WO2014027565A1 - 電縫管溶接装置 - Google Patents

電縫管溶接装置 Download PDF

Info

Publication number
WO2014027565A1
WO2014027565A1 PCT/JP2013/070653 JP2013070653W WO2014027565A1 WO 2014027565 A1 WO2014027565 A1 WO 2014027565A1 JP 2013070653 W JP2013070653 W JP 2013070653W WO 2014027565 A1 WO2014027565 A1 WO 2014027565A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction coil
open
open tube
tube
ferromagnetic body
Prior art date
Application number
PCT/JP2013/070653
Other languages
English (en)
French (fr)
Inventor
芳明 廣田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2014513395A priority Critical patent/JP5626497B2/ja
Priority to EP13829659.5A priority patent/EP2886238B1/en
Priority to CA2881369A priority patent/CA2881369C/en
Priority to KR1020157003419A priority patent/KR101614668B1/ko
Priority to CN201380042437.5A priority patent/CN104540632A/zh
Publication of WO2014027565A1 publication Critical patent/WO2014027565A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • B23K13/02Seam welding
    • B23K13/025Seam welding for tubes

Abstract

オープン管(1)の開口部(2)に臨む両端部(2a,2b)を、誘導加熱手段によって発生させた誘導電流により溶融させ、接合部において接合する、電縫管を製造するための装置であって、この装置はオープン管(1)の内側かつ誘導コイル(3)の内側で走行方向に延びる内側部(8a)と、オープン管(1)の外側かつ誘導コイル(3)の外側で走行方向に延びる外側部(8b)と、誘導コイル(3)の上流側の位置で内側部(8a)及び外側部(8b)間をオープン管(1)の管内外方向に延びる中間部(8c)とを有する強磁性体(9)を備える。強磁性体(9)は、内側部(8a)及び外側部(8b)の、中間部(8c)よりも下流側の部分と、中間部(8c)とで構成された部分の開放部側が走行方向(R)の下流側に向けて配置されて、内側部(8a)、中間部(8c)及び外側部(8b)を通る磁束の閉回路を形成する。

Description

電縫管溶接装置
 本発明は、金属帯板を走行させながら円筒状に曲げて誘導加熱し、金属帯板に誘起した電流によって金属帯板の両端部間を溶接する電縫管の製造装置に関する。
 一般に、金属の管を製造する方法としては、金属帯板を曲げながら溶接によって管形状とする電縫管やスパイラル管等の他、金属ビレットに直接穴をあけて製造するシームレス管や、押し出しによる管の製造方法がある。
 電縫管は、特に生産性が高く、しかも安価に製造できることから大量に生産されている。このような電縫管は、金属帯板を走行させながら円筒型になるように成形してオープン管を形成し、次いで、オープン管の、開口部を挟んで対向する端部(以下、単に「オープン管の端部」ともいう。)に高周波電流を流して溶融温度まで高めた状態で、ロールでオープン管の両端部の端面同士を圧接溶接して管状にする。この際、オープン管の端部に電流を供給する方法として、一つは、例えば、特許文献1及び非特許文献1に開示されたような、オープン管の外周を囲むように誘導コイル(ソレノイドコイル)を巻き、この誘導コイルに一次電流を流すことにより、オープン管に誘導電流を直接発生させる方法があり、もう一つは、金属製の電極をオープン管の端部に押し当て、電源から電流を直接通電する方法がある。このとき、誘導コイルあるいは電極に通じる電流は、一般的に100~400kHz程度の高周波電流が使われるとともに、管の内面側にインピーダーと呼ばれる強磁性体を配置することが多い。インピーダーは、オープン管の内周を回ろうとする電流を阻止するために用いられる。
特開昭53-44449号公報
「高周波の基礎と応用」(東京電機大学出版局、P79,80)
 図1及び図2は、電縫管の溶接工程について説明する模式図である。図1は、誘導コイルをオープン管の外周に巻き、この誘導コイルに流した一次電流により、オープン管に発生する誘導電流で電縫管が製造される工程を説明する概略側面図であり、図2は誘導電流の分布を模式的に示す平面図である。ここで、オープン管の端面(両端部)を流れる電流の大部分は向かい合った端面を流れるが、説明を簡単にするため、図2においては、便宜上、オープン管の端部の上面側(外面側)を電流が流れている様に描いて示している。以下、他の図面の説明においても、オープン管の両端部を流れる電流は、この両端部の上面側を電流が流れるように示すものとする。
 図1に示すように、被溶接材である金属帯板1は、平板状態から走行中に図示略のロールで曲げ加工されて両端部2a,2bが向かい合わせられる筒状のオープン管1の形とされ、次いでスクイズロール7で両端部2a,2bが押しつけられて接合部(溶接部)6で接触する。このスクイズロール7の上流には、向かい合う両端部2a,2bを溶融させて接合するために、図1に示すような誘導コイル(ソレノイドコイル)3が設けられ、この誘導コイル3に高周波電流を流すことにより、誘導コイル直下の円筒状に曲げられたオープン管1に誘導電流が発生する。この誘導電流は、オープン管1を周回する誘導コイル3に沿ってオープン管1の外周を周回するが、途中でオープン管1の端部2a,2bが開口部によって開放されていることから、この部分では誘導電流が誘導コイル直下を流れることができず、大別して2つの方向に流れようとする。つまり、図2に示すように、1番目は、オープン管1の端部2a,2bに沿って接合部6を通る電流4a,4bであり、また、2番目は、オープン管1の開口部から周面を回る電流である。
 なお、図2中では、オープン管1の内周を回ろうとする電流については、その図示を省略している。これは、図1に示すような、インピーダー10と呼ばれるフェライト等の強磁性材料からなるコア等を、オープン管1の内部に配置し、オープン管1の内面のインピーダンスを高めることにより、オープン管1の内周を誘導電流が流れるのを防止できるためである。あるいは、接合部6への往復長に比べて製造する電縫管の径が大きく、オープン管1の内周が十分に長い場合には、インピーダー10を配置しなくても内周のインピーダンスが十分に大きくなり、内周を回る電流が抑制される場合もあるためである。
 通常、誘導コイル3に投入された電力は、誘導コイルがオープン管1の外周を回る部分と、接合部6までの往復分とで、大部分が消費されることになる。このため、製造しようとする電縫管の径が大きくなるほど、誘導コイル3から接合部6までの往復距離に比べ、オープン管1の外周長が大きくなり、オープン管1の端部を加熱する電力に比べてオープン管1の外周部を加熱する電力の割合が大きく、加熱効率が低下する。従って、従来、径が大きな電縫管を製造する場合には、オープン管の外周を電流が回るのを抑制することが可能な、電極による接触通電を行う場合もある。この接触通電は、溶接効率が高いという利点があるが、電極がオープン管と接触する部分の疵や、電極とオープン管との接触不良等によるスパークの発生に伴う疵が発生しやすいという問題がある。このような疵の発生を無くすためには、非接触の誘導コイルを用いた方法を採用する必要があるが、上述したように、この方法を径の大きな電縫管の製造に適用した場合には、オープン管の端部を加熱する電流に比べてオープン管の外周部を回ってオープン管を加熱する電流の割合が大きくなる。そのため、溶接効率が低くなることから電源容量を大きくする必要があり、設備費の増大や、インピーダーが大電流による強磁場に耐えらずに焼損する等の問題が生じる。これらの事情により、従来は、インピーダーが焼損しないように電力量を抑制しながら生産を行わなければならず、生産性の低下を招く他、インピーダーを使用しない場合には、低加熱効率で生産するのを余儀なくされていた。
 また、オープン管1の外周面を囲むように配置された誘導コイル3に一次電流を流した場合、誘導コイル3で発生した磁束は、誘導コイル3直下のオープン管1に電流を誘起するだけでなく、広がった磁束により、オープン管1のみならず、誘導コイル3近傍のロール等にも電流が誘起される。このような場合にも、オープン管1の端部を流れる電流が減少し、加熱効率が低下して生産効率に劣るという問題が生じていた。
 また、本発明者等は、電縫溶接時の加熱効率を上げるため、オープン管に発生した誘導電流の分布について鋭意検討した。従来は、非特許文献1にも開示されているように、誘導コイル直下から接合部に向かう方向にのみ、電流が流れるものと説明されていた。しかしながら、本発明者等が電縫管の電磁場解析及び実験によって電流分布を調査したところ、実際には、図2に示すように、誘導コイル3直下からの電流は、接合部6方向の電流のみならず、相当量の電流5a,5bが分流して誘導コイル3の上流に流れていることがわかった。すなわち、誘導コイル3で供給した電力が有効に接合部に流れず、無効電力(電力損失)の原因になっていることが判明した。
 本発明は、上記課題に鑑みてなされたものであり、溶接に無効となる電流の発生を抑制し、接合部への電流を増加させ、簡単な装置で効率よく電縫溶接を行うことが可能な電縫管溶接装置を提供することを目的とする。
 本発明者等は、上記課題を解決すべく鋭意検討を行なったところ、強磁性体を使用し、この形状や配置位置等を適正化して磁束の流れを制御することにより、オープン管の外周面を少なくとも1ターン以上周回して形成された従来型の誘導コイルを用いて電縫管を製造した場合であっても、高い加熱効率が得られることを見出し、本発明を完成させた。
 即ち、本発明の要旨は以下の通りである。
 すなわち、本発明の電縫管溶接装置は、走行方向に延びる開口部を有するオープン管の、該開口部に臨む両端部を、オープン管の外周面を周回して形成された誘導コイルに高周波電流を通じ、発生させた誘導電流によって溶融させ、上記開口部の間隔を次第に狭めながら上記両端部同士を接合部において接触させて溶接する、電縫管を製造するための電縫管溶接装置であって、上記オープン管の内側かつ上記誘導コイルの内側で上記走行方向に延びる内側部と、上記オープン管の外側かつ上記誘導コイルの外側で上記走行方向に延びる外側部と、上記誘導コイルの上流側の位置で上記内側部及び上記外側部間をオープン管の管内外方向に延びる中間部とを有する強磁性体を備え、該強磁性体は、上記内側部及び上記外側部の、上記中間部よりも下流側の部分と、上記中間部とで構成された部分の開放部側が上記走行方向の下流側に向けて配置されて、上記内側部、中間部及び外側部を通る磁束の閉回路を形成することを特徴とするものである。
 なお、本発明の電縫管溶接装置にあっては、上記強磁性体は、走行方向に沿う断面形状がCの字状若しくは角張ったCの字状、横向きUの字状若しくは角張った横向きUの字状、横向きhの字状、または横向きHの字状であることが好ましい。
 また、本発明の電縫管溶接装置にあっては、上記強磁性体の外側部及び内側部のうちの少なくとも一方の下流側の端部は、分岐された形状とされていることが好ましい。
 さらに、本発明の電縫管溶接装置は、上記オープン管の内側に、強磁性材料からなるインピーダーが配置されており、上記強磁性体の内側部が、上記インピーダーの少なくとも一部によって構成されていることが好ましい。
 本発明の電縫管溶接装置によれば、強磁性コアとしてインピーダーのみを使用した従来のワークコイル方式に比べて、走行する金属帯板を曲げながら筒状にして電縫管溶接する際の加熱効率を、簡単な装置で効果的に向上させることができる。また、大容量の電気設備を有する必要もなく設備コストを抑制することが可能になるとともに、既設の電源を用いた場合であっても安価なコストで導入できる。
 そして、上述のような加熱効率の向上に伴い、電力使用量を低減することで省エネが実現可能となるか、あるいは、同じ電力を投入した場合にはライン速度を上げることができ、生産性を向上させることが可能となる。また、インピーダーを用いた場合であっても、上述のように電力を下げることで、磁場の強度を低下させられることから、インピーダーの寿命を延ばすことが可能となる。さらに、従来、電源容量の制限やインピーダー焼損の制限から製造が困難であったサイズの電縫管を製造することも可能になることから、その産業上の効果は計り知れない。
円筒状に曲げられた金属帯板の外周面を囲むように閉回路が形成されてなる誘導コイルを用いた電縫管溶接装置を説明する概略側面図である。 図1で説明した誘導コイルを用いた電縫管溶接装置の、従来の考えに基づく電流分布を示す平面模式図である。 本発明の一実施形態に係る電縫管溶接装置を説明する概略平面図である。 本発明の一実施形態に係る電縫管溶接装置を説明する概略側断面図であり、図3における、強磁性体を誘導コイル及びオープン管の開口部を跨ぐように配置した側断面図である。 図3に示す電縫管製造装置を用いた場合の電流分布を説明する平面模式図である。 本発明の一実施形態に係る電縫管製造装置の変形例を説明する概略平面図であり、強磁性体の外側部の下流側端部を二手に分岐させた例を示す図である。 本発明の一実施形態に係る電縫管製造装置の変形例を説明する概略断面図であり、図3、4、6における強磁性体の支持構造の一例を示す図である。 本発明の他の実施形態に係る電縫管溶接装置を説明する概略側断面図であり、円筒状のオープン管の内周面側に、強磁性体の内側部としても機能するインピーダーを設置した例を示す図である。 本発明の第1実施形態に係る電縫管溶接装置の変形例を示す概略側断面図であり、強磁性体の外側部の下流側端部に張出部を設けた例を示す図である。 本発明の第2実施形態に係る電縫管溶接装置の変形例を示す概略側断面図であり、中間部の下部を、インピーダーに直接接触させた例を示す図である。 本発明の第2実施形態に係る電縫管溶接装置の変形例を示す概略側断面図であり、中間部の下部とインピーダーとの間に他の強磁性部材を介在させた例を示す図である。 本発明の他の実施形態に係る電縫管製造装置を説明する模式図であり、誘導コイルを、プッシュプル方式とした例を示す模式図である。 本発明の効果確認実験に用いた、開口部を模擬的に形成したオープン管の概略平面図である。 比較例3の電縫管製造装置を説明する概略側断面図である。 本発明の効果確認実験に用いた、開口部を模擬的に形成したオープン管の概略平面図である。 本発明の電縫管製造装置に適用可能なC字状または角張ったC字状の強磁性体を例示する概略側面図である。 本発明の電縫管製造装置に適用可能な横向きU字状または角張った横向きU字状の強磁性体を例示する概略側面図である。 本発明の電縫管製造装置に適用可能な横向きh字状の強磁性体を例示する概略側面図である。 本発明の電縫管製造装置に適用可能な横向きH字状の強磁性体を例示する概略側面図である。
 以下、本発明の電縫管溶接装置の実施の形態について、図1~図12を適宜参照しながら説明する。なお、この実施の形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
 一般に、ワークコイルを用いて電縫管を製造する工程は、以下のような手順で行われる。
 まず、造管する径に合わせた幅にスリットされた走行する金属帯板を、ロールで曲げながらその幅方向両端部を対向させ、筒状のオープン管に成形する。その後、誘導コイルによってオープン管に誘導電流を流し、オープン管の端部を加熱溶融させる。その後、工程の下流において、オープン管の対向する両端部をスクイズロールで押しつけて密着させて接合(溶接)することで電縫管が得られる。ここで、本発明で説明する「下流」とは、金属帯板またはオープン管の走行方向における下流のことであり、以下、「上流」、「下流」という場合は、金属帯板またはオープン管の走行方向における「上流」、「下流」を指すものとする。
 上述したように、図1に示すような、従来から用いられている電縫管溶接装置を用いて電縫管を製造する場合、金属帯板1をロールで曲げて筒状に加工し、最後にスクイズロール7で押し付けて接触させる際、接触させる手前に誘導コイル3を配置して誘導加熱を行い、オープン管1の両端部2a,2bを加熱・溶融してスクイズロールで圧接する。この際、誘導コイル3に一次電流が流れると、オープン管1には、図2中に示す様な分布で誘導電流が発生するが、電縫管溶接では100kHzオーダーの高周波電流が使用されるため、オープン管1の表層を誘導電流が流れる。
 また、オープン管には走行方向Rに延びる開口部2が存在するので、誘導コイル3直下で発生した誘導電流の多くが、接合部6側を経由する電流パスと誘導コイル3の上流に流れる電流パス、あるいは、オープン管1の内周を回るパスとに大別して流れようとする。
 上記の内、オープン管1の内周を回ろうとする電流は、フェライト等の強磁性材料からなるインピーダー10をオープン管1内部に設置し、内面のインピーダンスを高めることで抑制することができる。図2中において溶接に寄与する誘導電流は、接合部6側を流れる電流4a,4bであるが、高周波電流による近接効果により、電流4a,4bはオープン管1の開口部2に臨む両端部2a,2bの表層を流れて当該箇所を加熱・溶融し、接合部6で圧接されて溶接される。図2中では、便宜上、誘導電流を、両端部2a,2bの近傍上面を流れるベクトルで表現している。しかしながら、誘導コイル3に一次電流を流した場合、その近傍に磁束が発生するが、この磁束が誘導コイル3の周辺を自由に回遊し、この磁束が貫通した場所においては過電流が発生する。特に、接合部6の両側にはスクイズロール7が配置されているとともに、図示を省略しているが、接合部6の上方にはトップロールと呼ばれるロールが配置されていることから、発生した磁束の多くが上記各ロールを加熱してしまうことに伴い、オープン管1の端部2a,2bを流れる電流が減少し、溶接効率が低下するという問題があった。本発明は、上述のような、誘導コイル3によって発生した磁束が溶接に寄与しない箇所に向かうのを抑制することでエネルギー損失を低減し、高い溶接効率が実現できる電縫管溶接装置を実現するものであり、以下に、その構成について詳述する。
[第1の実施形態]
 図3は、本発明の第1の実施形態である電縫管溶接装置50を示す概略平面図であり、図4は、図3に示す電縫管溶接装置50を用いて電縫管溶接を行った際に、誘導コイル3で発生した磁束Mが、強磁性体8に通じる際の磁束方向を説明する概略側断面図であり、図5は、図3及び図4に示す電縫管溶接装置50を用いて電縫管溶接を行った際の、オープン管1に流れる誘導電流の分布を模式的に示した平面図である。
 図3に示す電縫管溶接装置50は、上流から下流に走行する金属帯板1が、図示しないロールにより、金属帯板1の幅方向における両端部2a,2bが間隔をあけて対向するように円筒状に曲げられてオープン管1に成形された後、該オープン管1の外周面を囲むように、該外周面における周回数を少なくとも1ターン以上周回して形成された誘導コイル3に高周波電流を通じ、発生させた誘導電流によって両端部2a,2bを溶融させる。つまり、誘導コイル3により、オープン管1の開口部2近傍に誘導電流である高周波電流を誘起させて、この電流によって加熱して両端部2a,2bの間を溶融させ、開口部2の間隔を次第に狭めながら該両端部2a,2b同士を接触させて溶接する、電縫管を製造するための装置である。
 そして、本実施形態の電縫管溶接装置50は、オープン管1の走行方向における断面がCの字状若しくは角張ったCの字状、横向きUの字状若しくは角張った横向きUの字状、横向きhの字状、または横向きHの字状(図示例では、角張った横向きU字状)の強磁性体8が設けられており、該強磁性体8は、その開放部(開放空間)側をオープン管1の走行方向の下流側に向けて、オープン管1の内外に跨ぐように配置され、且つ、強磁性体8は、周回して形成された誘導コイル3を、開口部2の管外方向の位置で跨ぐように配置されている。即ち、強磁性体8は、オープン管1の内側かつ誘導コイル3の内側で走行方向Rに延びる内側部8aと、オープン管1の外側かつ誘導コイル3の外側で走行方向Rに延びる外側部8bと、誘導コイル3の上流側の位置で上記内側部8a及び外側部8b間をオープン管1の管内外方向に延びる中間部8cとを備えており、外側部8b及び内側部8aの少なくとも何れか一方が、オープン管1の走行方向Rにおいて誘導コイル3よりも下流側である接合部(溶接部)6に向かう形状とされている。なお、本明細書において、Cの字状若しくは角張ったCの字状とは、少なくとも図16(a)~(e)に示す形状を含むものであり、横向きUの字状若しくは角張った横向きUの字状とは、少なくとも図17(a)~(f)に示す形状を含むものであり、横向きhの字状とは、少なくとも図18(a)~(d)に示す形状を含むものであり、横向きHの字状とは、少なくとも図19(a)~(e)に示す形状を含むものである。
 本発明において用いる誘導コイル3は、銅等の良導体のパイプや線材、板等からなるもので、オープン管1上に閉回路を形成する誘導コイルの総称として用いており、その材質等は特に限定されない。また、誘導コイル3は、図3等に示す例では、オープン管1の外周面を周回し、円形のターンを描くような形状で形成されているが、この形状についても限定されるものではなく、そのターン数についても、少なくとも1ターンであれば、特に限定されない。また、本発明において述べる、誘導コイルの周回数「1ターン」とは、例えば、オープン管の外周方向で半ターンずつのコイルが組み合わされ、合計で概略1ターンとされた、所謂プッシュプル方式の誘導コイル31等も含まれるものである(図12を参照)。
 図3に例示するように、本実施形態の電縫管溶接装置50は、誘電コイル3に一次電流が通電される(図3中の矢印を参照)。この際、図4に示すように、誘導コイル3で発生した磁束Mは、下流側の開口部2近傍ではロール7等へは向かわずに、選択的に、誘導コイル3を跨ぐように接合部(溶接部)6側に延在された、透磁率が高い(磁気抵抗が小さい)強磁性体8へと集中し、オープン管1の、開口部2に臨む両端部2a,2b近傍を通過して誘導電流を発生させる。なお、実際には、強磁性体8の両端部からのみならず、その途中からも磁束Mは大量に出ており、オープン管1の外側から内側へ向けて(図4中の下側である内側部8aから、上側である外側部8bへ向けて)空間を通過して磁束回路を形成しているが、図4に示す例においては、説明の都合上、磁束Mが1か所(内側部8a及び外側部8bの下流側端部)で内側部8aから外側部8bへ出ているように描いている。
 また、オープン管1を通過した磁束Mは、図4中の矢印で示すように、強磁性体8において、オープン管1の管内に配置される内側部8aと、管外に配置される外側部8bとの間を含めて、管内外を結ぶ磁気回路を形成する。この磁気回路は、強磁性体8がC字形状若しくは角張ったC字形状、横向きU字形状若しくは角張った横向きU字形状、横向きh字形状、または横向きH字形状とされることで形成されているが、詳細を後述するインピーダー(図6中の符号10を参照)が管内に配置されている場合には、オープン管1の管内にある内側部8aは、インピーダーの一部によって構成されていても構わない。
 このような強磁性体8は、透磁率が高い材料からなることから磁気抵抗が小さく、誘導コイル3から発散される磁束Mを引き込む効果があるため、磁束Mを効率よく接合部6側におけるオープン管1の両端部2a,2bを貫通させることができ、接合部6近傍における誘導電流を増加させることが可能となる。また、強磁性体8は、その上部である外側部8bにおいて、近傍を回遊する磁束Mも捕捉できることから、スクイズロール7や図示略のトップロール側に向かう磁束Mを減少させることで加熱ロスを抑制し、オープン管1の両端部2a,2bにおける加熱効率を向上させることが可能となる。
 本実施形態では、誘導コイル3に一次電流が流れ、上述の磁束Mが生じることにより、オープン管1には、図5中の矢印に示すような誘導電流4a,4bの分布が生じる。即ち、図3に示すように、誘導コイル3を流れる電流は、図示略の電源に接続された図3中の左側上方から下方へと流れ、図3中に示す矢印方向に沿って流れる。さらに、誘導コイル3を流れる電流は、オープン管1の端部2a側から開口部2内を横切りながら、オープン管1の周囲を周回するように流れた後、再び図3中の上方へと向かい、図示略の電源へと戻る。
 上述のような経路で一次電流を誘導コイル3に流すと、それとは逆向きでオープン管1の外周方向で周回する誘導電流が発生する。このため、図5中に示すように、誘導電流がオープン管1の端面部分を流れ、オープン管1の端部2a側と端部2b側とに誘導電流4a,4bによる主電流が生じることで、オープン管1の端面が加熱される。この際、接合部6側の位置では、オープン管1の開口部2の幅が狭まってインピーダンスが低くなることから、近接効果によって電流が集中して高温になり易いため、両端部2a,2bが溶融して溶接される。
 その際、図1に示すような従来技術では、オープン管1には、図2中の矢印に示す様な誘導電流の分布が生じる。オープン管1の端面に流れる誘導電流4a,4bは、図2中の符号4b~接合部6~符号4aと流れた後、主たる誘導電流は、誘導コイル3が存在する付近で、円筒状のオープン管1を周回して符号4b側に流れてループを形成し、一部の誘導電流5a,5bは、誘導コイル3よりも更に上流側に流れて、その上流側で円筒状のオープン管1を周回してループを形成する。上述のような誘導電流のうち、符号5a,5bや、円筒状のオープン管1を周回する電流は、接合部6の温度上昇には寄与しないことから、従来技術においては、無駄な誘導電流が多い状態となっていた。
 本発明においては、図4中の矢印で示すように、誘導コイル3によって発生した磁束Mは、強磁性体8において、オープン管1の管内に配置される内側部8aと、管外に配置される外側部8bとの間を含めて、管内外を結ぶ磁気回路を形成する。強磁性体8は、透磁率が高い材料からなることから、誘導コイル3から発散される磁束Mを引き込む効果があり、接合部6付近におけるオープン管1の両端部2a,2bにおいて、効率良く磁束Mを貫通させることができ、誘導電流を効率的に発生させることが可能となる。
 その結果、本発明においては、オープン管1の端面に流れる誘導電流4a,4bは、その端面近傍の各点を起点に、多数の極めて密度の低い電流となって外周方向に広がり、ループを形成する。但し、この誘導電流は大きなループとはならず、起点となった各点の近傍で多数のループを形成する(当該誘導電流ループは密度が低く、且つ、個数が非常に多いことから図示していない)。そのため、本発明においては、従来の誘導コイルを用いた場合のような、接合部6から遠い部分での無駄な主たる電流ループの発生が抑制され、図5に示すように、図2に示す従来のものと比較して、オープン管1の端部2a,2bを上流側へ流れる電流が減少し、その分、オープン管1の端部2a,2bを下流側(接合部6)側へ流れる電流が増大し、これにより効率良くオープン管1の端部2a,2bを加熱できるようになる。
 本実施形態において、走行方向Rにおける断面がC字状若しくは角張ったC字状、U字状若しくは角張ったU字状、横向きh字状、または横向きH字状の強磁性体8の、走行方向Rにおける配置位置としては、上流側は、強磁性体8の中間部8cが誘導コイル3の最上流部よりも上流側であればよく、下流側は、その端部(開放部側)が誘導コイル3の最下流部よりも下流側であればよい。また、磁束Mを接合部6付近に集中させるためには、図3及び図4に示すように、下流側は、その端部(開放部側)が接合部6付近まで到達していることが好ましく、走行方向において、強磁性体8の下流側端部(開放部側)が、接合部6よりも上流側30mmから下流側30mmの間に配置されることが好ましい。
 強磁性体8の材質としては、例えば、フェライトや電磁鋼板、アモルファス等、導電率が低い強磁性材料を用いればよく、磁束飽和しないように設計すれば良い。また、磁束密度が高く、強磁性体8の発熱が無視できない場合には、例えば、強磁性体8に冷却水を供給して冷却したり、あるいは、空気等のガスや気体と液体とを混合した冷却媒体で冷却したりする等の方法を採用すれば良い。
 また、強磁性体8の形状は、図4に示すような、オープン管1の両端部2a,2bを挟んで、外側部8b及び内側部8aの両方が、下流側である接合部6側に向かう形状であることが好ましいが、例えば、外側部8b及び内側部8aの何れか一方のみが接合部6側に向けて延在された形状であっても、加熱効率を向上させる効果が得られる。
 なお、本実施形態では、図6に示すように、強磁性体8を、その開放部側に配置される2つの端部、つまり、内側部8a及び外側部8bの下流側端部8a1,8b1のうちの少なくとも一方が、平面視でみて接合部6を避けるようにV字状又はU字状に分岐された形状とすることが好ましい。即ち、強磁性体8の内側部8a及び外側部8bの下流側端部8a1,8b1のうちの少なくとも一方は、平面視でオープン管1の端部2a,2b近傍位置で接合部6の幅方向外側に向かうように分割された形状を有する。図6に示す例では、外側部8bの下流側端部8b1のみを二手に分岐させる構成としているが、内側部8a及び外側部8bの下流側端部8a1,8b1の両方を上記形状とすることがより好ましい。
 図4に例示するような、強磁性体8の内側部8a及び外側部8bは、接合部6付近まで直線的に延びているが、接合部6近傍においては、溶融した金属が誘導電流に伴って発生する電磁力によって排出され、管内に落下するか、あるいは、管表面に向けて排出されるため、このように落下ないし飛散した溶融金属によって、強磁性体8の特に内側部8a及び外側部8bが損傷するおそれがある。これに対して、図6に示すように内側部8a及び外側部8bの下流側端部8a1,8b1を分岐させることで、強磁性体8の内側部8aへの溶接金属の落下、堆積や外側部8bへの溶融金属の付着が生じるのを抑制でき、ひいては、強磁性体8の磁気性能が、溶融物の堆積で温度上昇することによって低下するのを防止でき、安定した性能を維持し続けることが可能になる。さらに、特に強磁性体8の外側部8bの下流側端部8b1を接合部6を避けるように分岐させることで、該接合部6の状態を常時、上方からモニター装置等で観察することが可能となる。
 次いで、図7に、上述したような強磁性体8の支持構造の一例を示す。図示例においては、強磁性体8の外側部8bと中間部8cとは一体として形成されるか互いに固着されており、内側部8aはこれらとは別体として形成されている。強磁性体8を組み付けるにあたって、まず、管内中央付近に設置されたマンドレル24に、強磁性体8の内側部8aが取り付けられる。そして、オープン管1の外周面を囲むようにターンさせた形状の誘導コイル3(図3を参照)をセットした後、外側部8bを開口部2の上方に配置された台座26上に載置する。これにより、強磁性体8が可動で懸架支持された状態となる。この際、外側部8bに固定された中間部8cは、その下端が、内側部8aの上面に形成された凹部内面に接する。このような構成を採用することにより、例えば、曲げ加工後のオープン管1の開口部2の位置がずれることで、強磁性体8の一部がオープン管1の端部2a,2bに接触した場合でも、強磁性体8が自在に移動するので、強磁性体8の損傷や、オープン管1の端部2a,2bに大きな疵が生じるのを防止することができる。さらに、強磁性体8において、オープン管1の端部2a,2bと接触する可能性のある箇所、例えば中間部8cを、ガラステープやベーク板からなる絶縁材で保護することが、装置の損傷防止や、スパークが生じるのを防止できる観点から好ましい。
 本発明においては、上記のような強磁性体8を備えることにより、開口部2近傍の誘導コイル3で発生した磁束Mが、選択的に強磁性体8を通じてオープン管1の両端部2a,2bを通過して誘導電流を発生させる。また、強磁性体8は、誘導コイル3から発散される磁束Mを引き込ことで、接合部6側における両端部2a,2bにおいて、磁束Mを効率的に貫通させることができ、接合部6近傍の誘導電流を増加させることができる。また、強磁性体8によって、その近傍を回遊する磁束Mを捕捉することもできることから、接合部6近傍において、溶接に有効な誘導電流の電流密度がさらに向上する。さらに、スクイズロール7やトップロール側に向かう磁束Mを減少させ、また、オープン管1の上流側に、溶接に無効な電流が流れることで加熱ロスが生じるのを抑制し、両端部2a,2bにおける加熱効率を向上させることが可能となる。
 従って、強磁性体8を配置しない場合に比べて供給電力が少なくて済み、省エネが可能となる。あるいは、強磁性体8を配置しない場合と同じ電力を投入するのであれば、ライン速度を上げることが可能であり、生産性も向上できる。
[第2の実施形態]
 以下に、本発明の第2の実施形態に係る電縫管溶接装置について説明する。
 図8は、本発明の第2の実施形態である電縫管溶接装置70を示す概略側断面図であり、電縫管溶接を行う際に発生する、磁束の分布も模式的に示している。
 本実施形態においては、上述した第1の実施形態に対し、さらに接合部への電流を増加させて加熱効率を向上させるため、以下に例示するような構成を採用するものである。また、本実施形態においては、第1の実施形態と同様の構成については同じ符号を付与するとともに、その詳細な説明を省略する。
 図8に示すように、本実施形態の電縫管溶接装置70は、上記の電縫管溶接装置50に対し、さらに、円筒状のオープン管1の管内側に、強磁性材料からなるインピーダー10を配置し、このインピーダー10の少なくとも一部を、内側部9a、外側部9b及び中間部9cを有して構成される強磁性体9の内側部9aとして代用した点で、上記第1の実施形態とは異なる。強磁性体9の外側部9b及び中間部9cは、第1の実施形態における強磁性体8と同様の材料を用いることができる。
 詳細には、本実施形態の強磁性体9は、オープン管1内に配置された、内側部9cとしても機能するインピーダー10と、オープン管1の外側かつ誘導コイル3の外側で走行方向Rに延びる外側部9bと、誘導コイル3の上流側の位置で、インピーダー10と外側部9aとの間をオープン管1の管内外方向に延びる中間部9cとを有しており、該強磁性体9は、外側部9b及びインピーダー10の、中間部9cよりも下流側の部分と中間部9cとで構成される部分の開放部側が走行方向Rの下流側に向けて配置されている。強磁性体9の中間部9cの下部9c1は、インピーダー10を覆うインピーダーケース11の外周面で支持されている。
 本実施形態で用いられるインピーダー10としても、強磁性体9の外側部9b及び中間部9cと同様、例えば、フェライトや電磁鋼板、アモルファス等、導電率が低い強磁性材料を用いればよい。また、上述したように、図8に示す例においては、インピーダー10はインピーダーケース11に覆われた構成とされており、インピーダーケース11の外周面で強磁性体9の中間部9cの下部9c1が支持されている。インピーダーケース11の材質としては、特に限定されず、例えば、エポキシ等の樹脂材料を用いることができる。このように、筒状のオープン管1内にインピーダー10を設置することで、強磁性体9の外側部9b及び中間部9cと協働して磁束Mの磁気回路を形成することができる。
 本実施形態のように、筒状のオープン管1内にインピーダー10を設置することで、オープン管1内面のインピーダンスを高めることにより、誘導電流が、オープン管1の両端部2a,2bからオープン管1の内周側へ流れようとするのを抑制できる。
 また、本実施形態では、上記構成の強磁性体9の外側部9b及び中間部9cとインピーダー10とを組み合わせた構成を採用することにより、オープン管1の両端部2a,2bからオープン管1の内周側へ流れようとする電流をインピーダー10によって抑制しながら、強磁性体9によって両端部2a,2bを流れる電流4a,4bの電流密度を高めることができる。また、強磁性体9の外側部9b及び中間部9cとインピーダー10とを組み合わせる際、インピーダーケース11上に接するように設置する強磁性体9の外側部9b及び中間部9cを、上流側のインピーダー10上へ延設することにより、図2中に示すような、誘導コイル3の上流側に向けて、溶接に無効な誘導電流5a,5bが流れるのを効果的に抑制でき、加熱効率をより向上させることが可能になる。
 なお、上述のような強磁性体9の外側部9b及び中間部9cやインピーダー10は、第1の実施形態における強磁性体コ8と同様に、冷却水を供給するか、あるいは、空気等のガスや気体と液体とを混合した冷却媒体を供給して冷却する構成を採用することも可能である。
 本実施形態においては、強磁性体9の外側部9b及び中間部9cとインピーダー10とを組み合わせた構成を採用することで、オープン管1の内周に流れる誘導電流や、誘導コイル3の上流側に流れる溶接に無効な誘導電流を抑制しながら、溶接に有効な電流4a,4bの電流密度を高め、誘導電流が接合部6側に集中して流れるようになる。従って、上記第1の実施形態で説明したような、供給電力が少なく省エネが可能となるか、あるいは、同じ電力を投入する場合にはライン速度を上げることが可能で生産性が向上できるという効果がより顕著に得られる。
 以上説明したように、本発明に係る電縫管溶接装置によれば、上記構成のような強磁性体8,9を備えた構成を採用しているので、オープン管の内部にインピーダーのみを配置した従来のワークコイル方式に比べて、走行する金属帯板1を曲げながら筒状にして電縫管溶接する際の加熱効率を、簡単な装置で効果的に向上させることができ、また、セットアップも容易となる。また、大容量の電気設備を有する必要もなく設備コストを抑制することが可能になるとともに、既設の電源を用いた場合であっても安価なコストで導入できる。
 そして、上述のような加熱効率の向上に伴い、電力使用量を低減することで省エネが実現可能となるか、あるいは、同じ電力を投入した場合にはライン速度を上げることができ、生産性を向上させることが可能となる。また、インピーダーを用いた場合であっても、上述のように電力を下げることで、磁場の強度を低下させられることから、インピーダーの寿命を延ばすことが可能となる。さらに、従来、電源容量の制限やインピーダー焼損の制限から製造が困難であったサイズの電縫管を製造することも可能になることから、その産業上の効果は計り知れない。
 なお、上記第1、2の実施形態では、強磁性体8,9の内側部8a,9a及び外側部9a,9bがオープン管1の内外に一定の距離を置いて配置された例を説明しているが、本発明においては、オープン管1と強磁性体8,9の内側部8a,9a及び外側部9a,9bとの距離は一定である必要はない。強磁性体8,9の内側部8a,9a及び外側部9a,9bの少なくとも何れか一方は、下流に向かうにつれて、内側部8a,9a及び外側部9a,9b間の距離が漸増又は漸減するよう傾斜して配置することもできる(図示省略)。なお、良好な磁気回路を形成する、つまり磁気抵抗を低減する観点では、内側部8a,9a及び外側部9a,9b間の距離は、下流に向かうにつれて漸減されることが好ましい。また、同様の観点で、図9に示すように、外側部8bの下流側の端部に、内側部8aへ向けて突出する張出部8b2を設けることもできる。あるいは、図示は省略するが、強磁性体の外側部を段差のある形状として、誘導コイル3よりも下流側の位置でオープン管1に近づける構成を採用しても良い。
 さらに、上記第2の実施形態では、強磁性体9の中間部9cは、インピーダーケース11上に接するように設置すると説明したが、磁気抵抗を低減する観点から、図10に示すように、強磁性体9の中間部9cをインピーダーケース11を貫通させ、インピーダーケース11内のインピーダー10に直接接触させるとともに、インピーダーケース11の、強磁性体9の中間部9cが貫通した部分をシールするようにしてもよい。同様の観点から、図11に示すように、インピーダーケース11を貫通してインピーダー10上に他の強磁性部材13を設けるとともに、強磁性体9の中間部9cの下部9c1を該強磁性部材13に接触させてもよい。
 本発明においては、上述のように、簡単な構成の電縫管溶接装置で小径から大径までの電縫管を製造することが可能であるが、特に、製造時において加熱効率が低下する、径が大きな電縫管を効率よく製造するのに有効である。
 以下、本発明に係る電縫管溶接蔵置の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。
 本実施例においては、本発明の効果について、静止加熱実験によって確認を行った。
[実施例1]
「被加熱材」
 本実施例では、被加熱材として、外径:38.1mm、肉厚:3mm、長さ:1mのJIS規格に従う配管用炭素鋼管(SGP管)上部に、図13に示すように、レーザー加工によって開口部の形状を模擬したもの(以下、オープン管という。)を用いた。この際のレーザー加工は、図13中における左側端部から、平行開口部の間隔:15mm、長さ:200mmで、その後、接合部にみたてた頂点と両端部とのアペックス角度:4°で、500mmの長さで開口した。また、頂点部は0.5Rとした。
「電縫管溶接装置」
 本実施例で用いた電縫管溶接装置では、誘導コイルとして、図3、4に示すような、直径10mmの水冷銅管を、オープン管との間隔を10mmとして、オープン管の外周面側で2ターンさせながら進行方向の長さ:50mmとして巻いて、コイル内径80mmとしたものを用いた。また、加熱の際は、周波数200kHz-50kWの電力を投入し、電力を一定として、最高温度が1000℃になるまでの時間を計測した。また、加熱温度は、オープン管の開口部に臨む端部に、50μmのK熱電対を、頂点部(接合部)から20mmピッチで溶着して測温した。なお、本実施例においては、インピーダーを使用する実験では、長さ400mm、内径16mmのフェライトコアを、図8に示すように、外径25mmのエポキシ樹脂製のインピーダーケース11に入れ、さらに、水冷可能なように給排水口を設けてなる水冷インピーダーを管内に設置して実験を行った。
「実験手順」
 まず、本発明例1として、上記誘導コイルを、頂点部から150mm離れた位置に、誘導コイルの一方の端部を配置して加熱を行った。この際、図3に示すような強磁性体8としてのフェライトコアを誘導コイル及び開口部2を跨ぐように配置した。具体的には、強磁性体8としての該フェライトコアは、頂点部から280mm離れた位置から該頂点部まで延設された、厚さ20mm、幅:15mmの外側部及び内側部と、高さ:50mm、幅:5mmの中間部とから構成されるものである。そして、このようになるフェライトコアを図3に示すように配置したうえで加熱を行った。また、この際、実機の電縫管溶接装置の構成を考慮し、実際の鋼管形成には用いないものの、誘導コイルによって発生する磁束の影響を観察するため、図3等に示すロール7を模擬した直径100mmの鋼管を、頂点部の両側に接するように設置した状態で加熱を行った。
 また、本発明例2として、本発明例1と同様に上記誘導コイルを配置するとともに、図8に示すように、インピーダー10として、上記水冷インピーダーを、頂点部の直下から上流側に向けて400mmの範囲で配置した。また、強磁性体9を構成する他の要素として、頂点部から280mm離れた位置から該頂点部まで延設された、厚さ20mm、幅:15mmの外側部9bと、管内外方向の長さ:50mm、幅:5mmの中間部9cとを有するフェライトコアを用い、中間部9cの下部9c1をインピーダーケース11で支持させた状態とした。また、本例においても、本発明例1と同様、頂点部の両側にロール7を模擬した直径100mmの鋼管を配置し、頂点部の両側に接した状態で加熱を行った。
 また、比較例1として、強磁性体8としてのフェライトコアを設置しなかった点以外は、上記本発明例1と同様にして加熱を行った。
 また、比較例2として、円筒状のオープン管1の管内に、上記本発明例2と同様のインピーダー10を設置した点以外は、上記比較例1と同様にして加熱を行った。
 また、比較例3として、比較例2の条件において、さらに、図14に示すように、誘導コイルと頂点部との間の開口部に、オープン管の両端部間に位置するように、幅5mm(オープン管の両端部間の方向)、厚さ10mm(高さ方向)、長さ(走行方向R)40mmの直方体のフェライトコア14を、誘導コイル下流端から10mm下流の、オープン管の両端部に対向する位置に配置して加熱を行った。
 また、上記各実験では、実機の電縫管溶接装置においてはオープン管が移動していることを考慮し、10秒間加熱した時の、オープン管の両端面の長手方向で順次溶着した各熱電対で検出された温度を積分し、従来公知の誘導コイル及びインピーダー10のみを設置した実験(比較例2)による発熱量を1とした場合の相対評価(発熱量比)を行った。
 上記本発明例1、2及び比較例1~3の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1の場合、強磁性体及びインピーダーの何れも設置せずに誘導コイルのみを設置して加熱を行ったため、オープン管の両端面の温度は、誘導コイル直下の端面のみが加熱され、電流はオープン管の内周を回ったため、溶接部(頂点部)方向へ流れた電流は僅かであった。
 また、比較例1、2においては、頂点部近傍に配置された、ロール7に見立てた鋼管において発熱が見られることから、誘導コイルによって発生した磁束が発散されてロール7に見立てた鋼管にも流れ、この鋼管に、溶接に寄与しない誘導電流が発生したものと考えられる。
 また、比較例3では、フェライトコア14を設置しない場合に比べ発熱が抑制された。これは、電流が流れている開口部間に、インピーダーと同様の効果を有するフェライトコア14を設置したためで、端面を流れる誘導電流が抑制され、頂点部への誘導電流が低減してしまったものと考えられる。
 これに対し、誘導コイル及びオープン管1の開口部2を跨ぐように、側断面が角張ったU字形状とされた強磁性体8としてのフェライトを設置して加熱した本発明例1においては、比較例2に対する発熱量比が1.4となり、さらに発熱量が大きいことが明らかとなった。また、本発明例1においては、特に、頂点部近傍の加熱速度が速いことから、インピーダーを設置しなくても、オープン管(鋼管)内に設置したフェライトコア部分(内側部8a)がインピーダーの効果も果たしたことが確認できた。
 また、強磁性体9として、オープン管1の管内にインピーダー10としての水冷インピーダーと、外側部9b及び中間部9cとしてのフェライトコアと、を設置して加熱した本発明例2においては、比較例2に対する発熱量比が1.7となり、本発明例1に比べても、さらに発熱量が増加していることが確認できた。これは、誘導コイルの上流側に流れる、内周面を回る電流を水冷インピーダーが確実に抑制している効果と考えられ、外面側に設置したフェライトコアと組み合せることにより、より高い効果が得られることが確認できた。
 また、本発明例1、2においては、ロール7を模擬した鋼管の開口部側の温度上昇は見られなかった。これは、特に、強磁性体8、9に備えられる外側部8b、9bとしてのフェライトコアにより、誘導コイルへの通電によって発生し、周辺に発散された磁束が捕捉されたため、ロール7に見立てた鋼管に磁束が流れるのが抑制され、該鋼管において発生する誘導電流も抑制されたためと考えられる。
 また、本発明例1、2において、従来の構成の電縫管溶接装置である比較例1、2に比べて高い発熱量比が得られる要因としては、強磁性体8、9によって、誘導コイルへの一次電流の通電で発生した磁束が効果的に捕捉されることから、オープン管1の上流側に誘導電流が流れるのが抑制されるという点も考えられる。
 上記本実施例の結果より、誘導コイル及びオープン管1の開口部2を跨ぐように強磁性体を設置する構成である、本発明の電縫管溶接装置を用いて電縫溶接を行うことにより、加熱効率が大きく向上することが確認できた。
[実施例2]
 本実施例では、被加熱材として、外径:38.1mm、肉厚:3mm、長さ:1mのSGP管上部に、図15に示すように、レーザー加工によって開口部の形状を模擬したものを用いた。この際のレーザー加工は、図15中における左側端部から、平行開口部の間隔:15mm、長さ:500mmで、その後、接合部にみたてた頂点と両端部との角度:5°で、200mmの長さで開口した。また、頂点部は0.5Rとした。
 また、本実施例では、誘導コイルとして、実施例1と同様、直径10mmの水冷銅管を、鋼管(金属帯板)との間隔を10mmとして、オープン管の外周面側で2ターンさせながら進行方向の長さ:50mmとして巻いたものを用いた。そして、上記誘導コイルを、頂点部から150mm離れた位置に、誘導コイルの一方の端部を配置して加熱を行った。
 また、加熱の際は、上記実施例1の場合と同様、周波数200kHz-20kWの電力を投入し、最高温度が1000℃になるまでの時間を計測した。また、加熱温度は、オープン管端部に、50μmのK熱電対を、頂点部から20mmピッチで溶着して測温した。
 また、インピーダー10としては、長さ400mm、厚さ8mmのフェライトコアを、外径25mmのエポキシ樹脂製のインピーダーケース11に入れ、さらに、水冷可能なように給排水口を設けてなる水冷インピーダーを、頂点部の直下から上流側に向けて400mmの範囲で配置した。
 また、本実施例においても、実施例1と同様、誘導コイルによって発生する磁束の影響を観察するため、図3等に示すロール7を模擬した直径100mmの鋼管を、頂点部の両側に接するように設置した状態で加熱を行った。
 また、本実施例では、強磁性体9の外側部9bとして、誘導コイルの上方に、上下流方向の長さ:350mm、幅:10mmのフェライトコアを、オープン管1との距離を30mm、誘導コイルとの距離を10mmとして設置した。
 さらに、本発明例3では、上記に加え、中間部9cとして、オープン管1の開口部2に挿入され、進行方向の長さ:40mm、幅:5mmのフェライトコアを配置して加熱を行った。
 また、本発明例4として、中間部9cとしてのフェライトコアの進行方向の長さを120mmとした点を除き、上記本発明例3と同様に加熱を行った。
 なお、本発明例3、4においては、中間部9cとしてのフェライトコアとオープン管1の両端部とのギャップを5mmとして配置し、上記水冷インピーダーを強磁性体9の一部(内側部9a)として用いた構成で加熱を行った。
 また、比較例4として、中間部9cとしてのフェライトコアを設置しなかった点を除き、上記本発明例3、4と同様に加熱を行った。
 また、比較例5として、誘導コイルの上方の外側部9bとしてのフェライトコア及び中間部9cとしてのフェライトコアを設置せず、上記水冷インピーダーのみを設置した条件で加熱を行った点を除き、上記本発明例3~5と同様に加熱を行い、総熱量を比較した。
 上記本発明例3、4及び比較例4、5の結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す総発熱量比は、比較例5における総発熱量を1とした時の、各実験の総発熱量の割合を示した。
 表2に示すように、本発明例3、4では、外側部9bとしてのフェライトコアに加え、さらに中間部9cとしてのフェライトコアが設置されていることから、これらのフェライトコアを設置しなかった比較例4と比べて総発熱量が27~35%増えていることが確認できた。
 また、本発明例1~4のそれぞれにおいて、強磁性体として、その外側部8bの下流側端部8b1を、図6に示すようなU字状に分岐したものを使用した点以外は、それぞれの実験と同じ条件で実験を行ったところ、頂点部(接合部)における総熱量比は、何れも、それぞれの本発明例1~4と比べて2割前後低下したものの、比較例1~5と比べて十分に高い加熱効率が得られることが判った。
 上述のような本実施例の結果より、誘導コイルの上方に配置される、強磁性体の外側部としてのフェライトコアに加え、さらに、強磁性体の中間部としてのフェライトコアを加えることで、加熱効率が大きく向上することが確認できた。
1…金属帯板、オープン管、
2…オープン管の開口部、
2a,2b…オープン管の端部、
6…接合部(溶接部)、
50、60…電縫管溶接装置、
3…誘導コイル、
7…ロール、
8…強磁性体、
8a…内側部、
8b…外側部、
8c…中間部、
9…強磁性体、
9a…内側部、
9b…外側部、
9c…中間部、
10…インピーダー、
11…インピーダーケース、
4a,4b、5a、5b…誘導電流、
M…磁束、

Claims (4)

  1.  走行方向に延びる開口部を有するオープン管の、該開口部に臨む両端部を、オープン管の外周面を周回して形成された誘導コイルに高周波電流を通じ、発生させた誘導電流によって溶融させ、前記開口部の間隔を次第に狭めながら前記両端部同士を接合部において接触させて溶接する、電縫管を製造するための電縫管溶接装置であって、
     前記オープン管の内側かつ前記誘導コイルの内側で前記走行方向に延びる内側部と、前記オープン管の外側かつ前記誘導コイルの外側で前記走行方向に延びる外側部と、前記誘導コイルの上流側の位置で前記内側部及び前記外側部間をオープン管の管内外方向に延びる中間部とを有する強磁性体を備え、該強磁性体は、前記内側部及び前記外側部の、前記中間部よりも下流側の部分と、前記中間部とで構成された部分の開放部側が、前記走行方向の下流側に向けて配置されて、前記内側部、中間部及び外側部を通る磁束の閉回路を形成することを特徴とする電縫管溶接装置。
  2.  前記強磁性体は、走行方向に沿う断面形状がCの字状若しくは角張ったCの字状、横向きUの字状若しくは角張った横向きUの字状、横向きhの字状、または横向きHの字状である、請求項1に記載の電縫管溶接装置。
  3.  前記強磁性体の外側部及び内側部のうちの少なくとも一方の下流側の端部は、分岐された形状とされている、請求項1又は2に記載の電縫管溶接装置。
  4.  前記オープン管の内側に、強磁性材料からなるインピーダーが配置されており、前記強磁性体の内側部が、前記インピーダーの少なくとも一部によって構成されている、請求項1~3の何れか1項に記載の電縫管溶接装置。
PCT/JP2013/070653 2012-08-17 2013-07-30 電縫管溶接装置 WO2014027565A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014513395A JP5626497B2 (ja) 2012-08-17 2013-07-30 電縫管溶接装置
EP13829659.5A EP2886238B1 (en) 2012-08-17 2013-07-30 Welding device for electric resistance welded pipe
CA2881369A CA2881369C (en) 2012-08-17 2013-07-30 Electric resistance welded pipe welding apparatus
KR1020157003419A KR101614668B1 (ko) 2012-08-17 2013-07-30 전봉관 용접 장치
CN201380042437.5A CN104540632A (zh) 2012-08-17 2013-07-30 电焊管焊接装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181054 2012-08-17
JP2012181054 2012-08-17

Publications (1)

Publication Number Publication Date
WO2014027565A1 true WO2014027565A1 (ja) 2014-02-20

Family

ID=50101294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070653 WO2014027565A1 (ja) 2012-08-17 2013-07-30 電縫管溶接装置

Country Status (6)

Country Link
EP (1) EP2886238B1 (ja)
JP (1) JP5626497B2 (ja)
KR (1) KR101614668B1 (ja)
CN (1) CN104540632A (ja)
CA (1) CA2881369C (ja)
WO (1) WO2014027565A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117039A1 (ja) 2016-12-22 2018-06-28 新日鐵住金株式会社 電縫管溶接装置及び電縫管溶接方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833109B1 (ko) * 2012-08-17 2018-02-27 신닛테츠스미킨 카부시키카이샤 전봉관 용접 장치
CN105710523B (zh) * 2016-02-14 2018-05-01 汕头轻工机械厂有限公司 一种跑道型密绕式电磁感应器
CN107442919B (zh) * 2017-08-04 2019-08-02 武汉科技大学 一种确定生产直缝焊管用阻抗器位置及其尺寸的方法
CN110576292B (zh) * 2019-09-16 2022-05-06 哈尔滨工业大学 一种汽车保险杠的制造方法
EP4349519A1 (en) * 2022-10-03 2024-04-10 Societa' Italiana Acetilene & Derivati S.I.A.D. S.p.A. in breve S.I.A.D. S.p.A. Nitrogen cooling system apparatus for impeder high-frequency welding process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344449A (en) 1976-10-04 1978-04-21 Sumitomo Metal Ind Process for fabricating steel tubes by high frequency welding
JPS61140385A (ja) * 1984-12-11 1986-06-27 Sumitomo Metal Ind Ltd 電縫管溶接機
JPS63112074A (ja) * 1986-10-30 1988-05-17 Kishimoto Akira 金属缶胴の製造方法と装置
JPH05285673A (ja) * 1992-04-07 1993-11-02 Meidensha Corp 小径電縫管の製造方法
JPH0788662A (ja) * 1993-09-17 1995-04-04 Nippondenso Co Ltd 電縫管の製造装置
JPH0910961A (ja) * 1995-06-29 1997-01-14 Sumitomo Metal Ind Ltd 溶接管の製造方法
JPH11129027A (ja) * 1997-10-30 1999-05-18 Meidensha Corp 薄肉チューブ造管設備
JP2000094033A (ja) * 1998-09-24 2000-04-04 Daikin Ind Ltd 伝熱管の製造方法およびその製造装置
US20080308550A1 (en) * 2007-06-13 2008-12-18 Fluxtrol Inc. Magnetic flux guide for continuous high frequency welding of closed profiles
WO2011034087A1 (ja) * 2009-09-16 2011-03-24 新日本製鐵株式会社 電縫管溶接装置
JP2012016749A (ja) * 2009-09-16 2012-01-26 Nippon Steel Corp 電縫管溶接装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952029B2 (ja) * 1981-06-23 1984-12-17 ティーディーケイ株式会社 電縫管製造装置
JPS61158385U (ja) * 1985-03-19 1986-10-01
JPH058385A (ja) * 1991-07-02 1993-01-19 Rohm Co Ltd インクジエツトプリントヘツド及びそれを備える電子機器
DE69314052T2 (de) * 1992-03-25 1998-01-22 Meidensha Electric Mfg Co Ltd Schweissführungsvorrichtung
EP0613751A1 (de) * 1993-03-01 1994-09-07 Siemens Aktiengesellschaft Anordnung zum Induktionsschweissen von Rohren
US7002117B2 (en) * 2001-12-20 2006-02-21 Aisapack Holding S.A. Heat-sealing device for packaging material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344449A (en) 1976-10-04 1978-04-21 Sumitomo Metal Ind Process for fabricating steel tubes by high frequency welding
JPS61140385A (ja) * 1984-12-11 1986-06-27 Sumitomo Metal Ind Ltd 電縫管溶接機
JPS63112074A (ja) * 1986-10-30 1988-05-17 Kishimoto Akira 金属缶胴の製造方法と装置
JPH05285673A (ja) * 1992-04-07 1993-11-02 Meidensha Corp 小径電縫管の製造方法
JPH0788662A (ja) * 1993-09-17 1995-04-04 Nippondenso Co Ltd 電縫管の製造装置
JPH0910961A (ja) * 1995-06-29 1997-01-14 Sumitomo Metal Ind Ltd 溶接管の製造方法
JPH11129027A (ja) * 1997-10-30 1999-05-18 Meidensha Corp 薄肉チューブ造管設備
JP2000094033A (ja) * 1998-09-24 2000-04-04 Daikin Ind Ltd 伝熱管の製造方法およびその製造装置
US20080308550A1 (en) * 2007-06-13 2008-12-18 Fluxtrol Inc. Magnetic flux guide for continuous high frequency welding of closed profiles
WO2011034087A1 (ja) * 2009-09-16 2011-03-24 新日本製鐵株式会社 電縫管溶接装置
JP2012016749A (ja) * 2009-09-16 2012-01-26 Nippon Steel Corp 電縫管溶接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fundamentals and Applications of High Frequency", TOKYO DENKI UNIVERSITY, pages: 79,80

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117039A1 (ja) 2016-12-22 2018-06-28 新日鐵住金株式会社 電縫管溶接装置及び電縫管溶接方法
KR20190088505A (ko) 2016-12-22 2019-07-26 닛폰세이테츠 가부시키가이샤 전봉관 용접 장치 및 전봉관 용접 방법

Also Published As

Publication number Publication date
JP5626497B2 (ja) 2014-11-19
CN104540632A (zh) 2015-04-22
JPWO2014027565A1 (ja) 2016-07-25
EP2886238A1 (en) 2015-06-24
CA2881369A1 (en) 2014-02-20
EP2886238A4 (en) 2016-05-25
EP2886238B1 (en) 2019-07-17
KR101614668B1 (ko) 2016-04-21
CA2881369C (en) 2017-07-18
KR20150036480A (ko) 2015-04-07

Similar Documents

Publication Publication Date Title
JP5626497B2 (ja) 電縫管溶接装置
JP5234154B2 (ja) 電縫管溶接装置
US20080308550A1 (en) Magnetic flux guide for continuous high frequency welding of closed profiles
JP6097784B2 (ja) 電縫管溶接装置
US9162268B2 (en) Electric-resistance-welded pipe welding apparatus
JP6436267B2 (ja) 電縫管溶接装置及び電縫管溶接方法
JP5842183B2 (ja) 誘導加熱装置
JP2011258586A (ja) 金属板の誘導加熱装置及び誘導加熱方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014513395

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2881369

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20157003419

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013829659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013829659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE