジカルボン酸ジエステル類を溶融状態で重合する溶融重縮合法も公知である。この溶融重縮合法は溶媒を使用せず、基本的にハロゲン系の原料を使用しないという特徴を有するが、高分子量体が得られ難く、高温で反応するために重縮合中に副反応等が起こり、得られるポリマーの着色が大きいという問題を有する。またポリマー中にモノマーや脱離アルコール等の留去物が残留するとポリエステルカーボネートの強度低下の原因となる。
 溶融重縮合法において、上記問題を解決する手段として、下記の方法が知られている。(I)ポリマー中のフェノール性末端基(1)と非フェノール性末端基(2)の当量比(1)/(2)を1/19以上とする。(特許文献1)
(II)重合の任意の時点でコバルト系化合物を反応混合物に添加する。(特許文献2)
(III)実質的に酸素の不存在下で反応を行わせる。(特許文献3)
 しかし(I)においては末端の当量比を調整する操作が難しく、また分子量を調整しにくいという難点がある。(II)においてはコバルト化合物の添加により加水分解性が上がり、耐候性が下がるなど他のデメリットが出てくる可能性がある。また(III)においては巨大な製造設備で実質酸素不存在の環境を作ることは難しく、酸素不存在の環境を作るための設備にコストがかかるという難点がある。
日本国特許第3281077号公報 日本国特開平9-235363号公報 日本国特開平8-73578号公報
 本発明は、ホスゲン等の毒性の化合物を用いることなく、着色が少なく、高純度で、かつ高分子量のポリエステルカーボネートを製造できる方法を提供する。
 本発明のポリエステルカーボネートの製造方法は、触媒の存在下に下式(1)で表される化合物、下式(2)で表される化合物および下式(3)で表される化合物からなる群から選ばれる少なくとも1種の化合物、下式(4)で表わされる化合物、下式(5)で表わされる化合物および下式(6)で表わされる化合物からなる群から選ばれる少なくとも1種の化合物、およびジオール化合物とのエステル交換反応によってポリエステルカーボネートを得る。
Figure JPOXMLDOC01-appb-C000009
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、
 Rは、CXで表される基であり、2つのRは同一であっても異なってもよく、
 Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、
 Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、
 X~Xは、それぞれ水素原子、フッ素原子またはRであり、
 Y~Yは、それぞれフッ素原子またはRであり、
 R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
 Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000010
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、
 Rは、CXで表される基であり、
 Rは、水素原子またはCXで表される基であり、
 Rは、水素原子またはCXで表される基であり、
 Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
 X~Xは、それぞれ水素原子、フッ素原子またはRであり、
 Y~Yは、それぞれフッ素原子またはRであり、
 R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
 Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000011
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、
 Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのRは同一であっても異なってもよい。
Figure JPOXMLDOC01-appb-C000012
 式中、R11は、CX111114で表される基であり、2つのR11は同一であっても異なってもよく、
 R12は、水素原子またはCX121215で表される基であり、2つのR12は同一であっても異なってもよく、
 R13は、水素原子またはCX131316で表される基であり、2つのR13は同一であっても異なってもよく、
 X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、
 Y11~Y13は、それぞれフッ素原子またはRf1であり、
 R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、
 Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000013
 式中、R11は、CX111114で表される基であり、
 R12は、水素原子またはCX121215で表される基であり、
 R13は、水素原子またはCX131316で表される基であり、
 R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
 X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、
 Y11~Y13は、それぞれフッ素原子またはRf1であり、
 R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、
 Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000014
 式中、R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのR17は同一であっても異なってもよい。
 前記ポリエステルカーボネートの質量平均分子量(Mw)が10000~300000であることが好ましく、Mwが15000~200000であることがより好ましく、Mwが20000~100000であることがさらに好ましい。
 前記式(1)~(3)で表される化合物は、下式(7)で表される化合物および下式(8)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得られることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 ただし、Rは、CXで表される基であり、
 Rは、水素原子またはCXで表される基であり、
 Rは、水素原子またはCXで表される基であり、
 Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
 X~Xは、それぞれ水素原子、フッ素原子またはRであり、
 Y~Yは、それぞれフッ素原子またはRであり、
 R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
 Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
 前記式(4)~(6)で表される化合物は、下式(9)で表される化合物および下式(10)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得られることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 ただし、R11は、CX111114で表される基であり、
 R12は、水素原子またはCX121215で表される基であり、
 R13は、水素原子またはCX131316で表される基であり、
 R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
 X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、
 Y11~Y13は、それぞれフッ素原子またはRf1であり、
 R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、
 Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
 前記含フッ素アルコールの炭素数は、2~10であることが好ましい。
 前記式(7)におけるRは、CXで表される基であることが好ましい。
 前記式(9)におけるR12は、CX121215で表される基であることが好ましい。
 前記含フッ素アルコールのpKaは、15未満であることが好ましい。
 前記含フッ素アルコールのpKaは、13未満であることが好ましい。
 前記含フッ素アルコールは、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2-フルオロ-1-プロパノール、2,2,3,4,4,4-ヘキサフルオロ-1-ブタノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、2,2,3,3,4,4,5,5-オクタフルオロシクロペンタノール、ペルフルオロ(t-ブチル)アルコール、および2,2,3,3,4,4,5,5,6,6-デカフルオロシクロヘキサノールからなる群から選ばれる少なくとも1種であることが好ましい。
 前記ジオール化合物は、脂肪族ジオール化合物または芳香族ジオール化合物であることが好ましい。
 前記ジオール化合物は、ビスフェノールAであることが好ましい。
 前記ジオール化合物は、炭素数2~10の脂肪族ジオール化合物であることが好ましい。
 本発明のポリエステルカーボネートの製造方法によれば、着色が少なく、高純度で、かつ高分子量のポリエステルカーボネートを製造できる。
 本明細書においては、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
<ポリエステルカーボネートの製造方法>
 本発明のポリエステルカーボネートの製造方法は、触媒の存在下に、特定の含フッ素ジカルボン酸エステル化合物と、含フッ素カーボネートと、ジオール化合物とのエステル交換反応によってポリエステルカーボネートを得る方法である。
(触媒)
 触媒としては、公知のエステル交換反応触媒が挙げられる。触媒の具体例としては、アルカリ金属またはアルカリ土類金属の炭酸塩(炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸カルシウム等)、アルカリ金属またはアルカリ土類金属の水酸化物(水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等)、ホウ素またはアルミニウムの水素化物のアルカリ金属塩、アルカリ土類金属塩、または第四級アンモニウム塩(水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素テトラメチルアンモニウム等)、アルカリ金属またはアルカリ土類金属の水素化合物(水素化リチウム、水素化ナトリウム、水素化カルシウム等)、アルカリ金属またはアルカリ土類金属のアルコキシド(リチウムメトキシド、ナトリウムエトキシド、カルシウムメトキシド等)、アルカリ金属またはアルカリ土類金属のアリーロキシド(リチウムフェノキシド、ナトリウムフェノキシド、マグネシウムフェノキシド、LiO-Ar-OLi、NaO-Ar-ONa(ただし、Arはアリーレン基である。)等)、アルカリ金属またはアルカリ土類金属の有機酸塩(酢酸リチウム、酢酸カルシウム、安息香酸ナトリウム等)、亜鉛化合物(酸化亜鉛、酢酸亜鉛、亜鉛フェノキシド等)、ホウ素化合物(酸化ホウ素、ホウ酸、ホウ酸ナトリウム、ホウ酸トリメチル、ホウ酸トリブチル、ホウ酸トリフェニル等)、ケイ素化合物(酸化ケイ素、ケイ酸ナトリウム、テトラアルキルケイ素、テトラアリールケイ素、ジフェニル-エチル-エトキシケイ素等)、ゲルマニウム化合物(酸化ゲルマニウム、四塩化ゲルマニウム、ゲルマニウムエトキシド、ゲルマニウムフェノキシド等)、スズ化合物(酸化スズ、ジアルキルスズオキシド、ジアルキルスズカルボキシレート、酢酸スズ、エチルスズトリブトキシド等のアルコキシ基またはアリーロキシ基と結合したスズ化合物、有機スズ化合物等)、鉛化合物(酸化鉛、酢酸鉛、炭酸鉛、塩基性炭酸塩、鉛または有機鉛のアルコキシドまたはアリーロキシド等)、オニウム化合物(第四級アンモニウム塩、第四級ホスホニウム塩、第四級アルソニウム塩等)、アンチモン化合物(酸化アンチモン、酢酸アンチモン等)、マンガン化合物(酢酸マンガン、炭酸マンガン、ホウ酸マンガン等)、チタン化合物(酸化チタン、チタンのアルコキシドまたはアリーロキシド等)、ジルコニウム化合物(酢酸ジルコニウム、酸化ジルコニウム、ジルコニウムのアルコキシドまたはアリーロキシド、ジルコニウムアセチルアセトン等)等が挙げられる。
 触媒としては、ポリエステルカーボネートの耐熱性、耐候性、耐着色性の点から、アルカリ金属塩またはアルカリ土類金属塩(炭酸塩、水酸化物、ホウ素またはアルミニウムの水素化物の塩、水素化合物、アルコキシド、アリーロキシド、有機酸塩)が好ましく、入手しやすく比較的安価である点から、アルカリ金属またはアルカリ土類金属の炭酸塩、水酸化物、ホウ素またはアルミニウムの水素化物の塩がより好ましい。
 触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 触媒の量は、原料のジオール化合物に対して、通常は10-8~1質量%であり、重合速度(生産性)とポリエステルカーボネートへの残留による物性低下の点から、原料のジオール化合物に対して10-7~10-1質量%が好ましい。
(含フッ素ジカルボン酸エステル化合物)
 含フッ素ジカルボン酸エステル化合物は、化合物(1)、化合物(2)および化合物(3)からなる群から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000017
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、Rは、CXで表される基であり、2つのRは同一であっても異なってもよく、Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000018
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、Rは、CXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000019
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのRは同一であっても異なってもよい。
 Arは、1つ以上の水素原子が、反応に悪影響を及ぼさない他の置換基(たとえば、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、フェニル基、フェノキシ基、ビニル基、シアノ基、エステル基、アミド基、ニトロ基等)に置換されたものであってもよい。Arの具体例としては、フェニレン基、トルイレン基、キシリレン基、ビフェニレン基、ナフチレン基、フリレン基、チエニレン基、ピロリレン基、ピリジレン基等が挙げられ、得られるポリエステルカーボネートの耐熱性の点から、6員環以上の基が好ましく、得られるポリエステルカーボネートの耐熱性および原料の入手のしやすさの点から、下式(11)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000020
 ただし、pは、0~4の整数であり、R19は、それぞれハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、5~10員環のシクロアルキル基またはフェニル基であり、pが2~4の場合の複数のR19は、それぞれ同一であっても異なってもよい。
 式(11)で表される基の具体例としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、3-メチル-1,2-フェニレン基、4-メチル-1,2-フェニレン基、2-メチル-1,3-フェニレン基、4-メチル-1,3-フェニレン基、5-メチル-1,3-フェニレン基、2-メチル-1,4-フェニレン基、3-フェニル-1,2-フェニレン基、4-フェニル-1,2-フェニレン基、2-フェニル-1,3-フェニレン基、4-フェニル-1,3-フェニレン基、5-フェニル-1,3-フェニレン基、2-フェニル-1,4-フェニレン基、3-t‐ブチル-1,2-フェニレン基、4-t‐ブチル-1,2-フェニレン基、2-t‐ブチル-1,3-フェニレン基、4-t‐ブチル-1,3-フェニレン基、5-t‐ブチル-1,3-フェニレン基、2-t‐ブチル-1,4-フェニレン基、3-シクロヘキシル-1,2-フェニレン基、4-シクロヘキシル-1,2-フェニレン基、2-シクロヘキシル-1,3-フェニレン基、4-シクロヘキシル-1,3-フェニレン基、5-シクロヘキシル-1,3-フェニレン基、2-シクロヘキシル-1,4-フェニレン基等が挙げられる。
 (含フッ素ジカルボン酸エステル化合物の製造方法)
 含フッ素ジカルボン酸エステル化合物は、化合物(7)および化合物(8)からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得ることができる。
Figure JPOXMLDOC01-appb-C000021
 ただし、Rは、CXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
 含フッ素アルコールとしては、エステル交換反応速度を向上させる点から、酸解離度が、ジオール化合物の酸解離度よりも高いものが好ましい。よって、水酸基のα位の炭素原子(以下、α炭素とも記す。)にフルオロアルキル基が直接結合した化合物が好ましい。ただし、α炭素に直接フッ素原子が結合したアルコールは、脱フッ化水素反応による分解反応が起こりやすいため、好ましくない。
 酸解離度の尺度としては、含フッ素アルコールのpKaを用いる。
 ジオール化合物が芳香族ジオール化合物の場合の含フッ素アルコールのpKaは、フェノール類のpKaがおよそ10であることから、10未満、もしくは10に近いものが好ましい。
 ジオール化合物が脂肪族ジオール化合物の場合の含フッ素アルコールのpKaは、脂肪族アルコール類のpKaがおよそ15から16であることから、15未満が好ましく、13未満がより好ましい。
 化合物(7)としては、α炭素に結合するフルオロアルキル基が多いほど含フッ素アルコールの酸解離度が高くなることから、RがCXで表される基である、すなわち2級または3級の含フッ素アルコールであることが好ましく、RおよびRがそれぞれCXで表される基およびCXで表される基である、すなわち3級の含フッ素アルコールであることがより好ましい。
 含フッ素アルコールの炭素数は、2~10が好ましい。含フッ素アルコールの炭素数が2以上であれば、水酸基のα位に直接フッ素原子が結合していない安定な含フッ素アルコールを選択できる。含フッ素アルコールの炭素数が10以下であれば、エステル交換反応時に解離する含フッ素アルコールを留去する際、穏和な条件で容易に除去できる沸点となるため、エステル交換反応時に高い温度をかける必要がなく、品質の高いポリエステルカーボネートを製造できる。
 含フッ素アルコールの具体例としては、2,2,2-トリフルオロエタノール(pKa:12.4※2)、2,2,3,3,3-ペンタフルオロ-1-プロパノール(pKa:12.5※2)、2,2,3,3-テトラフルオロ-1-プロパノール(pKa:12.7※3)、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(pKa:9.4※1)、2-フルオロ-1-プロパノール(pKa:14.0※3)、2,2,3,4,4,4-ヘキサフルオロ-1-ブタノール(pKa:12.5※3)、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール(pKa:12.5※3)、ペルフルオロ(t-ブチル)アルコール(pKa:5.3※1)、2,2,3,3,4,4,5,5-オクタフルオロシクロペンタノール(pKa:8.5※1)、および2,2,3,3,4,4,5,5,6,6-デカフルオロシクロヘキサノール(pKa:8.5※1)等が挙げられる。なかでも、重合温度におけるアルコール回収が容易であり、工業的に入手が容易である点から、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノールが好ましい。
 上記に記載の含フッ素アルコールのpKa値(※1~※3)は、以下の測定方法による値(※1)、文献値(※2)、または推算方法による値(※3)である。
 ※1:酸解離度の大きい(酸強度の強い)含フッ素アルコールのpKaは、下記に基づき求める。
 含フッ素アルコールの水溶液中での酸解離度としてpKaを測定する。
 HA(含フッ素アルコール)+S(水)→HS(水の共役酸)+A(含フッ素アルコールの共役塩基)
 平衡定数の式は下式となる。
 Ka=[HS][A]/[HA][S]
 ここで、希薄水溶液を想定すると[S]は1で近似できる。
 Ka=[HS][A]/[HA]
 pKa=log[HA]/[HS][A]=-log[HS]-log[A]/[HA]
 水溶液中での酸解離度であるので、-log[HS]はpHと等しい。
 pKa=pH-log[A]/[HA]
 半中和された状態では、[A]=[HA]となるため、pH=pKaと近似できる。
 上記の考察から、酸性度の高い含フッ素アルコールについては電位差滴定装置でpKaを測定した。
 ※2:J.Amer.Chem.Soc.,96,6851(1974);J.Org.Chem.,32,1217(1967)
 ※3:推算値(下記文献に基づき水素結合性OHと非水素結合性OHの伸縮振動数の差(Δλ)から推算)
 J.Org.Chem.,32,1217(1967);J.Amer.Chem.Soc.,86,4948(1964)
 含フッ素アルコールを出発物質として用いる反応によって含フッ素ジカルボン酸エステル化合物を得る方法としては、下記の(a)~(c)の方法が挙げられ、収率が高い点から、(c)の方法が好ましい。
 (a)触媒の存在下、化合物(12)と含フッ素アルコールとのエステル交換反応によって、含フッ素ジカルボン酸エステル化合物を得る方法。
Figure JPOXMLDOC01-appb-C000022
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、R18は炭素数1~10のアルキル基またはアリール基である。アルキル基は、分岐していてもよく、エーテル性酸素を含んでいてもよい。
 (b)触媒の存在下、化合物(13)と含フッ素アルコールとを反応させて、含フッ素ジカルボン酸エステル化合物を得る方法。
Figure JPOXMLDOC01-appb-C000023
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、X11~X13は、それぞれ水素原子またはハロゲン原子であり、X11~X13のうち少なくとも1つはハロゲン原子であり、X14~X16は、それぞれ水素原子またはハロゲン原子であり、X14~X16のうち少なくとも1つはハロゲン原子である。
 X11~X16は、すべてハロゲン原子であることが好ましく、フッ素原子または塩素原子がより好ましく、副生物として工業的に有用なクロロホルムが併産できる点から、すべて塩素原子であることが最も好ましい。
 (c)化合物(14)と含フッ素アルコールとを反応させて、含フッ素ジカルボン酸エステル化合物を得る方法。
Figure JPOXMLDOC01-appb-C000024
 ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、Zは、ハロゲン原子である。
 (a)の方法で用いる触媒としては、公知のエステル交換反応触媒が挙げられる。
 (b)の方法で用いる触媒としては、アルカリ金属、アルカリ土類金属;アルカリ金属水素化物、アルカリ土類金属水素化物;アルカリ金属水酸化物、アルカリ土類金属水酸化物;相間移動触媒;アルカリ金属ハロゲン化物;アルカリ土類金属ハロゲン化物;アンモニアのハロゲン化物;イオン交換樹脂;Sn、Ti、Al、W、Mo、ZrおよびZnからなる群から選ばれる少なくとも1種の金属の化合物または酸化物;エステル交換反応触媒等が挙げられる。
 (c)の方法においては、Zがフッ素原子または塩素原子である場合は無触媒で反応が進行し、発生するハロゲン化水素を不活性ガスのバブリング、加温等で系外に除外しながら反応を進行することで目的物を得ることができる。
 (c)の方法における含フッ素アルコールの最初の仕込みのモル数と、化合物(14)の最初の仕込みのモル数との比(含フッ素アルコール/化合物(14))は、含フッ素ジカルボン酸エステル化合物の収率を向上させる点から、2超が好ましく、2.5以上がより好ましく、3以上が特に好ましい。
 (c)の方法においては、反応系の粘度調整や発熱量を調整することを目的に、溶媒を用いてもよい。ただし、反応器の容積効率、溶媒分離工程時の目的物のロスを考えると、可能であれば無溶剤で反応を実施することが好ましい。
 (c)の方法における反応温度は、40~200℃が好ましい。
 (c)の方法における反応圧力は、通常は大気圧である。
 (含フッ素カーボネート)
 含フッ素カーボネートは、化合物(4)、化合物(5)及び化合物(6)からなる群から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000025
 式中、R11は、CX111114で表される基であり、2つのR11は同一であっても異なってもよく、R12は、水素原子またはCX121215で表される基であり、2つのR12は同一であっても異なってもよく、R13は、水素原子またはCX131316で表される基であり、2つのR13は同一であっても異なってもよく、X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、Y11~Y13は、それぞれフッ素原子またはRf1であり、R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000026
 式中、R11は、CX111114で表される基であり、R12は、水素原子またはCX121215で表される基であり、R13は、水素原子またはCX131316で表される基であり、R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、Y11~Y13は、それぞれフッ素原子またはRf1であり、R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000027
 式中、R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのR17は同一であっても異なってもよい。
 含フッ素カーボネートは、常温で低粘性の液体のものが多く、重縮合反応を行う際に有利である。また、沸点が80~250℃の範囲のものが多く、熱安定性も高いため、蒸留精製により高純度の含フッ素カーボネートを得ることが容易であり、品質の高いポリカーボネートを製造する上で有利である。
(含フッ素カーボネートの製造方法)
 含フッ素カーボネートは、化合物(9)および化合物(10)からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得ることができる。
Figure JPOXMLDOC01-appb-C000028
 ただし、R11は、CX111114で表される基であり、R12は、水素原子またはCX121215で表される基であり、R13は、水素原子またはCX131316で表される基であり、R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、Y11~Y13は、それぞれフッ素原子またはRf1であり、R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
 含フッ素アルコールとしては、エステル交換反応速度を向上させる点から、酸解離度が、ジオールの酸解離度よりも高いものが好ましい。よって、水酸基のα位の炭素原子(以下、α炭素とも記す。)にフルオロアルキル基が直接結合した化合物が好ましい。ただし、α炭素に直接フッ素原子が結合したアルコールは、脱HF反応による分解反応が起こりやすいため、好ましくない。
 酸解離度の尺度としては、含フッ素アルコールのpKaを用いる。ジオールが芳香族ジオールの場合の含フッ素アルコールのpKaは、フェノール類のpKaがおよそ10であることから、10未満が好ましい。ジオールが脂肪族ジオールの場合の含フッ素アルコールのpKaは脂肪族アルコール類のpKaがおよそ15から16であることから、15未満が好ましく、13未満がより好ましい。
 化合物(9)としては、α炭素に結合するフルオロアルキル基が多いほど含フッ素アルコールの酸解離度が高くなることから、R12がCX121215で表される基である(すなわち、2級または3級の含フッ素アルコールである)ことが好ましく、R12およびR13がそれぞれCX121215で表される基およびCX131316で表される基である(すなわち、3級の含フッ素アルコールである)ことがより好ましい。
 含フッ素アルコールの炭素数は、2~10が好ましい。含フッ素アルコールの炭素数が2以上であれば、水酸基のα位に直接フッ素原子が結合していない安定な含フッ素アルコールを選択することが可能である。含フッ素アルコールの炭素数が10以下であれば、重合によるポリカーボネート合成時に解離する含フッ素アルコールを蒸留留去する際に穏和な条件で容易除去可能な沸点となるために、重合時に高い温度をかける必要が無く品質の高いポリカーボネートを合成することが出来る。
 含フッ素アルコールの具体例としては、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2-フルオロ-1-プロパノール、2,2,3,4,4,4-ヘキサフルオロ-1-ブタノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、ペルフルオロ(t-ブチル)アルコール、2,2,3,3,4,4,5,5-オクタフルオロシクロペンタノール、2,2,3,3,4,4,5,5,6,6-デカフルオロシクロヘキサノール等が挙げられ、酸解離度の点から、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、ペルフルオロ(t-ブチル)アルコール、2,2,3,3,4,4,5,5,6,6-デカフルオロシクロヘキサノールが特に好ましい。
 含フッ素アルコールを出発物質として用いる反応によって含フッ素カーボネートを得る具体的な方法としては、下記の(d)~(f)の方法が挙げられ、ホスゲン等の毒性の化合物を用いることなく、収率が高い点から、(f)の方法が好ましい。
 (d)ホスゲンと含フッ素アルコールとを反応させて、含フッ素カーボネートを得る方法。
 (e)ジアルキルカーボネートと含フッ素アルコールとのエステル交換反応によって、含フッ素カーボネートを得る方法。
 (f)触媒の存在下、化合物(15)と含フッ素アルコールとを反応させて、含フッ素カーボネートを得る方法。
Figure JPOXMLDOC01-appb-C000029
 式中、X~Xは、それぞれ水素原子またはハロゲン原子であり、X~Xのうち少なくとも1つはハロゲン原子であり、X~Xは、それぞれ水素原子またはハロゲン原子でありし、X~Xのうち少なくとも1つはハロゲン原子である。
 X~Xは、すべてハロゲン原子であることが好ましく、フッ素原子または塩素原子がより好ましく、副生物としてクロロホルムが得られる点から、すべて塩素原子であることが最も好ましい。
 化合物(15)としては、ヘキサクロロアセトン、ペンタクロロアセトン、テトラクロロアセトン、1,1,2-トリクロロアセトン、ヘキサフルオロアセトン、ペンタフルオロアセトン、1,1,3,3-テトラフルオロアセトン、1,1,2-トリフルオロアセトン、1,1,3,3-テトラクロロ-1,3-ジフルオロアセトン、1,1,1-トリクロロ-3,3,3-トリフルオロアセトン、1,3-ジクロロ-1,1,3,3-テトラフルオロアセトン、テトラブロモアセトン、ペンタブロモアセトン、ヘキサブロモアセトン等が挙げられ、工業的に有用なクロロホルムを高収率で併産できる点から、ヘキサクロロアセトンが好ましい。
 化合物(15)のうち、クロロアセトン類は、日本国特公昭60-52741号公報、日本国特公昭61-16255号公報に記載された、アセトンを塩素化する方法により容易に製造できる。また、米国特許第6235950号明細書に記載された、クロロアセトン類をフッ化水素によってフッ素化する方法によって、容易に部分フッ素化化合物を製造できる。
 含フッ素アルコールの最初の仕込みのモル数と、化合物(15)の最初の仕込みのモル数との比(含フッ素アルコール/化合物(15))は、含フッ素カーボネートの収率を向上させる点から、2超が好ましく、2.5以上がより好ましく、3以上が特に好ましい。
(f)の方法で用いる触媒としては、後述の重縮合反応に用いる触媒が挙げられる。
 触媒の量は、触媒によって種々選択されるが、基質に対して0.01~30質量%が好ましく、反応活性および反応後の触媒除去工程を考慮すると、0.1~10質量%がより好ましい。
(f)の方法においては、反応を促進させる目的で、溶媒を用いてもよい。ただし、反応器の容積効率、溶媒分離工程時の目的物のロスを考えると、可能であれば無溶剤で反応を実施することが好ましい。(f)の方法における反応温度は、40~200℃が好ましい。(f)の方法における反応圧力は、通常は大気圧である。
(ジオール化合物)
 ジオール化合物としては、脂肪族ジオール化合物、芳香族ジオール化合物が挙げられ、工業的に有用なポリエステルカーボネートが得られる点から、芳香族ジオール化合物が好ましい。
 脂肪族ジオール化合物としては、ポリエステルカーボネートの耐熱性、耐薬品性、機械的特性の点から、炭素数2~12の脂肪族ジオール化合物が好ましく、炭素数2~10の脂肪族ジオール化合物がより好ましい。
 脂肪族ジオール化合物の具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、3-クロロ-1,2-プロパンジオール、2-クロロ-1,3-プロパンジオール、シクロヘキサンジオール、1,2-プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,4-ブテンジオール、2-メチル-2,4-ペンタンジオール(ヘキシレングリコール)、3-メチル-1,5-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、含フッ素ジオール(3,3,3-トリフルオロ-1,2-プロパンジオール等)等が挙げられる。
 芳香族ジオール化合物としては、ポリエステルカーボネートの耐熱性、耐薬品性、機械的特性、成形性の点から、炭素数6~20の芳香族ジオール化合物が好ましい。
 芳香族ジオール化合物の具体例としては、レゾルシノール、カテコール、ハイドロキノン、2,2-ビス(4-ヒドロキシフェニル)プロパン〔別名:ビスフェノールA〕、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン〔別名:ビスフェノールAF〕、ビス(4-ヒドロキシフェニル)メタン、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシビフェニル)エーテル、ジヒドロキシナフタレン、フロログリシノール、フェノール類の縮合物等が挙げられ、原料の入手の容易性やポリアリレートの有用性の点から、ビスフェノールAが好ましい。
(エステル交換反応)
 触媒の存在下に、含フッ素ジカルボン酸エステル化合物と含フッ素カーボネートとジオール化合物とをエステル交換反応させて、ポリエステルカーボネートを得る具体的な方法としては、下記の(A)または(B)の方法が挙げられ、簡単なプロセスで製造できる点から、(A)の方法が好ましい。
 (A)触媒の存在下に、含フッ素ジカルボン酸エステル化合物と含フッ素カーボネートとジオール化合物とを溶融重縮合させる方法。
 (B)触媒の存在下に、含フッ素ジカルボン酸エステル化合物と含フッ素カーボネートとジオール化合物とを溶液重縮合させる方法。
 (A)の方法における反応温度は、反応初期にはジオール化合物や含フッ素ジカルボン酸エステル化合物や含フッ素カーボネートの融点以上が好ましく、反応後期にはポリエステルカーボネートの融点以上が好ましい。また、(A)の方法における反応温度は、ポリエステルカーボネートの着色を抑える点から、300℃以下が好ましい。
 本発明は、触媒の存在下に、含フッ素ジカルボン酸エステル化合物と含フッ素カーボネートとジオール化合物とをエステル交換反応させる。これにより、含フッ素ジカルボン酸エステル化合物と含フッ素カーボネートが共重合し、ポリエステルカーボネートを得ることができる。本発明においては、ブロック重合及びランダム重合のいずれでもよい。さらにブロック重合とランダム重合の両者を組み合わせて、ポリエステルカーボネートを重合することもできる。
 含フッ素ジカルボン酸エステル化合物の最初の仕込みのモル数と含フッ素カーボネートの最初の仕込みのモル数との比(含フッ素ジカルボン酸エステル化合物/含フッ素カーボネート)は、ポリエステルカーボネートの目的の分子量に応じて適宜選択すればよい。また、ジオール化合物の最初の仕込みのモル数との比(含フッ素ジカルボン酸エステル化合物と含フッ素カーボネートの合計/ジオール化合物)は、ポリエステルカーボネートの目的の分子量に応じて適宜選択すればよい。
 含フッ素ジカルボン酸エステル化合物/含フッ素カーボネート(モル比)は、1/99~99/1が好ましい。
 含フッ素ジカルボン酸エステル化合物と含フッ素カーボネートの合計/ジオール化合物比(モル比)は、Mw10000~300000のポリエステルカーボネートが得られる点から、52/48~48/52が好ましく、51/49~49/51がより好ましい。
(作用効果)
 以上説明した本発明のポリエステルカーボネートの製造方法にあっては、フッ素原子による電子吸引性の効果でエステル部位の解離度が高く、芳香族ジオール化合物や脂肪族ジオール化合物とのエステル交換反応が容易である含フッ素ジカルボン酸エステル化合物および含フッ素カーボネート化合物を用いている。そのため、重合反応速度が速く低温で重合が可能となる。また、溶媒を用いる必要がない。そのため、着色がない、高純度、高分子量のポリエステルカーボネートを簡単なプロセスで製造できる。
 また、副生するアルコールの沸点が低く重合系外に速やかに留去できる点から平衡反応であるエステル交換反応速度を速くすることができる。そのため、含フッ素ジカルボン酸エステル化合物と、含フッ素カーボネート化合物を用いる本発明のポリエステルカーボネートの製造方法は、従来のエステル交換法によるポリエステルカーボネートの製造方法の課題であった高分子量体が得られにくいという問題や高温で長時間反応させることによる着色等の問題を解決できる製造方法である。
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(ゲル浸透クロマトグラフィー(GPC)分析)
 合成したポリエステルカーボネートの分子量は、下記の装置を用い、下記の条件にて分析を行い、標準物質のポリスチレンに換算して決定した。
 装置:東ソー社製、HLC-8220GPC、
 ガードカラム:TSKguardcolumn SuperMPHZ-M、
 カラム:TSKgel SuperMultiporeHZ-M 3本、
 移動相:テトラヒドロフラン、
 流量:0.35mL/min、
 検出方法:RI検出、
 カラム温度:40℃。
(NMR分析)
 下記の装置を用い、下記の条件にてNMR分析を行った。
 装置:日本電子社製、AL300、
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS)、
 19F-NMR(282.65MHz、溶媒:CDCl、基準:CFCl)。
(ガスクロマトグラフィー(GC)分析)
 下記の装置を用い、下記の条件にてGC分析を行った。
 装置:島津製作所社製、GC-17A、
 検出方法:FID検出。
(ガスクロマトグラフィー質量(GC-Mass)分析)
 下記の装置を用い、下記の条件にてGC-Mass分析を行った。
 装置:島津製作所社製、GC-17A/QP-5050Aシステム、
 検出方法:EI検出。
(合成例1)
 ビス(2,2,3,3-テトラフルオロプロピル)イソフタレート(化合物(1-1))の合成:
 温度計、撹拌機、還流冷却器および滴下ロートを備えた2000mLのガラス製の反応器内に、イソフタロイルクロリド(化合物(14-1))の500g(2.46mol)を仕込んだ後、撹拌を行いながら100℃に昇温した。次に、2,2,3,3-テトラフルオロプロパノール(化合物(7-1))の715.53g(5.41mol)を、内温の上昇(ΔT)および塩化水素ガスの発生具合を見ながら速度を調整して滴下した。滴下終了後、100℃で1時間撹拌を行い、その後、塩化水素ガスの発生具合を見ながら140℃まで昇温し、計9時間加熱した。反応終了後、室温まで粗液を冷却後、粗液の一部を採取し、H-NMR分析を行った。結果として化合物(1-1)が主生成物として生成していることを確認した(化合物(7-1)ベースの収率41.8%)。生成物である化合物(1-1)は93.5%の収率で得られた。
Figure JPOXMLDOC01-appb-C000030
 生成物である化合物(1-1)について、H-NMR分析の他、19F-NMR分析およびGC-Mass分析により構造帰属を行った。化合物(1-1)のH-NMR、19F-NMR、Massフラグメントの結果を下記に示す。
 H-NMR δ:4.762(4H,t,J=12.6Hz),5.962(2H,tt,J=3.3,52.9Hz),7.617(1H,t,J=7.8Hz),8.297(2H,dd,J=1.8,7.8Hz),8.711(1H,t,J=1.5Hz)。
 19F-NMR δ:-137.142(4F,d,53.1Hz),-123.257(4F,tdt,J=1.7,3.3,12.2Hz)。
 MS m/z:235(PhC(=O)OCHCFCFH);263(C(=O)PhC(=O)OCHCFCFH);343(CFCHOC(=O)PhC(=O)OCHCFCFH);394(CFHCFCHOC(=O)PhC(=O)OCHCFCFH)。
(合成例2)
 ビス(2,2,3,3-テトラフルオロプロピル)カーボネート(化合物(4-1))の製造:
 撹拌機、20℃の還流冷却器および留出ラインを備えた500mLのガラス製の反応器に、ヘキサクロロアセトンの201g(0.76mol)、2,2,3,3-テトラフルオロプロパノールの358g(2.71mol)、KFの10gを仕込んだ後、撹拌を行いながら、徐々に温度を上昇し、内温100℃で20時間反応を行った。反応終了後に、反応器内に存在する反応粗液の560gを回収した。回収液をGC分析した結果、化合物(4-1)が生成していることを確認した。
Figure JPOXMLDOC01-appb-C000031
(実施例1)
 ポリエステルカーボネートの合成1: 
 300mLの溶融重合用装置の反応器に、ビスフェノールA(化合物(16))の30.00g(0.132mol)、化合物(1-1)5.760g(0.015mol)、化合物(4-1)の39.00g(0.134mol)、炭酸水素ナトリウムの0.0011g(1.31×10-5mol)を仕込んだ。下記の脱酸素工程を3回繰り返した。
 脱酸素工程:0℃にて反応器内が約0.1hPaになるまで排気することによって酸素を抜いた後、再度反応器内に窒素を大気圧まで充填する。
Figure JPOXMLDOC01-appb-C000032
 反応器を、180℃に予熱したオイルバス内に浸した。オイルバス温度180℃、撹拌速度200rpmで撹拌を行ったところ、10分後に熱的に平衡化されて固形物が完全に融解し、無色の均一な液体となった。その後、反応器内の圧力を800hPaに保ち1hr攪拌した。その後、反応器内の温度を190℃に昇温し10分間反応を続けた時点でテトラフルオロプロピルアルコールが反応容器から排気され、受けフラスコ中に留出し始めた。その後、反応器内の温度を200℃から260℃まで適宜上げていき、同時に反応器内の圧力を800hPaから10hPaまで適宜下げていった。その後、反応器内の圧力を0.1hPaに保ち、1hr反応を続けた。その後、室温まで冷却することで重合を終了した。生成物を13CNMRで分析した結果、下式(17)で表される単位と、下式(18)で表される単位をランダムに含むポリエステルカーボネートが生成していることを確認した。
Figure JPOXMLDOC01-appb-C000033
 得られたポリエステルカーボネートを13CNMRで分析した結果、式(17)で表される単位の含有量(m)と、式(18)で表される単位の含有量(n)とのモル比(m/n)は、9/1であった。また、GPC分析による質量平均分子量(Mw)は35917であり、数平均分子量(Mn)は13375であり、分散度(Mw/Mn)は2.685であった。該ポリエステルカーボネートには着色がなく、高純度のものであると認められた。
 (比較例1)
 ポリエステルカーボネートの合成2:
 300mLの溶融重合用装置の反応器に、ビスフェノールA(化合物(16))の30.00g(0.132mol)、ジフェニルイソフタレートの4.65g(0.0146mol)、ジフェニルカーボネートの26.43g(0.123mol)、炭酸水素ナトリウの0.0011g(1.31×10-5mol)を仕込んだ。下記の脱酸素工程を3回繰り返した。
 脱酸素工程:0℃にて反応器内が約0.1hPaになるまで排気することによって酸素を抜いた後、再度反応器内に窒素を大気圧まで充填する。
 反応器を、180℃に予熱したオイルバス内に浸した。オイルバス温度180℃、撹拌速度200rpmで撹拌を行ったところ、10分後に熱的に平衡化されて固形物が完全に融解し、無色の均一な液体となった。その後、反応器内の圧力を800hPaに保ち1hr攪拌した。その後、反応器内の温度を190℃に昇温し10分間反応を続けた時点でフェノールが反応容器から排気され、受けフラスコ中に留出し始めた。その後、反応器内の温度を200℃から280℃まで適宜上げていき、同時に反応器内の圧力を800hPaから10hPaまで適宜下げていった。その後、反応器内の圧力を0.1hPaに保ち1hr反応を続けた。その後、室温まで冷却することで重合を終了し、ポリエステルカーボネートを得た。
 得られたポリエステルカーボネートのGPC分析によるMwは36351であり、Mnは15343であり、Mw/Mnは2.369であった。該ポリエステルカーボネートは着色がなく、高純度のものであると認められた。
 含フッ素ジカルボン酸エステル化合物および含フッ素カーボネートを用いた実施例1は、従来の溶融法で通常用いられるジフェニルイソフタレートおよびジフェニルカーボネートを用いた比較例1と比較して、より低い重合温度で同等のポリエステルカーボネートを合成できた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年8月15日出願の日本特許出願2012-180122に基づくものであり、その内容はここに参照として取り込まれる。

Claims (13)

  1.  触媒の存在下に、下式(1)で表される化合物、下式(2)で表される化合物および下式(3)で表される化合物からなる群から選ばれる少なくとも1種の化合物、下式(4)で表わされる化合物、下式(5)で表わされる化合物および下式(6)で表わされる化合物からなる群から選ばれる少なくとも1種の化合物、およびジオール化合物とのエステル交換反応によってポリエステルカーボネートを得る、ポリエステルカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、
     Rは、CXで表される基であり、2つのRは同一であっても異なってもよく、
     Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、
     Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、
     X~Xは、それぞれ水素原子、フッ素原子またはRであり、
     Y~Yは、それぞれフッ素原子またはRであり、
     R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
     Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
    Figure JPOXMLDOC01-appb-C000002
     ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、
     Rは、CXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
     X~Xは、それぞれ水素原子、フッ素原子またはRであり、
     Y~Yは、それぞれフッ素原子またはRであり、
     R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
     Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
    Figure JPOXMLDOC01-appb-C000003
     ただし、Arは、2価の芳香族炭化水素基または2価の芳香族複素環基、もしくは炭素数1~10の脂肪族アルキレン基であり、
     Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのRは同一であっても異なってもよい。
    Figure JPOXMLDOC01-appb-C000004
     式中、R11は、CX111114で表される基であり、2つのR11は同一であっても異なってもよく、
     R12は、水素原子またはCX121215で表される基であり、2つのR12は同一であっても異なってもよく、
     R13は、水素原子またはCX131316で表される基であり、2つのR13は同一であっても異なってもよく、
     X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、
     Y11~Y13は、それぞれフッ素原子またはRf1であり、
     R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、
     Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である;
    Figure JPOXMLDOC01-appb-C000005
     式中、R11は、CX111114で表される基であり、
     R12は、水素原子またはCX121215で表される基であり、
     R13は、水素原子またはCX131316で表される基であり、
     R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
     X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、
     Y11~Y13は、それぞれフッ素原子またはRf1であり、
     R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、
     Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である;
    Figure JPOXMLDOC01-appb-C000006
     式中、R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのR17は同一であっても異なってもよい。
  2.   前記ポリエステルカーボネートの質量平均分子量(Mw)が10000~300000である請求項1に記載のポリエステルカーボネートの製造方法。
  3.   前記式(1)~(3)で表される化合物が、下式(7)で表される化合物および下式(8)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得られる、請求項1又は2に記載のポリエステルカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000007
     ただし、Rは、CXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
     X~Xは、それぞれ水素原子、フッ素原子またはRであり、
     Y~Yは、それぞれフッ素原子またはRであり、
     R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
     Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
  4.   前記式(4)~(6)で表される化合物が、下式(9)で表される化合物および下式(10)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得られる、請求項1又は2に記載のポリエステルカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000008
     ただし、R11は、CX111114で表される基であり、
     R12は、水素原子またはCX121215で表される基であり、
     R13は、水素原子またはCX131316で表される基であり、
     R17は、炭素数1~5のペルフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
     X11~X13は、それぞれ水素原子、フッ素原子またはRf1であり、
     Y11~Y13は、それぞれフッ素原子またはRf1であり、
     R14~R16は、それぞれフッ素原子、Rf1、ORf1または炭素数1~6のアルキル基であり、
     Rf1は、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
  5.  前記含フッ素アルコールの炭素数が、2~10である、請求項3または4に記載のポリエステルカーボネートの製造方法。
  6.  前記式(7)におけるRが、CXで表される基である、請求項3または5に記載のポリエステルカーボネートの製造方法。
  7.  前記式(9)におけるR12が、CX121215で表される基である、請求項4または5に記載のポリエステルカーボネートの製造方法。
  8.  前記含フッ素アルコールのpKaが、15未満である、請求項3~7のいずれか一項に記載のポリエステルカーボネートの製造方法。
  9.  前記含フッ素アルコールのpKaが、13未満である、請求項3~8のいずれか一項に記載のポリエステルカーボネートの製造方法。
  10.  前記含フッ素アルコールが、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2-フルオロ-1-プロパノール、2,2,3,4,4,4-ヘキサフルオロ-1-ブタノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、2,2,3,3,4,4,5,5-オクタフルオロシクロペンタノール、ペルフルオロ(t-ブチル)アルコール、および2,2,3,3,4,4,5,5,6,6-デカフルオロシクロヘキサノールからなる群から選ばれる少なくとも1種である、請求項3~9のいずれか一項に記載のポリエステルカーボネートの製造方法。
  11.  前記ジオール化合物が、脂肪族ジオール化合物または芳香族ジオール化合物である、請求項1~10のいずれか一項に記載のポリエステルカーボネートの製造方法。
  12.  前記ジオール化合物が、ビスフェノールAである、請求項1~11のいずれか一項に記載のポリエステルカーボネートの製造方法。
  13.  前記ジオール化合物が、炭素数2~10の脂肪族ジオール化合物である、請求項1~11のいずれか一項に記載のポリエステルカーボネートの製造方法。
PCT/JP2013/071281 2012-08-15 2013-08-06 ポリエステルカーボネートの製造方法 WO2014027586A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012180122A JP2015193674A (ja) 2012-08-15 2012-08-15 ポリエステルカーボネートの製造方法
JP2012-180122 2012-08-15

Publications (1)

Publication Number Publication Date
WO2014027586A1 true WO2014027586A1 (ja) 2014-02-20

Family

ID=50685562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071281 WO2014027586A1 (ja) 2012-08-15 2013-08-06 ポリエステルカーボネートの製造方法

Country Status (3)

Country Link
JP (1) JP2015193674A (ja)
TW (1) TW201418321A (ja)
WO (1) WO2014027586A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223222A (ja) * 1985-12-30 1987-10-01 ゼネラル・エレクトリツク・カンパニイ 熱可塑性ポリエステル―カーボネート樹脂
JP2005522545A (ja) * 2002-04-10 2005-07-28 ゼネラル・エレクトリック・カンパニイ ポリエステルカーボネートの製造方法
WO2011024732A1 (ja) * 2009-08-28 2011-03-03 旭硝子株式会社 ポリカーボネートの製造方法
WO2012118084A1 (ja) * 2011-03-02 2012-09-07 旭硝子株式会社 ポリエステルの製造方法及び含フッ素ジカルボン酸エステル化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223222A (ja) * 1985-12-30 1987-10-01 ゼネラル・エレクトリツク・カンパニイ 熱可塑性ポリエステル―カーボネート樹脂
JP2005522545A (ja) * 2002-04-10 2005-07-28 ゼネラル・エレクトリック・カンパニイ ポリエステルカーボネートの製造方法
WO2011024732A1 (ja) * 2009-08-28 2011-03-03 旭硝子株式会社 ポリカーボネートの製造方法
WO2012118084A1 (ja) * 2011-03-02 2012-09-07 旭硝子株式会社 ポリエステルの製造方法及び含フッ素ジカルボン酸エステル化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTIJN VAN DER SCHUUR ET AL: "SYNTHESIS OF POLYETHER-BASED BLOCK COPOLYMERS BASED ON POLY (PROPYLENE OXIDE) AND TEREPHTHALATES", POLYMER, vol. 46, no. 2, 2005, pages 327 - 333 *

Also Published As

Publication number Publication date
TW201418321A (zh) 2014-05-16
JP2015193674A (ja) 2015-11-05

Similar Documents

Publication Publication Date Title
KR101556421B1 (ko) 카르보네이트 화합물의 제조 방법
JP5867500B2 (ja) ポリエステルの製造方法
JP2005530001A (ja) ポリカーボネートの製造方法
KR102074690B1 (ko) 고분자량화된 방향족 폴리카보네이트 수지의 제조 방법
KR20040030938A (ko) 폴리카보네이트의 제조 방법
TW201412701A (zh) 碳酸酯化合物及芳香族聚碳酸酯之製造方法
JP2006502276A (ja) ポリカーボネート製造方法
EP2502948A1 (en) Method for producing polycarbonate
JP5321582B2 (ja) ポリカーボネートの製造方法
WO2014027586A1 (ja) ポリエステルカーボネートの製造方法
US7790833B2 (en) Processes for the polymerization of trimethylene carbonate to poly(trimethylene glycol carbonate trimethylene glycol ether) diol
WO2009070591A1 (en) Compositions of and processes for producing a poly(trimethylene glycol carbonate trimethylene glycol ether) diol
JPWO2011024732A1 (ja) ポリカーボネートの製造方法
US8252885B2 (en) Process to make poly(trimethylene carbonate) glycol
JP2017088641A (ja) ポリカーボネートジオールの製造方法
WO2004041907A1 (en) Method for making copolycarbonates
JP3086059B2 (ja) 環状カーボネート化合物の製造法
JPH03131627A (ja) ポリカーボネートの製造法
JPH06271661A (ja) 芳香族ポリカーボネートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP