WO2014024841A1 - 管理システム、管理方法、制御装置及び蓄電装置 - Google Patents

管理システム、管理方法、制御装置及び蓄電装置 Download PDF

Info

Publication number
WO2014024841A1
WO2014024841A1 PCT/JP2013/071139 JP2013071139W WO2014024841A1 WO 2014024841 A1 WO2014024841 A1 WO 2014024841A1 JP 2013071139 W JP2013071139 W JP 2013071139W WO 2014024841 A1 WO2014024841 A1 WO 2014024841A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
message
operation modes
storage device
Prior art date
Application number
PCT/JP2013/071139
Other languages
English (en)
French (fr)
Inventor
一尊 中村
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/419,903 priority Critical patent/US10541540B2/en
Priority to CN201380041663.1A priority patent/CN104541434B/zh
Priority to EP13828165.4A priority patent/EP2882073B1/en
Publication of WO2014024841A1 publication Critical patent/WO2014024841A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/40Photovoltaic [PV] modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/19Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2240/00Fluid heaters having electrical generators
    • F24H2240/01Batteries, electrical energy storage device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units

Definitions

  • the present invention relates to a management system, a management method, a control device, and a power storage device having a power storage device that charges and discharges power using a storage battery and a control device that communicates with the power storage device.
  • the plurality of devices are, for example, home electric appliances such as air conditioners and lighting devices, and distributed power sources such as solar cells, storage batteries, and fuel power generation devices.
  • Controller for example, HEMS (Home Energy Management System), SEMS (Store Energy Management System), BEMS (Building Energy Management System), FEMS (Factory Energy Management System), referred to as CEMS (Cluster / Community Energy Management System) Is done.
  • the present invention has been made to solve the above-described problem, and an object thereof is to provide a management system, a management method, a control device, and a power storage device that can appropriately control a device. .
  • the management system includes a power storage device including a storage battery that stores electric power, and a control device that communicates with the power storage device. Between the control device and the power storage device, a message is defined that designates one of a plurality of operation modes with different charge / discharge criteria for the storage battery.
  • control device instructs the power storage device to operate the storage battery by transmitting a message designating any of the plurality of operation modes to the power storage device.
  • control device receives the message designating one of the plurality of operation modes from the power storage device, and in which of the plurality of operation modes the power storage device is operating. To get.
  • the control device prior to communication of a message designating one of the plurality of operation modes, displays a message indicating whether or not there is a function for handling a message designating one of the plurality of operation modes. Received from the power storage device.
  • the plurality of operation modes include an operation mode in which a distributed power source other than the storage battery and the storage battery cooperate with each other.
  • the distributed power source other than the storage battery is a solar battery.
  • the management method is a method used in a management system having a power storage device including a storage battery that stores electric power and a control device that communicates with the power storage device. Between the control device and the power storage device, a message is defined that designates one of a plurality of operation modes with different charge / discharge criteria for the storage battery.
  • the management method includes a step of transmitting a message designating any of the plurality of operation modes from the control device to the power storage device, or the plurality of operation modes from the power storage device to the control device. A step of transmitting a message designating any of the above.
  • the control device communicates with a power storage device including a storage battery that stores electric power. Between the control device and the power storage device, a message is defined that designates one of a plurality of operation modes with different charge / discharge criteria for the storage battery.
  • the control device includes a communication unit that receives a message designating any of the plurality of operation modes from the power storage device or transmits a message designating any of the plurality of operation modes to the power storage device.
  • a power storage device includes a storage battery that stores electric power. Between the control device that communicates with the power storage device and the power storage device, a message that specifies any one of a plurality of operation modes having different charging / discharging criteria for the storage battery is defined.
  • the power storage device includes a communication unit that transmits a message designating any of the plurality of operation modes to the control device and receives a message designating any of the plurality of operation modes from the control device.
  • the present invention it is possible to provide a management system, a management method, a control device, and a power storage device that can appropriately control devices.
  • FIG. 1 is a diagram illustrating an energy management system 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating the customer 10 according to the first embodiment.
  • FIG. 3 is a diagram showing the fuel cell device 150 according to the first embodiment.
  • FIG. 4 is a diagram illustrating a network configuration according to the first embodiment.
  • FIG. 5 is a diagram illustrating the EMS 200 according to the first embodiment.
  • FIG. 6 is a diagram showing a message format according to the first embodiment.
  • FIG. 7 is a diagram showing a message format according to the first embodiment.
  • FIG. 8 is a diagram showing a message format according to the first embodiment.
  • FIG. 9 is a sequence diagram illustrating the management method according to the first embodiment.
  • the management system which concerns on embodiment has an electrical storage apparatus provided with the storage battery which accumulate
  • the storage battery charging / discharging control according to the operation mode of the storage battery is left to the power storage device, and a message for designating one of a plurality of operation modes having different storage battery charging / discharging standards is defined.
  • the control device can appropriately control the power storage device without being affected by a communication delay between the control device and the power storage device.
  • the control device can grasp the power generation amount of the power storage device and can appropriately control other devices (load, fuel cell device, etc.).
  • FIG. 1 is a diagram illustrating an energy management system 100 according to the first embodiment.
  • the energy management system 100 includes a customer 10, a CEMS 20, a substation 30, a smart server 40, and a power plant 50.
  • the customer 10, the CEMS 20, the substation 30 and the smart server 40 are connected by a network 60.
  • the customer 10 has, for example, a power generation device and a power storage device.
  • the power generation device is a device that outputs electric power using fuel gas, such as a fuel cell.
  • the power storage device is a device that stores electric power, such as a secondary battery.
  • the customer 10 may be a detached house or an apartment house such as a condominium.
  • the customer 10 may be a store such as a convenience store or a supermarket, a commercial facility such as a building, or a factory.
  • a plurality of consumers 10 constitutes a customer group 10A and a customer group 10B.
  • the consumer group 10A and the consumer group 10B are classified by, for example, a geographical area.
  • the CEMS 20 controls interconnection between the plurality of consumers 10 and the power system.
  • the CEMS 20 may be referred to as CEMS (Cluster / Community Energy Management System) in order to manage a plurality of consumers 10. Specifically, the CEMS 20 disconnects between the plurality of consumers 10 and the power system at the time of a power failure or the like. On the other hand, the CEMS 20 interconnects the plurality of consumers 10 and the power system when power is restored.
  • CEMS 20A and CEMS 20B are provided.
  • the CEMS 20A controls interconnection between the customer 10 included in the customer group 10A and the power system.
  • the CEMS 20B controls interconnection between the customer 10 included in the customer group 10B and the power system.
  • the substation 30 supplies power to the plurality of consumers 10 via the distribution line 31. Specifically, the substation 30 steps down the voltage received from the power plant 50.
  • a substation 30A and a substation 30B are provided.
  • the substation 30A supplies power to the consumers 10 included in the consumer group 10A via the distribution line 31A.
  • the substation 30B supplies power to the consumers 10 included in the consumer group 10B via the distribution line 31B.
  • the smart server 40 manages a plurality of CEMSs 20 (here, CEMS 20A and CEMS 20B).
  • the smart server 40 also manages a plurality of substations 30 (here, the substation 30A and the substation 30B).
  • the smart server 40 comprehensively manages the customers 10 included in the customer group 10A and the customer group 10B.
  • the smart server 40 has a function of balancing the power to be supplied to the consumer group 10A and the power to be supplied to the consumer group 10B.
  • the power plant 50 generates power using thermal power, sunlight, wind power, hydropower, nuclear power, or the like.
  • the power plant 50 supplies power to the plurality of substations 30 (here, the substation 30A and the substation 30B) via the power transmission line 51.
  • the network 60 is connected to each device via a signal line.
  • the network 60 is, for example, the Internet, a wide area network, a narrow area network, or a mobile phone network.
  • FIG. 2 is a diagram illustrating details of the customer 10 according to the first embodiment.
  • the customer 10 includes a distribution board 110, a load 120, a PV device 130, a storage battery device 140, a fuel cell device 150, a hot water storage device 160, and an EMS 200.
  • the customer 10 includes an ammeter 180, an ammeter 181, and an ammeter 182.
  • the ammeter 180 is used for load following control of the fuel cell device 150.
  • the ammeter 180 is downstream of the connection point between the storage battery device 140 and the power line (on the side away from the system) on the power line connecting each device (for example, the storage battery device 140 and the fuel cell device 150) and the system, and , Provided upstream of the connection point between the fuel cell device 150 and the power line (side closer to the system).
  • the ammeter 180 is provided upstream of the connection point between the load 120 and the power line (on the side closer to the grid).
  • the ammeter 181 is used for checking whether or not there is a power flow (reverse power flow) from the storage battery device 140 to the system.
  • the ammeter 181 is provided upstream (on the side closer to the system) from the connection point between the storage battery device 140 and the power line on the power line connecting each device (for example, the storage battery device 140) and the system.
  • the ammeter 182 is used for measuring the electric power generated by the PV device 130.
  • the ammeter 182 is provided closer to the PV device 130 than the connection point between the PV device 130 and the power line connecting each device (for example, the PV device 130) and the system.
  • each device is connected to the power line in the order of the PV device 130, the storage battery device 140, the fuel cell device 150, and the load 120 when viewed from the order close to the system.
  • the distribution board 110 is connected to the distribution line 31 (system). Distribution board 110 is connected to load 120, PV device 130, storage battery device 140, and fuel cell device 150 via a power line.
  • the load 120 is a device that consumes power supplied via a power line.
  • the load 120 includes devices such as a refrigerator, a freezer, lighting, and an air conditioner.
  • the PV device 130 has a PV 131 and a PCS 132.
  • the PV 131 is an example of a power generation device, and is a solar power generation device (Photovoltaic Device) that generates power in response to reception of sunlight.
  • the PV 131 outputs the generated DC power.
  • the amount of power generated by the PV 131 changes according to the amount of solar radiation applied to the PV 131.
  • the PCS 132 is a device (Power Conditioning System) that converts DC power output from the PV 131 into AC power.
  • the PCS 132 outputs AC power to the distribution board 110 via the power line.
  • the PV device 130 may include a solarimeter that measures the amount of solar radiation irradiated on the PV 131.
  • the PV device 130 is controlled by the MPPT (Maximum Power Point Tracking) method. Specifically, the PV device 130 optimizes the operating point (a point determined by the operating point voltage value and the power value, or a point determined by the operating point voltage value and the current value) of the PV 131.
  • MPPT Maximum Power Point Tracking
  • the storage battery device 140 includes a storage battery 141 and a PCS 142.
  • the storage battery 141 is a device that stores electric power.
  • the PCS 142 is a device (Power Conditioning System) that converts AC power supplied from the distribution line 31 (system) into DC power. Further, the PCS 142 converts DC power output from the storage battery 141 into AC power.
  • the fuel cell device 150 includes a fuel cell 151 and a PCS 152.
  • the fuel cell 151 is an example of a power generation device, and is a device that generates electric power using fuel (gas).
  • the PCS 152 is a device (Power Conditioning System) that converts DC power output from the fuel cell 151 into AC power.
  • the fuel cell device 150 operates by load following control. Specifically, the fuel cell device 150 controls the fuel cell 151 so that the power output from the fuel cell 151 becomes the target power for load following control. In other words, the fuel cell device 150 controls the power output from the fuel cell 151 so that the product of the current value detected by the ammeter 180 and the power detected by the PCS 152 becomes the target received power.
  • the hot water storage device 160 is a device that generates hot water or maintains the water temperature using fuel (gas). Specifically, the hot water storage device 160 has a hot water storage tank, and the water supplied from the hot water storage tank is generated by heat generated by combustion of fuel (gas) or exhaust heat generated by operation (power generation) of the fuel cell 151. warm. Specifically, the hot water storage device 160 warms the water supplied from the hot water storage tank and returns the heated hot water to the hot water storage tank.
  • the fuel cell device 150 and the hot water storage device 160 constitute a hot water supply unit 170 (hot water supply system).
  • the EMS 200 is a device (Energy Management System) that controls the PV device 130, the storage battery device 140, the fuel cell device 150, and the hot water storage device 160.
  • the EMS 200 is connected to the PV device 130, the storage battery device 140, the fuel cell device 150, and the hot water storage device 160 via signal lines, and the PV device 130, the storage battery device 140, the fuel cell device 150, and the hot water storage device. 160 is controlled.
  • the EMS 200 controls the power consumption of the load 120 by controlling the operation mode of the load 120.
  • the EMS 200 is connected to various servers via the network 60.
  • Various servers store, for example, information (hereinafter referred to as energy charge information) such as the unit price of power supplied from the grid, the unit price of power received from the grid, and the unit price of fuel gas.
  • various servers store the information (henceforth energy consumption prediction information) for predicting the power consumption of the load 120, for example.
  • the energy consumption prediction information may be generated based on, for example, the past power consumption actual value of the load 120.
  • the energy consumption prediction information may be a model of power consumption of the load 120.
  • the various servers store, for example, information for predicting the power generation amount of the PV 131 (hereinafter, PV power generation amount prediction information).
  • the PV power generation prediction information may be a predicted value of the amount of solar radiation irradiated on the PV 131.
  • the PV power generation prediction information may be weather forecast, season, sunshine time, and the like.
  • the storage battery device 140 operates according to any of a plurality of operation modes in which the storage battery 141 has different charging and discharging standards.
  • the plurality of operation modes include an operation mode in the grid connection state and an operation mode in the independent operation state.
  • the grid connection state is a state in which the storage battery device 140 and the grid are arranged in parallel.
  • the autonomous operation state is a state in which the storage battery device 140 and the system are disconnected.
  • the self-sustaining operation state for example, a state in which a power failure has occurred can be considered.
  • the operation mode in the grid connection state is (a) an operation mode (solar power sale priority mode) that controls charging / discharging of the storage battery 141 so that power sale (reverse power flow) of the power generated by the PV device 130 is prioritized. ), (B) Operation mode (solar charging mode) for controlling charging / discharging of the storage battery 141 so that the power generated by the PV device 130 is charged in the storage battery 141, (c) Power supplied from the system is constant Operation mode (peak cut mode) for controlling charging / discharging of the storage battery 141 so as not to exceed the value, (d) Supplied from the system during a period when the unit price of power supplied from the system is lower than a threshold (for example, at night) Operation mode (midnight power utilization mode) for controlling charging / discharging of the storage battery 141 so as to charge the storage battery 141 with the generated power, (e) forcibly storing power in the storage battery 141 Rolling mode (forced power storage mode), and the like (f) operating mode
  • the storage battery device 140 monitors the current measured by the ammeter 182 and depends on the amount of power generated by the PV device 130. It is necessary to control charging / discharging of the storage battery 141. Since the power generation amount of the PV device 130 changes from moment to moment, these operation modes are preferably controlled by the storage battery device 140.
  • the storage battery device 140 monitors the current measured by the ammeter 181 and the ammeter 182 and charges / discharges the storage battery 141 according to the amount of power supplied from the system. Need to control.
  • the amount of power supplied from the grid is a value obtained by subtracting the power measured by the ammeter 182 from the power measured by the ammeter 181. Since the power generation amount of the PV device 130 and the power consumption of the load 120 change from moment to moment, this operation mode is preferably controlled by the storage battery device 140.
  • (a) solar power sale priority mode, (b) solar charge mode, and (c) peak cut mode are operation modes in which PV 131 and the storage battery 141 other than the storage battery 141 cooperate with each other. It is an example.
  • the operation mode in the self-sustaining operation state includes (g) an operation mode for accumulating electric power generated by the PV device 130 (hereinafter referred to as self-sustained power storage mode), and (h) a load 120 connected to a self-sustained outlet provided in the storage battery device 140. (I) Supply power to the load 120 connected to an independent outlet provided in the storage battery device 140 while accumulating the power generated by the PV device 130 Operation mode (hereinafter referred to as “independent power storage mode”).
  • the storage battery device 140 monitors the current measured by the ammeter 181 so that the flow of electric power (reverse power flow) from the storage battery device 140 to the system does not occur. It is necessary to control charging / discharging of the storage battery 141. Since the power consumption of the load 120 changes from moment to moment, these operation modes are preferably controlled by the storage battery device 140.
  • FIG. 3 is a diagram showing the fuel cell device 150 according to the first embodiment.
  • the fuel cell device 150 includes a fuel cell 151, a PCS 152, a blower 153, a desulfurizer 154, an ignition heater 155, and a control board 156.
  • the fuel cell 151 is a device that outputs power using fuel gas.
  • the fuel cell 151 includes a reformer 151A and a cell stack 151B.
  • the reformer 151A generates a reformed gas from the fuel gas from which the odorant has been removed by the desulfurizer 154 described later.
  • the reformed gas is a gas composed of hydrogen and carbon monoxide.
  • the cell stack 151B generates power by a chemical reaction between air (oxygen) supplied from a blower 153, which will be described later, and the reformed gas.
  • the cell stack 151B has a structure in which a plurality of cells are stacked. Each cell has a structure in which an electrolyte is sandwiched between a fuel electrode and an air electrode. Reformed gas (hydrogen) is supplied to the fuel electrode, and air (oxygen) is supplied to the air electrode. A chemical reaction of the reformed gas (hydrogen) and air (oxygen) occurs in the electrolyte to generate electric power (DC electric power) and heat.
  • PCS 152 is a device that converts DC power output from the fuel cell 151 into AC power, as described above.
  • the blower 153 supplies air to the fuel cell 151 (cell stack 151B).
  • the blower 153 is configured by a fan, for example.
  • the desulfurizer 154 removes the odorant contained in the fuel gas supplied from the outside.
  • the fuel gas may be city gas or propane gas.
  • the ignition heater 155 is a heater that ignites fuel that has not chemically reacted in the cell stack 151B (hereinafter, unreacted fuel) and maintains the temperature of the cell stack 151B at a high temperature. That is, the ignition heater 155 ignites unreacted fuel leaking from the opening of each cell constituting the cell stack 151B. It should be noted that the ignition heater 155 may ignite the unreacted fuel in a case where the unreacted fuel is not combusted (for example, when the fuel cell device 150 is activated). Once ignited, thereafter, the unreacted fuel that overflows little by little from the cell stack 151B continues to burn, so that the temperature of the cell stack 151B is maintained at a high temperature.
  • the control board 156 is a board on which a circuit for controlling the fuel cell 151, the PCS 152, the blower 153, the desulfurizer 154, and the ignition heater 155 is mounted.
  • the cell stack 151B is an example of a power generation unit that generates power through a chemical reaction.
  • the reformer 151A, the blower 153, the desulfurizer 154, the ignition heater 155, and the control board 156 are examples of auxiliary machines that assist the operation of the cell stack 151B.
  • a part of the PCS 152 may be handled as an auxiliary machine.
  • FIG. 4 is a diagram illustrating a network configuration according to the first embodiment.
  • the network includes a load 120, a PV device 130, a storage battery device 140, a fuel cell device 150, a hot water storage device 160, an EMS 200, and a user terminal 300.
  • the user terminal 300 includes a user terminal 310 and a user terminal 320.
  • the user terminal 310 is connected to the EMS 200, and information for visualizing the energy consumption of each device (load 120, PV device 130, storage battery device 140, fuel cell device 150, and hot water storage device 160) (hereinafter, visualization information). Is displayed by a web browser.
  • the EMS 200 generates visualization information in a format such as HTML, and transmits the generated visualization information to the user terminal 310.
  • the connection format between the user terminal 310 and the EMS 200 may be wired or wireless.
  • the user terminal 320 is connected to the EMS 200 and displays visualization information by an application.
  • the EMS 200 transmits information indicating the energy consumption of each device to the user terminal 320.
  • the application of the user terminal 320 generates visualization information based on information received from the EMS 200 and displays the generated visualization information.
  • the connection format between the user terminal 320 and the EMS 200 may be wired or wireless.
  • the fuel cell device 150 and the hot water storage device 160 constitute the hot water supply unit 170. Therefore, the hot water storage device 160 may not have a function of communicating with the EMS 200. In such a case, the fuel cell device 150 performs communication of messages regarding the hot water storage device 160 with the EMS 200 on behalf of the hot water storage device 160.
  • communication between the EMS 200 and each device is performed according to a predetermined protocol.
  • the predetermined protocol include a protocol called “ECHONET Lite” or “ECHONET”.
  • the embodiment is not limited to this, and the predetermined protocol may be a protocol other than “ECHONET Lite” and “ECHONET” (for example, ZigBee (registered trademark)).
  • FIG. 5 is a block diagram showing the EMS 200 according to the first embodiment.
  • the EMS 200 includes a reception unit 210, a transmission unit 220, and a control unit 230.
  • the receiving unit 210 receives various signals from a device connected via a signal line. For example, the receiving unit 210 may receive information indicating the power generation amount of the PV 131 from the PV device 130. The receiving unit 210 may receive information indicating the storage amount of the storage battery 141 from the storage battery device 140. The receiving unit 210 may receive information indicating the power generation amount of the fuel cell 151 from the fuel cell device 150. The receiving unit 210 may receive information indicating the amount of hot water stored in the hot water storage device 160 from the hot water storage device 160. The receiving unit 210 constitutes a communication unit together with a transmitting unit 220 described later.
  • the reception unit 210 may receive energy charge information, energy consumption prediction information, and PV power generation amount prediction information from various servers via the network 60.
  • the energy fee information, the energy consumption prediction information, and the PV power generation amount prediction information may be stored in the EMS 200 in advance.
  • the transmission unit 220 transmits various signals to a device connected via a signal line.
  • the transmission part 220 transmits the signal for controlling the PV apparatus 130, the storage battery apparatus 140, the fuel cell apparatus 150, and the hot water storage apparatus 160 to each apparatus.
  • the transmission unit 220 transmits a control signal for controlling the load 120 to the load 120.
  • the control unit 230 controls the load 120, the PV device 130, the storage battery device 140, the fuel cell device 150, and the hot water storage device 160.
  • a message for designating one of a plurality of operation modes is defined between the EMS 200 and the storage battery device 140.
  • the message for specifying one of a plurality of operation modes includes the time to start operation in the specified operation mode, the time to end operation in the specified operation mode, and the time to operate in the specified operation mode. It is preferable to contain. For example, in the above-described late-night power utilization mode, it is necessary to specify a time such as when to start charging at midnight or when to start discharging during the daytime.
  • the message designating one of the plurality of operation modes includes information indicating whether the designated operation mode is an operation mode in the grid connection state or whether the designated operation mode is an operation mode in the autonomous operation state. It is preferable.
  • the storage battery device 140 receives a message designating one of a plurality of operation modes from the EMS 200.
  • the storage battery device 140 operates in one of a plurality of operation modes according to a message received from the EMS 200.
  • the storage battery device 140 transmits a message designating any one of a plurality of operation modes to the EMS 200.
  • the EMS 200 acquires which of the plurality of operation modes the storage battery device 140 is operating according to a message received from the storage battery device 140.
  • the storage battery device 140 transmits a message indicating the presence / absence of a function for handling a message designating one of a plurality of operation modes to the EMS 200 prior to communication of a message designating one of the plurality of operation modes.
  • the storage battery device 140 transmits a message indicating the rated output of the storage battery 141 to the EMS 200.
  • the message indicating the rated output of the storage battery 141 includes at least information indicating the rated output of the storage battery 141 in the autonomous operation state.
  • the message indicating the rated output of the storage battery 141 may include information indicating the rated output of the storage battery 141 in the grid connection state.
  • the EMS 200 controls other devices (for example, the fuel cell device 150 or the load 120)
  • the rated output of the storage battery 141 in the self-sustaining operation state is important information for the EMS 200.
  • the storage battery device 140 transmits a message indicating the presence or absence of a function of transmitting a message indicating the rated output of the storage battery 141 to the EMS 200 prior to communication of a message indicating the rated output of the storage battery 141.
  • the storage battery apparatus 140 transmits the message which shows the charging / discharging frequency of the storage battery 141 to EMS200.
  • the message indicating the number of times of charge / discharge of the storage battery 141 includes at least the number of times of charge / discharge of the storage battery 141 in the current state.
  • the message indicating the number of charge / discharge cycles of the storage battery 141 may include the maximum number of charge / discharge cycles of the storage battery 141.
  • the number of times of charge / discharge of the storage battery 141 is important information for the EMS 200.
  • the storage battery device 140 transmits a message indicating the presence or absence of a function of transmitting a message indicating the number of times of charging / discharging of the storage battery 141 to the EMS 200 prior to communication of a message indicating the number of times of charging / discharging of the storage battery 141.
  • the PCS 142 configures a communication unit that receives or transmits the above-described message from the EMS 200, for example.
  • PCS142 comprises the control part which controls charge / discharge of storage battery 141 according to the operation mode of storage battery 141, for example.
  • the communication unit and the control unit may be provided on a control board provided separately from the PCS 142.
  • the EMS 200 receives from the storage battery device 140 (for example, the PCS 142) a message that designates one of a plurality of operation modes with different storage battery 141 charging / discharging standards. Thereby, the EMS 200 (reception unit 210) acquires which of the plurality of operation modes the storage battery device 140 is operating. Or EMS200 (reception part 210) receives the message which shows the rated output of storage battery 141 from storage battery device 140 (for example, PCS142). Alternatively, the EMS 200 (reception unit 210) receives a message indicating the cumulative charge / discharge count of the storage battery 141 from the storage battery device 140 (for example, the PCS 142). In other words, the PCS 142 of the storage battery device 140 constitutes a communication unit that transmits the above-described message.
  • the EMS 200 (reception unit 210) displays a message indicating the presence or absence of a function for handling a message designating one of a plurality of operation modes prior to communication of a message designating one of the plurality of operation modes. Is received from the storage battery device 140.
  • the EMS 200 receives a message indicating whether or not there is a function of transmitting a message indicating the rated output of the storage battery 141 from the storage battery device 140 prior to communication of a message indicating the rated output of the storage battery 141.
  • the EMS 200 receives from the storage battery device 140 a message indicating the presence or absence of a function of transmitting a message indicating the number of times of charging / discharging of the storage battery 141 prior to communication of a message indicating the number of times of charging / discharging of the storage battery 141. .
  • the EMS 200 transmits a message designating one of a plurality of operation modes to the storage battery device 140 (for example, the PCS 142).
  • EMS200 transmission part 220
  • FIG. Or EMS200 (transmission part 220) transmits the message which requests
  • FIG. Or EMS200 (transmission part 220) transmits the message which requests
  • the EMS 200 (transmission unit 220) indicates a message indicating the presence or absence of a function for handling a message designating one of a plurality of operation modes prior to communication of a message designating one of the plurality of operation modes. Is transmitted to the storage battery device 140.
  • the EMS 200 (transmission unit 220) sends a message requesting a message indicating whether or not there is a function of transmitting a message indicating the rated output of the storage battery 141 to the storage battery device 140 prior to communication of a message indicating the rated output of the storage battery 141. Send.
  • the EMS 200 sends a message requesting a message indicating the presence / absence of a function of transmitting a message indicating the charge / discharge count of the storage battery 141 prior to communication of a message indicating the charge / discharge count of the storage battery 141 to the storage battery device. 140.
  • the message format according to the first embodiment will be described below. 6 to 8 are diagrams illustrating examples of message formats according to the first embodiment.
  • a message for designating one of a plurality of operation modes having different charging / discharging standards for the storage battery 141 has a format shown in FIG. 6, for example. As shown in FIG. 6, the message has a message type field and an operation mode field.
  • the message type field indicates the message type.
  • the message indicates that the message includes an operation mode.
  • the operation mode field indicates the operation mode of the storage battery 141.
  • the operation modes include (a) solar power sale priority mode, (b) solar charge mode, (c) peak cut mode, (d) midnight power utilization mode, (e) forced power storage mode, ( f) Forced discharge mode, (g) Independent storage mode, (h) Independent supply mode, (i) Independent storage mode, etc.
  • the message indicating the rated output of the storage battery 141 has, for example, the format shown in FIG. As shown in FIG. 7, the message has a message type field and a rated output field.
  • the message type field indicates the message type.
  • the message indicates that the message includes a rated output.
  • the field of rated output indicates the rated output of the storage battery 141.
  • the rated output field includes at least information indicating the rated output of the storage battery 141 in the self-sustaining operation state.
  • the field of the rated output may include information indicating the rated output of the storage battery 141 in the grid connection state.
  • the message indicating the number of times of charging / discharging the storage battery 141 has, for example, the format shown in FIG. As shown in FIG. 8, the message has a message type field and a charge / discharge number field.
  • the message type field indicates the message type.
  • the message indicates that the message includes the number of charge / discharge cycles.
  • the field of rated output indicates the number of times the storage battery 141 is charged / discharged.
  • the field of the number of times of charging / discharging includes at least the number of times of charging / discharging of the storage battery 141 in the current state.
  • the field of the number of times of charging / discharging may include the maximum number of times of charging / discharging of the storage battery 141.
  • FIG. 9 is a sequence diagram illustrating the management method according to the first embodiment.
  • the EMS 200 transmits a message (code group request) requesting a code group corresponding to the storage battery device 140 to the storage battery device 140.
  • the code group request is an example of a message requesting a message indicating the presence / absence of a function for handling a message for designating any of a plurality of operation modes having different charging / discharging standards for the storage battery 141.
  • requirement is an example of the message which requests
  • requirement is an example of the message which requests
  • the storage battery device 140 transmits a message (code group response) indicating a code group to which the storage battery device 140 corresponds to the EMS 200.
  • the code group response is an example of a message indicating the presence / absence of a function for handling a message designating any of a plurality of operation modes having different charging / discharging standards of the storage battery 141.
  • a code group response is an example of the message which shows the presence or absence of the function which transmits the message which shows the rated output of the storage battery 141.
  • requirement is an example of the message which shows the presence or absence of the function which transmits the message which shows the charging / discharging frequency (charge / discharge cumulative frequency) of the storage battery 141.
  • step S30 the EMS 200 transmits a message designating any of a plurality of operation modes having different charging / discharging standards for the storage battery 141 to the storage battery device 140.
  • the storage battery device 140 determines the mode designated from the message, and switches its state to the designated mode.
  • the EMS 200 instructs the operation mode of the storage battery 141 to the storage battery device 140.
  • the storage battery device 140 may reply to the EMS 200 that the mode switching instruction has been accepted or the mode switching has been completed.
  • step S40 the EMS 200 transmits a message (operation mode request) for requesting notification of the operation mode of the storage battery 141 to the storage battery device 140.
  • step S50 the storage battery device 140 transmits a message (operation mode response) indicating the operation mode of the storage battery 141 to the EMS 200 as a response to the request.
  • step S60 the EMS 200 transmits a message (rated output request) requesting notification of the rated output of the storage battery 141 to the storage battery device 140.
  • step S70 the storage battery device 140 transmits a message (rated output response) indicating the rated output of the storage battery 141 to the EMS 200.
  • the response of the rated output may include both the rated output and the output during the autonomous operation, and the output information according to whether the current state is the grid interconnection or the autonomous operation. You may comprise so that it may be included.
  • step S80 the EMS 200 transmits a message (charge / discharge count request) requesting notification of the charge / discharge count of the storage battery 141 to the storage battery device 140.
  • step S90 the storage battery device 140 transmits a message (charge / discharge count response) indicating the cumulative number of times of charge / discharge of the storage battery 141 to the EMS 200.
  • the charge / discharge control of the storage battery 141 according to the operation mode of the storage battery 141 is left to the storage battery device 140, and any of a plurality of operation modes with different charge / discharge criteria for the storage battery 141 is provided.
  • a message that specifies whether is defined.
  • the EMS 200 can appropriately control the storage battery device 140 without being affected by the communication delay between the EMS 200 and the storage battery device 140.
  • EMS200 can grasp
  • the EMS 200 appropriately controls other devices (load, fuel cell device) in the autonomous operation state by receiving a message indicating the rated output of the storage battery 141 in the autonomous operation state from the storage battery device 140. can do.
  • EMS200 can judge the deterioration degree of the storage battery 141 by receiving the message which shows the charging / discharging frequency of the storage battery 141 from the storage battery apparatus 140.
  • FIG. Specifically, in the case of a battery having a relatively strong relationship between the number of charge / discharge cycles and the degree of deterioration, such as a lithium ion battery, the degree of deterioration of the storage battery 141 can be calculated to some extent.
  • the EMS 200 may be a HEMS (Home Energy Management System), a SEMS (Store Energy Management System), or a BEMS (Building Energy Management System, or an FEM). There may be.
  • HEMS Home Energy Management System
  • SEMS Store Energy Management System
  • BEMS Building Energy Management System
  • the customer 10 includes a load 120, a PV device 130, a storage battery device 140, a fuel cell device 150, and a hot water storage device 160.
  • the consumer 10 should just have the storage battery apparatus 140 at least.
  • (a) solar power sale priority mode, (b) solar charge mode, and (c) peak cut mode are exemplified as operation modes in which the storage battery 141 cooperates with other devices other than the storage battery 141.
  • the operation mode of the storage battery 141 may include an operation mode in which the load 120, the fuel cell device 150 or the hot water storage device 160, and the storage battery 141 cooperate.
  • the timing of initial setting of the storage battery device 140 the timing of recovery from a power failure, the timing of turning on the power of the storage battery device 140, the timing of turning on the power of the EMS 200, and the timing of the storage battery device 140 It is preferable that transmission / reception of a code group request and a code group response is performed at a timing when the setting needs to be confirmed.
  • a message indicating the status of the storage battery 141 is preferably defined between the EMS 200 and the storage battery device 140.
  • the message indicating the operation mode of the storage battery 141 and the message indicating the charge / discharge count of the storage battery 141 are examples of a message indicating the status of the storage battery 141.
  • a message indicating the specifications of the storage battery 141 is preferably defined between the EMS 200 and the storage battery device 140.
  • the message indicating the rated output of the storage battery 141 is an example of a message indicating the specifications of the storage battery 141.
  • the storage battery device 140 may autonomously transmit various messages to the EMS 200 instead of a request from the EMS 200. For example, the storage battery device 140 transmits various messages to the EMS 200 when a predetermined condition is satisfied.
  • the storage battery device 140 includes a message indicating the specifications of the storage battery 141 (for example, a message indicating the rated output of the storage battery 141) and a message indicating the status of the storage battery 141 together with the code group response. You may transmit to EMS200.
  • the present invention it is possible to provide a management system, a management method, a control device, and a power storage device that can appropriately control devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 EMS200と蓄電池装置140との間において、複数の運転モードのいずれかを指定するメッセージが定義されている。

Description

管理システム、管理方法、制御装置及び蓄電装置
 本発明は、蓄電池を用いて電力を充放電する蓄電装置と、蓄電装置と通信を行う制御装置とを有する管理システム、管理方法、制御装置及び蓄電装置に関する。
 近年、複数の機器と、複数の機器を制御する制御装置とを有する電力管理システムが提案されている(例えば、特許文献1)。複数の機器は、例えば、エアーコンディショナー、照明装置などの家電機器、及び、太陽電池、蓄電池、燃料発電装置などの分散電源である。制御装置は、例えば、HEMS(Home Energy Management System)、SEMS(Store Energy Management System)、BEMS(Building Energy Management System)、FEMS(Factory Energy Management System)、CEMS(Cluster/Community Energy Management System)などと称される。
 上述した管理システムの普及には、複数の機器と制御装置との間のメッセージフォーマットを共通化することが効果的であり、このようなメッセージフォーマットの共通化が試みられている。
特開2010-128810号公報
 上述したメッセージフォーマットの共通化は端緒についたばかりであり、機器を適切に制御するためのメッセージフォーマットについては、様々な検討が必要である。
 そこで、本発明は、上述した課題を解決するためになされたものであり、機器を適切に制御することを可能とする管理システム、管理方法、制御装置及び蓄電装置を提供することを目的とする。
 第1の特徴に係る管理システムは、電力を蓄積する蓄電池を備える蓄電装置と、前記蓄電装置と通信を行う制御装置とを有する。前記制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されている。
 第1の特徴において、前記制御装置は、前記複数の運転モードのいずれかを指定するメッセージを前記蓄電装置に送信することによって、前記蓄電池の運転モードを前記蓄電装置に指示する。
 第1の特徴において、前記制御装置は、前記複数の運転モードのいずれかを指定する前記メッセージを前記蓄電装置から受信することによって、前記複数の運転モードのいずれで前記蓄電装置が運転しているかを取得する。
 第1の特徴において、前記制御装置は、前記複数の運転モードのいずれかを指定するメッセージの通信に先立って、前記複数の運転モードのいずれかを指定するメッセージを扱う機能の有無を示すメッセージを前記蓄電装置から受信する。
 第1の特徴において、前記複数の運転モードは、前記蓄電池以外の分散電源と前記蓄電池が連携する運転モードを含む。
 第1の特徴において、前記蓄電池以外の分散電源は、太陽電池である。
 第2の特徴に係る管理方法は、電力を蓄積する蓄電池を備える蓄電装置と、前記蓄電装置と通信を行う制御装置とを有する管理システムで用いる方法である。前記制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されている。管理方法は、前記制御装置から前記蓄電装置に対して、前記複数の運転モードのいずれかを指定するメッセージを送信するステップ、或いは、前記蓄電装置から前記制御装置に対して、前記複数の運転モードのいずれかを指定するメッセージを送信するステップを備える。
 第3の特徴に係る制御装置は、電力を蓄積する蓄電池を備える蓄電装置と通信を行う。前記制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されている。制御装置は、前記複数の運転モードのいずれかを指定するメッセージを前記蓄電装置から受信し、或いは、前記複数の運転モードのいずれかを指定するメッセージを前記蓄電装置に送信する通信部を備える。
 第4の特徴に係る蓄電装置は、電力を蓄積する蓄電池を備える。前記蓄電装置と通信を行う制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されている。蓄電装置は、前記複数の運転モードのいずれかを指定するメッセージを前記制御装置に送信し、前記複数の運転モードのいずれかを指定するメッセージを前記制御装置から受信する通信部を備える。
 本発明によれば、機器を適切に制御することを可能とする管理システム、管理方法、制御装置及び蓄電装置を提供することができる。
図1は、第1実施形態に係るエネルギー管理システム100を示す図である。 図2は、第1実施形態に係る需要家10を示す図である。 図3は、第1実施形態に係る燃料電池装置150を示す図である。 図4は、第1実施形態に係るネットワーク構成を示す図である。 図5は、第1実施形態に係るEMS200を示す図である。 図6は、第1実施形態に係るメッセージフォーマットを示す図である。 図7は、第1実施形態に係るメッセージフォーマットを示す図である。 図8は、第1実施形態に係るメッセージフォーマットを示す図である。 図9は、第1実施形態に係る管理方法を示すシーケンス図である。
 以下において、本発明の実施形態に係る管理システムについて、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [実施形態の概要]
 実施形態に係る管理システムは、電力を蓄積する蓄電池を備える蓄電装置と、前記蓄電装置と通信を行う制御装置とを有する。前記制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されている。
 ここで、蓄電池の運転モードとして、蓄電池の充放電の基準がそれぞれ異なる複数の運転モードが存在するケースが存在する。このようなケースにおいて、制御装置が蓄電池の運転モードに従った蓄電池の充放電を制御すると、制御装置と蓄電装置との間の通信遅延に起因して、蓄電装置を適切に制御することができない可能性がある。
 実施形態では、蓄電池の運転モードに従った蓄電池の充放電制御を蓄電装置に任せるとともに、蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義される。これによって、制御装置は、制御装置と蓄電装置との間の通信遅延の影響を受けずに、蓄電装置を適切に制御することができる。また、制御装置は、蓄電装置の発電量等を把握することが可能であり、他の機器(負荷、燃料電池装置など)を適切に制御することができる。
 [第1実施形態]
 (エネルギー管理システム)
 以下において、第1実施形態に係るエネルギー管理システムについて説明する。図1は、第1実施形態に係るエネルギー管理システム100を示す図である。
 図1に示すように、エネルギー管理システム100は、需要家10と、CEMS20と、変電所30と、スマートサーバ40と、発電所50とを有する。なお、需要家10、CEMS20、変電所30及びスマートサーバ40は、ネットワーク60によって接続されている。
 需要家10は、例えば、発電装置及び蓄電装置を有する。発電装置は、例えば、燃料電池のように、燃料ガスを利用して電力を出力する装置である。蓄電装置は、例えば、二次電池などのように、電力を蓄積する装置である。
 需要家10は、一戸建ての住宅であってもよく、マンションなどの集合住宅であってもよい。或いは、需要家10は、コンビニエンスストア又はスーパーマーケットなどの店舗であってもよく、ビルなどの商用施設であってもよく、工場であってもよい。
 第1実施形態では、複数の需要家10によって、需要家群10A及び需要家群10Bが構成されている。需要家群10A及び需要家群10Bは、例えば、地理的な地域によって分類される。
 CEMS20は、複数の需要家10と電力系統との間の連系を制御する。なお、CEMS20は、複数の需要家10を管理するため、CEMS(Cluster/Community Energy Management System)と称されることもある。具体的には、CEMS20は、停電時などにおいて、複数の需要家10と電力系統との間を解列する。一方で、CEMS20は、復電時などにおいて、複数の需要家10と電力系統との間を連系する。
 第1実施形態では、CEMS20A及びCEMS20Bが設けられている。CEMS20Aは、例えば、需要家群10Aに含まれる需要家10と電力系統との間の連系を制御する。CEMS20Bは、例えば、需要家群10Bに含まれる需要家10と電力系統との間の連系を制御する。
 変電所30は、複数の需要家10に対して、配電線31を介して電力を供給する。具体的には、変電所30は、発電所50から供給を受ける電圧を降圧する。
 第1実施形態では、変電所30A及び変電所30Bが設けられている。変電所30Aは、例えば、需要家群10Aに含まれる需要家10に対して、配電線31Aを介して電力を供給する。変電所30Bは、例えば、需要家群10Bに含まれる需要家10に対して、配電線31Bを介して電力を供給する。
 スマートサーバ40は、複数のCEMS20(ここでは、CEMS20A及びCEMS20B)を管理する。また、スマートサーバ40は、複数の変電所30(ここでは、変電所30A及び変電所30B)を管理する。言い換えると、スマートサーバ40は、需要家群10A及び需要家群10Bに含まれる需要家10を統括的に管理する。スマートサーバ40は、例えば、需要家群10Aに供給すべき電力と需要家群10Bに供給すべき電力とのバランスを取る機能を有する。
 発電所50は、火力、太陽光、風力、水力、又は原子力などによって発電を行う。発電所50は、複数の変電所30(ここでは、変電所30A及び変電所30B)に対して、送電線51を介して電力を供給する。
 ネットワーク60は、信号線を介して各装置に接続される。ネットワーク60は、例えば、インターネット、広域回線網、狭域回線網、又は携帯電話網などである。
 (需要家)
 以下において、第1実施形態に係る需要家について説明する。図2は、第1実施形態に係る需要家10の詳細を示す図である。
 図2に示すように、需要家10は、分電盤110と、負荷120と、PV装置130と、蓄電池装置140と、燃料電池装置150と、貯湯装置160と、EMS200とを有する。
 第1実施形態において、需要家10は、電流計180、電流計181及び電流計182を有する。
 電流計180は、燃料電池装置150の負荷追従制御に用いられる。電流計180は、各機器(例えば、蓄電池装置140及び燃料電池装置150)と系統とを接続する電力線上において、蓄電池装置140と電力線との接続点よりも下流(系統から離れた側)、かつ、燃料電池装置150と電力線との接続点よりも上流(系統に近い側)に設けられる。電流計180が負荷120と電力線との接続点よりも上流(系統に近い側)に設けられることは勿論である。
 電流計181は、蓄電池装置140から系統への電力の流れ(逆潮流)の有無の確認に用いられる。電流計181は、各機器(例えば、蓄電池装置140)と系統とを接続する電力線上において、蓄電池装置140と電力線との接続点よりも上流(系統に近い側)に設けられる。
 電流計182は、PV装置130によって発電された電力の計測に用いられる。電流計182は、各機器(例えば、PV装置130)と系統とを接続する電力線とPV装置130との接続点よりもPV装置130側に設けられる。
 第1実施形態において、各機器は、系統に近い順から見て、PV装置130、蓄電池装置140、燃料電池装置150及び負荷120の順で電力線に接続されていることに留意すべきである。
 分電盤110は、配電線31(系統)に接続されている。分電盤110は、電力線を介して、負荷120、PV装置130、蓄電池装置140及び燃料電池装置150に接続されている。
 負荷120は、電力線を介して供給を受ける電力を消費する装置である。例えば、負荷120は、冷蔵庫、冷凍庫、照明、及びエアコンなどの装置を含む。
 PV装置130は、PV131と、PCS132とを有する。PV131は、発電装置の一例であり、太陽光の受光に応じて発電を行う太陽光発電装置(Photovoltaic Device)である。PV131は、発電されたDC電力を出力する。PV131の発電量は、PV131に照射される日射量に応じて変化する。PCS132は、PV131から出力されたDC電力をAC電力に変換する装置(Power Conditioning System)である。PCS132は、電力線を介してAC電力を分電盤110に出力する。
 第1実施形態において、PV装置130は、PV131に照射される日射量を測定する日射計を有していてもよい。
 PV装置130は、MPPT(Maximum Power Point Tracking)法によって制御される。詳細には、PV装置130は、PV131の動作点(動作点電圧値及び電力値によって定まる点、又は、動作点電圧値と電流値とによって定まる点)を最適化する。
 蓄電池装置140は、蓄電池141と、PCS142とを有する。蓄電池141は、電力を蓄積する装置である。PCS142は、配電線31(系統)から供給を受けるAC電力をDC電力に変換する装置(Power Conditioning System)である。また、PCS142は、蓄電池141から出力されたDC電力をAC電力に変換する。
 燃料電池装置150は、燃料電池151と、PCS152とを有する。燃料電池151は、発電装置の一例であり、燃料(ガス)を用いて電力を発電する装置である。PCS152は、燃料電池151から出力されたDC電力をAC電力に変換する装置(Power Conditioning System)である。
 燃料電池装置150は、負荷追従制御によって動作する。詳細には、燃料電池装置150は、燃料電池151から出力する電力が負荷追従制御の目標電力となるように燃料電池151を制御する。言い換えると、燃料電池装置150は、電流計180によって検出される電流値とPCS152によって検出される電力との積が目標受電力となるように、燃料電池151から出力する電力を制御する。
 貯湯装置160は、燃料(ガス)を用いて湯を生成或いは水温を維持する装置である。具体的には、貯湯装置160は、貯湯槽を有しており、燃料(ガス)の燃焼によって生じる熱又は燃料電池151の運転(発電)によって生じる排熱によって、貯湯槽から供給される水を温める。詳細には、貯湯装置160は、貯湯槽から供給される水を温めて、温められた湯を貯湯槽に還流する。
 実施形態において、燃料電池装置150及び貯湯装置160は、給湯ユニット170(給湯システム)を構成することに留意すべきである。
 EMS200は、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160を制御する装置(Energy Management System)である。具体的には、EMS200は、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160に信号線を介して接続されており、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160を制御する。また、EMS200は、負荷120の動作モードを制御することによって、負荷120の消費電力を制御する。
 また、EMS200は、ネットワーク60を介して各種サーバと接続される。各種サーバは、例えば、系統から供給を受ける電力の購入単価、系統から供給を受ける電力の売却単価、燃料ガスの購入単価などの情報(以下、エネルギー料金情報)を格納する。
 或いは、各種サーバは、例えば、負荷120の消費電力を予測するための情報(以下、消費エネルギー予測情報)を格納する。消費エネルギー予測情報は、例えば、過去の負荷120の消費電力の実績値に基づいて生成されてもよい。或いは、消費エネルギー予測情報は、負荷120の消費電力のモデルであってもよい。
 或いは、各種サーバは、例えば、PV131の発電量を予測するための情報(以下、PV発電量予測情報)を格納する。PV発電予測情報は、PV131に照射される日射量の予測値であってもよい。或いは、PV発電予測情報は、天気予報、季節、日照時間などであってもよい。
 (蓄電池装置の運転モード)
 蓄電池装置140は、蓄電池141の充放電の基準がそれぞれ異なる複数の運転モードのいずれかに従って動作する。
 複数の運転モードは、系統連系状態の運転モードと、自立運転状態の運転モードとを含む。系統連系状態は、蓄電池装置140と系統とが並列された状態である。一方で、自立運転状態は、蓄電池装置140と系統とが解列された状態である。自立運転状態の一例としては、例えば、停電が生じた状態が考えられる。
 系統連系状態の運転モードは、(a)PV装置130によって発電された電力の売電(逆潮流)を優先するように、蓄電池141の充放電を制御する運転モード(太陽光売電優先モード)、(b)PV装置130によって発電された電力を蓄電池141に充電するように、蓄電池141の充放電を制御する運転モード(太陽光充電モード)、(c)系統から供給される電力が一定値を超えないように、蓄電池141の充放電を制御する運転モード(ピークカットモード)、(d)系統から供給される電力の単価が閾値よりも低い期間(例えば、夜間)において、系統から供給される電力で蓄電池141に充電するように、蓄電池141の充放電を制御する運転モード(深夜電力活用モード)、(e)蓄電池141に電力を強制的に蓄積する運転モード(強制蓄電モード)、(f)蓄電池141に蓄積された電力を強制的に放電する運転モード(強制放電モード)などである。
 ここで、(a)太陽光売電優先モード及び(b)太陽光充電モードにおいては、蓄電池装置140は、電流計182によって計測される電流を監視して、PV装置130の発電量に応じて、蓄電池141の充放電を制御する必要がある。PV装置130の発電量は、時々刻々と変化するため、これらの運転モードは、蓄電池装置140によって制御されることが好ましい。
 同様に、(c)ピークカットモードにおいては、蓄電池装置140は、電流計181及び電流計182によって計測される電流を監視して、系統から供給される電力量に応じて、蓄電池141の充放電を制御する必要がある。系統から供給される電力量は、電流計181によって計測される電力から電流計182によって計測された電力を除いた値である。PV装置130の発電量及び負荷120の消費電力は、時々刻々と変化するため、この運転モードは、蓄電池装置140によって制御されることが好ましい。
 第1実施形態において、(a)太陽光売電優先モード、(b)太陽光充電モード及び(c)ピークカットモードは、蓄電池141以外の分散電源であるPV131と蓄電池141とが連携する運転モードの一例である。
 自立運転状態の運転モードは、(g)PV装置130によって発電された電力を蓄積する運転モード(以下、自立蓄電モード)、(h)蓄電池装置140に設けられた自立コンセントに接続された負荷120に電力を供給する運転モード(以下、自立供給モード)、(i)PV装置130によって発電された電力を蓄積しながら、蓄電池装置140に設けられた自立コンセントに接続された負荷120に電力を供給する運転モード(以下、自立蓄電供給モード)などである。
 さらに、全ての運転モードに共通する制御として、蓄電池装置140は、電流計181によって計測される電流を監視して、蓄電池装置140から系統への電力の流れ(逆潮流)が生じないように、蓄電池141の充放電を制御する必要がある。負荷120の消費電力は、時々刻々と変化するため、これらの運転モードは、蓄電池装置140によって制御されることが好ましい。
 (燃料電池装置)
 以下において、第1実施形態に係る燃料電池装置について説明する。図3は、第1実施形態に係る燃料電池装置150を示す図である。
 図3に示すように、燃料電池装置150は、燃料電池151と、PCS152と、ブロワ153と、脱硫器154と、着火ヒータ155と、制御基板156とを有する。
 燃料電池151は、上述したように、燃料ガスを利用して電力を出力する装置である。具体的には、燃料電池151は、改質器151Aと、セルスタック151Bとを有する。
 改質器151Aは、後述する脱硫器154によって付臭剤が除去された燃料ガスから改質ガスを生成する。改質ガスは、水素及び一酸化炭素によって構成されるガスである。
 セルスタック151Bは、後述するブロワ153から供給される空気(酸素)と改質ガスとの化学反応によって発電する。具体的には、セルスタック151Bは、複数のセルがスタックされた構造を有する。各セルは、燃料極と空気極との間に電解質が挟み込まれた構造を有する。燃料極には、改質ガス(水素)が供給され、空気極には、空気(酸素)が供給される。電解質において改質ガス(水素)及び空気(酸素)の化学反応が生じて、電力(DC電力)及び熱が生成される。
 PCS152は、上述したように、燃料電池151から出力されたDC電力をAC電力に変換する装置である。
 ブロワ153は、燃料電池151(セルスタック151B)に空気を供給する。ブロワ153は、例えば、ファンによって構成される。
 脱硫器154は、外部から供給される燃料ガスに含まれる付臭剤を除去する。燃料ガスは、都市ガスであってもよく、プロパンガスであってもよい。
 着火ヒータ155は、セルスタック151Bで化学反応しなかった燃料(以下、未反応燃料)に着火し、セルスタック151Bの温度を高温に維持するヒータである。すなわち、着火ヒータ155は、セルスタック151Bを構成する各セルの開口から漏れる未反応燃料に着火する。着火ヒータ155は、未反応燃料が燃焼していないケース(例えば、燃料電池装置150の起動時)において、未反応燃料に着火すればよいことに留意すべきである。そして、一旦着火すれば、その後は、セルスタック151Bから僅かずつ溢れ出る未反応燃料が燃焼し続けることによって、セルスタック151Bの温度が高温に維持される。
 制御基板156は、燃料電池151、PCS152、ブロワ153、脱硫器154及び着火ヒータ155を制御する回路を搭載する基板である。
 第1実施形態において、セルスタック151Bは、化学反応によって発電する発電部の一例である。改質器151A、ブロワ153、脱硫器154、着火ヒータ155及び制御基板156は、セルスタック151Bの動作を補助する補機の一例である。また、PCS152の一部を補機として扱ってもよい。
 (ネットワーク構成)
 以下において、第1実施形態に係るネットワーク構成について説明する。図4は、第1実施形態に係るネットワーク構成を示す図である。
 図4に示すように、ネットワークは、負荷120、PV装置130、蓄電池装置140、燃料電池装置150、貯湯装置160、EMS200及びユーザ端末300によって構成される。ユーザ端末300は、ユーザ端末310及びユーザ端末320を含む。
 ユーザ端末310は、EMS200と接続されており、各機器(負荷120、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160)の消費エネルギーを可視化するための情報(以下、可視化情報)をウェブブラウザによって表示する。このようなケースにおいて、EMS200は、HTML等の形式で可視化情報を生成して、生成された可視化情報をユーザ端末310に送信する。ユーザ端末310とEMS200との間の接続形式は、有線であってもよく、無線であってもよい。
 ユーザ端末320は、EMS200と接続されており、可視化情報をアプリケーションによって表示する。このようなケースにおいて、EMS200は、各機器の消費エネルギーを示す情報をユーザ端末320に送信する。ユーザ端末320のアプリケーションは、EMS200から受信する情報に基づいて可視化情報を生成して、生成された可視化情報を表示する。ユーザ端末320とEMS200との間の接続形式は、有線であってもよく、無線であってもよい。
 上述したように、第1実施形態では、燃料電池装置150及び貯湯装置160が給湯ユニット170を構成する。従って、貯湯装置160は、EMS200と通信を行う機能を有していなくてもよい。このようなケースでは、燃料電池装置150は、貯湯装置160を代理して、貯湯装置160に関するメッセージの通信をEMS200と行う。
 第1実施形態において、EMS200と各機器(負荷120、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160)との間の通信は、所定のプロトコルに従って方式で行われる。所定のプロトコルとしては、例えば、“ECHONET Lite”又は“ECHONET”と呼ばれるプロトコルが挙げられる。しかしながら、実施形態は、これに限定されるものではなく、所定のプロトコルは、“ECHONET Lite”及び“ECHONET”以外のプロトコル(例えば、ZigBee(登録商標)等)であってもよい。
 (EMSの構成)
 以下において、第1実施形態に係るEMSについて説明する。図5は、第1実施形態に係るEMS200を示すブロック図である。
 図5に示すように、EMS200は、受信部210と、送信部220と、制御部230とを有する。
 受信部210は、信号線を介して接続された装置から各種信号を受信する。例えば、受信部210は、PV131の発電量を示す情報をPV装置130から受信してもよい。受信部210は、蓄電池141の蓄電量を示す情報を蓄電池装置140から受信してもよい。受信部210は、燃料電池151の発電量を示す情報を燃料電池装置150から受信してもよい。受信部210は、貯湯装置160の貯湯量を示す情報を貯湯装置160から受信してもよい。受信部210は、後述する送信部220とともに、通信部を構成する。
 第1実施形態において、受信部210は、エネルギー料金情報、消費エネルギー予測情報及びPV発電量予測情報を、ネットワーク60を介して各種サーバから受信してもよい。但し、エネルギー料金情報、消費エネルギー予測情報及びPV発電量予測情報は、予めEMS200に記憶されていてもよい。
 送信部220は、信号線を介して接続された装置に各種信号を送信する。例えば、送信部220は、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160を制御するための信号を各装置に送信する。送信部220は、負荷120を制御するための制御信号を負荷120に送信する。
 制御部230は、負荷120、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160を制御する。
 (メッセージの送受信)
 第1実施形態において、EMS200と蓄電池装置140との間において、複数の運転モードのいずれかを指定するメッセージが定義されている。ここで、複数の運転モードのいずれかを指定するメッセージは、指定された運転モードで運転を開始する時刻、指定された運転モードで運転を終了する時刻、指定された運転モードで動作を行う時間を含むことが好ましい。例えば、上述した深夜電力活用モードにおいて、深夜のいつから充電を開始するか、昼間のいつから放電を開始するか、などの時刻の指定が必要となる。
 複数の運転モードのいずれかを指定するメッセージは、指定された運転モードが系統連系状態における運転モードであるのか、指定された運転モードが自立運転状態における運転モードであるのかを示す情報を含むことが好ましい。
 例えば、蓄電池装置140は、複数の運転モードのいずれかを指定するメッセージをEMS200から受信する。蓄電池装置140は、EMS200から受信するメッセージに従って、複数の運転モードのいずれかで運転する。或いは、蓄電池装置140は、複数の運転モードのいずれかを指定するメッセージをEMS200に送信する。EMS200は、蓄電池装置140から受信するメッセージによって、複数の運転モードのいずれで蓄電池装置140が運転しているかを取得する。
 また、蓄電池装置140は、複数の運転モードのいずれかを指定するメッセージの通信に先立って、複数の運転モードのいずれかを指定するメッセージを扱う機能の有無を示すメッセージをEMS200に送信する。
 第1実施形態において、蓄電池装置140は、蓄電池141の定格出力を示すメッセージをEMS200に送信する。蓄電池141の定格出力を示すメッセージは、少なくとも、自立運転状態における蓄電池141の定格出力を示す情報を含む。蓄電池141の定格出力を示すメッセージは、系統連系状態における蓄電池141の定格出力を示す情報を含んでもよい。ここで、EMS200が他の機器(例えば、燃料電池装置150又は負荷120)を制御する上で、自立運転状態における蓄電池141の定格出力は、EMS200にとって重要な情報である。
 また、蓄電池装置140は、蓄電池141の定格出力を示すメッセージの通信に先立って、蓄電池141の定格出力を示すメッセージを送信する機能の有無を示すメッセージをEMS200に送信する。
 第1実施形態において、蓄電池装置140は、蓄電池141の充放電回数を示すメッセージをEMS200に送信する。蓄電池141の充放電回数を示すメッセージは、少なくとも、現在の状態における蓄電池141の充放電回数を含む。蓄電池141の充放電回数を示すメッセージは、蓄電池141の最大充放電回数を含んでもよい。ここで、蓄電池141の劣化度合いを判断する上で、蓄電池141の充放電回数は、EMS200にとって重要な情報である。
 また、蓄電池装置140は、蓄電池141の充放電回数を示すメッセージの通信に先立って、蓄電池141の充放電回数を示すメッセージを送信する機能の有無を示すメッセージをEMS200に送信する。
 第1実施形態において、PCS142は、例えば、上述したメッセージをEMS200から受信し、又はEMS200に送信する通信部を構成する。或いは、PCS142は、例えば、蓄電池141の運転モードに従って蓄電池141の充放電を制御する制御部を構成する。但し、通信部及び制御部は、PCS142とは別に設けられた制御基板に設けられていてもよい。
 第1実施形態において、EMS200(受信部210)は、蓄電池141の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージを蓄電池装置140(例えば、PCS142)から受信する。これによって、EMS200(受信部210)は、複数の運転モードのいずれで蓄電池装置140が運転しているのかを取得する。或いは、EMS200(受信部210)は、蓄電池141の定格出力を示すメッセージを蓄電池装置140(例えば、PCS142)から受信する。或いは、EMS200(受信部210)は、蓄電池141の累積の充放電回数を示すメッセージを蓄電池装置140(例えば、PCS142)から受信する。言い換えると、蓄電池装置140のPCS142は、上述したメッセージを送信する通信部を構成する。
 第1実施形態において、EMS200(受信部210)は、複数の運転モードのいずれかを指定するメッセージの通信に先立って、複数の運転モードのいずれかを指定するメッセージを扱う機能の有無を示すメッセージを蓄電池装置140から受信する。或いは、EMS200(受信部210)は、蓄電池141の定格出力を示すメッセージの通信に先立って、蓄電池141の定格出力を示すメッセージを送信する機能の有無を示すメッセージを蓄電池装置140から受信する。或いは、EMS200(受信部210)は、蓄電池141の充放電回数を示すメッセージの通信に先立って、蓄電池141の充放電回数を示すメッセージを送信する機能の有無を示すメッセージを蓄電池装置140から受信する。
 第1実施形態において、EMS200(送信部220)は、複数の運転モードのいずれかを指定するメッセージを蓄電池装置140(例えば、PCS142)に送信する。これによって、EMS200(送信部220)は、蓄電池141の運転モードを蓄電池装置140に指示する。或いは、EMS200(送信部220)は、蓄電池141の定格出力を示すメッセージを要求するメッセージを蓄電池装置140に送信する。或いは、EMS200(送信部220)は、蓄電池141の充放電回数を示すメッセージを要求するメッセージを蓄電池装置140に送信する。
 第1実施形態において、EMS200(送信部220)は、複数の運転モードのいずれかを指定するメッセージの通信に先立って、複数の運転モードのいずれかを指定するメッセージを扱う機能の有無を示すメッセージを要求するメッセージを蓄電池装置140に送信する。或いは、EMS200(送信部220)は、蓄電池141の定格出力を示すメッセージの通信に先立って、蓄電池141の定格出力を示すメッセージを送信する機能の有無を示すメッセージを要求するメッセージを蓄電池装置140に送信する。或いは、EMS200(送信部220)は、蓄電池141の充放電回数を示すメッセージの通信に先立って、蓄電池141の充放電回数を示すメッセージを送信する機能の有無を示すメッセージを要求するメッセージを蓄電池装置140に送信する。
 (メッセージフォーマット)
 以下において、第1実施形態に係るメッセージフォーマットについて説明する。図6~図8は、第1実施形態のメッセージフォーマットの一例を示す図である。
 第1に、蓄電池141の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージは、例えば、図6に示すフォーマットを有する。図6に示すように、メッセージは、メッセージ種別のフィールド及び運転モードのフィールドを有する。
 メッセージ種別のフィールドは、メッセージの種別を示しており、第1実施形態では、メッセージが運転モードを含むことを示している。
 運転モードのフィールドは、蓄電池141の運転モードを示す。運転モードは、上述したように、(a)太陽光売電優先モード、(b)太陽光充電モード、(c)ピークカットモード、(d)深夜電力活用モード、(e)強制蓄電モード、(f)強制放電モード、(g)自立蓄電モード、(h)自立供給モード、及び(i)自立蓄電供給モードなどを含む。
 第2に、蓄電池141の定格出力を示すメッセージは、例えば、図7に示すフォーマットを有する。図7に示すように、メッセージは、メッセージ種別のフィールド及び定格出力のフィールドを有する。
 メッセージ種別のフィールドは、メッセージの種別を示しており、第1実施形態では、メッセージが定格出力を含むことを示している。
 定格出力のフィールドは、蓄電池141の定格出力を示す。定格出力のフィールドは、少なくとも、自立運転状態における蓄電池141の定格出力を示す情報を含む。定格出力のフィールドは、系統連系状態における蓄電池141の定格出力を示す情報を含んでもよい。
 第3に、蓄電池141の充放電回数を示すメッセージは、例えば、図8に示すフォーマットを有する。図8に示すように、メッセージは、メッセージ種別のフィールド及び充放電回数のフィールドを有する。
 メッセージ種別のフィールドは、メッセージの種別を示しており、第1実施形態では、メッセージが充放電回数を含むことを示している。
 定格出力のフィールドは、蓄電池141の充放電回数を示す。充放電回数のフィールドは、少なくとも、現在の状態における蓄電池141の充放電回数を含む。充放電回数のフィールドは、蓄電池141の最大充放電回数を含んでもよい。
 (管理方法)
 以下において、第1実施形態に係る管理方法について説明する。図9は、第1実施形態の管理方法を示すシーケンス図である。
 図9に示すように、ステップS10において、EMS200は、蓄電池装置140に対して、蓄電池装置140が対応するコード群を要求するメッセージ(コード群要求)を送信する。コード群要求は、蓄電池141の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージを扱う機能の有無を示すメッセージを要求するメッセージの一例である。或いは、コード群要求は、蓄電池141の定格出力を示すメッセージを送信する機能の有無を示すメッセージを要求するメッセージの一例である。或いは、コード群要求は、蓄電池141の充放電回数を示すメッセージを送信する機能の有無を示すメッセージを要求するメッセージの一例である。
 ステップS20において、蓄電池装置140は、EMS200に対して、蓄電池装置140が対応するコード群を示すメッセージ(コード群応答)を送信する。コード群応答は、蓄電池141の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージを扱う機能の有無を示すメッセージの一例である。或いは、コード群応答は、蓄電池141の定格出力を示すメッセージを送信する機能の有無を示すメッセージの一例である。或いは、コード要求は、蓄電池141の充放電回数(充放電累積回数)を示すメッセージを送信する機能の有無を示すメッセージの一例である。
 ステップS30において、EMS200は、蓄電池装置140に対して、蓄電池141の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージを送信する。蓄電池装置140はメッセージを受信すると、メッセージから指定されたモードについて判別し、指定されたモードに自己の状態を切り替える。これによって、EMS200は、蓄電池141の運転モードを蓄電池装置140に指示する。また、蓄電池装置140は、モードの切り替え指示を受け付けた、あるいはモードの切り替えが完了した旨をEMS200に返答してもよい。
 その後しばらく経過して、ステップS40において、EMS200は、蓄電池装置140に対して、蓄電池141の運転モードの通知を要求するメッセージ(運転モード要求)を送信する。
 ステップS50において、蓄電池装置140は、EMS200に対して、蓄電池141の運転モードを示すメッセージ(運転モード応答)を要求に対する応答として送信する。
 ステップS60において、EMS200は、蓄電池装置140に対して、蓄電池141の定格出力の通知を要求するメッセージ(定格出力要求)を送信する。
 ステップS70において、蓄電池装置140は、EMS200に対して、蓄電池141の定格出力を示すメッセージ(定格出力応答)を送信する。ここで、定格出力の応答は、定格出力および自立運転時の出力の双方を含んでいてもよく、現在が系統連系中又は自立運転中のいずれの状態であるかに応じた出力の情報を含ませるように構成していてもよい。
 ステップS80において、EMS200は、蓄電池装置140に対して、蓄電池141の充放電回数の通知を要求するメッセージ(充放電回数要求)を送信する。
 ステップS90において、蓄電池装置140は、EMS200に対して、蓄電池141の充放電の累積回数を示すメッセージ(充放電回数応答)を送信する。
 以上説明したように、第1実施形態では、蓄電池141の運転モードに従った蓄電池141の充放電制御を蓄電池装置140に任せるとともに、蓄電池141の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義される。これによって、EMS200は、EMS200と蓄電池装置140との間の通信遅延の影響を受けずに、蓄電池装置140を適切に制御することができる。また、EMS200は、蓄電池装置140の充放電量等を把握することが可能であり、他の機器(負荷、燃料電池装置など)を適切に制御することができる。
 第1実施形態では、EMS200は、自立運転状態における蓄電池141の定格出力を示すメッセージを蓄電池装置140から受信することによって、自立運転状態において、他の機器(負荷、燃料電池装置)を適切に制御することができる。或いは、EMS200は、蓄電池141の充放電回数を示すメッセージを蓄電池装置140から受信することによって、蓄電池141の劣化度合いを判断することができる。具体的には、リチウムイオン電池のような、充放電サイクル数と劣化度合いが比較的強い関係性を有する電池の場合には、蓄電池141の劣化度合いをある程度は計算で求めることができる。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 EMS200は、HEMS(Home Energy Management System)であってもよく、SEMS(Store Energy Management System)であってもよく、BEMS(Building Energy Management System)であってもよく、FEMS(Factory Energy Management System)であってもよい。
 実施形態では、需要家10は、負荷120、PV装置130、蓄電池装置140、燃料電池装置150及び貯湯装置160を有する。しかしながら、需要家10は、少なくとも、蓄電池装置140を有していればよい。
 実施形態では、蓄電池141以外の他の機器と蓄電池141が連携する運転モードとして、(a)太陽光売電優先モード、(b)太陽光充電モード及び(c)ピークカットモードを例示した。しかしながら、実施形態は、これに限定されるものではない。例えば、蓄電池141の運転モードは、負荷120、燃料電池装置150又は貯湯装置160と蓄電池141が連携する運転モードを含んでもよい。
 実施形態では特に触れていないが、蓄電池装置140の初期設定を行うタイミング、停電から復旧したタイミング、蓄電池装置140の電源が投入されたタイミング、EMS200の電源が投入されたタイミング、及び蓄電池装置140の設定を確認する必要が生じたタイミングにおいて、コード群要求及びコード群応答の送受信が行われることが好ましい。
 実施形態では特に触れていないが、EMS200と蓄電池装置140との間において、蓄電池141のステータスを示すメッセージが定義されることが好ましい。蓄電池141の運転モードを示すメッセージ及び蓄電池141の充放電回数を示すメッセージは、蓄電池141のステータスを示すメッセージの一例である。
 実施形態では特に触れていないが、EMS200と蓄電池装置140との間において、蓄電池141のスペックを示すメッセージが定義されることが好ましい。蓄電池141の定格出力を示すメッセージは、蓄電池141のスペックを示すメッセージの一例である。
 実施形態では特に触れていないが、蓄電池装置140は、EMS200からの要求ではなくて、自律的に各種メッセージをEMS200に送信してもよい。例えば、蓄電池装置140は、予め定められた条件が満たされた場合に、各種メッセージをEMS200に送信する。
 実施形態では特に触れていないが、蓄電池装置140は、コード群応答とともに、蓄電池141のスペックを示すメッセージ(例えば、蓄電池141の定格出力を示すメッセージ)、さらには蓄電池141のステータスを示すメッセージをともにEMS200に送信してもよい。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。また、上述した実施形態及び変更例は、組み合わせることが可能である。したがって、本発明の技術的範囲は、上述の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められる。
 なお、日本国特許出願第2012-174457号(2012年8月6日出願)の全内容が、参照により、本願に組み込まれている。
 本発明によれば、機器を適切に制御することを可能とする管理システム、管理方法、制御装置及び蓄電装置を提供することができる。

Claims (9)

  1.  電力を蓄積する蓄電池を備える蓄電装置と、前記蓄電装置と通信を行う制御装置とを有する管理システムであって、
     前記制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されていることを特徴とする管理システム。
  2.  前記制御装置は、前記複数の運転モードのいずれかを指定するメッセージを前記蓄電装置に送信することによって、前記蓄電池の運転モードを前記蓄電装置に指示することを特徴とする請求項1に記載の管理システム。
  3.  前記制御装置は、前記複数の運転モードのいずれかを指定するメッセージを前記蓄電装置から受信することによって、前記複数の運転モードのいずれで前記蓄電装置が運転しているかを取得することを特徴とする請求項1に記載の管理システム。
  4.  前記制御装置は、前記複数の運転モードのいずれかを指定するメッセージの通信に先立って、前記複数の運転モードのいずれかを指定するメッセージを扱う機能の有無を示すメッセージを前記蓄電装置から受信することを特徴とする請求項1に記載の管理システム。
  5.  前記複数の運転モードは、前記蓄電池以外の分散電源と前記蓄電池が連携する運転モードを含むことを特徴とする請求項1に記載の管理システム。
  6.  前記蓄電池以外の分散電源は、太陽電池であることを特徴とする請求項3に記載の管理システム。
  7.  電力を蓄積する蓄電池を備える蓄電装置と、前記蓄電装置と通信を行う制御装置とを有する管理システムで用いる管理方法であって、
     前記制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されており、
     前記制御装置から前記蓄電装置に対して、前記複数の運転モードのいずれかを指定するメッセージを送信するステップ、或いは、前記蓄電装置から前記制御装置に対して、前記複数の運転モードのいずれかを指定するメッセージを送信するステップを備えることを特徴とする管理方法。
  8.  電力を蓄積する蓄電池を備える蓄電装置と通信を行う制御装置であって、
     前記制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されており、
     前記複数の運転モードのいずれかを指定するメッセージを前記蓄電装置から受信し、或いは、前記複数の運転モードのいずれかを指定するメッセージを前記蓄電装置に送信する通信部を備えることを特徴とする制御装置。
  9.  電力を蓄積する蓄電池を備える蓄電装置であって、
     前記蓄電装置と通信を行う制御装置と前記蓄電装置との間において、前記蓄電池の充放電の基準がそれぞれ異なる複数の運転モードのいずれかを指定するメッセージが定義されており、
     前記複数の運転モードのいずれかを指定するメッセージを前記制御装置に送信し、前記複数の運転モードのいずれかを指定するメッセージを前記制御装置から受信する通信部を備えることを特徴とする蓄電装置。
PCT/JP2013/071139 2012-08-06 2013-08-05 管理システム、管理方法、制御装置及び蓄電装置 WO2014024841A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/419,903 US10541540B2 (en) 2012-08-06 2013-08-05 Management system, management method, control apparatus, and power storage apparatus
CN201380041663.1A CN104541434B (zh) 2012-08-06 2013-08-05 管理系统、管理方法、控制装置和电力存储装置
EP13828165.4A EP2882073B1 (en) 2012-08-06 2013-08-05 Management system, management method, control device, and power storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-174457 2012-08-06
JP2012174457A JP6042133B2 (ja) 2012-08-06 2012-08-06 管理システム、管理方法、制御装置及び蓄電装置
JP2016176350A JP6121607B2 (ja) 2012-08-06 2016-09-09 管理システム、管理方法、制御装置及び蓄電池装置

Publications (1)

Publication Number Publication Date
WO2014024841A1 true WO2014024841A1 (ja) 2014-02-13

Family

ID=59523422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071139 WO2014024841A1 (ja) 2012-08-06 2013-08-05 管理システム、管理方法、制御装置及び蓄電装置

Country Status (5)

Country Link
US (1) US10541540B2 (ja)
EP (1) EP2882073B1 (ja)
JP (2) JP6042133B2 (ja)
CN (1) CN104541434B (ja)
WO (1) WO2014024841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044574A1 (ja) * 2017-08-30 2019-03-07 京セラ株式会社 電源管理方法及び電源管理装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402924B2 (ja) * 2014-03-07 2018-10-10 株式会社Gsユアサ 電力管理システム及びこれと連携する蓄電池搭載機器並びに電力管理システムの制御方法
EP3419302B1 (en) * 2016-02-19 2023-11-15 Kyocera Corporation Management system, management method, operation terminal, and control apparatus
WO2018043689A1 (ja) * 2016-09-01 2018-03-08 京セラ株式会社 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム
WO2018052117A1 (ja) * 2016-09-15 2018-03-22 京セラ株式会社 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム
JP6761042B2 (ja) * 2016-09-27 2020-09-23 京セラ株式会社 電力管理方法、電力管理装置、電力変換装置及び電力管理システム
JP2018064430A (ja) * 2016-10-14 2018-04-19 株式会社椿本チエイン 充放電装置及び電力制御装置
JP6984130B2 (ja) 2017-01-17 2021-12-17 オムロン株式会社 画像処理装置、制御システム、画像処理装置の制御方法、制御プログラム、および記録媒体
JP6876939B2 (ja) * 2017-12-15 2021-05-26 パナソニックIpマネジメント株式会社 群管理システム、電力制御装置、蓄電システム
JP7210919B2 (ja) * 2018-07-19 2023-01-24 住友電気工業株式会社 エネルギーマネジメントシステム及びエネルギーマネジメント方法
JP7367648B2 (ja) 2020-09-29 2023-10-24 トヨタ自動車株式会社 配送用車両
GB202017221D0 (en) * 2020-10-30 2020-12-16 Iheat Me Ltd Energy management system and method of use thereof
JP7530319B2 (ja) * 2021-03-17 2024-08-07 株式会社東芝 情報処理装置、情報処理方法、コンピュータプログラム及び情報処理システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247761A (ja) * 2000-12-12 2002-08-30 Ngk Insulators Ltd 電力貯蔵システムの運転方法
JP2006252901A (ja) * 2005-03-10 2006-09-21 Tokyo Electric Power Co Inc:The 電力貯蔵装置運転パターン特定方法及び装置並びに電力貯蔵装置出力特定方法及び装置
JP2007215290A (ja) * 2006-02-08 2007-08-23 Toshiba Corp 蓄電装置を活用した需給制御装置およびその方法
JP2010128810A (ja) 2008-11-27 2010-06-10 Hitachi Ltd 自動検針方法、自動検針システム、自動検針装置、およびスマートメータ

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606242A (en) 1994-10-04 1997-02-25 Duracell, Inc. Smart battery algorithm for reporting battery parameters to an external device
CN1163020A (zh) 1994-10-04 1997-10-22 杜拉塞奥公司 用于向外部设备报告电池参数的智能电池算法
US6073197A (en) * 1997-08-21 2000-06-06 Advanced Micro Devices Inc. Apparatus for and method of communicating data among devices interconnected on a bus by using a signalling channel to set up communications
JP2000083330A (ja) 1998-09-03 2000-03-21 Nissin Electric Co Ltd 分散型電源設備
US6978294B1 (en) * 2000-03-20 2005-12-20 Invensys Systems, Inc. Peer-to-peer hosting of intelligent field devices
JP4588178B2 (ja) * 2000-07-17 2010-11-24 株式会社キューヘン 電力貯蔵装置用電力変換器制御装置
US6920506B2 (en) * 2001-06-28 2005-07-19 Canon Information Systems, Inc. Discovery and management of network printers
US20090204237A1 (en) * 2001-08-10 2009-08-13 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US7600003B1 (en) * 2002-04-22 2009-10-06 Cisco Technology, Inc. Method and apparatus for dynamically configuring customer premises network equipment
JP2004015035A (ja) 2002-06-12 2004-01-15 Matsushita Electric Ind Co Ltd 家庭用発電システム
JP2006509489A (ja) * 2002-12-06 2006-03-16 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド 無停電源及び発電システム
US7385373B2 (en) * 2003-06-30 2008-06-10 Gaia Power Technologies, Inc. Intelligent distributed energy storage system for demand side power management
JP2006042422A (ja) * 2004-07-22 2006-02-09 Kansai Electric Power Co Inc:The 電力貯蔵システム
US8054854B2 (en) * 2004-08-26 2011-11-08 Sony Corporation Network remote control
US8762109B2 (en) * 2010-05-03 2014-06-24 Battelle Energy Alliance, Llc Crosstalk compensation in analysis of energy storage devices
MX2007009722A (es) * 2005-03-12 2008-01-16 Lutron Electronics Co Programador portatil para sistema de control de iluminacion.
JP2007257137A (ja) 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd ユーザインタフェース制御装置及びユーザインタフェース制御システム
US20080028237A1 (en) * 2006-07-26 2008-01-31 Roadnarrows, Llc Power Management Using Integrated Data and Power Interfaces
US20090091791A1 (en) * 2006-09-28 2009-04-09 Andrew Rodney Ferlitsch Methods and systems for third-party administrative control of remote imaging jobs and imaging devices
JP4577299B2 (ja) * 2006-11-15 2010-11-10 船井電機株式会社 光ディスク記録再生装置
US7920942B2 (en) * 2007-03-01 2011-04-05 Wisconsin Alumni Research Foundation Control of combined storage and generation in distributed energy resources
US7949905B2 (en) * 2007-10-09 2011-05-24 Honeywell International Inc. Apparatus and method for dynamically detecting improper configuration data provided in a network
JP5134359B2 (ja) * 2007-12-25 2013-01-30 パナソニック株式会社 電力供給システム、機器、アウトレット
US9319956B2 (en) * 2008-01-15 2016-04-19 International Business Machines Corporation Method and apparatus for maintaining communications connections over a distributed wireless network
JP5411479B2 (ja) * 2008-10-14 2014-02-12 大阪瓦斯株式会社 遠隔監視制御システム
US20100138007A1 (en) * 2008-11-21 2010-06-03 Qwebl, Inc. Apparatus and method for integration and setup of home automation
US7936685B2 (en) * 2009-01-15 2011-05-03 Vss Monitoring, Inc. Intelligent fast switch-over network tap system and methods
US20110302275A1 (en) * 2010-06-04 2011-12-08 Rich Prodan Method and System for Matching Content Consumption Preference Via a Broadband Gateway
EP2433311B1 (en) * 2009-05-22 2015-12-23 Aurora Solar Technologies (Canada) Inc. Process for improving the production of photovoltaic products
US9077736B2 (en) * 2009-07-24 2015-07-07 Plumchoice, Inc. Systems and methods for providing a client agent for delivery of remote services
KR101084799B1 (ko) * 2009-09-08 2011-11-21 삼성에스디아이 주식회사 배터리 팩
US9069929B2 (en) * 2011-10-31 2015-06-30 Iii Holdings 2, Llc Arbitrating usage of serial port in node card of scalable and modular servers
DE102009050173A1 (de) * 2009-10-21 2011-04-28 Msr-Office Gmbh Multifunktionaler Stromauslass
US8348145B2 (en) * 2009-11-14 2013-01-08 At&T Intellectual Property I, L.P. Systems and methods for programming a remote control device
US9075408B2 (en) * 2009-11-16 2015-07-07 Applied Materials, Inc. Energy savings and global gas emissions monitoring and display
CN102598469A (zh) 2009-11-30 2012-07-18 京瓷株式会社 控制装置、控制系统以及控制方法
KR101097259B1 (ko) * 2009-12-11 2011-12-21 삼성에스디아이 주식회사 전력 저장을 위한 장치 및 제어 방법
KR101084215B1 (ko) * 2009-12-16 2011-11-17 삼성에스디아이 주식회사 에너지 저장 시스템 및 이의 제어 방법
KR101084216B1 (ko) * 2009-12-23 2011-11-17 삼성에스디아이 주식회사 에너지 저장 시스템 및 이의 제어 방법
US8618680B2 (en) * 2010-03-31 2013-12-31 University Of Southern California Spaced-apart cable modules in wellbore energy storage and retrieval
US8478452B2 (en) * 2010-04-06 2013-07-02 Battelle Memorial Institute Grid regulation services for energy storage devices based on grid frequency
JP5415359B2 (ja) 2010-05-31 2014-02-12 日立コンシューマエレクトロニクス株式会社 電気機器制御システム及び電気機器コントローラ
CN103004138B (zh) * 2010-06-22 2017-05-17 Lg电子株式会社 网络系统
JP5015293B2 (ja) * 2010-07-23 2012-08-29 シャープ株式会社 電力制御ネットワークシステム、電力制御方法、および電力制御コントローラ
KR101147206B1 (ko) * 2010-10-06 2012-05-25 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 이를 위한 통합 제어기
EP2512000B1 (en) * 2011-04-15 2022-03-02 ABB Schweiz AG Reconfigurable power systems and converters
US8745282B2 (en) * 2011-06-08 2014-06-03 Lsi Corporation Concurrent response for device information during an initialization process for a storage device
WO2013011758A1 (ja) * 2011-07-15 2013-01-24 日本電気株式会社 蓄電池システム及びその制御方法
EP2893407A4 (en) * 2012-09-05 2016-03-16 Siemens Corp METHOD FOR MANAGING ENERGY NEEDS IN A LINE OF PRODUCTION FLOW
CN104137384A (zh) * 2013-01-11 2014-11-05 日东电工株式会社 按需型电力控制系统、按需型电力控制系统程序以及记录该程序的计算机可读记录介质
JP6189949B2 (ja) * 2013-05-29 2017-08-30 京セラ株式会社 被制御装置、制御装置、装置制御方法及び装置制御システム
US9898023B2 (en) * 2013-11-05 2018-02-20 Toshiba Tec Kabushiki Kaisha Power management method, power management server, and office machine for managing electric power
WO2015093494A1 (ja) * 2013-12-16 2015-06-25 京セラ株式会社 電力制御装置、機器制御装置、及び方法
KR20150081731A (ko) * 2014-01-06 2015-07-15 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 작동 방법
US9960637B2 (en) * 2015-07-04 2018-05-01 Sunverge Energy, Inc. Renewable energy integrated storage and generation systems, apparatus, and methods with cloud distributed energy management services
US10892620B2 (en) * 2015-11-16 2021-01-12 General Electric Company State of charge maintenance during operation of energy storage systems
US10498155B2 (en) * 2016-03-29 2019-12-03 Solarcity Corporation Control system for maintaining preferred battery levels in a microgrid
US20170300096A1 (en) * 2016-04-15 2017-10-19 Tane Martin Energy storage servicing systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247761A (ja) * 2000-12-12 2002-08-30 Ngk Insulators Ltd 電力貯蔵システムの運転方法
JP2006252901A (ja) * 2005-03-10 2006-09-21 Tokyo Electric Power Co Inc:The 電力貯蔵装置運転パターン特定方法及び装置並びに電力貯蔵装置出力特定方法及び装置
JP2007215290A (ja) * 2006-02-08 2007-08-23 Toshiba Corp 蓄電装置を活用した需給制御装置およびその方法
JP2010128810A (ja) 2008-11-27 2010-06-10 Hitachi Ltd 自動検針方法、自動検針システム、自動検針装置、およびスマートメータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2882073A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044574A1 (ja) * 2017-08-30 2019-03-07 京セラ株式会社 電源管理方法及び電源管理装置

Also Published As

Publication number Publication date
EP2882073B1 (en) 2021-09-29
CN104541434A (zh) 2015-04-22
JP6121607B2 (ja) 2017-04-26
JP2017005993A (ja) 2017-01-05
US20150229138A1 (en) 2015-08-13
CN104541434B (zh) 2017-10-03
US10541540B2 (en) 2020-01-21
JP2014033591A (ja) 2014-02-20
EP2882073A4 (en) 2016-03-30
JP6042133B2 (ja) 2016-12-14
EP2882073A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6121607B2 (ja) 管理システム、管理方法、制御装置及び蓄電池装置
JP6042959B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び蓄電池装置
WO2014024871A1 (ja) 管理システム、管理方法、制御装置及び太陽電池装置
JP5988758B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
JP5988757B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
JP6420409B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び給湯ユニット
JP6121605B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
WO2014021359A1 (ja) 制御装置、燃料電池システム及び制御方法
JP2017042042A (ja) 管理システム、管理方法、制御装置及び蓄電池装置
JP6359714B2 (ja) 管理システム、管理方法、制御装置及び蓄電池装置
JP6751225B2 (ja) 管理システム、管理方法、制御装置及び蓄電池装置
JP6152498B2 (ja) 電力管理システム、電力管理方法、電力管理装置及び燃料電池装置
JP6088699B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
JP6646009B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び分散電源
JP6640925B2 (ja) 管理システム、管理方法、制御装置及び蓄電池装置
CN107404128B (zh) 管理系统、管理方法、控制装置和电力存储装置
JP6400143B2 (ja) 電力管理システム、電力管理方法、燃料電池装置及び電力制御装置
JP6314268B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び分散電源
JP5978374B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
JP2014032940A (ja) 管理システム、管理方法、制御装置及び給湯システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419903

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013828165

Country of ref document: EP