WO2014024774A1 - 炭素原子数2~4のオレフィンの製造方法及びプロピレンの製造方法 - Google Patents

炭素原子数2~4のオレフィンの製造方法及びプロピレンの製造方法 Download PDF

Info

Publication number
WO2014024774A1
WO2014024774A1 PCT/JP2013/070882 JP2013070882W WO2014024774A1 WO 2014024774 A1 WO2014024774 A1 WO 2014024774A1 JP 2013070882 W JP2013070882 W JP 2013070882W WO 2014024774 A1 WO2014024774 A1 WO 2014024774A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon atoms
olefin
producing
reaction
Prior art date
Application number
PCT/JP2013/070882
Other languages
English (en)
French (fr)
Inventor
範立 椿
武 石山
祐介 柴田
東村 秀之
章弘 湯浅
Original Assignee
住友化学株式会社
国立大学法人富山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人富山大学 filed Critical 住友化学株式会社
Priority to US14/419,722 priority Critical patent/US20150225309A1/en
Priority to JP2014529461A priority patent/JPWO2014024774A1/ja
Publication of WO2014024774A1 publication Critical patent/WO2014024774A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/06Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/06Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons
    • C07C1/063Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons the organic compound being the catalyst or a part of the catalyst system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a process for producing olefins having 2 to 4 carbon atoms (hereinafter sometimes referred to as “light olefins”) and a process for producing propylene using the Fischer-Tropsch reaction.
  • light olefins olefins having 2 to 4 carbon atoms
  • This application claims priority based on Japanese Patent Application No. 2012-178547 filed in Japan on August 10, 2012 and Japanese Patent Application No. 2013-040103 filed on February 28, 2013 in Japan. , The contents of which are incorporated herein.
  • a Fischer-Tropsch reaction (hereinafter also referred to as “FT reaction”) is known as a reaction for synthesizing hydrocarbons from a mixture of carbon monoxide and hydrogen (hereinafter also referred to as “synthesis gas”). ing.
  • the FT reaction is a reaction using a metal catalyst, and the reaction formula is represented by the following formula (1). nCO + 2nH 2 ⁇ (CH 2 ) n + nH 2 O (1)
  • saturated hydrocarbons are used as fuels and lubricating oils through various processes such as hydrocracking and isomerization.
  • lower (small carbon number) olefins such as ethylene, propylene, and butene are widely used as raw material compounds.
  • propylene is used as a starting material for the production of polypropylene.
  • olefin production using an FT reaction has been studied.
  • Patent Documents 1 and 2 disclose an FT reaction for the purpose of producing an olefin in a high yield using an iron-based catalyst having a manganese-based compound as a carrier.
  • the catalysts or methods disclosed in Patent Documents 1 and 2 are also referred to as unsaturated hydrocarbons contained in the reaction product, particularly light olefins having 2 to 4 carbon atoms (hereinafter referred to as “C2 to C4 olefins”).
  • C2 to C4 olefins light olefins having 2 to 4 carbon atoms
  • the content of unsaturated hydrocarbons contained in the reaction product may be referred to as “selectivity of unsaturated hydrocarbons”.
  • the content of the C2 to C4 olefin contained in the reaction product may be referred to as “selectivity of C2 to C4 olefin”.
  • the content of a specific compound (for example, propylene) contained in the reaction product may be referred to as the selectivity of the compound.
  • the present invention has been made in view of such circumstances, and a method for producing a light olefin having 2 to 4 carbon atoms capable of achieving high selectivity, particularly a method for producing propylene having high selectivity.
  • the purpose is to provide.
  • a carbon atom comprising a step of reacting at least one catalyst (D) selected from the group consisting of catalysts (A) to (C) with synthesis gas in the presence of a dispersion medium in a Fischer-Tropsch reaction
  • the catalyst (A) is a catalyst containing iron and containing 1 to 3 elements selected from the group consisting of alkali metals and alkaline earth metals
  • the catalyst (B) is a catalyst containing cobalt, provided that the catalyst (B) includes a dispersion containing cobalt ions and iron ions, and a dispersant that interacts with the cobalt ions and iron ions.
  • a catalyst excluding the catalyst obtained by reducing the cobalt ions and iron ions in a solution A method for producing an olefin having 2 to 4 carbon atoms, wherein the catalyst (C) is a catalyst containing nickel or ruthenium.
  • the catalyst (D) further contains 1 to 3 elements selected from the group consisting of manganese, copper, zinc, titanium, zirconium, lanthanum and cerium. Of producing olefins.
  • the element (1) is iron and manganese
  • the element (2) is one to three elements selected from the group consisting of alkali metals and alkaline earth metals
  • the limitation (3) is that the molar ratio of iron to the total number of moles of metal elements in iron, manganese and the element (2) is a mol%, the molar ratio of manganese is b mol%, and the element (2)
  • a process for producing olefins having 2 to 4 atoms [4] The method for producing an olefin having 2 to 4 carbon atoms according to any one of [1] to [3], wherein the catalyst (D) further comprises a carbon support. [5] The synthesis gas contains hydrogen and carbon monoxide, and the molar ratio of hydrogen to carbon monoxide is not less than 0.3 and not more than 3 in terms of [hydrogen / carbon monoxide]. [4] The method for producing an olefin having 2 to 4 carbon atoms according to any one of [4].
  • the method further comprises a step of catalytically decomposing a product obtained in the step of reacting the synthesis gas and the catalyst (D).
  • the second aspect of the present invention is as follows.
  • a first step of producing a hydrocarbon product by reacting a synthesis gas with a catalyst (E) in the presence of a dispersion medium;
  • a process for producing an olefin having 2 to 4 carbon atoms is a Fischer-Tropsch reaction, a first step of producing a hydrocarbon product by reacting a synthesis gas with a catalyst (E) in the presence of a dispersion medium;
  • the cracking catalyst contains 0.01% by mass or more and 30% by mass of one or more elements selected from the group consisting of the alkali metal, alkaline earth metal, and transition metal with respect to the total mass of the decomposition catalyst.
  • Any one of [12] to [15], wherein at least one element selected from the group consisting of the alkali metal, alkaline earth metal, and transition metal contained in the decomposition catalyst is an alkaline earth metal. 4.
  • the number of carbon atoms is 2 to 20 according to any one of [12] to [20]
  • a process for producing olefins of 4 comprising:
  • the element (1) is iron and manganese;
  • the element (2) is one to three kinds of metal elements selected from the group consisting of alkali metals and alkaline earth metals,
  • a process for producing an olefin of formula 2-4 [22] The method for producing an olefin having 2 to 4 carbon atoms according to any one of [12] to [21], wherein the catalyst (E) further comprises a carbon support. [23] The synthesis gas contains hydrogen and carbon monoxide, and the molar ratio of hydrogen to carbon monoxide is represented by [hydrogen / carbon monoxide] and is 0.3 or more and 3 or less. [22] The method for producing an olefin having 2 to 4 carbon atoms according to any one of [22]. [24] The method for producing an olefin having 2 to 4 carbon atoms according to any one of [12] to [23], wherein the reaction temperature in the first step is 100 ° C.
  • the present invention it is possible to provide a method for producing an olefin having 2 to 4 carbon atoms capable of achieving a high selectivity, particularly a method for producing an olefin having high propylene selectivity.
  • FIG. 5 is a schematic view showing an example of a production apparatus for carrying out the production method of an olefin having 2 to 4 carbon atoms according to the second embodiment.
  • the method for producing an olefin having 2 to 4 carbon atoms is selected from the group consisting of the following catalysts (A) to (C) in the Fischer-Tropsch reaction (hereinafter sometimes referred to as FT reaction). And a step of reacting at least one catalyst (D) to be reacted with synthesis gas in the presence of a dispersion medium.
  • the olefin having 2 to 4 carbon atoms specifically includes ethylene, propylene, 1-butene, 2-butene, isobutene and 1,3 -Butadiene is mentioned.
  • the catalyst (A) contains 1 to 3 elements selected from the group consisting of alkali metals and alkaline earth metals, and these elements function as promoters.
  • the element is preferably lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, more preferably sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, More preferred are sodium, potassium, magnesium and calcium, and particularly preferred are potassium and magnesium.
  • the catalyst (B) is obtained by reducing the cobalt ions and iron ions in a dispersion or solution containing cobalt ions and iron ions and a dispersant that interacts with the cobalt ions and iron ions. Catalyst is removed. That is, the catalyst (B) adjusts a dispersion or solution containing cobalt ions and iron ions and a dispersant that interacts with the cobalt ions and iron ions; and is reduced to the dispersion or solution.
  • a catalyst obtained by a production method comprising: adding an agent to reduce the cobalt ions and iron ions.
  • the “dispersant that interacts with cobalt ions and iron ions” causes aggregation of the alloy particles generated in the dispersion or solution (that is, the reaction solution) after the reduction reaction or after the reduction reaction. It is to prevent.
  • water-soluble polymers include polymers having an alkylene ether structure such as polyethylene glycol (PEG) and polypropylene glycol; polyvinyl alcohol; polyvinyl ether; polyacrylate; polyvinyl pyrrolidone (PVP); poly (mercaptomethylene). Styrene-N-vinyl-2-pyrrolidone); polyacrylonitrile and the like.
  • Solvents used for the preparation of “dispersion or solution” include 1,2-ethanediol (ethylene glycol), 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3 -Butanediol, 1,4-butanediol, 2,3-butanediol, pentanediol, hexanediol, heptanediol, octanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, hexylene glycol, 2- Such as butene-1,4-diol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol, 1,2,3-hexanetriol, benzyl alcohol, etc. Examples include alcohol.
  • Dispersion or solution is a compound containing a metal-containing compound that serves as an ion source of cobalt ions and iron ions, a dispersant, a solvent, and other components (for example, a reducing agent described later) as necessary. Can be prepared.
  • concentration of the dispersant in the dispersion or solution is, for example, 1 ⁇ 10 ⁇ 4 to 5% by mass with respect to the total mass of the dispersion or solution.
  • a known reducing agent is used for the reduction of cobalt ions and iron ions.
  • the compounding amount of the reducing agent is, for example, 0.1 mol or more with respect to 1 mol of the metal ion to be reduced.
  • the reaction temperature during the reduction of cobalt ions and iron ions is, for example, 20 to 200 ° C., and the reaction time is, for example, 1 to 120 minutes.
  • the catalyst thus obtained shall not fall under the catalyst (B).
  • the catalyst (A) may further contain one or more metal elements selected from the group consisting of cobalt, nickel, and ruthenium. Further, the catalyst (B) may further contain one or more metal elements selected from the group consisting of iron, alkali metal, alkaline earth metal, nickel and ruthenium. Further, the catalyst (C) may further contain one or more metal elements selected from the group consisting of iron, alkali metals, alkaline earth metals, and cobalt. Catalysts (A) to (C) may be used in combination.
  • the catalysts (A) to (C) may contain 1 to 3 kinds of other transition metal elements as promoters.
  • the transition metal element include manganese, copper, zinc, titanium, zirconium, lanthanum, and cerium, more preferably manganese and copper, and particularly preferably manganese.
  • the iron content relative to the total number of moles of iron, alkali metal, alkaline earth metal and transition metal element as a promoter is 50 mol% to 90 mol%.
  • the total content of alkali metals and alkaline earth metals is preferably 0.5 mol% to 10 mol%, and the total content of transition metal elements as cocatalysts is preferably 9.5 mol% to 48 mol%.
  • the iron content is 50 mol% to 90 mol%, the total content of alkali metals and alkaline earth metals is 0.5 mol% to 10 mol%, and the total content of transition metal elements as a promoter is 9 mol%. More preferably, the content is 5 mol% to 45 mol%.
  • the mass ratio of cobalt and the transition metal element as a cocatalyst is expressed as [total of transition metal elements as cocatalyst / cobalt], 0.01 It is preferably 5 or less.
  • the catalyst (C) contains a transition metal element as a cocatalyst, the mass ratio of nickel or ruthenium and the transition metal element as a cocatalyst is expressed by [total of transition metal elements as cocatalyst / nickel or ruthenium]. It is preferable that it is 0.01 or more and 5 or less.
  • the catalyst (D) used in the method for producing a C2 to C4 olefin of this embodiment is preferably the catalyst (A) or the catalyst (B), and the catalyst (A) further contains manganese, Element (1): iron and manganese, and element (2): a catalyst containing 1 to 3 elements selected from the group consisting of alkali metal elements and alkaline earth metal elements; or catalyst (B) is more preferred.
  • the catalyst (A) contains iron so that the reactivity of the FT reaction is easily secured.
  • the catalyst may contain cobalt or copper. Containing copper is preferable because reduction of iron is promoted in the activation treatment described later.
  • the element (2) is preferably lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium or barium, more preferably sodium, potassium, rubidium, cesium, magnesium, calcium, strontium or barium. More preferred are sodium, potassium, magnesium and calcium, and particularly preferred are potassium and magnesium.
  • the element (2) contained in the catalyst (A) is magnesium
  • a gas shift reaction that is a competitive reaction of the FT reaction reaction in which carbon monoxide and water react to generate carbon dioxide and hydrogen
  • FT reaction reaction in which carbon monoxide and water react to generate carbon dioxide and hydrogen
  • the catalyst (B) preferably contains cobalt, which suppresses the gas shift reaction.
  • the catalyst (B) may contain manganese, zinc, or the like. Containing manganese or zinc is preferable because the olefin ratio in the hydrocarbon produced by the FT reaction increases.
  • the amount of manganese contained in the catalyst (B) is preferably 0.01 times or more and 5 times or less (mass) with respect to the amount of cobalt, preferably 0.1 times or more and 4 times or less (mass). It is more preferable that it is 0.5 times or more and 4 times or less (mass).
  • the amount of zinc is preferably 0.01 times or more and 5 times or less (mass) with respect to the cobalt content, more preferably 0.01 times or more and 1 time or less (mass). The amount is more preferably 0.01 times or more and 0.2 times or less (mass).
  • the catalyst (D) used in the method for producing a C2 to C4 olefin of this embodiment may be a catalyst containing the following elements (3) and (4).
  • the molar ratio of the element (3) to the element (4) contained in the catalyst (D) is 5 to 180, expressed as [total of element (3) / total of element (4)]. Is preferred. By controlling the molar ratio of the catalyst in this way, it becomes easy to ensure the reactivity of the FT reaction.
  • the catalyst (D) used in the method for producing a C2 to C4 olefin of the present embodiment is preferably a combination of iron and potassium as a catalyst metal, and the molar ratio thereof is represented by [iron / potassium] and is 5 to 180. Is preferred. Further, the catalyst (D) may further contain manganese.
  • the iron content with respect to the total number of moles of iron, manganese and potassium is 50 to 90 mol%, and the manganese content is 9.5. ⁇ 48 mol%, potassium content is preferably 0.5 to 10 mol%, iron content is 50 to 90 mol%, manganese content is 9.5 to 45 mol%, potassium content The amount is more preferably 0.5 to 10 mol%.
  • the molar ratio of metals contained in the catalyst is determined by energy dispersive X-ray fluorescence analysis (hereinafter sometimes referred to as “EDS analysis”) or inductively coupled plasma emission analysis (hereinafter referred to as “ICP”). It may be referred to as “luminescence analysis”).
  • EDS analysis energy dispersive X-ray fluorescence analysis
  • ICP inductively coupled plasma emission analysis
  • the method for producing the catalyst (D) is not particularly limited, (I) Step of preparing transition metal salt solution or dispersion (ii) Step of mixing the solution or dispersion prepared in step (i) with a precipitant to produce a precipitate to obtain a suspension (Iii) After separating the precipitate from the suspension obtained in step (ii), the obtained precipitate is washed and dried to obtain a dried product (iv) Obtained in step (iii) The step of impregnating the dried product with an alkali metal salt or alkaline earth metal salt to obtain an impregnated product (v) The step of obtaining the catalyst by subjecting the impregnated product obtained in step (iv) to heat treatment It is desirable to include. However, if unnecessary, step (iv) can be omitted as appropriate. Details will be described below.
  • step (i) a transition metal salt solution or dispersion is prepared.
  • the resulting catalyst is excellent in solubility in water because it can be easily removed in the purification step.
  • salts include salts such as acetate, fluoride, chloride, bromide, iodide, carbonate, sulfate, nitrate and hydrates thereof, and metal complexes. Can do. Of these, carbonates and nitrates are preferred, and nitrates are more preferred because the anion content can be easily removed by heating.
  • the transition metal in the transition metal salt include iron, cobalt, nickel, manganese, copper, zinc, titanium, zirconium, lanthanum, and cerium.
  • transition metal salt examples include cobalt nitrate, iron nitrate, nickel nitrate, manganese nitrate, copper nitrate, and zinc nitrate.
  • a combination of iron nitrate and manganese nitrate is preferable, and the molar ratio is preferably 1.22 to 8.95, expressed as [iron nitrate / manganese nitrate].
  • the solution or dispersion can be prepared by adding the above-described transition metal salt to a solvent and dissolving or dispersing the transition metal salt. Moreover, it is good also as preparing a mixed solution or a mixed dispersion by mixing the above-mentioned several transition metal salt suitably.
  • the content of metal ions in the solution or dispersion is preferably in the range of 3 ⁇ 10 ⁇ 7 mass% to 20 mass% with respect to the mass of the solution or dispersion, 3 ⁇ 10 ⁇ 5 mass% or more. The range is more preferably 20% by mass or less, and further preferably 3 ⁇ 10 ⁇ 3 % by mass to 20% by mass. If it is this range, a catalyst can be suitably manufactured, without a metal component being too few for manufacture of a catalyst, and without agglomerating because there are too many metal components.
  • the solvent used is preferably a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • a polar solvent such as water, methanol, ethanol, propanol, and ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • examples include methanol, ethanol, propanol, and ethylene glycol, and water is particularly preferable.
  • a dispersant for improving dispersibility may be used in combination when preparing the dispersion.
  • the dispersant include water-soluble polymers. Specifically, polymers having an alkylene ether structure such as polyethylene glycol (PEG) and polypropylene glycol; polyvinyl alcohol; polyvinyl ether; polyacrylate; polyvinyl pyrrolidone (PVP); poly (mercaptomethylenestyrene-N-vinyl-2-pyrrolidone) ); And polyacrylonitrile.
  • step (ii) the solution or dispersion prepared in step (i) and the precipitant are mixed to generate a precipitate, thereby obtaining a suspension.
  • the “precipitating agent” is one that dissolves in a solvent to generate hydroxide ions.
  • a “precipitant solution” is a solution in which a precipitant is dissolved in a solvent.
  • the precipitating agent is not particularly limited as long as it has such properties, but an alkaline compound is preferably used.
  • As the precipitant for example, sodium hydroxide, potassium hydroxide, ammonia, urea, ammonium carbonate and the like can be used. Of these, ammonia, urea, and ammonium carbonate are preferred, and ammonia is more preferred from the viewpoint of containing no metal ions and easily controlling the metal composition in the catalyst.
  • the amount of the precipitant used is preferably 1 to 50 times (molar amount) with respect to the molar amount of the transition metal salt in the solution or dispersion obtained in step (i),
  • the amount is preferably 2 times or more and 30 times or less (molar amount), more preferably 5 times or more and 20 times or less (molar amount).
  • step (ii) for example, the solution or dispersion and suspension obtained in step (i) are prepared using the amount of the precipitant described above.
  • the concentration of the precipitant is preferably in the range of 0.1% by mass to 50% by mass, and preferably in the range of 1% by mass to 30% by mass with respect to the mass of the precipitant solution. Is more preferable, and the range of 5% by mass or more and 25% by mass or less is more preferable.
  • the precipitant solution and the solution or dispersion prepared in the step (i) are co-flowed to be 0.1 to 10 hours, preferably 0.5 to 5 hours, more preferably 1 to 3 hours.
  • the solution is dropped into the container for a period of time or less, and after the completion of the dropwise addition, it is continuously stirred for 0.5 to 8 hours, preferably 0.5 to 6 hours, more preferably 0.5 to 4 hours. Then, it is preferable to leave still for 8 hours or more and 48 hours or less.
  • the metal ion contained in the solution or dispersion obtained in step (i) is precipitated as a hydroxide, and a suspension in which the generated hydroxide is suspended is obtained.
  • the pH of the suspension is preferably from 7 to 14, and more preferably from 8 to 14.
  • step (iii) after separating the precipitate (hydroxide) from the suspension obtained in step (ii), the obtained precipitate is washed and dried to obtain a dried product.
  • the precipitate is washed with, for example, water, and then dried to obtain a dried product.
  • the drying temperature at the time of obtaining the dried product may be a temperature at which moisture can be substantially removed, preferably 20 ° C. or higher and 150 ° C. or lower, more preferably 60 ° C. or higher and 130 ° C. or lower.
  • the drying time is preferably 1 hour to 48 hours, more preferably 12 hours to 36 hours.
  • step (iv) the dried product obtained in (iii) is impregnated with an alkali metal salt or an alkaline earth metal salt to obtain an impregnated product.
  • a commonly used method such as an impregnation method or an ion exchange method can be appropriately selected.
  • a particularly preferred method is an impregnation method, and an especially preferred method among the impregnation methods is the Incipient Wetness method.
  • the Incipient Wetness method is a method in which a solution having the same volume as the pore volume of a porous material is impregnated.
  • the pore volume is A ⁇ B (cm 3 ).
  • the solution having the same volume as this A ⁇ B (cm 3 ) is impregnated.
  • the pore volume ratio in a certain pore diameter that is, the pore diameter distribution can be measured by a general gas adsorption method. More specifically, a solution containing an alkali metal salt or an alkaline earth metal salt is prepared in the same volume as the pore volume of the dried product obtained in (iii), and the dried product obtained in (iii) is prepared. Impregnate. When impregnating a plurality of metals, either simultaneous impregnation or sequential impregnation can be selected, but simultaneous impregnation is preferred.
  • alkali metal salt or alkaline earth metal salt salts having high solubility in water are preferable, and carbonates and nitrates are more preferably used.
  • the salt is preferably lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, more preferably sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, More preferred are sodium, potassium, magnesium and calcium, and particularly preferred are potassium and magnesium.
  • concentration of the alkali metal salt or alkaline earth metal salt in the alkali metal salt or alkaline earth metal salt solution is 1% by mass to 70% by mass with respect to the total mass of the solution. Preferably, 5 mass% or more and 50 mass% or less are more preferable.
  • the solvent used for the alkali metal salt or alkaline earth metal salt solution since inorganic salts have high solubility, water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N -A polar solvent such as methylpyrrolidone is preferred, more preferably water, methanol, ethanol, propanol, or ethylene glycol, and particularly preferably water. These solvents may be used by mixing a plurality of them.
  • the temperature for obtaining the impregnated material is preferably 10 ° C. or higher and lower than 100 ° C., more preferably 20 ° C. or higher and 80 ° C. or lower, and further preferably 20 ° C. or higher and 60 ° C. or lower.
  • the impregnation time is preferably from 0.1 hours to 3 hours, more preferably from 0.5 hours to 2 hours, and further preferably from 0.5 hours to 1 hour.
  • the temperature at which the impregnated product obtained in step (iv) is heated is preferably 300 ° C. or higher and 800 ° C. or lower, preferably 300 ° C. or higher and 600 ° C. or lower, because it can be sufficiently dehydrated and converted to an oxide. More preferably, it is 400 degreeC or more and 600 degrees C or less.
  • the heating time is preferably 1 hour or more and 48 hours or less, more preferably 1 hour or more and 24 hours or less, and further preferably 1 hour or more and 12 hours or less.
  • the catalyst (D) obtained by the above-described production method may be used as it is, or may be used after performing some kind of treatment such as pulverization, molding, and sizing in advance.
  • the catalyst (D) Prior to use in the FT reaction, the catalyst (D) is reduced and activated in a hydrogen atmosphere at normal pressure to 10 MPa or under a synthesis gas atmosphere at normal pressure to 10 MPa at 200 to 500 ° C. for 1 to 24 hours. Can be made. Such activation treatment is generally performed in the art and is recommended for efficient activation.
  • the synthesis gas used here has a molar ratio of hydrogen to carbon monoxide (hereinafter also referred to as “H 2 / CO ratio”) of 0.5 to 5 expressed in [hydrogen / carbon monoxide]. Is preferable, and 0.5 to 2 is more preferable.
  • the gas used in the activation process may be referred to as “reducing gas” in order to distinguish it from the synthesis gas used in the FT reaction.
  • the temperature for the activation treatment is preferably 250 ° C. or higher and 450 ° C. or lower, and more preferably 280 ° C. or higher and 430 ° C. or lower.
  • the pressure for the activation treatment is preferably from normal pressure to 10 MPa, more preferably from normal pressure to 3 MPa.
  • the time for the activation treatment is preferably 5 hours to 15 hours, more preferably 8 hours to 12 hours.
  • the ratio (W / F) of the ratio of the catalyst mass (W) (g) to the synthesis gas supply rate (F) (mol / h) is 0.01 g ⁇ h / mol to 500 g ⁇ h / mol or less, preferably 1 g ⁇ h / mol or more and 100 g ⁇ h / mol or less, more preferably 5 g ⁇ h / mol or more and 30 g ⁇ h / mol or less.
  • H 2 / CO molar ratio
  • the reducing gas and the synthesis gas used in the reaction may be the same gas.
  • the catalyst (D) used in the method for producing a C2 to C4 olefin of the present embodiment may be composed of only the above-described oxide-based catalyst, in addition to the oxide-based catalyst, Other components such as carbon support, alumina, silica, titania, zirconia, magnesia, ceria, zinc oxide, polymer (polyethylene glycol, polyacrylate, polymethacrylate, polyvinylpyrrolidone, etc.) may be included. These components can also be used as a carrier.
  • a carbon carrier As a preferable carrier component in the catalyst (A), a carbon carrier can be exemplified.
  • the carbon carrier include activated carbon, carbon black, carbon nanofiber, carbon nanotube, and fullerene, preferably activated carbon, carbon black, carbon nanofiber, and carbon nanotube, more preferably activated carbon and carbon black. Particularly preferred is activated carbon.
  • preferred carrier components in the catalyst (B) include alumina, silica, titania, zirconia, magnesia, ceria and zinc oxide.
  • the proportion of the carrier component may be less than 100% by mass relative to the total mass of the catalyst (B), preferably 1% by mass to 99% by mass, and preferably 3% by mass to 97% by mass. Is more preferably 5% by mass or more and 95% by mass or less.
  • a support having both large pores (peak pore diameter of 30 nm or more and 300 nm or less) and small pores (peak pore diameter of less than 30 nm) can be used.
  • the pore volume ratio at a certain pore diameter that is, the pore size distribution, can be obtained by an automatic adsorption measuring apparatus such as Autosorb-1 (manufactured by Cantachrome Instruments) by the BJH method (using nitrogen as a probe).
  • the pore diameter at which the number of pores having the pore diameter is maximized is referred to as “peak pore diameter”.
  • the pore volume of large pores is preferably 30% to 90%, more preferably 50% to 90%, and more preferably 60% to 90% of the total pore volume. % Is more preferable.
  • the pore volume with small pores is preferably 10% to 70% of the total pore volume, more preferably 10% to 50%, and more preferably 10% to 40%. % Is more preferable.
  • the carrier having both the large pores and the small pores described above is obtained by impregnating a carrier having only one kind of pores with a dispersion of nanoparticles or a solution of a transition metal salt, and heat-treating the obtained impregnated product.
  • a carrier having only one type of pore is referred to as a “raw material carrier”, and a carrier having both large pores and small pores is referred to as a “carrier having two types of pores”.
  • the type of the raw material carrier is not particularly limited, but preferably has a pore diameter of 10 nm to 500 nm, more preferably 30 nm to 400 nm, and particularly preferably 30 nm to 300 nm.
  • the raw material carrier for example, alumina, silica, titania, zirconia, magnesia, ceria, zinc oxide and the like can be used, and silica is preferable.
  • the nanoparticles used for the preparation of the carrier having two kinds of pores are not particularly limited as long as they are supported in the pores of the raw material carrier, but the dispersed particle size obtained by the dynamic light scattering method is 0.1 nm to 50 nm. Those of 1 nm to 30 nm are more preferable, and those of 5 nm to 25 nm are particularly preferably used.
  • Examples of nanoparticles that can be used include aluminum, silicon, titanium, zirconium, magnesium, cerium, manganese, zinc oxides, composite oxides, hydroxides, and composite hydroxides, preferably silica and zirconia. . A plurality of dispersions containing these nanoparticles may be used.
  • the transition metal salt used for the preparation of the carrier having two kinds of pores is preferably excellent in solubility in water because the catalyst obtained can be easily removed in the purification step.
  • Such salts include, for example, acetate, fluoride, chloride, bromide, iodide, carbonate, sulfate, nitrate, oxychloride, oxynitrate and hydrates thereof. Mention may be made of salts, as well as transition metal complexes. Among these, nitrate is preferably used because it is easy to remove the anion content by heating.
  • the transition metal in the transition metal salt include iron, cobalt, nickel, manganese, copper, zinc, titanium, zirconium, lanthanum, and cerium.
  • the transition metal salt solution can be prepared by adding the above transition metal salt to a solvent and dissolving the transition metal salt. Moreover, it is good also as preparing a mixed solution or a mixed dispersion by mixing the above-mentioned several transition metal salt suitably.
  • the solvent used is preferably a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • a polar solvent such as water, methanol, ethanol, propanol, and ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • examples include methanol, ethanol, propanol, and ethylene glycol, and water is particularly preferable. These solvents may be used by mixing a plurality of them.
  • a temperature at which an impregnation obtained by impregnating a carrier having only one kind of pores with a dispersion of nanoparticles or a solution of a transition metal salt is heated.
  • the heating time is preferably 1 hour or more and 48 hours or less, and more preferably 1 hour or more and 10 hours or less.
  • the content of the catalyst metal in the catalyst (D) (here, the catalyst (D) including the support component means a metal that does not correspond to the support component)
  • the catalyst used in the light olefin production reaction is not particularly limited as long as it has a ratio capable of exhibiting good catalytic ability.
  • the ratio of the catalyst metal in the catalyst (D) may be less than 100% by mass with respect to the total mass of the catalyst (D), preferably 1% by mass to 99% by mass, and preferably 3% by mass to 97% by mass. % Is more preferably 5% by mass or more and 95% by mass or less.
  • a commonly used method such as a precipitation method, a gelation method, an impregnation method, or an ion exchange method can be appropriately selected.
  • a particularly preferable method for introducing the carrier component into the catalyst (A) is to disperse the carrier component in the solution or dispersion in step (i) and add the precipitant in step (ii) together with the precipitate generated.
  • a method of precipitation is preferred.
  • the amount of the carrier component added to the solution or dispersion in step (i) is preferably such that the ratio of the catalyst metal to the total mass of the catalyst (A) is 1% by mass to 99% by mass.
  • the amount is more preferably from 5% by mass to 97% by mass, and still more preferably from 5% by mass to 95% by mass. That is, the amount of the carrier component is preferably 1% by mass to 99% by mass with respect to the total mass of the catalyst (A), and preferably 3% by mass to 97% by mass. More preferably, the amount is 5% by mass to 95% by mass.
  • a method for introducing the carrier component into the catalyst (B) a method in which a solution of a cobalt salt is introduced using an impregnation method and the impregnated product is heat-treated is preferable. At that time, a solution containing manganese or zinc as a cocatalyst can be impregnated simultaneously or sequentially.
  • cobalt salt to be used examples include nitrates, acetates, carbonates, sulfates, etc., preferably nitrates.
  • the cobalt salt solution can be prepared by adding the above cobalt salt to a solvent and dissolving the cobalt salt.
  • the solvent used is preferably a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • a polar solvent such as water, methanol, ethanol, propanol, and ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • examples include methanol, ethanol, propanol, and ethylene glycol, and water is particularly preferable. These solvents may be used by mixing a plurality of them.
  • impregnation method Various known methods can be used as the impregnation method, but it is preferable to use the Incipient Wetness method.
  • the heating temperature is preferably from 300 ° C. to 800 ° C., and the heating time is preferably from 1 hour to 48 hours.
  • the catalyst used for the FT reaction can be prepared.
  • a gas containing hydrogen and carbon monoxide, a gas containing hydrogen and carbon dioxide, a gas containing hydrogen, carbon monoxide, and carbon dioxide may be used. It can. Especially, it is preferable in the sum total of hydrogen and carbon monoxide being 50 volume% or more and 100 volume% or less with respect to the volume of the whole synthesis gas. When such a synthesis gas is used, productivity is increased.
  • the molar ratio of hydrogen and carbon monoxide in the synthesis gas is not less than 0.3, expressed in [hydrogen / carbon monoxide], because the hydrogenation reaction of carbon monoxide proceeds and the productivity increases. Is preferred.
  • the molar ratio of hydrogen to carbon monoxide in the synthesis gas is preferably 3 or less.
  • the molar ratio between hydrogen and carbon monoxide in the synthesis gas is more preferably 0.5 or more and 3.0 or less, and further preferably 0.5 or more and 2.5 or less, expressed as [hydrogen / carbon monoxide]. 0.6 to 2.0 is particularly preferable.
  • FT reaction In the FT reaction of the present invention, it is a feature that a dispersion medium is used. Due to the effect that the hydrocarbon product is immediately extracted from the catalyst by the dispersion medium, the carbon number of the hydrocarbon product is hardly increased. It is estimated that a hydrocarbon product with a high content of olefins having 2 to 4 atoms can be obtained. In the FT reaction, it is desirable that the above-mentioned synthesis gas and the above-mentioned catalyst are reacted in a continuous manner using a slurry bed liquid phase synthesis process.
  • the pressure of the FT reaction is preferably from 0.1 MPa to 30 MPa, more preferably from 0.1 MPa to 10 MPa, and particularly preferably from 0.5 MPa to 3 MPa.
  • the “pressure of the FT reaction” means the pressure in the reaction vessel.
  • a dispersion medium it is preferable to use an organic compound that is liquid at the reaction temperature and reaction pressure in the step of reacting the synthesis gas and the catalyst (D).
  • an organic compound that becomes liquid in a temperature range of 100 ° C. to 600 ° C. under normal pressure can be used.
  • an organic compound that is liquid in a temperature range of a ° C. to b ° C.” means “an organic compound that is liquid in at least one of the temperature ranges of a ° C. to b ° C.”.
  • the normal pressure means 0.1 MPa.
  • the dispersion medium is preferably 150 ° C. or higher and 400 ° C. or lower under normal pressure, more preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 330 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower under normal pressure.
  • Organic compounds that are liquid in the temperature range can be used. Such an organic compound can be suitably used as a dispersion medium under FT reaction conditions. Examples of the organic compound include hydrocarbon compounds and oxygen-containing hydrocarbon compounds.
  • hydrocarbon compound examples include paraffin having about 10 to 100 carbon atoms such as decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, and eicosane, and a mixture thereof.
  • Paraffins having about 10 to 100 carbon atoms commonly called FT wax
  • commercially available polyalphaolefins having about 10 to 100 carbon atoms can also be used.
  • the oxygen-containing hydrocarbon compound preferably has 10 to 100 carbon atoms such as decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, and eicosadecanol.
  • the organic compound is preferably a hydrocarbon compound.
  • the ratio of the catalyst (D) and the dispersion medium is basically arbitrary, but the dispersion medium is preferably 1 mL or more and 10 L or less, more preferably 5 mL or more and 2 L or less with respect to 1 g of the catalyst (D). Yes, and more preferably 10 mL or more and 1 L or less.
  • the reaction temperature is preferably 100 ° C. or more and 600 ° C. or less, the reaction temperature is preferably 200 ° C. or more and 500 ° C. or less, more preferably 250 ° C. or more.
  • the temperature is more preferably 400 ° C. or lower, and particularly preferably 250 ° C. or higher and 350 ° C. or lower.
  • the FT reaction in the method for producing C2 to C4 olefins of the present embodiment is carried out by the ratio (W / F) of the mass (W) (g) of the catalyst to the supply rate (F) (mol / h) per mole of synthesis gas.
  • the reaction volume (V) (mL) is expressed as the ratio (V / F ′) of the feed rate per volume of synthesis gas (F ′) (mL / h), It is preferably 1.0 ⁇ 10 ⁇ 5 h or more and 50 h or less, more preferably 1.0 ⁇ 10 ⁇ 3 h or more and 20 h or less, and further preferably 4.0 ⁇ 10 ⁇ 3 h or more and 5 h or less.
  • the product of the FT reaction is obtained as a mixture of a plurality of compounds (hydrocarbons), and the abundance ratio of each compound in this product can be analyzed using a known gas chromatography technique. Thereby, the composition of each hydrocarbon component obtained by the FT reaction can be calculated.
  • a hydrocarbon product having a high content of olefins having 2 to 4 carbon atoms can be obtained by the above-described production method.
  • the content of the olefin having 2 to 4 carbon atoms is the total number of carbon atoms constituting the olefin having 2 to 4 carbon atoms with respect to the total number of carbon atoms constituting the hydrocarbon product obtained by the above production method.
  • the ratio is preferably 18% or more and 100% or less, more preferably 24% or more and 100% or less, further preferably 30% or more and 100% or less, and 35% or more and 100% or less. Is particularly preferable, and is more preferably 40% or more and 100% or less.
  • the content of olefins having 2 to 4 carbon atoms, particularly propylene, in the product can be improved.
  • the method further comprises the step of catalytically decomposing the product obtained in the step of reacting the synthesis gas and the catalyst (D) after the step of reacting the synthesis gas and the catalyst (D). May be.
  • the step of catalytic decomposition include the same step as the second step in the second embodiment described later.
  • the method for producing an olefin having 2 to 4 carbon atoms is a first method for producing a hydrocarbon product by reacting a synthesis gas with a catalyst (E) in the presence of a dispersion medium in a Fischer-Tropsch reaction.
  • a cracking catalyst comprising a zeolite containing one or more elements selected from the group consisting of alkali metals, alkaline earth metals and transition metals; and And a second step of catalytic decomposition. This can further improve the content of olefins having 2 to 4 carbon atoms, particularly propylene.
  • the first step is a step of reacting at least one type of catalyst (E) selected from the group consisting of the following catalysts (A) to (C) with synthesis gas in the presence of a dispersion medium in a Fischer-Tropsch reaction. It is desirable to provide.
  • the catalyst may be a catalyst excluding the catalyst obtained by reducing the cobalt ions and iron ions in a dispersion or solution containing iron ions and the cobalt ions and a dispersant that interacts with the iron ions.
  • a catalyst (B) the same catalyst as used in the first embodiment can be mentioned.
  • the catalyst (A) may further contain one or more metal elements selected from the group consisting of cobalt, nickel, and ruthenium. Further, the catalyst (B) may further contain one or more metal elements selected from the group consisting of iron, alkali metal, alkaline earth metal, nickel and ruthenium. Further, the catalyst (C) may further contain one or more metal elements selected from the group consisting of iron, alkali metals, alkaline earth metals, and cobalt. Catalysts (A) to (C) may be used in combination.
  • the catalysts (A) to (C) may contain 1 to 3 kinds of other transition metal elements as promoters.
  • the transition metal element include manganese, copper, zinc, titanium, zirconium, lanthanum, and cerium, more preferably manganese and copper, and particularly preferably manganese.
  • the iron content relative to the total number of moles of iron, alkali metal, alkaline earth metal and transition metal element as a promoter is 50 mol% to 90 mol%.
  • the total content of alkali metals and alkaline earth metals is preferably 0.5 mol% to 10 mol%, and the total content of transition metal elements as cocatalysts is preferably 9.5 mol% to 48 mol%.
  • the iron content is 50 mol% to 90 mol%, the total content of alkali metals and alkaline earth metals is 0.5 mol% to 10 mol%, and the total content of transition metal elements as a promoter is 9 mol%. More preferably, the content is 5 mol% to 45 mol%.
  • the mass ratio of cobalt and the transition metal element as a cocatalyst is expressed as [total of transition metal elements as cocatalyst / cobalt], 0.01 It is preferably 5 or less.
  • the catalyst (C) contains a transition metal element as a cocatalyst, the mass ratio of nickel or ruthenium and the transition metal element as a cocatalyst is expressed by [total of transition metal elements as cocatalyst / nickel or ruthenium]. It is preferable that it is 0.01 or more and 5 or less.
  • the catalyst (E) used in the method for producing a C2 to C4 olefin of the present embodiment is preferably the catalyst (A) or the catalyst (B), and the catalyst (A) further contains manganese, Element: (1) iron and manganese, and element: (2) a catalyst containing 1 to 3 types of metal elements selected from the group consisting of alkali metal elements and alkaline earth metal elements; or catalyst (B) is more preferred.
  • the catalyst (A) contains iron so that the reactivity of the FT reaction is easily secured.
  • the catalyst may contain cobalt or copper. Containing copper is preferable because reduction of iron is promoted in the activation treatment described later.
  • the element (2) is preferably lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium or barium, more preferably sodium, potassium, rubidium, cesium, magnesium, calcium, strontium or barium. More preferred are sodium, potassium, magnesium and calcium, and particularly preferred are potassium and magnesium.
  • the element (2) contained in the catalyst (E) is magnesium, a gas shift reaction (reaction in which carbon monoxide and water react to generate carbon dioxide and hydrogen, which is a competitive reaction of the FT reaction). ) Can be suppressed, which is preferable.
  • the molar ratio of the element (1) and the element (2) contained in the catalyst (E) is the number of moles of iron relative to the total number of moles of metal elements in iron, manganese and the element (2).
  • the ratio is a mole%
  • the mole ratio of manganese is b mole%
  • the catalyst (B) preferably contains cobalt, which suppresses the gas shift reaction.
  • the catalyst (B) may contain manganese, zinc, or the like. Containing manganese or zinc is preferable because the olefin ratio in the hydrocarbon produced by the FT reaction increases.
  • the amount of manganese contained in the catalyst (B) is preferably 0.01 times or more and 5 times or less (mass) with respect to the amount of cobalt, preferably 0.1 times or more and 4 times or less (mass). It is more preferable that it is 0.5 times or more and 4 times or less (mass).
  • the amount of zinc is preferably 0.01 times or more and 5 times or less (mass) with respect to the cobalt content, more preferably 0.01 times or more and 1 time or less (mass). The amount is more preferably 0.01 times or more and 0.2 times or less (mass).
  • the catalyst (E) used in the method for producing a C2 to C4 olefin of this embodiment may be a catalyst containing the following elements (3) and (4).
  • the molar ratio of the element (3) to the element (4) contained in the catalyst (E) is 5 to 180, expressed as [total of element (3) / total of element (4)]. Is preferred. By controlling the molar ratio of the catalyst in this way, it becomes easy to ensure the reactivity of the FT reaction.
  • the catalyst (E) used in the method for producing a C2 to C4 olefin of the present embodiment is preferably a combination of iron and potassium as a catalyst metal, and the molar ratio thereof is represented by [iron / potassium] and is 5 to 180. Is preferred.
  • the catalyst (E) may contain manganese.
  • the iron content relative to the total number of moles of iron, manganese and potassium is 50 to 90 mol%, and the manganese content is 9.5 to 48 mol%, potassium content is preferably 0.5-10 mol%, iron content is 50-90 mol%, manganese content is 9.5-45 mol%, potassium content Is more preferably 0.5 to 10 mol%.
  • the molar ratio of metals contained in the catalyst is determined by energy dispersive X-ray fluorescence analysis (hereinafter sometimes referred to as “EDS analysis”) or inductively coupled plasma emission analysis (hereinafter referred to as “ICP”). It may be referred to as “luminescence analysis”).
  • EDS analysis energy dispersive X-ray fluorescence analysis
  • ICP inductively coupled plasma emission analysis
  • the production method of the catalyst (E) is not particularly limited, (I) Step of preparing transition metal salt solution or dispersion (ii) Step of mixing the solution or dispersion prepared in step (i) with a precipitant to produce a precipitate to obtain a suspension (Iii) After separating the precipitate from the suspension obtained in step (ii), the obtained precipitate is washed and dried to obtain a dried product (iv) Obtained in step (iii) The step of impregnating the dried product with an alkali metal salt or alkaline earth metal salt to obtain an impregnated product (v) The step of obtaining the catalyst by subjecting the impregnated product obtained in step (iv) to heat treatment It is desirable to include. However, if unnecessary, step (iv) can be omitted as appropriate. Details will be described below.
  • step (i) a transition metal salt solution or dispersion is prepared.
  • the resulting catalyst is excellent in solubility in water because it can be easily removed in the purification step.
  • salts include salts such as acetate, fluoride, chloride, bromide, iodide, carbonate, sulfate, nitrate and hydrates thereof, and metal complexes. Can do. Of these, carbonates and nitrates are preferred, and nitrates are more preferred because the anion content can be easily removed by heating.
  • the transition metal in the transition metal salt include iron, cobalt, nickel, manganese, copper, zinc, titanium, zirconium, lanthanum, and cerium.
  • transition metal salt examples include cobalt nitrate, iron nitrate, nickel nitrate, manganese nitrate, copper nitrate, and zinc nitrate.
  • a combination of iron nitrate and manganese nitrate is preferable, and the molar ratio is preferably 1.22 to 8.95, expressed as [iron nitrate / manganese nitrate].
  • the solution or dispersion can be prepared by adding the above-described transition metal salt to a solvent and dissolving or dispersing the transition metal salt. Moreover, it is good also as preparing a mixed solution or a mixed dispersion by mixing the above-mentioned several transition metal salt suitably.
  • the content of metal ions in the solution or dispersion is preferably in the range of 3 ⁇ 10 ⁇ 7 to 20% by mass with respect to the mass of the solution or dispersion. The range is more preferably 20% by mass or less, and further preferably 3 ⁇ 10 ⁇ 3% by mass to 20% by mass. If it is this range, a catalyst can be suitably manufactured, without a metal component being too few for manufacture of a catalyst, and without agglomerating because there are too many metal components.
  • the solvent used is preferably a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • Methanol, ethanol, propanol, and ethylene glycol are preferable, and water is particularly preferable.
  • a dispersant for improving dispersibility may be used in combination when preparing the dispersion.
  • the dispersant include water-soluble polymers. Specifically, polymers having an alkylene ether structure such as polyethylene glycol (PEG) and polypropylene glycol; polyvinyl alcohol; polyvinyl ether; polyacrylate; polyvinyl pyrrolidone (PVP); poly (mercaptomethylenestyrene-N-vinyl-2-pyrrolidone) ); And polyacrylonitrile.
  • step (ii) the solution or dispersion prepared in step (i) and the precipitant are mixed to generate a precipitate, thereby obtaining a suspension.
  • the “precipitating agent” is one that dissolves in a solvent to generate hydroxide ions.
  • a “precipitant solution” is a solution in which a precipitant is dissolved in a solvent.
  • the precipitating agent is not particularly limited as long as it has such properties, but an alkaline compound is preferably used.
  • As the precipitant for example, sodium hydroxide, potassium hydroxide, ammonia, urea, ammonium carbonate and the like can be used. Of these, ammonia, urea, and ammonium carbonate are preferred, and ammonia is more preferred from the viewpoint of containing no metal ions and easily controlling the metal composition in the catalyst.
  • the amount of the precipitant used is preferably 1 to 50 times (molar amount) with respect to the molar amount of the transition metal salt in the solution or dispersion obtained in step (i),
  • the amount is preferably 2 times or more and 30 times or less (molar amount), more preferably 5 times or more and 20 times or less (molar amount).
  • step (ii) for example, the solution or dispersion and suspension obtained in step (i) are prepared using the amount of the precipitant described above.
  • the concentration of the precipitant is preferably in the range of 0.1% by mass to 50% by mass, and preferably in the range of 1% by mass to 30% by mass with respect to the mass of the precipitant solution. Is more preferable, and the range of 5% by mass or more and 25% by mass or less is more preferable.
  • the precipitant solution and the solution or dispersion prepared in the step (i) are co-flowed to be 0.1 to 10 hours, preferably 0.5 to 5 hours, more preferably 1 to 3 hours.
  • the solution is dropped into the container for a period of time or less, and after the completion of the dropwise addition, it is continuously stirred for 0.5 to 8 hours, preferably 0.5 to 6 hours, more preferably 0.5 to 4 hours. Then, it is preferable to leave still for 8 hours or more and 48 hours or less.
  • the metal ion contained in the solution or dispersion obtained in step (i) is precipitated as a hydroxide, and a suspension in which the generated hydroxide is suspended is obtained.
  • the pH of the suspension is preferably from 7 to 14, and more preferably from 8 to 14.
  • step (iii) after separating the precipitate (hydroxide) from the suspension obtained in step (ii), the obtained precipitate is washed and dried to obtain a dried product.
  • the precipitate is washed with, for example, water, and then dried to obtain a dried product.
  • the drying temperature at the time of obtaining the dried product may be a temperature at which moisture can be substantially removed, preferably 20 ° C. or higher and 150 ° C. or lower, more preferably 60 ° C. or higher and 130 ° C. or lower.
  • the drying time is preferably 1 hour to 48 hours, more preferably 12 hours to 36 hours.
  • step (iv) the dried product obtained in (iii) is impregnated with an alkali metal salt or an alkaline earth metal salt to obtain an impregnated product.
  • a commonly used method such as an impregnation method or an ion exchange method can be appropriately selected.
  • a particularly preferred method is an impregnation method, and an especially preferred method among the impregnation methods is the Incipient Wetness method.
  • the Incipient Wetness method is a method in which a solution having the same volume as the pore volume of a porous material is impregnated.
  • the pore volume is A ⁇ B (cm 3 ).
  • the solution having the same volume as this A ⁇ B (cm 3 ) is impregnated.
  • the pore volume ratio in a certain pore diameter that is, the pore diameter distribution can be measured by a general gas adsorption method. More specifically, a solution containing an alkali metal salt or an alkaline earth metal salt is prepared in the same volume as the pore volume of the dried product obtained in (iii), and the dried product obtained in (iii) is prepared. Impregnate. When impregnating a plurality of metals, either simultaneous impregnation or sequential impregnation can be selected, but simultaneous impregnation is preferred.
  • alkali metal salt or alkaline earth metal salt salts having high solubility in water are preferable, and carbonates and nitrates are more preferably used.
  • the salt is preferably lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, more preferably sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, More preferred are sodium, potassium, magnesium and calcium, and particularly preferred are potassium and magnesium.
  • concentration of the alkali metal salt or alkaline earth metal salt in the alkali metal salt or alkaline earth metal salt solution is 1% by mass to 70% by mass with respect to the total mass of the solution. Preferably, 5 mass% or more and 50 mass% or less are more preferable.
  • the solvent used for the alkali metal salt or alkaline earth metal salt solution since inorganic salts have high solubility, water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N -A polar solvent such as methylpyrrolidone is preferred, more preferably water, methanol, ethanol, propanol, or ethylene glycol, and particularly preferably water. These solvents may be used by mixing a plurality of them.
  • the temperature for obtaining the impregnated material is preferably 10 ° C. or higher and lower than 100 ° C., more preferably 20 ° C. or higher and 80 ° C. or lower, and further preferably 20 ° C. or higher and 60 ° C. or lower.
  • the impregnation time is preferably from 0.1 hours to 3 hours, more preferably from 0.5 hours to 2 hours, and further preferably from 0.5 hours to 1 hour.
  • the temperature at which the impregnated product obtained in step (iv) is heated is preferably 300 ° C. or higher and 800 ° C. or lower, preferably 300 ° C. or higher and 600 ° C. or lower, because it can be sufficiently dehydrated and converted to an oxide. More preferably, it is 400 degreeC or more and 600 degrees C or less.
  • the heating time is preferably 1 hour or more and 48 hours or less, more preferably 1 hour or more and 24 hours or less, and further preferably 1 hour or more and 12 hours or less.
  • the catalyst (E) obtained by the above-described production method may be used as it is, or may be used after performing some kind of treatment such as pulverization, molding, and sizing in advance.
  • the catalyst (E) Prior to use in the FT reaction, the catalyst (E) is reduced and activated in a hydrogen atmosphere at normal pressure or higher and 10 MPa or lower or in a synthesis gas atmosphere at normal pressure or higher and 10 MPa or lower at 200 to 500 ° C. for 1 to 24 hours. Can be made. Such activation treatment is generally performed in this field and is recommended for efficient activation.
  • the synthesis gas used here has a molar ratio of hydrogen to carbon monoxide of preferably 0.5 to 5, and preferably 0.5 to 2, expressed as [hydrogen / carbon monoxide]. More preferred.
  • the gas used in the activation process may be referred to as “reducing gas” in order to distinguish it from the synthesis gas used in the FT reaction.
  • the temperature for the activation treatment is preferably 250 ° C. or higher and 450 ° C. or lower, and more preferably 280 ° C. or higher and 430 ° C. or lower.
  • the pressure for the activation treatment is preferably from normal pressure to 10 MPa, more preferably from normal pressure to 3 MPa.
  • the time for the activation treatment is preferably 5 hours to 15 hours, more preferably 8 hours to 12 hours.
  • the ratio (W / F) of the ratio of the catalyst mass (W) (g) to the synthesis gas supply rate (F) (mol / h) is 0.01 g ⁇ h / mol to 500 g ⁇ h / mol or less, preferably 1 g ⁇ h / mol or more and 100 g ⁇ h / mol or less, more preferably 5 g ⁇ h / mol or more and 30 g ⁇ h / mol or less.
  • H 2 / CO molar ratio
  • the reducing gas and the synthesis gas used in the reaction may be the same gas.
  • the catalyst (E) used in the method for producing a C2 to C4 olefin of the present embodiment may be composed of only the above-described oxide-based catalyst.
  • Other components such as carbon support, alumina, silica, titania, zirconia, magnesia, ceria, zinc oxide, polymer (polyethylene glycol, polyacrylate, polymethacrylate, polyvinylpyrrolidone, etc.) may be included. These components can also be used as a carrier.
  • a carbon carrier As a preferable carrier component in the catalyst (A), a carbon carrier can be exemplified.
  • the carbon carrier include activated carbon, carbon black, carbon nanofiber, carbon nanotube, and fullerene, preferably activated carbon, carbon black, carbon nanofiber, and carbon nanotube, more preferably activated carbon and carbon black. Particularly preferred is activated carbon.
  • preferred carrier components in the catalyst (B) include alumina, silica, titania, zirconia, magnesia, ceria and zinc oxide.
  • a support having both large pores (peak pore diameter of 30 nm or more and 300 nm or less) and small pores (peak pore diameter of less than 30 nm) can be used.
  • the pore volume ratio at a certain pore diameter that is, the pore diameter distribution, can be measured by an automatic adsorption measuring apparatus such as Autosorb-1 (manufactured by Cantachrome Instruments) by the BJH method (using nitrogen as a probe).
  • the pore diameter at which the number of pores having the pore diameter is maximized is referred to as “peak pore diameter”.
  • the pore volume of large pores is preferably 30% to 90%, more preferably 50% to 90%, and more preferably 60% to 90% of the total pore volume. % Is more preferable.
  • the pore volume with small pores is preferably 10% to 70% of the total pore volume, more preferably 10% to 50%, and more preferably 10% to 40%. % Is more preferable.
  • the carrier having both the large pores and the small pores described above is obtained by impregnating a carrier having only one kind of pores with a dispersion of nanoparticles or a solution of a transition metal salt, and heat-treating the obtained impregnated product.
  • a carrier having only one type of pore is referred to as a “raw material carrier”, and a carrier having both large pores and small pores is referred to as a “carrier having two types of pores”.
  • the type of the raw material carrier is not particularly limited, but preferably has a pore diameter of 10 nm to 500 nm, more preferably 30 nm to 400 nm, and particularly preferably 30 nm to 300 nm.
  • the raw material carrier for example, alumina, silica, titania, zirconia, magnesia, ceria, zinc oxide and the like can be used, and silica is preferable.
  • the nanoparticles used for the preparation of the carrier having two kinds of pores are not particularly limited as long as they are supported in the pores of the raw material carrier, but the dispersed particle size obtained by the dynamic light scattering method is 0.1 nm to 50 nm. Those of 1 nm to 30 nm are more preferable, and those of 5 nm to 25 nm are particularly preferably used.
  • Examples of nanoparticles that can be used include aluminum, silicon, titanium, zirconium, magnesium, cerium, manganese, zinc oxides, composite oxides, hydroxides, and composite hydroxides, preferably silica and zirconia. . A plurality of dispersions containing these nanoparticles may be used.
  • the metal salt used for the preparation of the carrier having two kinds of pores is preferably excellent in solubility in water because it can be easily removed in the purification step of the catalyst obtained.
  • Such salts include, for example, salts such as acetate, fluoride, chloride, bromide, iodide, sulfate, nitrate, oxychloride, oxynitrate and hydrates thereof, and Mention may be made of metal complexes.
  • nitrate is preferably used because it is easy to remove the anion content by heating.
  • the transition metal in the transition metal salt include iron, cobalt, nickel, manganese, copper, zinc, titanium, zirconium, lanthanum, and cerium.
  • the transition metal salt solution can be prepared by adding the above transition metal salt to a solvent and dissolving the transition metal salt. Moreover, it is good also as preparing a mixed solution or a mixed dispersion by mixing the above-mentioned several transition metal salt suitably.
  • the solvent used is preferably a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • a polar solvent such as water, methanol, ethanol, propanol, and ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • examples include methanol, ethanol, propanol, and ethylene glycol, and water is particularly preferable. These solvents may be used by mixing a plurality of them.
  • the temperature during the heat treatment is preferably 200 ° C. or higher and 800 ° C. or lower, and more preferably 300 ° C. or higher and 700 ° C. or lower.
  • the heating time is preferably 1 hour or more and 48 hours or less, and more preferably 1 hour or more and 10 hours or less.
  • the content of the catalyst metal in the catalyst (E) (meaning a metal that does not correspond to the support component in the catalyst (E) including the support component) is the light olefin of this embodiment.
  • the catalyst used in the production reaction is not particularly limited as long as it has a ratio capable of exhibiting good catalytic ability.
  • the ratio of the catalyst metal in the catalyst (E) may be less than 100% by mass with respect to the total mass of the catalyst, preferably 1% by mass to 99% by mass, and preferably 3% by mass to 97% by mass. More preferably, it is 5% by mass or more and 95% by mass or less.
  • the amount of the carrier component is preferably 1% by mass to 99% by mass, more preferably 3% by mass to 97% by mass, and more preferably 5% by mass with respect to the total mass of the catalyst. The amount is more preferably 95 mass or less.
  • a commonly used method such as a precipitation method, a gelation method, an impregnation method, or an ion exchange method can be appropriately selected.
  • a particularly preferable method for introducing the carrier component into the catalyst (A) is to disperse the carrier component in the solution or dispersion in step (i) and add the precipitant in step (ii) together with the precipitate generated.
  • a method of precipitation is preferred.
  • the amount of the carrier component added to the solution or dispersion in step (i) is such that the ratio of the catalyst metal in the catalyst is 1% by mass to 99% by mass with respect to the total mass of the catalyst (A).
  • the amount is preferably 3% by mass or more and 97% by mass or less, more preferably 5% by mass or more and 95% by mass or less.
  • a method for introducing the carrier component into the catalyst (B) a method in which a solution of a cobalt salt is introduced using an impregnation method and the impregnated product is heat-treated is preferable. At that time, a solution containing manganese or zinc as a cocatalyst can be impregnated simultaneously or sequentially.
  • cobalt salt to be used examples include nitrates, acetates, carbonates, sulfates, etc., preferably nitrates.
  • the cobalt salt solution can be prepared by adding the above cobalt salt to a solvent and dissolving the cobalt salt.
  • the solvent used is preferably a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • a polar solvent such as water, methanol, ethanol, propanol, and ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because of the high solubility of inorganic salts.
  • examples include methanol, ethanol, propanol, and ethylene glycol, and water is particularly preferable. These solvents may be used by mixing a plurality of them.
  • impregnation method Various known methods can be used as the impregnation method, but it is preferable to use the Incipient Wetness method.
  • the heating temperature is preferably from 300 ° C. to 800 ° C., and the heating time is preferably from 1 hour to 48 hours.
  • the catalyst used for the FT reaction can be prepared.
  • a gas containing hydrogen and carbon monoxide, a gas containing hydrogen and carbon dioxide, a gas containing hydrogen, carbon monoxide, and carbon dioxide may be used. It can. Especially, it is preferable in the sum total of hydrogen and carbon monoxide being 50 volume% or more and 100 volume% or less with respect to the volume of the whole synthesis gas. When such a synthesis gas is used, productivity is increased.
  • the molar ratio of hydrogen and carbon monoxide in the synthesis gas is not less than 0.3, expressed in [hydrogen / carbon monoxide], because the hydrogenation reaction of carbon monoxide proceeds and the productivity increases. Is preferred.
  • the molar ratio of hydrogen to carbon monoxide in the synthesis gas is preferably 3 or less.
  • the molar ratio between hydrogen and carbon monoxide in the synthesis gas is more preferably 0.5 or more and 3.0 or less, and further preferably 0.5 or more and 2.5 or less, expressed as [hydrogen / carbon monoxide]. 0.6 to 2.0 is particularly preferable.
  • FT reaction In the FT reaction of the present invention, it is a feature that a dispersion medium is used. Due to the effect that the hydrocarbon product is immediately extracted from the catalyst by the dispersion medium, the carbon number of the hydrocarbon product is hardly increased. It is estimated that a hydrocarbon product with a high content of olefins having 2 to 4 atoms can be obtained. In the FT reaction, it is desirable that the above-mentioned synthesis gas and the above-mentioned catalyst are reacted in a continuous manner using a slurry bed liquid phase synthesis process.
  • the pressure of the FT reaction is preferably from 0.1 MPa to 30 MPa, more preferably from 0.1 MPa to 10 MPa, and particularly preferably from 0.5 MPa to 3 MPa.
  • the “pressure of the FT reaction” means the pressure in the reaction vessel.
  • a dispersion medium it is preferable to use an organic compound that is liquid at the reaction temperature and reaction pressure in the step of reacting the synthesis gas and the catalyst (D).
  • an organic compound that becomes liquid in a temperature range of 100 ° C. to 600 ° C. under normal pressure can be used.
  • an organic compound that is liquid in a temperature range of a ° C. or more and b ° C.” means “an organic compound that is liquid in a temperature range of a ° C. or more and b ° C. or less”.
  • the normal pressure means 0.1 MPa.
  • the dispersion medium is preferably 150 ° C. or higher and 400 ° C. or lower under normal pressure, more preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 330 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower under normal pressure.
  • Organic compounds that are liquid in the temperature range can be used. Such an organic compound can be suitably used as a dispersion medium under FT reaction conditions. Examples of the organic compound include hydrocarbon compounds and oxygen-containing hydrocarbon compounds.
  • hydrocarbon compound examples include paraffin having about 10 to 100 carbon atoms such as decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, and eicosane, and a mixture thereof.
  • Paraffins having about 10 to 100 carbon atoms commonly called FT wax
  • commercially available polyalphaolefins having about 10 to 100 carbon atoms can also be used.
  • the oxygen-containing hydrocarbon compound preferably has 10 to 100 carbon atoms such as decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, and eicosadecanol.
  • the organic compound is preferably a hydrocarbon compound.
  • the ratio of the catalyst (E) and the dispersion medium is basically arbitrary, but preferably the dispersion medium is 1 mL or more and 10 L or less, more preferably 5 mL or more and 2 L or less with respect to 1 g of the catalyst (E). Yes, and more preferably 10 mL or more and 1 L or less.
  • the reaction temperature is preferably 100 ° C. or more and 600 ° C. or less, the reaction temperature is preferably 200 ° C. or more and 500 ° C. or less, more preferably 250 ° C. or more.
  • the temperature is more preferably 400 ° C. or lower, and particularly preferably 250 ° C. or higher and 350 ° C. or lower.
  • the FT reaction in the method for producing C2 to C4 olefins of the present embodiment is carried out by the ratio (W / F) of the mass (W) (g) of the catalyst to the supply rate (F) (mol / h) per mole of synthesis gas.
  • the reaction volume (V) (mL) is expressed as the ratio (V / F ′) of the feed rate per volume of synthesis gas (F ′) (mL / h), It is preferably 1.0 ⁇ 10 ⁇ 5 h or more and 50 h or less, more preferably 1.0 ⁇ 10 ⁇ 3 h or more and 20 h or less, and further preferably 4.0 ⁇ 10 ⁇ 3 h or more and 5 h or less.
  • a product obtained by the FT reaction is obtained as a mixture of a plurality of compounds (hydrocarbons), and the abundance ratio of each compound in the product can be analyzed using a known gas chromatography technique. Thereby, the composition of each hydrocarbon component obtained by the FT reaction can be calculated.
  • the hydrocarbon compound produced by the FT reaction in the first step preferably contains an olefin containing an olefin having 2 to 4 carbon atoms in an amount of more than 20 carbon mol% and not more than 100 carbon mol%. More preferably, it is contained in an amount of not more than mol%, more preferably not less than 60 carbon mol% and not more than 100 carbon mol%. That is, in the hydrocarbon compound produced in the first step, the total amount of olefins combining olefins having 2 to 4 carbon atoms and olefins having 5 or more carbon atoms is more than 20 carbon mol% and not more than 100 carbon mol%.
  • Carbon mol% means “a ratio of the total number of carbon atoms constituting the olefin to the total number of carbon atoms constituting the obtained hydrocarbon product”.
  • the content of olefin having 2 to 4 carbon atoms, particularly propylene can be further improved by catalytic cracking in the second step. it can.
  • the hydrocarbon compound produced by the FT reaction in the first step preferably contains propylene in an amount of 3 carbon mol% to 100 carbon mol%, more preferably 5 carbon mol% to 100 carbon mol%. Preferably, it contains 10 carbon mol% or more and 100 carbon mol% or less.
  • reaction conditions such as the type of FT reaction catalyst and temperature conditions may be appropriately selected so that a hydrocarbon compound containing olefin is obtained at the above-described ratio.
  • the second step includes a step of catalytically cracking the hydrocarbon product obtained in the first step in the presence of a cracking catalyst.
  • a cracking catalyst By providing catalytic cracking as the second step, the content of olefins having 2 to 4 carbon atoms, particularly propylene, can be further improved.
  • a reactor generally known as a reactor used for catalytic cracking such as a fixed bed reactor, a moving bed reactor, and a fluidized bed reactor, can be used as the reactor.
  • FIG. 1 is a diagram showing an example of a production apparatus for carrying out the method for producing an olefin having 2 to 4 carbon atoms according to the present embodiment, and includes a first step (FT reaction) and a second step (catalytic cracking reaction).
  • FIG. 2 is a schematic view showing an apparatus for producing an olefin having 2 to 4 carbon atoms.
  • the apparatus for producing an olefin having 2 to 4 carbon atoms shown in FIG. 1 includes a tank 1 that contains synthesis gas, a first reactor 2 that performs the first step using the synthesis gas supplied from the tank 1, A second reactor 4 that performs catalytic cracking using the reaction product obtained in one reactor 2.
  • the tank 1, the first reactor 2, and the second reactor 4 are connected in this order.
  • a back pressure valve 3 is provided between the first reactor 2 and the second reactor 4 to adjust the pressure of each reactor of the first reactor 2 and the second reactor 4.
  • the facility for producing olefins having 2 to 4 carbon atoms may be appropriately provided with a cooling trap for catching the liquid product.
  • a cracking catalyst comprising a zeolite containing one or more elements selected from the group consisting of alkali metals, alkaline earth metals and transition metals is used.
  • the zeolite either a natural zeolite or a synthetic zeolite can be used as long as the metal is introduced, and ZSM-5 type is preferably used.
  • the molar ratio between SiO 2 and Al 2 O 3 is represented by [SiO 2 / Al 2 O 3 ] and is 50 or more and 4000 or less (the molar ratio between Si and Al (hereinafter referred to as “Si / Al The ratio is also preferably 25 to 2000 in terms of [Si / Al], more preferably 90 to 1000 (Si / Al ratio 45 to 500), and 200 or more. Those having 800 or less (Si / Al ratio of 100 or more and 400 or less) are particularly preferable.
  • the acid properties such as the acid strength and density and the durability of the decomposition catalyst can be improved by treatment with a phosphorus-containing compound, a lanthanum-containing compound, an alkaline earth metal-containing compound, or the like.
  • Zeolite means “crystalline porous aluminosilicate and metallosilicate” according to a general definition.
  • the unit cell composition of ZSM-5 is represented by M n [Al n Si 96-n O 192 ] ⁇ xH 2 O.
  • M is a cation such as a proton, ammonium cation or metal cation
  • n is a number greater than 0 and less than 27
  • x is a number greater than or equal to 0.
  • a compound in which M is a proton may be particularly referred to as HZSM-5.
  • the cracking catalyst is preferably a zeolite containing one or more elements selected from the group consisting of alkali metals, alkaline earth metals and d-block elements, and “d-block elements” means group 3 in the periodic table. It refers to elements other than lanthanoids and actinoids among group 12 elements. It is preferable that these metal elements are contained in the zeolite in an amount of 0.01% by mass to 30% by mass with respect to the total mass of the decomposition catalyst (the mass after introducing these metals into the zeolite). More preferably, the content is from 05% by mass to 20% by mass, and particularly preferably from 0.1% by mass to 10% by mass.
  • these metal elements are preferably introduced into the zeolite via a metal-oxygen bond.
  • a metal-oxygen bond Specifically, Ba—O bond, Mn—O bond, Cu—O bond and the like can be mentioned. Of these, a Ba—O bond is preferable.
  • the metal element content ratio (molar ratio) is preferably 50 to 4000/1 / 0.1 to 50 expressed as [SiO 2 / Al 2 O 3 / oxide of metal element]. More specifically, the barium content ratio (molar ratio) is represented by [SiO 2 / Al 2 O 3 / BaO], and is preferably 50 to 4000/1 / 0.1 to 50.
  • the alkali metal contained in the zeolite is preferably lithium, sodium, potassium, rubidium or cesium.
  • the alkaline earth metal contained in the zeolite is preferably beryllium, magnesium, calcium, strontium, barium, more preferably magnesium, calcium, strontium, barium, more preferably magnesium, calcium, barium, Particularly preferred are calcium and barium.
  • Examples of d-block elements contained in the zeolite include scandium, titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, hafnium, Tantalum, tungsten, rhenium, osmium, iridium, platinum, and gold are more preferable, and vanadium, manganese, iron, cobalt, copper, niobium, molybdenum, silver, tantalum, and tungsten are more preferable, and manganese, iron, cobalt, copper Further, silver is more preferable, manganese, copper, and silver are still more preferable, and manganese and copper are particularly preferable.
  • the element contained in the zeolite is more preferably an alkaline earth metal or d-block element, particularly preferably an alkaline earth metal.
  • the zeolite (preferably ZSM-5) contains an alkali metal, an alkaline earth metal and a d-block element. Can be selected as appropriate. In terms of uniformly containing the metal, a method of introduction at the time of zeolite production is preferable, and in terms of easy use of commercially available zeolite, a method of introduction after the production of zeolite is preferable. These methods can be appropriately selected to prepare a cracking catalyst from the zeolite used and the ease of maintenance of production equipment using the production method of the present embodiment.
  • the molar ratio of the elements constituting the decomposition catalyst can be determined by inductively coupled plasma emission analysis (hereinafter sometimes referred to as “ICP analysis”).
  • the decomposition catalyst When introducing an alkali metal, an alkaline earth metal or a transition metal (preferably a d-block element) during the production of the zeolite, the decomposition catalyst includes a silicon source, an aluminum source, a structure-directing agent, a solvent, and a metal element to be introduced into the zeolite. It can be produced by charging a mixture of raw materials (introduced element source) into a pressure vessel and reacting them. As reaction temperature, 50 to 250 degreeC is preferable, and 100 to 200 degreeC is more preferable. The reaction time is preferably from 0.1 hour to 150 hours, more preferably from 1 hour to 120 hours.
  • reaction temperature 50 to 250 degreeC is preferable, and 100 to 200 degreeC is more preferable.
  • the reaction time is preferably from 0.1 hour to 150 hours, more preferably from 1 hour to 120 hours.
  • the obtained product may be subsequently subjected to a baking treatment at a predetermined temperature and time (for example, 300 ° C. to 800 ° C. for 1 hour to 48 hours).
  • the silicon source, the aluminum source, the structure directing agent, and the introduced element source are reacted in appropriate amounts so as to obtain a target composition. In either case, only one type may be used, or two or more types may be used in combination.
  • Silicon source is a compound containing silicon, and means a raw material that can be a constituent component of the decomposition catalyst zeolite.
  • the silicon source is not particularly limited as long as it can be a constituent component of zeolite.
  • silicon source examples include tetraalkyl orthosilicate, silica, silica gel, pyrogenic silica, precipitated silica, colloidal silica, water glass, wet silica, amorphous silica, fumed silica, sodium silicate, kaolinite, diatomaceous earth, An aluminum silicate etc. are mentioned, Preferably a tetraalkyl orthosilicate and a fumed silica are mentioned.
  • the “aluminum source” is a compound containing aluminum and means a raw material that can be a constituent component of the cracking catalyst zeolite.
  • the aluminum source is not particularly limited as long as it can be a constituent component of zeolite.
  • Examples of the aluminum source include aluminate, aluminum oxide, boehmite, aluminum oxyhydroxide, aluminum hydroxide, aluminum salt (such as aluminum chloride, aluminum nitrate, and aluminum sulfate), aluminum alkoxide (such as aluminum isopropoxide), and alumina.
  • Examples thereof include white and aluminum fluoride, preferably aluminum nitrate and aluminum oxide.
  • a “structure-directing agent” is a compound for determining the structure of a zeolite.
  • the structure directing agent is not particularly limited, and various known structure directing agents can be used. For example, organic bases, particularly quaternary ammonium compounds, amines and the like can be mentioned.
  • tetramethylammonium tetraethylammonium, tetrapropylammonium, tetra-n-butylammonium, benzyltrimethylammonium, 3- (trifluoromethyl) phenyltrimethylammonium and n-hexa are used as quaternary ammonium compounds.
  • Examples include hydroxide salt, phosphate salt, fluoride salt, chloride salt, bromide salt and acetate salt of decyltrimethylammonium, and the amines include dipropylamine, triethylamine, cyclohexylamine, 1-methylamidazole, morpholine, Examples include pyridine, piperidine, diethylethanolamine and the like.
  • the structure directing agent is preferably a quaternary ammonium compound such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetra n-butylammonium hydroxide, benzyltrimethylammonium hydroxide, or an amine such as dipropyl. Examples include amine, triethylamine, morpholine, pyridine, and piperidine.
  • the structure-directing agent include quaternary ammonium compounds such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetra-n-butylammonium hydroxide, and benzyltrimethylammonium hydroxide. More preferred is tetrapropylammonium hydroxide.
  • Introduced element source is a compound containing one or more elements selected from the group consisting of alkali metals, alkaline earth metals and transition metals introduced into the zeolite of the cracking catalyst. There is no particular limitation as long as it can be a constituent component of the catalyst zeolite. For example, a metal salt, a metal complex, etc. can be mentioned.
  • an introduced element source carbonate, nitrate, nitrite, sulfate, sulfite, acetate, formate, phosphate, hydrogen phosphate, dihydrogen phosphate of the metal element to be introduced , Fluoride salts, chloride salts, bromide salts, iodide salts, hydroxide salts, acetylacetonato complexes and the like.
  • nitrates, carbonates, and acetates are preferably used because the anion content can be easily removed by heating.
  • the metal element in these compounds used as the introduced element source is desirably one or more elements selected from the group consisting of alkali metals, alkaline earth metals and d-block elements.
  • lithium, sodium, potassium, rubidium, and cesium are preferable.
  • the alkaline earth metal contained in the introduced element source is preferably beryllium, magnesium, calcium, strontium, barium, more preferably magnesium, calcium, strontium, barium, and more preferably magnesium, calcium, barium, Particularly preferred are calcium and barium.
  • the d-block elements contained in the introduced element source are scandium, titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, hafnium, It is preferably tantalum, tungsten, rhenium, osmium, iridium, platinum or gold, more preferably vanadium, manganese, iron, cobalt, copper, niobium, molybdenum, silver, tantalum, tungsten, manganese, iron, cobalt , Copper and silver are more preferable, manganese, copper and silver are still more preferable, and copper and manganese are particularly preferable.
  • the metal element contained in the introduced element source is preferably an alkaline earth metal and a d-block element, more preferably an alkaline earth metal.
  • the introduced element source copper acetate, copper nitrate, manganese acetate, manganese nitrate, barium acetate, barium nitrate, calcium acetate, calcium nitrate are preferable, and barium acetate, barium nitrate, calcium acetate, calcium nitrate are more preferable. preferable.
  • a solvent generally used at the time of zeolite production may be used, for example, water, alcohol compound, nitrile compound, amide compound, Aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ether compounds, halogenated hydrocarbons, ester compounds and the like can be mentioned.
  • Preferred are water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone, and more preferred are water, methanol, ethanol, propanol, and ethylene glycol.
  • These solvents may be used by mixing a plurality of them.
  • the cracking catalyst synthesizes zeolite using a mixture obtained by removing the introduced element source from the mixture in the above-described cracking catalyst production method, and the resulting zeolite is later composed of alkali metal, alkaline earth metal, and transition metal. It can also be produced by introducing one or more metal elements selected from the group.
  • the obtained product may be subsequently subjected to a baking treatment at a predetermined temperature and time (for example, 300 ° C. to 800 ° C. for 1 hour to 48 hours).
  • the zeolite As a method of introducing later, it can be performed by a generally known method using a salt solution containing an introduced metal element.
  • the zeolite is immersed in a salt solution containing the introduced metal element, and is allowed to stand or stir. At this time, it is allowed to stand or stir at a temperature of 0 ° C. or higher and lower than 100 ° C., preferably 20 ° C. or higher and 80 ° C. or lower, for 0.1 hour or longer and 24 hours or shorter, preferably 1 hour or longer and 6 hours or shorter.
  • the introduced metal element can be introduced into the zeolite by evaporating the obtained slurry to dryness or filtering and drying. Evaporation to dryness is performed at a temperature of 20 ° C.
  • the filtration and drying may be performed by washing with the above-mentioned solvent after filtration, and then at a temperature of 20 to 150 ° C., preferably 60 to 130 ° C., for 1 to 48 hours, preferably 12 to 36 hours. Dry for less than an hour.
  • the introduction of the introduced metal element may be repeated a plurality of times as necessary, and the number of times is not particularly limited.
  • a salt containing an introduced metal element carbonate, nitrate, nitrite, sulfate, sulfite, acetate, formate, phosphate, hydrogen phosphate, dihydrogen phosphate of the introduced metal element
  • examples thereof include salts, fluoride salts, chloride salts, bromide salts, iodide salts, hydroxide salts, and acetylacetonato complexes.
  • nitrates and acetates are preferably used because the anion content can be easily removed by heating.
  • the introduced metal element is preferably a metal selected from the group consisting of alkali metals, alkaline earth metals and d-block elements.
  • lithium, sodium, potassium, rubidium and cesium are preferable.
  • the alkaline earth metal to be introduced is preferably beryllium, magnesium, calcium, strontium or barium, more preferably magnesium, calcium, strontium or barium, still more preferably magnesium, calcium or barium, particularly preferably. Examples include calcium and barium.
  • the introduced d-block elements are scandium, titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten , Rhenium, osmium, iridium, platinum or gold, preferably vanadium, manganese, iron, cobalt, copper, niobium, molybdenum, silver, tantalum, tungsten, manganese, iron, cobalt, copper, Silver is more preferable, manganese, copper, and silver are still more preferable, and copper and manganese are particularly preferable.
  • the introduced metal element is more preferably an alkaline earth metal.
  • a solution of the salt containing the introduced element can be obtained by dissolving the introduced element salt in a solvent.
  • the zeolite is immersed in a salt solution containing the introduced metal element, and is left standing or stirred.
  • the introduced metal element can be introduced into the zeolite by evaporating the obtained slurry to dryness or filtering and drying.
  • the solvent is preferably a polar solvent such as water, methanol, ethanol, propanol, ethylene glycol, acetonitrile, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, more preferably water, because the introduced element salt has high solubility.
  • Methanol, ethanol, propanol, and ethylene glycol and particularly preferably water. These solvents may be used by mixing a plurality of them.
  • the cracking catalyst tends to be affected by performance deterioration due to carbon deposition caused by a side reaction of the catalytic cracking reaction as the particle diameter increases, and therefore the particle diameter is preferably 5 ⁇ m or less, and preferably 3 ⁇ m or less. More preferably, it is 0.01 ⁇ m or more and 2.5 ⁇ m or less, and particularly preferably 0.01 ⁇ m or more and 2 ⁇ m or less.
  • the decomposition catalyst may be used after appropriately performing some kind of treatment such as pulverization, molding, and sizing in advance.
  • the temperature range of the catalytic cracking is preferably 300 ° C. or higher and 800 ° C. or lower, more preferably 350 ° C. or higher and 650 ° C. or lower, and further preferably 400 ° C. or higher and 600 ° C. or lower.
  • the reaction pressure for the catalytic cracking is preferably 0.01 MPa or more and 1 MPa or less, more preferably 0.01 MPa or more and 0.5 MPa or less, and further preferably 0.05 MPa or more and 0.2 MPa or less.
  • a hydrocarbon product having a high content of olefins having 2 to 4 carbon atoms can be obtained by the above-described production method.
  • the content of the olefin having 2 to 4 carbon atoms is the total number of carbon atoms constituting the olefin having 2 to 4 carbon atoms with respect to the total number of carbon atoms constituting the hydrocarbon product obtained by the above production method.
  • the ratio is preferably 18% or more and 100% or less, more preferably 24% or more and 100% or less, further preferably 30% or more and 100% or less, and 35% or more and 100% or less. Is particularly preferable, and is more preferably 40% or more and 100% or less.
  • the content of olefins having 2 to 4 carbon atoms, particularly propylene, in the product can be improved.
  • the second embodiment is preferable to the first embodiment.
  • EDS analysis The EDS analysis was performed using an energy dispersive fluorescent X-ray analyzer (manufactured by Shimadzu Corporation, RaynyEDX-700).
  • ICP analysis ICP analysis was performed using an inductively coupled plasma emission spectrometer (ICPE-9000, manufactured by Shimadzu Corporation).
  • Example 1 Fe (NO 3) 3 ⁇ 9H 2 O (20.2g), Mn (NO 3) 2 ⁇ 6H 2 O (2.2g), Cu (NO 3) 2 ⁇ 3H 2 weighed O a (1.8 g) And dissolved in water (300 ml) to prepare a Fe—Mn—Cu solution. Further, 28% NH 4 OH aqueous solution (80 ml) was weighed and water (420 ml) was added to prepare an NH 4 OH solution.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • Catalyst 1 (1 g) and polyalphaolefin (20 ml, number average molecular weight 735) were added to a reaction vessel having an internal volume of 85 ml equipped with a stirrer.
  • a synthesis gas H 2 / CO ratio of 0.97 the ratio of the feed rate of the synthesis gas (F) (mol / h) of the catalyst to the mass (W) (g) (hereinafter, "W / The flow rate was 10 g ⁇ h / mol (sometimes referred to as “F ratio”), and the activation treatment was performed at 300 ° C. for 10 hours.
  • the synthesis gas used in the FT reaction described later was used as the reducing gas for the activation treatment.
  • a synthesis gas having an H 2 / CO ratio of 0.97 was flowed at 1 MPa at a W / F ratio of 10 g ⁇ h / mol, and an FT reaction was performed at 280 ° C. for 8 hours.
  • the product produced by the reaction was analyzed by gas chromatography to calculate the CO conversion, propylene selectivity, and C2-C4 olefin selectivity.
  • Example 2 Fe (NO 3) 3 ⁇ 9H 2 O (20.2g), Mn (NO 3) 2 ⁇ 6H 2 O (2.2g), Cu (NO 3) 2 ⁇ 3H 2 weighed O a (1.8 g) Then, it was dissolved in water (300 ml) to prepare a Fe—Mn—Cu solution. In addition, Na 2 CO 3 (15 g) was weighed and water (300 ml) was added to prepare a Na 2 CO 3 solution.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • Example 3 Fe (NO 3) 3 ⁇ 9H 2 O (20.2g), were weighed Mn (NO 3) 2 ⁇ 6H 2 O (4.39g), was prepared Fe-Mn solution was dissolved in water (300 ml). In addition, Na 2 CO 3 (16.5 g) was weighed and water (300 ml) was added to prepare a Na 2 CO 3 solution.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • Example 4 Fe (NO 3) 3 ⁇ 9H 2 O (20.2g), Mn (NO 3) 2 ⁇ 6H 2 O (2.2g), was weighed KNO 3 a (0.126 g), dissolved in ethylene glycol (20ml) Then, 40% by mass aqueous ethanol solution (5 ml) was added. Polymethacrylate (mixture of MX-500 (6 g) manufactured by Soken Chemical Co., Ltd. and MX-150 (12 g) manufactured by Soken Chemical Co., Ltd.) was added thereto and immersed for 5 hours to cause precipitation. The resulting precipitate was filtered and dried at 120 ° C. overnight. In the atmosphere, the dried product was introduced into an electric furnace, heated from room temperature to 400 ° C.
  • Example 5 Fe (NO 3) 3 ⁇ 9H 2 O (20.2g), were weighed Mn (NO 3) 2 ⁇ 6H 2 O (4.39g), was prepared Fe-Mn solution was dissolved in water (300 ml). Further, (NH 4 ) 2 CO 3 (11.5 g) was weighed and water (300 ml) was added to prepare a (NH 4 ) 2 CO 3 solution.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • Example 6 Fe (NO 3) 3 ⁇ 9H 2 O (20.2g), were weighed Mn (NO 3) 2 ⁇ 6H 2 O (4.39g), was prepared Fe-Mn solution was dissolved in water (200 ml). Further, a 28% NH 4 OH aqueous solution (30.0 ml) was weighed and water (170 ml) was added to prepare an NH 4 OH solution.
  • Activated carbon (4 g, Wako Pure Chemical Industries, Ltd.) and water (300 ml) were weighed into a beaker and heated to 60 ° C., and the above-mentioned Fe—Mn solution was added dropwise to the water in the beaker over 1 hour with stirring.
  • the NH 4 OH solution was previously added to the water in the beaker to adjust the pH to about 8, and then the dropping of the Fe—Mn solution was started.
  • the NH 4 OH solution was dropped while measuring the pH of the reaction mixture so that the pH of the reaction mixture in the beaker was maintained at about pH 8. After dropping, the mixture was stirred for 1 hour, and the resulting reaction mixture was allowed to stand at room temperature for 12 hours to cause precipitation.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • Catalyst 6 (1 g) and polyalphaolefin (20 ml, Mn735) are added to a reaction vessel having an internal volume of 85 ml equipped with a stirrer, and a reducing gas having a H 2 / CO ratio of 0.67 is 0.1 MPa, reducing gas.
  • a reducing gas having a H 2 / CO ratio of 0.67 is 0.1 MPa, reducing gas.
  • W catalyst mass
  • F mol / h
  • a synthesis gas having an H 2 / CO ratio of 0.97 was flowed at a W / F ratio of 10 g ⁇ h / mol under the condition of 1 MPa, and an FT reaction was performed at 280 ° C. for 8 hours.
  • the product produced by the reaction was analyzed by gas chromatography to calculate the CO conversion, propylene selectivity, and C2-C4 olefin selectivity.
  • Example 7 Fe (NO 3) 3 ⁇ 9H 2 O (40.43g), was weighed Mn (NO 3) 2 ⁇ 6H 2 O (8.78g), was prepared Fe-Mn solution was dissolved in water (300 ml). In addition, an NH 4 OH solution was prepared by weighing 28% NH 4 OH aqueous solution (90 ml).
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • K 2 CO 3 (0.0173 g) was weighed and dissolved in water (4.29 g) to prepare a K 2 CO 3 solution.
  • the above pulverized product was dispersed in the obtained K 2 CO 3 solution, and this dispersion was subjected to ultrasonic treatment for 30 minutes and stirred.
  • the resulting mixture was then kept under vacuum at room temperature for 1 hour and then dried at 120 ° C. overnight.
  • the obtained dried product was pulverized in an agate bowl.
  • the pulverized product was introduced into an electric furnace in the atmosphere, heated from room temperature to 400 ° C. over 80 minutes, held at 400 ° C. for 3 hours, and heat-treated to obtain catalyst 7 (11.32 g). .
  • FT reaction was performed in the same manner as in Example 1 except that catalyst 7 (1 g) was used instead of catalyst 1 and that the FT reaction time was 6 hours.
  • Example 8 Fe (NO 3 ) 3 ⁇ 9H 2 O (20.2 g) and Mn (NO 3 ) 2 ⁇ 6H 2 O (6.46 g) were weighed and dissolved in water (300 ml) to prepare a Fe—Mn solution.
  • a catalyst 8 (6.2333 g) was obtained in the same manner as in Example 7 except that the prepared Fe—Mn solution was used.
  • the FT reaction was performed in the same manner as in Example 1 except that catalyst 8 (1 g) was used instead of catalyst 1.
  • Example 10 Fe (NO 3) 3 ⁇ 9H 2 O (20.2g), were weighed Mn (NO 3) 2 ⁇ 6H 2 O (10.76g), was prepared Fe-Mn solution was dissolved in water (300 ml).
  • a catalyst (6.87 g) was obtained in the same manner as in Example 7 except that the prepared Fe—Mn solution was used.
  • Powdered activated carbon (Dazai S, Phutamura Chemical Co., Ltd., 4 g) and water (200 ml) are weighed in a beaker and heated to 60 ° C., and the above-described Fe—Mn solution and the above-mentioned NH 4 OH solution are simultaneously stirred for 1 hour It was dripped over. At that time, the NH 4 OH solution was previously added to the water in the beaker to adjust the pH to about 8, and then the dropping of the Fe—Mn solution was started. Further, during the dropwise addition of the Fe—Mn solution, the NH 4 OH solution was dropped while measuring the pH of the reaction mixture so that the pH of the reaction mixture in the beaker was maintained at about pH 8. After dripping, after stirring for 30 hours, the obtained reaction mixture was left to stand for 16 hours to cause precipitation.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • K 2 CO 3 (0.086 g) was weighed and dissolved in water (20 g) to prepare a K 2 CO 3 solution.
  • the above pulverized product was dispersed in the obtained K 2 CO 3 solution, and this dispersion was subjected to ultrasonic treatment for 30 minutes and stirred.
  • the resulting mixture was then kept under vacuum at room temperature for 1 hour and then dried at 120 ° C. overnight.
  • the obtained dried product was pulverized in an agate bowl.
  • the pulverized product was introduced into an electric furnace, heated in an Ar atmosphere from room temperature to 400 ° C. over 80 minutes, held at 400 ° C. for 3 hours, and heat-treated to obtain catalyst 11 (10.17 g). It was.
  • the FT reaction was performed in the same manner as in Example 7 except that the catalyst 11 (1 g) was used instead of the catalyst 1.
  • Example 12 Fe (NO 3 ) 3 ⁇ 9H 2 O (20.2 g) and Mn (NO 3 ) 2 ⁇ 6H 2 O (8.79 g) were weighed and dissolved in water (300 ml) to prepare a Fe—Mn solution. Further, a 28% NH 4 OH aqueous solution (45.0 ml) was weighed and water (300 ml) was added to prepare an NH 4 OH solution.
  • Carbon black (Ketjen Black EC600JD, Lion Co., Ltd., 4 g) and water (200 ml) are weighed in a beaker and heated to 60 ° C., and the above-described Fe—Mn solution and the above-mentioned NH 4 OH solution are simultaneously added to the beaker while stirring. It was added dropwise over time. At that time, the NH 4 OH solution was previously added to the water in the beaker to adjust the pH to about 8, and then the dropping of the Fe—Mn solution was started. Further, during the dropwise addition of the Fe—Mn solution, the NH 4 OH solution was dropped while measuring the pH of the reaction mixture so that the pH of the reaction mixture in the beaker was maintained at about pH 8. After dripping, after stirring for 30 hours, the obtained reaction mixture was left to stand for 16 hours to cause precipitation.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • K 2 CO 3 (0.086 g) was weighed and dissolved in water (10 g) to prepare a K 2 CO 3 solution.
  • the above pulverized product was dispersed in the obtained K 2 CO 3 solution, and this dispersion was subjected to ultrasonic treatment for 30 minutes and stirred.
  • the resulting mixture was then kept under vacuum at room temperature for 1 hour and then dried at 120 ° C. overnight.
  • the obtained dried product was pulverized in an agate bowl.
  • the pulverized product was introduced into an electric furnace, heated in an Ar atmosphere from room temperature to 400 ° C. over 80 minutes, held at 400 ° C. for 3 hours, and heat-treated to obtain catalyst 12 (10.15 g). It was.
  • the NH 4 OH solution was previously added to the water in the beaker to adjust the pH to about 8, and then the dropping of the Fe—Mn solution was started. Further, during the dropwise addition of the Fe—Mn solution, the NH 4 OH solution was dropped while measuring the pH of the reaction mixture so that the pH of the reaction mixture in the beaker was maintained at about pH 8. After dripping, after stirring for 30 hours, the obtained reaction mixture was left to stand for 16 hours to cause precipitation.
  • the produced precipitate was washed by filtration and dried overnight at 120 ° C. to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • Mg (NO 3 ) 2 (0.639 g) was weighed and dissolved in water (3 g) to prepare a Mg (NO 3 ) 2 solution.
  • the above pulverized product was dispersed in the obtained Mg (NO 3 ) 2 solution, and this dispersion was subjected to ultrasonic treatment for 30 minutes and stirred.
  • the resulting mixture was then kept under vacuum at room temperature for 1 hour and then dried at 120 ° C. overnight.
  • the obtained dried product was pulverized in an agate bowl.
  • the catalyst containing Fe, Mn, and Mg is introduced into the electric furnace in the atmosphere, heated from room temperature to 400 ° C. over 80 minutes, held at 400 ° C. for 3 hours, and heat-treated. 13 was obtained (6.870 g).
  • Example 14 Catalyst 9 (1 g) and polyalphaolefin (20 ml, number average molecular weight 735) were added to a reaction vessel having an internal volume of 85 ml equipped with a stirrer. A synthesis gas having an H 2 / CO ratio of 0.97 was flowed at 0.1 MPa and a W / F ratio of 10 g ⁇ h / mol, and activation treatment was performed at 300 ° C. for 10 hours. Here, the synthesis gas used in the FT reaction described later was used as the reducing gas for the activation treatment.
  • a synthesis gas having an H 2 / CO ratio of 0.97 was flowed at 1 MPa at a W / F ratio of 10 g ⁇ h / mol, and an FT reaction was performed at 260 ° C. for 8 hours.
  • the product produced by the reaction was analyzed by gas chromatography to calculate the CO conversion, propylene selectivity, and C2-C4 olefin selectivity.
  • conversion rate (%) is the ratio of the amount of CO consumed by the FT reaction (number of moles) to the amount of CO used (number of moles). The value obtained by “CO amount) / (raw material CO amount)] ⁇ 100” (%) was adopted. Further, the conversion rate was calculated based on the ratio of CO amount in the mixture (remaining raw material and product mixture) after the FT reaction using the activated catalyst.
  • the “selectivity” (%) is the ratio of the number of moles of carbon atoms contained in propylene to the number of moles of carbon atoms contained in all hydrocarbons produced by the FT reaction, or the C2-C4 olefin. It is the ratio of the number of moles of carbon atoms contained therein.
  • the selectivity for propylene is "[(amount of moles of carbon atoms contained in the resulting propylene) / (amount of moles of carbon atoms contained in the resulting total hydrocarbons)] x 100" (%) The value obtained in is adopted.
  • the selectivity of the C2 to C4 olefin is “[(amount of moles of carbon atoms contained in the resulting C2 to C4 olefin) / amount of moles of carbon atoms contained in the total hydrocarbons produced”. )] ⁇ 100 ”(%).
  • Examples 1 to 14 were found to have good C2 to C4 light olefin selectivity and propylene selectivity.
  • Example 6 was found to have higher light olefin selectivity and propylene selectivity of C2 to C4 than other Examples 1 to 5 and Examples 7 to 14.
  • Comparative Example 1 The results of Comparative Example 1 are shown in Table 2 below. For comparison, the results of Example 7 are also shown.
  • the “conversion rate” (%) in Table 2 is the same as in Table 1.
  • “Selectivity” (%) in Table 2 is the ratio of the number of moles of carbon atoms contained in propylene to the number of moles of carbon atoms contained in all hydrocarbons produced after catalytic cracking, or C 2 The ratio of the number of moles of carbon atoms contained in a C4 olefin.
  • Example 7 using the dispersion medium was found to have higher C2-C4 light olefin selectivity and propylene selectivity than Comparative Example 1 using no dispersion medium. From these results, the usefulness of the first embodiment was confirmed.
  • Example 15 10% tetrapropylammonium hydroxide aqueous solution (6.506g), Al (NO 3 ) 3 ⁇ 9H 2 O (0.029g), Ba (CH 3 COO) 2 (0.097g), deionized water (8.555G ), Tetraethyl orthosilicate (TEOS) (2.227 g) is gradually added to a solution containing ethanol (1.968 g) and vigorously stirred to obtain a uniform sol, and hydrothermal synthesis is performed at 180 ° C. for 24 hours. Precipitation occurred. The obtained precipitate was washed by filtration and dried at 120 ° C. to obtain a dried product. The obtained dried product was calcined in the atmosphere at 550 ° C.
  • TEOS Tetraethyl orthosilicate
  • a slurry bed reactor having an internal volume of 85 mL equipped with a stirrer, a fixed bed reactor connected to the slurry bed reactor via a pipe, and a pipe between the slurry bed reactor and the fixed bed reactor.
  • the following reaction was performed using a production apparatus having a back pressure valve.
  • the slurry bed reactor is a reactor that performs the first step (FT reaction) of the present invention
  • the fixed bed reactor is a reactor that performs the second step (catalytic cracking reaction) of the present invention. This corresponds to the manufacturing apparatus shown in FIG.
  • Catalyst 9 (1.0 g) polyalphaolefin (20 ml, number average molecular weight 735) described above.
  • a synthesis gas having an H 2 / CO ratio of 0.97 was flowed at 0.1 MPa and a W / F ratio of 10 g ⁇ h / mol, and an activation treatment was performed at 300 ° C. for 10 hours.
  • a synthesis gas having an H 2 / CO ratio of 0.97 was flowed at a W / F ratio of 20 g ⁇ h / mol under the condition of 1.0 MPa, and a FT reaction was performed at 280 ° C. for 6 hours to synthesize a hydrocarbon compound. .
  • the produced hydrocarbon compound was passed through a back pressure valve maintained at 100 ° C. and passed through a fixed bed reactor filled with a catalyst (0.3 g) prepared in the same manner as the cracking catalyst 1 described above.
  • a catalyst 0.3 g prepared in the same manner as the cracking catalyst 1 described above.
  • catalytic cracking was performed at 550 ° C. under normal pressure to obtain a cracked product.
  • the treatment time for catalytic cracking was 6 hours, starting with the FT reaction.
  • a gas component and a liquid component were separated from the decomposition product by passing through an ice-cooled trap, and analyzed using gas chromatography.
  • the synthesis gas flow rate during synthesis of the hydrocarbon compound after the activation treatment was set to a W / F ratio of 10 g ⁇ h / mol
  • it was prepared in the same manner as the cracking catalyst 2 A decomposition product was obtained in the same manner as in Example 15 except that the catalyst was used and the reaction temperature in the catalytic cracking reaction was 500 ° C.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 15.
  • the synthesis gas flow rate during the synthesis of the hydrocarbon compound after the activation treatment was set to a W / F ratio of 10 g ⁇ h / mol
  • a decomposition product was obtained in the same manner as in Example 15 except that the catalyst was used.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 15.
  • Example 18 10% by mass tetrapropylammonium hydroxide aqueous solution (6.507 g), aluminum nitrate nonahydrate (0.029 g), barium acetate (0.010 g), ion-exchanged water (8.544 g) and ethanol (1.968 g)
  • 2.250 g was gradually added and stirred vigorously to obtain a uniform sol, and hydrothermal synthesis was performed at 180 ° C. for 24 hours.
  • the obtained precipitate was dried at 120 ° C. and then calcined at 550 ° C. for 5 hours to obtain 0.603 g of decomposition catalyst 4.
  • a decomposition product was obtained in the same manner as in Example 17 except that instead of the decomposition catalyst 3, a catalyst obtained by the same method as the above-described decomposition catalyst 4 was used.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 17.
  • a decomposition product was obtained in the same manner as in Example 17 except that instead of the decomposition catalyst 3, a catalyst obtained by the same method as the above-described decomposition catalyst 5 was used.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 17.
  • a decomposition product was obtained in the same manner as in Example 17 except that instead of the decomposition catalyst 2, a catalyst obtained by the same method as the above-described decomposition catalyst 6 was used.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 17.
  • a decomposition product was obtained in the same manner as in Example 17 except that instead of the decomposition catalyst 2, a catalyst obtained by the same method as the above-described decomposition catalyst 7 was used.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 17.
  • a decomposition product was obtained in the same manner as in Example 17 except that instead of the decomposition catalyst 2, a catalyst obtained by the same method as the above-described decomposition catalyst 8 was used.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 17.
  • a decomposition product was obtained in the same manner as in Example 17 except that instead of the decomposition catalyst 2, a catalyst obtained by the same method as the above-described decomposition catalyst 9 was used.
  • the decomposition product was analyzed using gas chromatography in the same manner as in Example 17.
  • Example 24 Fe (NO 3) 3 ⁇ 9H 2 O (40.41g), Co (NO 3) 2 ⁇ 6H 2 O (29.11g), was weighed Mn (NO 3) 2 ⁇ 6H 2 O (28.71g) Then, it was dissolved in water (140 ml) to prepare a Fe—Co—Mn solution. Further, Na 2 CO 3 (42.40 g) was weighed and dissolved in water (200 ml) to prepare a Na 2 CO 3 solution. The above-mentioned Fe—Co—Mn solution was transferred to a beaker, heated to 60 ° C., and the above-mentioned Na 2 CO 3 solution was added dropwise over 2 hours with stirring.
  • the generated precipitate was washed by filtration and dried at 120 ° C. for 12 hours to obtain a dried product.
  • the obtained dried product was pulverized in an agate bowl to obtain a pulverized product.
  • the pulverized product was introduced into an electric furnace in the atmosphere, heated from room temperature to 600 ° C. over 2.5 hours, held at 600 ° C. for 6 hours, and heat-treated to obtain catalyst 14 (21.47 g). Obtained.
  • the catalyst 14 (1.5 g) was filled in a quartz tube, hydrogen gas (80 ml / min) was passed as a reducing gas, treated at 400 ° C. for 10 hours, and then cooled to room temperature while flowing nitrogen gas. A gas having an oxygen / argon ratio of 0.01 (15 ml / min) was allowed to flow there for 4 hours. Thus, the hydrogen-treated catalyst 14 was obtained.
  • hydrotreated catalyst 14 (1.0 g) polyalphaolefin (20 ml, number average molecular weight 735) prepared by the procedure described above.
  • a synthesis gas having a H 2 / CO ratio of 0.97 was flowed at 0.1 ml and 40 ml / min, and held at 240 ° C. for 1 hour. Thereafter, a synthesis gas having an H 2 / CO ratio of 0.97 was flowed at a W / F ratio of 10 g ⁇ h / mol under the condition of 1 MPa, and the treatment was performed at 240 ° C. for 6 hours.
  • a synthesis gas having an H 2 / CO ratio of 0.97 was flowed at a W / F ratio of 10 g ⁇ h / mol under the condition of 1 MPa, and an FT reaction was performed at 280 ° C. for 6 hours.
  • the produced hydrocarbon compound was passed through a back pressure valve maintained at 100 ° C. and passed through a fixed bed reactor filled with a catalyst (0.3 g) prepared in the same manner as the cracking catalyst 4 described above.
  • a catalyst 0.3 g prepared in the same manner as the cracking catalyst 4 described above.
  • catalytic cracking was carried out at 550 ° C. under normal pressure to obtain a cracked product.
  • the treatment time for catalytic cracking was 6 hours, starting with the FT reaction.
  • a gas component and a liquid component were separated from the decomposition product by passing through an ice-cooled trap, and analyzed using gas chromatography.
  • CARiACT Q-50 (manufactured by Fuji Silysia Chemical Ltd., 5.5 g) was heated from room temperature to 300 ° C. over 1 hour in an air atmosphere and then held at 300 ° C. for 2 hours.
  • This CARiACT Q-50 was transferred to an evaporating dish, and impregnated with a zirconia dispersion (2.25 g, ZR-30BFN, manufactured by Nissan Chemical Co., Ltd., zirconia solid content 30.5% by mass) by the Incipient Wetness method.
  • the impregnated product was heated from room temperature to 600 ° C. over 1 hour in an air atmosphere and then held at 600 ° C. for 2 hours.
  • This heat-treated impregnated product was transferred to an evaporating dish, and impregnated with a Co solution (prepared by dissolving Co (NO 3 ) 2 .6H 2 O (3.54 g) in water (4.20 g)) by the Incipient Wetness method.
  • the impregnated material was dried at 120 ° C. for 12 hours in the air atmosphere, then heated from room temperature to 400 ° C. over 3 hours in the air atmosphere, then held at 400 ° C. for 2 hours and heat-treated to thereby prepare the catalyst 15. (6.93 g) was obtained.
  • the catalyst 15 (1.5 g) was filled in a quartz tube, hydrogen gas (40 ml / min) was passed as a reducing gas, treated at 400 ° C. for 10 hours, and then cooled to room temperature while flowing nitrogen gas. A gas having an oxygen / argon ratio of 0.01 (15 ml / min) was allowed to flow there for 4 hours. In this way, a hydrogen-treated catalyst 15 was obtained.
  • the hydrogen-treated catalyst 15 (1 g) and hexadecane (20 ml) prepared by the above method were added to a reaction vessel with an internal volume of 85 ml equipped with a stirrer, and a reducing gas having an H 2 / CO ratio of 2 was added to 0.1 MPa.
  • a synthesis gas having an H 2 / CO ratio of 2 was further allowed to flow at a W / F ratio of 10 g ⁇ h / mol under the condition of 0.5 MPa, and an FT reaction was performed at 220 ° C. for 6 hours.
  • the produced hydrocarbon compound was passed through a back pressure valve maintained at 100 ° C. and passed through a fixed bed reactor filled with a catalyst (0.3 g) prepared in the same manner as the cracking catalyst 4 described above.
  • a catalyst 0.3 g prepared in the same manner as the cracking catalyst 4 described above.
  • catalytic cracking was performed at 550 ° C. under normal pressure to obtain a cracked product.
  • the treatment time for catalytic cracking was 6 hours, starting with the FT reaction.
  • a gas component and a liquid component were separated from the decomposition product by passing through an ice-cooled trap, and analyzed using gas chromatography.
  • Example 3 The results are shown in Table 3 below for Examples 15 to 25 as the second embodiment and Example 9 as the first embodiment.
  • the “conversion rate” (%) in Table 3 is the same as in Table 1.
  • “Selectivity” (%) in Table 3 is the ratio of the number of moles of carbon atoms contained in propylene to the number of moles of carbon atoms contained in all hydrocarbons produced after catalytic cracking, or C 2 The ratio of the number of moles of carbon atoms contained in a C4 olefin.
  • C2 to C4 light olefins can be selectively produced by the FT reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

フィッシャー・トロプシュ反応において、下記(A)~(C)からなる群から選ばれる少なくとも1種類の触媒(D)を、分散媒共存下にて、合成ガスと反応させる工程を備える炭素原子数2~4のオレフィンの製造方法であって、前記(A)触媒が、鉄を含み、且つ、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素を含む触媒であり、前記(B)触媒が、コバルトを含む触媒であって、ただし、前記触媒(B)は、コバルトイオン及び鉄イオンと、前記コバルトイオン及び鉄イオンと相互作用する分散剤と、を含む分散液又は溶解液中で、前記コバルトイオン及び鉄イオンを還元して得られた触媒を除く触媒であり、前記(C)が、ニッケル又はルテニウムを含む触媒である、炭素原子数2~4のオレフィンの製造方法。

Description

炭素原子数2~4のオレフィンの製造方法及びプロピレンの製造方法
 本発明は、フィッシャー・トロプシュ反応を用いた炭素原子数2~4のオレフィン(以下、「軽質オレフィン」と呼ぶ場合がある。)の製造方法及びプロピレンの製造方法に関する。
 本願は、2012年8月10日に、日本に出願された特願2012-178547号、及び2013年2月28日に、日本に出願された特願2013-040103号に基づき優先権を主張し、その内容をここに援用する。
一酸化炭素及び水素の混合物(以下、「合成ガス」と称することがある)から炭化水素を合成する反応として、フィッシャー・トロプシュ反応(以下、「FT反応」と称することがある。)が知られている。FT反応は、金属触媒を用いた反応であり、反応式は、以下の式(1)の通りに表される。
nCO+2nH → (CH+nHO   …(1)
従来、FT反応による炭化水素の合成は、飽和炭化水素を目的物とするものがほとんどであった。そのような飽和炭化水素は、水素化分解・異性化などさまざまな工程を経て、燃料や潤滑油として使用されている。
従来のFT反応においては、飽和炭化水素が生成すると同時に、不飽和炭化水素やアルコールなどの含酸素化合物も生成し得る。しかし、従来のFT反応におけるこれらの化合物の選択率は、非常に低いものであった。
 一方、エチレン、プロピレン、ブテンなどの低級(炭素数の少ない)オレフィンは、原料化合物として幅広く用いられている。例えばプロピレンは、ポリプロピレン製造のための出発物質として用いられている。近年では、FT反応を用いたオレフィン製造の検討がなされている。
例えば、特許文献1及び2は、マンガン系化合物を担体とする鉄系触媒を用いた、高収率でのオレフィン製造を目的とするFT反応について開示している。
特公昭56-48491号公報 米国特許第4177203号明細書
しかしながら、特許文献1及び2に開示された触媒又は方法は、反応生成物に含まれる不飽和炭化水素、特に炭素原子数2~4の軽質オレフィン(以下、「C2~C4オレフィン」と称することもある)の含有率の点で必ずしも十分とは言えず、改善が求められていた。
なお、以下の説明においては、反応生成物に含まれる不飽和炭化水素の含有率のことを、「不飽和炭化水素の選択率」と称することがある。また、反応生成物に含まれるC2~C4オレフィンの含有率のことを、「C2~C4オレフィンの選択率」と称することがある。同様に、反応生成物に含まれる具体的な化合物(例えばプロピレン)の含有率のことを、前記化合物の選択率と称することがある。
本発明はこのような事情に鑑みてなされたものであって、高い選択率を達成することが可能な炭素原子数2~4の軽質オレフィンの製造方法、特にプロピレンの選択性が高い製造方法を提供することを目的とする。
 上記課題を解決するため、本発明の第一の態様としては、以下の通りである。
[1]フィッシャー・トロプシュ反応において、触媒(A)~(C)からなる群から選ばれる少なくとも1種類の触媒(D)を、分散媒共存下にて、合成ガスと反応させる工程を備える炭素原子数2~4のオレフィンの製造方法であって、
前記触媒(A)が、鉄を含み、且つ、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素を含む触媒であって、
前記触媒(B)が、コバルトを含む触媒であって、ただし、前記触媒(B)は、コバルトイオン及び鉄イオンと、前記コバルトイオン及び鉄イオンと相互作用する分散剤と、を含む分散液又は溶解液中で、前記コバルトイオン及び鉄イオンを還元して得られた触媒を除く触媒であり、
前記触媒(C)が、ニッケル又はルテニウムを含む触媒である、炭素原子数2~4のオレフィンの製造方法。
[2]前記触媒(D)が、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン及びセリウムからなる群から選ばれる1~3種類の元素をさらに含む[1]に記載の炭素原子数2~4のオレフィンの製造方法。
[3]前記触媒(D)が、元素(1)及び元素(2)を含み、且つ、限定(3)を満たす[1]又は[2]に記載の炭素原子数2~4のオレフィンの製造方法であって、
 前記元素(1)が、鉄及びマンガンであり、
 前記元素(2)が、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素であり、
 前記限定(3)が、鉄、マンガン及び前記元素(2)中の金属元素の総モル数に対する、鉄のモル比をaモル%、マンガンのモル比をbモル%、前記元素(2)中の元金属素の合計のモル比をcモル%としたとき、50≦a≦90、9.5≦b≦48、0.5≦c≦10であり、ただし、a+b+c=100である、炭素原子数2~4のオレフィンの製造方法。
[4]前記触媒(D)が、炭素担体をさらに含む[1]~[3]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[5]前記合成ガスが、水素及び一酸化炭素を含み、且つ、一酸化炭素に対する水素のモル比が[水素/一酸化炭素]で表して、0.3以上3以下である[1]~[4]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[6]前記合成ガスと触媒(D)とを反応させる工程における反応温度が100℃以上600℃以下である[1]~[5]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[7]前記合成ガスと触媒(D)とを反応させる工程における反応圧力が0.1MPa以上50MPa以下である[1]~[6]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[8]前記分散媒が、常圧下100℃以上600℃以下の温度範囲で液状となる有機化合物である[1]~[7]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[9]前記合成ガスと触媒(D)とを反応させる工程で得られる炭化水素生成物を構成する全炭素原子数に対する、炭素原子数2~4のオレフィンを構成する全炭素原子数の割合が、18%以上である[1]~[8]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[10]前記合成ガスと触媒(D)とを反応させる工程の後に、前記合成ガスと触媒(D)とを反応させる工程で得られる生成物を接触分解する工程をさらに備える[1]~[9]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[11][1]~[10]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法を用いるプロピレンの製造方法。
本発明の第二の態様としては、以下の通りである。
[12]フィッシャー・トロプシュ反応において、分散媒共存下にて合成ガスと触媒(E)とを反応させ炭化水素生成物を製造する第1工程と、
前記炭化水素生成物を、アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素を含むゼオライトからなる分解触媒に接触させ、前記炭化水素生成物を接触分解する第2工程と、を備える炭素原子数2~4のオレフィンの製造方法。
[13]前記ゼオライトが、アルカリ金属、アルカリ土類金属及びd-ブロック元素からなる群から選ばれる1種類以上の元素を含むゼオライトである[12]に記載の炭素原子数2~4のオレフィンの製造方法。
[14]前記ゼオライトが、ZSM-5であり、前記ゼオライトにおけるAlに対するSiOのモル比が、[SiO/Al]で表して、50以上4000以下である[12]又は[13]に記載の炭素原子数2~4のオレフィンの製造方法。
[15]前記分解触媒が、前記アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素を、前記分解触媒の総質量に対し、0.01質量%以上30質量%以下含有する[12]~[14]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[16]前記分解触媒に含まれる前記アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素が、アルカリ土類金属である[12]~[15]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[17]前記接触分解における反応圧力が、0.01MPa以上0.5MPa以下である[12]~[16]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[18]前記触媒(E)が、鉄、コバルト、ニッケル、及びルテニウムからなる群から選ばれる少なくとも1種類の元素を含む[12]~[17]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[19]前記触媒(E)が、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン及びセリウムからなる群から選ばれる1~3種類の元素をさらに含む[18]に記載の炭素原子数2~4のオレフィンの製造方法。
[20]前記触媒(E)が、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素をさらに含む[18]又は[19]に記載の炭素原子数2~4のオレフィンの製造方法。
[21]前記触媒(E)が、元素(1)及び元素(2)を含み、且つ、限定(3)を満たす[12]~[20]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法であって、
 前記元素(1)が、鉄及びマンガンであり、
 前記元素(2)が、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の金属元素であり、
 前記限定(3)が、鉄、マンガン及び前記元素(2)中の金属元素の総モル数に対する、鉄のモル比をaモル%、マンガンのモル比をbモル%、前記元素(2)中の金属元素の合計のモル比をcモル%としたとき、50≦a≦90、9.5≦b≦48、0.5≦c≦10であり、ただし、a+b+c=100である、炭素原子数2~4のオレフィンの製造方法。
[22]前記触媒(E)が、炭素担体をさらに含む[12]~[21]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[23]前記合成ガスが、水素及び一酸化炭素を含み、且つ、一酸化炭素に対する水素のモル比が[水素/一酸化炭素]で表して、0.3以上3以下である[12]~[22]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[24]前記第1工程における反応温度が、100℃以上600℃以下である[12]~[23]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[25]前記第1工程における反応圧力が、0.1MPa以上50MPa以下である[12]~[24]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[26]前記分散媒が、常圧下100℃以上600℃以下の温度範囲で液状となる有機化合物である[12]~[25]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[27]前記第1工程で得られる炭化水素生成物を構成する全炭素原子数に対する、炭素原子数2~4のオレフィンを構成する全炭素原子数の割合が、18%以上である[12]~[26]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
[28][12]~[27]のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法を用いるプロピレンの製造方法。
 また、本発明の第一、第二の態様に共通して以下のとおりである。
[29]フィッシャー・トロプシュ反応において、鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種類の元素を含み、且つ、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素を含む触媒を、分散媒共存下において、合成ガスと反応させる工程を備える炭素原子数2~4のオレフィンの製造方法。
 本発明によれば、高い選択率を達成することが可能な炭素原子数2~4のオレフィンの製造方法、特にプロピレンの選択性が高いオレフィンの製造方法を提供することができる。
第2実施形態に係る炭素原子数2~4のオレフィンの製造方法を実施する製造装置の一例を示す模式図である。
<<第1実施形態>>
 本実施形態に係る炭素原子数2~4のオレフィンの製造方法は、フィッシャー・トロプシュ反応(以下、FT反応と呼ぶことがある。)において、下記触媒(A)~(C)からなる群から選ばれる少なくとも1種類の触媒(D)を、分散媒共存下にて、合成ガスと反応させる工程を備える。
触媒(A):鉄を含み、且つ、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素を含む触媒
触媒(B):コバルトを含む触媒
(ただし、前記触媒(B)は、コバルトイオン及び鉄イオンと、前記コバルトイオン及び鉄イオンと相互作用する分散剤と、を含む分散液又は溶解液中で、前記コバルトイオン及び鉄イオンを還元して得られた触媒を除く)
触媒(C):ニッケル又はルテニウムを含む触媒
なお、本明細書において、炭素原子数2~4のオレフィンとしては、具体的にはエチレン、プロピレン、1-ブテン、2-ブテン、イソブテンおよび1,3-ブタジエンが挙げられる。
(触媒(D))
 触媒(A)は、アルカリ金属及びアルカリ土類金属からなる群から選ばれる元素を1~3種類含み、前記元素は助触媒として機能する。前記元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくは、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはナトリウム、カリウム、マグネシウム、カルシウムが挙げられ、特に好ましくはカリウム、マグネシウムが挙げられる。
 触媒(B)からは、コバルトイオン及び鉄イオンと、前記コバルトイオン及び鉄イオンと相互作用する分散剤と、を含む分散液又は溶解液中で、前記コバルトイオン及び鉄イオンを還元して得られた触媒が除かれる。   
すなわち、触媒(B)は、コバルトイオン及び鉄イオンと、前記コバルトイオン及び鉄イオンと相互作用する分散剤と、を含む分散液又は溶解液を調整すること;及び前記分散液又は溶解液に還元剤を加えて前記コバルトイオン及び鉄イオンを還元させること;を含む製造方法により得られた触媒を含まない。
除かれる触媒において、「コバルトイオン及び鉄イオンと相互作用する分散剤」は、還元反応中又は還元反応後の前記分散液又は溶解液(すなわち、反応液)中において、生成した合金粒子の凝集を防止するものである。
前記分散剤のうち、水溶性ポリマーの例としては、ポリエチレングリコール(PEG)、ポリプロピレングリコール等のアルキレンエーテル構造を有するポリマー;ポリビニルアルコール;ポリビニルエーテル;ポリアクリレート;ポリビニルピロリドン(PVP);ポリ(メルカプトメチレンスチレンーN-ビニル-2-ピロリドン);ポリアクリロニトリル等が挙げられる。
 「分散液又は溶解液」の調製に用いる溶媒としては、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ヘキシレングリコール、2-ブテン-1,4-ジオール、グリセロール、1,1,1-トリスヒドロキシメチルエタン、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール、1,2,3-ヘキサントリオール、ベンジルアルコール等のアルコールが挙げられる。
「分散液又は溶解液」は、コバルトイオン及び鉄イオンのイオン源となる金属含有化合物、分散剤、溶媒、及び必要に応じて他の成分(例えば、後述の還元剤)を配合することで、調製できる。
分散液又は溶解液中での分散剤の濃度は、例えば、分散液又は溶解液の総質量に対して、1×10-4~5質量%である。
 コバルトイオン及び鉄イオンの還元には、公知の還元剤が用いられ、例えば、水素化ホウ素ナトリウム(NaBH)、水素化ホウ素カリウム(KBH)、水素化トリエチルホウ素ナトリウム(Na(CHCHBH)、水素化トリエチルホウ素カリウム(K(CHCHBH)、水素化シアノホウ素ナトリウム(NaBHCN)、水素化ホウ素リチウム(LiBH)、水素化トリエチルホウ素リチウム(LiBH(CHCH)、トリエチルシラン(CHCHSiH等が挙げられる。
 還元剤の配合量は、還元される金属イオン1モルに対して、例えば0.1モル以上である。
 コバルトイオン及び鉄イオンの還元時の反応温度は、例えば20~200℃であり、反応時間は、例えば1~120分間である。
このようにして得られた触媒は、触媒(B)に該当しないものとする。 
なお、触媒(A)には、さらにコバルト、ニッケル及びルテニウムからなる群から選ばれる1以上の金属元素を含むこととしてもよい。
また、触媒(B)には、さらに鉄、アルカリ金属、アルカリ土類金属、ニッケル及びルテニウムからなる群から選ばれる1以上の金属元素を含むこととしてもよい。
また、触媒(C)には、さらに鉄、アルカリ金属、アルカリ土類金属及びコバルトからなる群から選ばれる1以上の金属元素を含むこととしてもよい。
なお触媒(A)~(C)は併用してもよい。
 触媒(A)~(C)は、助触媒として他の遷移金属元素を1~3種類含んでいてもよい。好ましい前記遷移金属元素としては、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン、セリウムがあげられ、より好ましくはマンガン、銅が挙げられ、特に好ましくはマンガンが挙げられる。
 触媒(A)が助触媒としての遷移金属元素を含む場合、鉄、アルカリ金属、アルカリ土類金属及び助触媒としての遷移金属元素の総モル数に対する鉄の含有量は50モル%~90モル%、アルカリ金属及びアルカリ土類金属の合計の含有量は0.5モル%~10モル%、助触媒としての遷移金属元素の合計の含有量は9.5モル%~48モル%が好ましい。鉄の含有量は50モル%~90モル%、アルカリ金属及びアルカリ土類金属の合計の含有量は0.5モル%~10モル%、助触媒としての遷移金属元素の合計の含有量は9.5モル%~45モル%がより好ましい。
 触媒(B)が助触媒としての遷移金属元素を含む場合、コバルト及び助触媒としての遷移金属元素の質量比は、[助触媒としての遷移金属元素の合計/コバルト]で表して、0.01以上5以下であることが好ましい。
 触媒(C)が助触媒としての遷移金属元素を含む場合、ニッケル又はルテニウム、及び助触媒としての遷移金属元素の質量比は、[助触媒としての遷移金属元素の合計/ニッケル又はルテニウム]で表して、0.01以上5以下であることが好ましい。
 本実施形態のC2~C4オレフィンの製造方法に用いられる触媒(D)は、触媒(A)又は触媒(B)が好ましく、触媒(A)においてマンガンをさらに含むもの、すなわち、
 元素(1):鉄及びマンガン、及び
 元素(2):アルカリ金属元素及びアルカリ土類金属元素からなる群から選ばれる1~3種類の元素
を含む触媒;又は触媒(B)がより好ましい。
触媒(A)には鉄が含まれることにより、FT反応の反応性を確保しやすく好ましい。
 また、触媒には、その他にコバルトや銅を含むこととしてもよい。銅を含有すると、後述の活性化処理において鉄の還元が促進されるため、好ましい。
 前記元素(2)としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくは、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはナトリウム、カリウム、マグネシウム、カルシウムが挙げられ、特に好ましくはカリウム、マグネシウムが挙げられる。
 また、触媒(A)に含まれる前記元素(2)が、マグネシウムであると、FT反応の競争反応であるガスシフト反応(一酸化炭素と水とが反応して二酸化炭素と水素とが生じる反応)を抑制することができ、好ましい。
 触媒(A)に含まれる、前記元素(1)と、前記元素(2)とのモル比は、鉄、マンガン及び前記元素(2)中の金属元素の総モル数に対する、鉄のモル比をaモル%、マンガンのモル比をbモル%)、前記元素(2)中の金属元素の合計のモル比をcモル%としたとき、50≦a≦90、9.5≦b≦48、0.5≦c≦10(ただし、a+b+c=100)であることが好ましい。より好ましくは、50≦a≦90、9.5≦b≦45、0.5≦c≦10(ただし、a+b+c=100)である。
触媒のモル比をこのように制御することにより、C2~C4オレフィンの選択率が高まる。
 さらに好ましくは、55≦a≦85、9.5≦b≦45、1≦c≦7(ただし、a+b+c=100)であり、さらに好ましくは60≦a≦80、15≦b≦40、1≦c≦6(ただし、a+b+c=100)である。
また、触媒(B)にはコバルトが含まれることにより、ガスシフト反応が抑制され、好ましい。
触媒(B)には、その他にマンガンや亜鉛などを含むこととしてもよい。マンガンや亜鉛を含有すると、FT反応により生成する炭化水素中のオレフィン比率が高まるので、好ましい。
触媒(B)に含まれるマンガンの量は、コバルトの量に対して0.01倍量以上5倍量以下(質量)であることが好ましく、0.1倍量以上4倍量以下(質量)であることがより好ましく、0.5倍量以上4倍量以下(質量)であることがさらに好ましい。亜鉛の量はコバルトの含有量に対して0.01倍量以上5倍量以下(質量)であることが好ましく、0.01倍量以上1倍量以下(質量)であることがより好ましく、0.01倍量以上0.2倍量以下(質量)であることがさらに好ましい。
本実施形態のC2~C4オレフィンの製造方法に用いられる触媒(D)は、以下の元素(3)及び(4)を含む触媒であってもよい。
元素(3):鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種類の元素、及び
元素(4):アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素。
触媒(D)に含まれる、前記元素(3)と前記元素(4)とのモル比は、[元素(3)の合計/元素(4)の合計]で表して、5~180であることが好ましい。触媒のモル比をこのように制御することにより、FT反応の反応性を確保しやすくなる。
本実施形態のC2~C4オレフィンの製造方法に用いられる触媒(D)は、触媒金属として、鉄とカリウムの組合せが好ましく、これらのモル比は、[鉄/カリウム]で表して、5~180が好ましい。また、前記触媒(D)はさらにマンガンを含んでいてよく、この場合、鉄とマンガンとカリウムの総モル数に対する鉄の含有量は、50~90モル%、マンガンの含有量は、9.5~48モル%、カリウムの含有量は、0.5~10モル%が好ましく、鉄の含有量は、50~90モル%、マンガンの含有量は、9.5~45モル%、カリウムの含有量は、0.5~10モル%であるとより好ましい。
 なお、本実施形態において、触媒に含まれる金属のモル比は、エネルギー分散形蛍光X線分析(以下、「EDS分析」と称することがある。)、又は誘導結合プラズマ発光分析(以下、「ICP発光分析」と称することがある。)により求めることができる。
(触媒(D)の製造方法)
 本実施形態のC2~C4オレフィンの製造方法にて用いられる、触媒(D)の製造方法について説明する。
 触媒(D)の製造方法には、特に限定はないが、
 (i)遷移金属塩の溶液又は分散液を調製する工程
 (ii)工程(i)で調製した溶液又は分散液と、沈殿剤とを混合して沈殿物を生成させ、懸濁液を得る工程
 (iii)工程(ii)で得られた懸濁液から沈殿物を分離した後、得られた沈殿物を洗浄し、乾燥させて、乾燥物を得る工程
 (iv)工程(iii)で得られた乾燥物にアルカリ金属の塩又はアルカリ土類金属の塩を含浸させ含浸物を得る工程
 (v)工程(iv)で得られた含浸物を加熱処理して、触媒を得る工程
の各工程を含むことが望ましい。ただし不要な場合は、適宜、工程(iv)を省略できる。以下、詳細に述べる。
<工程(i)>
 工程(i)では、遷移金属塩の溶液又は分散液を調製する。
 遷移金属塩としては、得られる触媒の精製工程における除去が容易であることから、水に対する溶解性に優れることが好ましい。そのような塩としては、例えば、酢酸塩、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、炭酸塩、硫酸塩、硝酸塩及びそれらの水和物などの塩、並びに金属錯体を挙げることができる。なかでも加熱による陰イオン分の除去が容易であることから、炭酸塩、硝酸塩が好ましく、硝酸塩がより好ましい。前記遷移金属塩中の遷移金属としては、鉄、コバルト、ニッケル、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン、セリウムがあげられる。遷移金属塩として具体的には、硝酸コバルト、硝酸鉄、硝酸ニッケル、硝酸マンガン、硝酸銅、硝酸亜鉛が挙げられる。なかでも、硝酸鉄と硝酸マンガンの組合せが好ましく、そのモル比は、[硝酸鉄/硝酸マンガン]で表して、1.22~8.95で使用することが好ましい。
 溶液又は分散液の調製は、上述の遷移金属塩を溶媒に加えて、遷移金属塩を溶解又は分散することで行うことができる。また、上述の複数の遷移金属塩を適宜混合することで混合溶液又は混合分散液を調製することとしてもよい。
 溶液又は分散液中の金属イオンの含有量は、溶液又は分散液の質量に対し、3×10-7質量%以上20質量%以下の範囲であることが好ましく、3×10-5質量%以上20質量%以下の範囲であることがより好ましく、3×10-3質量%以上20質量%以下の範囲であることがさらに好ましい。この範囲であれば、触媒の製造のために金属成分が少なすぎることもなく、また金属成分が多すぎるために凝集することなく、好適に触媒を製造することができる。
 用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。
 また、分散液の調製時に、分散性を向上させるための分散剤を併用してもよい。前記分散剤としては、水溶性ポリマーを挙げることができる。具体的には、ポリエチレングリコール(PEG)、ポリプロピレングリコール等のアルキレンエーテル構造を有するポリマー;ポリビニルアルコール;ポリビニルエーテル;ポリアクリレート;ポリビニルピロリドン(PVP);ポリ(メルカプトメチレンスチレンーN-ビニル-2-ピロリドン);ポリアクリロニトリル等が挙げられる。
<工程(ii)>
 工程(ii)では、工程(i)で調製した溶液又は分散液と沈殿剤とを混合して沈殿物を生成させ、懸濁液を得る。
 ここで「沈殿剤」とは、溶媒に溶解して水酸化物イオンを生じさせるものである。「沈殿剤溶液」とは沈殿剤を溶媒に溶解させたものである。沈殿剤としては、このような性質を有していれば特に制限されるものではないが、アルカリ性化合物が好ましく用いられる。沈殿剤としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、尿素、炭酸アンモニウム等を用いることができる。なかでも金属イオンを含まず、触媒中の金属組成を制御しやすい観点から、アンモニア、尿素、炭酸アンモニウムが好ましく、アンモニアがより好ましい。
 沈殿剤の使用量としては、工程(i)で得られた溶液又は分散液中の遷移金属塩のモル量に対して、1倍量以上50倍量以下(モル量)であることが好ましく、2倍量以上30倍量以下(モル量)であることがより好ましく、5倍量以上20倍量以下(モル量)であることがさらに好ましい。
 工程(ii)では、例えば、上述の量の沈殿剤を用い、工程(i)で得られた溶液又は分散液と懸濁液を調製する。沈殿剤溶液は、沈殿剤の濃度が、沈殿剤溶液の質量に対し、0.1質量%以上50質量%以下の範囲であることが好ましく、1質量%以上30質量%以下の範囲であることがより好ましく、5質量%以上25質量%以下の範囲であることがさらに好ましい。その後、沈殿剤溶液と工程(i)で調製した溶液又は分散液とを並流させて0.1時間以上10時間以下、好ましくは0.5時間以上5時間以下、より好ましくは1時間以上3時間以下、容器に滴下し、滴下終了後、0.5時間以上8時間以下、好ましくは0.5時間以上6時間以下、より好ましくは0.5時間以上4時間以下、連続的に撹拌する。その後、8時間以上48時間以下静置することが好ましい。これにより、工程(i)で得られた溶液又は分散液に含まれる金属イオンが水酸化物として沈殿し、生じた水酸化物が懸濁した懸濁液が得られる。
懸濁液のpHは7~14であることが好ましく、8~14であることがより好ましい。
<工程(iii)>
 工程(iii)では、工程(ii)で得られた懸濁液から沈殿物(水酸化物)を分離した後、得られた沈殿物を洗浄し、乾燥させて、乾燥物を得る。
 工程(ii)で得られた懸濁液から、沈殿物を例えばろ過により分離したのち、沈殿物を例えば水洗して洗浄した後、乾燥させることで、乾燥物が得られる。乾燥物を得る際の乾燥温度としては、水分を概ね除去できる程度の温度であればよく、20℃以上150℃以下が好ましく、60℃以上130℃以下がより好ましい。乾燥時間としては、1時間以上48時間以下が好ましく、12時間以上36時間以下がより好ましい。これにより、工程(ii)で生じた水酸化物を主成分とする乾燥物が得られる。
<工程(iv)>
 工程(iv)では、(iii)で得られた乾燥物にアルカリ金属の塩又はアルカリ土類金属の塩を含浸させ含浸物を得る。手法としては、含浸法、イオン交換法等の通常用いられる方法を適宜選択できる。特に好ましい方法としては含浸法を挙げることができ、含浸法の中でも特に好ましい方法としてはIncipient Wetness法を挙げることが出来る。Incipient Wetness法とは、多孔質物質の細孔容積と同容量の溶液を含浸させる方法である。即ち、A(cm/g)の細孔容積を有する多孔質物質をB(g)用いた場合、細孔容積はA×B(cm)となる。このA×B(cm)と同容量の溶液を含浸させる。なお、ある細孔径における細孔容積率、即ち細孔径分布は一般的なガス吸着法で測定することができる。より具体的には、アルカリ金属の塩又はアルカリ土類金属の塩を含む溶液を(iii)で得られた乾燥物の細孔容積と同容量調製し、(iii)で得られた乾燥物に含浸させる。複数の金属を含浸する際は、同時含浸・逐次含浸のいずれも選べるが、同時含浸が好ましい。
 上記アルカリ金属の塩又はアルカリ土類金属の塩としては、水に対する溶解性が高い塩が好ましく、炭酸塩、硝酸塩がより好ましく用いられる。
 前記塩としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくは、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはナトリウム、カリウム、マグネシウム、カルシウムであり、特に好ましくはカリウム、マグネシウムが挙げられる。
前記アルカリ金属の塩又はアルカリ土類金属の塩の溶液における、アルカリ金属の塩又はアルカリ土類金属の塩の濃度は、溶液の総質量に対し、1質量%以上70質量%以下であることが好ましく、5質量%以上50質量%以下がより好ましい。
上記アルカリ金属の塩又はアルカリ土類金属の塩の溶液に用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。これらの溶媒は複数のものを混合して用いても良い。
上記含浸物を得る際の温度としては10℃以上100℃未満が好ましく、20℃以上80℃以下がより好ましく、20℃以上60℃以下がさらに好ましい。また含浸時間は0.1時間以上3時間以下が好ましく、0.5時間以上2時間以下がより好ましく、0.5時間以上1時間以下がさらに好ましい。
<工程(v)>
 工程(v)では、工程(iv)で得られた含浸物を加熱処理して、触媒(D)を得る。
 工程(iv)で得られた含浸物を加熱する際の温度としては、水酸化物から脱水して酸化物に十分変換できることから、300℃以上800℃以下が好ましく、300℃以上600℃以下がより好ましく、400℃以上600℃以下がさらに好ましい。また加熱時間は1時間以上48時間以下が好ましく、1時間以上24時間以下がより好ましく、1時間以上12時間以下がさらに好ましい。
これにより、酸化物を主成分とする触媒(D)が得られる。
 FT反応には、上述の製造方法で得られた触媒(D)をそのまま用いてもよいし、予め粉砕、成型、整粒等の何らかの処理を行ってから用いてもよい。
 FT反応に使用する前に、触媒(D)は常圧以上10MPa以下の水素雰囲気下又は常圧以上10MPa以下の合成ガス雰囲気下で、200~500℃、1~24時間、還元して活性化させることができる。このような活性化処理は当分野で一般的に行われるものであり、効率的な活性化を行うために推奨される。なお、ここでの合成ガスは、一酸化炭素に対する水素のモル比(以下、「H/CO比」ともいう)が[水素/一酸化炭素]で表して、0.5~5であることが好ましく、0.5~2であることがより好ましい。
 以下の説明では、活性化処理で用いるガスを、FT反応で用いる合成ガスと区別するために「還元ガス」と称することがある。
 活性化処理の温度としては250℃以上450℃以下が好ましく、280℃以上430℃以下がより好ましい。
 活性化処理の圧力としては常圧以上10MPa以下が好ましく、常圧以上3MPa以下aがより好ましい。
 活性化処理の時間としては5時間以上15時間以下が好ましく、8時間以上12時間以下がより好ましい。
 活性化処理において、合成ガスの供給速度(F)(mol/h)に対する触媒質量(W)(g)の割合の比(W/F)としては0.01g・h/mol以上500g・h/mol以下が好ましく、1g・h/mol以上100g・h/mol以下がより好ましく、5g・h/mol以上30g・h/mol以下が特に好ましい。
 活性化処理で用いる還元ガスは、水素ガス又は合成ガスを用いることができる。合成ガスを用いる場合、H/CO(モル比)は0.5以上3.0以下が好ましく、0.5以上2.5以下がより好ましく、0.6以上2.0以下がさらに好ましい。また、還元ガスと反応で用いる合成ガスとが同じガスであっても構わない。
(触媒(D)の担体)
 本実施形態のC2~C4オレフィンの製造方法に用いる触媒(D)は、上述の酸化物を主成分とする触媒のみで構成されていてもよく、酸化物を主成分とする触媒の他に、炭素担体、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、酸化亜鉛、ポリマー(ポリエチレングリコール、ポリアクリレート、ポリメタクリレート、ポリビニルピロリドンなど)などの他の成分を含んでいてもよい。これらの成分は担体として用いることもできる。
 触媒(A)において好ましい担体成分としては、炭素担体を挙げることができる。炭素担体としては、活性炭、カーボンブラック、カーボンナノファイバー、カーボンナノチューブ、フラーレンなどを挙げることができ、好ましくは活性炭、カーボンブラック、カーボンナノファイバー、カーボンナノチューブがあげられ、より好ましくは活性炭、カーボンブラックがあげられ、特に好ましくは活性炭である。
 また、触媒(B)において好ましい担体成分としては、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、酸化亜鉛を挙げることができる。担体成分の割合は、触媒(B)の総質量に対し、100質量%未満であればよく、1質量%以上99質量%以下であることが好ましく、3質量%以上97質量%以下であることがより好ましく5質量%以上95質量以下であることがさらに好ましい。
触媒(B)には、大きな細孔(ピーク細孔径30nm以上300nm以下)及び小さな細孔(ピーク細孔径30nm未満)を共に有する担体を用いることができる。ある細孔径における細孔容積率、即ち細孔径分布は、自動吸着測定装置、例えばAutosorb-1(カンタクローム・インスツルメンツ社製)を用い、BJH法(窒素をプローブとして用いる)で求めることができる。ここでは、その細孔径を有する孔の数が極大となる細孔径のことを「ピーク細孔径」と称する。大きな細孔は反応ガスの拡散と生成した炭化水素の触媒外部への拡散を促進し、小さな細孔は高比表面積と触媒成分の高分散状態を維持する。その結果、活性の高い触媒が得られる。
大きな細孔(ピーク細孔径30nm以上300nm以下)の細孔容積は、全細孔容積の30%~90%であるのが好ましく、50%~90%であるのがより好ましく、60%~90%であるのがさらに好ましい。小さな細孔(ピーク細孔径30nm未満)とのの細孔容積は、全細孔容積の10%~70%であるのが好ましく、10%~50%であるのがより好ましく、10%~40%であるのがさらに好ましい。
上記の大きな細孔及び小さな細孔を共に有する担体は、1種類の細孔のみを有する担体にナノ粒子の分散体、又は遷移金属塩の溶液を含浸させ、得られた含浸物を加熱処理することによって調製することができる。遷移金属塩の溶液を含浸させた後にアンモニア、水酸化カリウム、水酸化ナトリウムなどの塩基で処理し得た含浸物を加熱処理することでも調製することができる。以下、ここでは、1種類の細孔のみを有する担体を「原料担体」、大きな細孔及び小さな細孔を共に有する担体を「2種類の細孔を有する担体」と称する。
原料担体の種類は特に制限されないが、細孔径が10nm~500nmのものが好ましく、30nm~400nmがより好ましく、30nm~300nmが特に好ましく用いられる。原料担体として例えばアルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、酸化亜鉛などを用いることができ、好ましくはシリカが挙げられる。
2種類の細孔を有する担体の調製に用いるナノ粒子は、原料担体の細孔内に担持されれば特に制限はないが、動的光散乱法で得られる分散粒径が0.1nm~50nmのものが好ましく、1nm~30nmのものがより好ましく、5nm~25nmのものが特に好ましく用いられる。ナノ粒子として例えばアルミニウム、珪素、チタン、ジルコニウム、マグネシウム、セリウム、マンガン、亜鉛の酸化物、複合酸化物、水酸化物、及び複合水酸化物を用いることができ、好ましくはシリカ、ジルコニアが挙げられる。これらのナノ粒子が含まれる分散体は、複数のものを混合して用いても良い。
2種類の細孔を有する担体の調製に用いる遷移金属塩としては、得られる触媒の精製工程における除去が容易であることから、水に対する溶解性に優れることが好ましい。そのような塩としては、例えば、酢酸塩、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、炭酸塩、硫酸塩、硝酸塩、オキシ塩化物塩、オキシ硝酸塩及びそれらの水和物などの塩、並びに遷移金属錯体を挙げることができる。なかでも加熱による陰イオン分の除去が容易であることから、硝酸塩が好ましく用いられる。前記遷移金属塩中の遷移金属としては、鉄、コバルト、ニッケル、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン、セリウムがあげられる。
 遷移金属塩の溶液の調製は、上述の遷移金属塩を溶媒に加えて、遷移金属塩を溶解することで行うことができる。また、上述の複数の遷移金属塩を適宜混合することで混合溶液又は混合分散液を調製することとしてもよい。
 用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。これらの溶媒は複数のものを混合して用いても良い。
 2種類の細孔を有する担体の調製において、1種類の細孔のみを有する担体にナノ粒子の分散体、又は遷移金属塩の溶液を含浸させて得られた含浸物を加熱処理する際の温度としては、200℃以上800℃以下が好ましく、300℃以上700℃以下がより好ましい。また加熱時間は1時間以上48時間以下が好ましく、1時間以上10時間以下がより好ましい。
これにより、小さな細孔が形成され、2種類の細孔を有する担体が得られる。
 触媒(D)が担体成分を含む場合、触媒(D)における触媒金属(ここでは、担体成分を含む触媒(D)において、担体成分に該当しない金属を意味する)の含有率は、本実施形態の軽質オレフィン製造反応に用いる触媒が、良好な触媒能を奏しうる割合であれば特に限定されない。触媒(D)における触媒金属の割合は、触媒(D)の総質量に対し、100質量%未満であればよく、1質量%以上99質量%以下であることが好ましく、3質量%以上97質量%以下であることがより好ましく5質量%以上95質量以下であることがさらに好ましい。
 上述の担体成分を触媒に導入する場合、沈殿法、ゲル化法、含浸法、イオン交換法等の通常用いられる方法を適宜選択できる。
触媒(A)に担体成分を導入する方法として特に好ましい方法としては、工程(i)において担体成分を上記溶液又は分散液に分散させ、工程(ii)において沈殿剤を添加して生じる沈殿物とともに沈殿させる方法が好ましい。工程(i)の上記溶液又は分散液に加える担体成分の量は、触媒(A)の総質量に対する触媒金属の割合が、1質量%以上99質量%以下となる量であることが好ましく、3質量%以上97質量%以下となる量であることがより好ましく5質量%以上95質量以下となる量であることがさらに好ましい。すなわち、担体成分の量は、触媒(A)の総質量に対して1質量%以上99質量%以下となる量であることが好ましく、3質量%以上97質量%以下となる量であることがより好ましく5質量%以上95質量以下となる量であることがさらに好ましい。
また、触媒(B)に担体成分を導入する方法として特に好ましい方法としては、コバルト塩の溶液を、含浸法を用いて導入し、含浸物を加熱処理する方法が好ましい。その際、助触媒としてマンガンや亜鉛を含む溶液を同時含浸又は逐次含浸できる。
用いるコバルト塩としては例えば硝酸塩、酢酸塩、炭酸塩、硫酸塩などを挙げることができ、好ましくは硝酸塩が挙げられる。
コバルト塩の溶液の調製は、上述のコバルト塩を溶媒に加えて、コバルト塩を溶解することで行うことができる。
用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。これらの溶媒は複数のものを混合して用いても良い。
含浸の方法は公知の種々の方法を用いることができるが、Incipient Wetness法を用いるのが好ましい。
その後、得られた含浸物を加熱処理する。加熱温度は、300℃以上800℃以下が好ましく、加熱時間は1時間以上48時間以下が好ましい。
 以上のようにして、FT反応に用いる触媒を調製することができる。
(合成ガス)
 本実施形態のC2~C4オレフィンの製造方法に用いる合成ガスは、水素と一酸化炭素を含むガス、水素と二酸化炭素を含むガス、水素と一酸化炭素及び二酸化炭素を含むガスなどを用いることができる。中でも特に、水素と一酸化炭素の合計が、合成ガス全体の体積に対し、50体積%以上100体積%以下であると好ましい。このような合成ガスを用いると、生産性が高くなる。合成ガス中の水素と一酸化炭素とのモル比は、一化炭素の水素化反応が進みやすく生産性が高くなるため、[水素/一酸化炭素]で表して、0.3以上であることが好ましい。また原料ガス中の一酸化炭素の存在量が少な過ぎることによる生産性の低下を抑制するため、合成ガス中の水素と一酸化炭素とのモル比は、3以下であることが好ましい。
 合成ガス中の水素と一酸化炭素とのモル比は、[水素/一酸化炭素]で表して、0.5以上3.0以下がより好ましく、0.5以上2.5以下がよりさらに好ましく、0.6以上2.0以下が特に好ましい。
(FT反応)
 本発明のFT反応において、分散媒を用いることが特徴であり、分散媒により炭化水素生成物が触媒上から直ちに抽出される等の効果により、炭化水素生成物の炭素数が増大し難く、炭素原子数2~4のオレフィンの含有量の高い炭化水素生成物を得ることができると推定している。FT反応は、上述の合成ガスと上述の触媒とを、スラリー床液相合成プロセスを用いて連続式で反応させることが望ましい。FT反応の圧力は、0.1MPa以上30MPa以下であることが好ましく、0.1MPa以上10MPa以下であることがより好ましく、0.5MPa以上3MPa以下であることが特に好ましい。ここで「FT反応の圧力」とは反応容器内の圧力を意味する。
 反応容器内には、あらかじめ上述の触媒を分散媒中に、(例えばスラリー状に)分散させておくことが好ましい。分散媒としては、前記合成ガスと触媒(D)とを反応させる工程における反応温度および反応圧力において液状である有機化合物を用いることが好ましい。分散媒としては、例えば、常圧下100℃以上600℃以下の温度範囲で液状となる有機化合物を用いることができる。ここで、「a ℃以上b℃以下の温度範囲で液状となる有機化合物」とは、「a℃以上b℃以下の温度範囲のうち少なくともいずれかの温度で液状である有機化合物」を意味し、常圧は、0.1MPaを意味する。
分散媒として好ましくは常圧下150℃以上400℃以下、より好ましくは常圧下150℃以上350℃以下、さらに好ましくは常圧下200℃以上330℃以下、特に好ましくは常圧下200℃以上300℃以下の温度範囲で液状となる有機化合物を用いることができる。このような有機化合物はFT反応条件下、分散媒として好適に用いることができる。該有機化合物としては炭化水素化合物及び含酸素炭化水素化合物を挙げることが出来る。該炭化水素化合物として好ましくは、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサンなどの炭素数10~100程度のパラフィン及びその混合物が挙げられ、FT反応で副生する炭素数10~100程度のパラフィン(FTワックスと一般的に呼ばれるもの)や市販の炭素数10~100程度のポリアルファオレフィンを用いることも出来る。該含酸素炭化水素化合物として好ましくはデカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサデカノールなどの炭素数10~100程度のアルコール;デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸などの炭素数10~100程度のカルボン酸;ポリエチレングリコール、ポリプロピレングリコール、シリコーン及びその混合物が挙げられる。該有機化合物としては炭化水素化合物が好ましい。
 触媒(D)と分散媒との割合は基本的には任意であるが、好ましくは、触媒(D)1gに対して分散媒が1mL以上10L以下であり、より好ましくは、5mL以上2L以下であり、さらに好ましくは、10mL以上1L以下である。
 本実施形態のC2~C4オレフィンの製造方法におけるFT反応は、反応温度が100℃以上600℃以下であることが好ましく、反応温度が200℃以上500℃以下であることがより好ましく、250℃以上400℃以下であることがよりさらに好ましく、250℃以上350℃以下であることが特に好ましい。
 また、本実施形態のC2~C4オレフィンの製造方法におけるFT反応は、合成ガスのモルあたりの供給速度(F)(mol/h)に対する触媒の質量(W)(g)の比(W/F)が、0.01g・h/mol以上100g・h/mol以下であることが好ましく、1.0g・h/mol以上50g・h/mol以下であることがより好ましく、5.0g・h/mol以上30g・h/mol以下であることが特に好ましい。
 FT反応の時間について、連続式の場合には反応容積(V)(mL)を合成ガスの体積あたりの供給速度(F’)(mL/h)の比(V/F’)として表され、1.0×10-5h以上50h以下が好ましく、1.0×10-3h以上20h以下がより好ましく、4.0×10-3h以上5h以下がさらに好ましい。
 FT反応による生成物は複数の化合物(炭化水素)の混合物として得られるが、この生成物における各化合物の存在比は、公知のガスクロマトグラフィー技術を用いて分析することができる。これにより、FT反応で得られた各炭化水素成分の組成を算出することが出来る。
 上述の製造方法により、炭素原子数2~4のオレフィンの含有量の高い炭化水素生成物を得ることができる。炭素原子数2~4のオレフィンの含有量としては、上述の製造方法により得られる炭化水素生成物を構成する全炭素原子数に対する、炭素原子数2~4のオレフィンを構成する全炭素原子数の割合が、18%以上100%以下であることが好ましく、24%以上100%以下であることがより好ましく、30%以上100%以下であることがさらに好ましく、35%以上100%以下であることが特に好ましく、40%以上100%以下であることが殊更好ましい。
 以上のような製造方法によれば、生成物中の炭素原子数2~4のオレフィン、特にプロピレンの含有量を向上させることができる。
 また、本実施形態では、前記合成ガスと触媒(D)とを反応させる工程の後に、前記合成ガスと触媒(D)とを反応させる工程で得られる生成物を接触分解する工程をさらに備えていてもよい。接触分解する工程としては、後述する第2実施形態における第2工程と同様の工程が挙げられる。  
<<第2実施形態>>
 本実施形態に係る炭素原子数2~4のオレフィンの製造方法は、フィッシャー・トロプシュ反応において、分散媒共存下にて合成ガスと触媒(E)とを反応させ炭化水素生成物を製造する第1工程と、前記炭化水素生成物を、アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素を含むゼオライトとをからなる分解触媒に接触させ、前記炭化水素生成物を接触分解する第2工程と、を備える。
これにより、炭素数2~4のオレフィン、特にプロピレンの含有量をさらに向上させることが出来る。
<第1工程>
第1工程は、フィッシャー・トロプシュ反応において、下記触媒(A)~(C)からなる群から選ばれる少なくとも1種類の触媒(E)を、分散媒共存下にて、合成ガスと反応させる工程を備えることが望ましい。
触媒(A):鉄を含む触媒
触媒(B):コバルトを含む触媒
触媒(C):ニッケル又はルテニウムを含む触媒
ここで触媒(B)は、コバルトを含む触媒であって、ただし、コバルトイオン及び鉄イオンと、前記コバルトイオン及び鉄イオンと相互作用する分散剤と、を含む分散液又は溶解液中で、前記コバルトイオン及び鉄イオンを還元して得られた触媒を除く触媒であってもよく、このような触媒(B)としては、第1実施形態で用いたものと同様のものが挙げられる。
(触媒(E))
なお、触媒(A)には、さらにコバルト、ニッケル及びルテニウムからなる群から選ばれる1以上の金属元素を含むこととしてもよい。
また、触媒(B)には、さらに鉄、アルカリ金属、アルカリ土類金属、ニッケル及びルテニウムからなる群から選ばれる1以上の金属元素を含むこととしてもよい。
また、触媒(C)には、さらに鉄、アルカリ金属、アルカリ土類金属及びコバルトからなる群から選ばれる1以上の金属元素を含むこととしてもよい。
なお触媒(A)~(C)は併用してもよい。
 触媒(A)~(C)は、助触媒として他の遷移金属元素を1~3種類含んでいてもよい。好ましい前記遷移金属元素としては、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン、セリウムがあげられ、より好ましくはマンガン、銅が挙げられ、特に好ましくはマンガンが挙げられる。触媒(A)が助触媒としての遷移金属元素を含む場合、鉄、アルカリ金属、アルカリ土類金属及び助触媒としての遷移金属元素の総モル数に対する鉄の含有量は50モル%~90モル%、アルカリ金属及びアルカリ土類金属の合計の含有量は0.5モル%~10モル%、助触媒としての遷移金属元素の合計の含有量は9.5モル%~48モル%が好ましい。鉄の含有量は50モル%~90モル%、アルカリ金属及びアルカリ土類金属の合計の含有量は0.5モル%~10モル%、助触媒としての遷移金属元素の合計の含有量は9.5モル%~45モル%がより好ましい。
 触媒(B)が助触媒としての遷移金属元素を含む場合、コバルト及び助触媒としての遷移金属元素の質量比は、[助触媒としての遷移金属元素の合計/コバルト]で表して、0.01以上5以下であることが好ましい。
 触媒(C)が助触媒としての遷移金属元素を含む場合、ニッケル又はルテニウム、及び助触媒としての遷移金属元素の質量比は、[助触媒としての遷移金属元素の合計/ニッケル又はルテニウム]で表して、0.01以上5以下であることが好ましい。
 本実施形態のC2~C4オレフィンの製造方法に用いられる触媒(E)は、触媒(A)又は触媒(B)が好ましく、触媒(A)においてマンガンをさらに含むもの、すなわち、
 元素:(1)鉄及びマンガン、及び
 元素:(2)アルカリ金属元素及びアルカリ土類金属元素からなる群から選ばれる1~3種類の金属元素
を含む触媒;又は触媒(B)がより好ましい。
触媒(A)には鉄が含まれることにより、FT反応の反応性を確保しやすく好ましい。
 また、触媒には、その他にコバルトや銅を含むこととしてもよい。銅を含有すると、後述の活性化処理において鉄の還元が促進されるため、好ましい。
 前記(2)の元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくは、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはナトリウム、カリウム、マグネシウム、カルシウムが挙げられ、特に好ましくはカリウム、マグネシウムが挙げられる。
 また、触媒(E)に含まれる前記(2)の元素が、マグネシウムであると、FT反応の競争反応であるガスシフト反応(一酸化炭素と水とが反応して二酸化炭素と水素とが生じる反応)を抑制することができ、好ましい。
 触媒(E)に含まれる、前記元素(1)と、前記元素(2)の元素とのモル比は、鉄、マンガン及び前記元素(2)中の金属元素の総モル数に対する、鉄のモル比をaモル%、マンガンのモル比をbモル%、前記元素(2)中の金属元素の合計のモル比をcモル%としたとき、50≦a≦90、9.5≦b≦45、0.5≦c≦10(ただし、a+b+c=100)であることが好ましい。触媒のモル比をこのように制御することにより、C2~C4オレフィンの選択率が高まる。
 より好ましくは、55≦a≦85、9.5≦b≦45、1≦c≦7(ただし、a+b+c=100)であり、さらに好ましくは60≦a≦80、15≦b≦40、1≦c≦6(ただし、a+b+c=100)である。
また、触媒(B)にはコバルトが含まれることにより、ガスシフト反応が抑制され、好ましい。
触媒(B)には、その他にマンガンや亜鉛などを含むこととしてもよい。マンガンや亜鉛を含有すると、FT反応により生成する炭化水素中のオレフィン比率が高まるので、好ましい。
触媒(B)に含まれるマンガンの量は、コバルトの量に対して0.01倍量以上5倍量以下(質量)であることが好ましく、0.1倍量以上4倍量以下(質量)であることがより好ましく、0.5倍量以上4倍量以下(質量)であることがさらに好ましい。亜鉛の量はコバルトの含有量に対して0.01倍量以上5倍量以下(質量)であることが好ましく、0.01倍量以上1倍量以下(質量)であることがより好ましく、0.01倍量以上0.2倍量以下(質量)であることがさらに好ましい。
本実施形態のC2~C4オレフィンの製造方法に用いられる触媒(E)は、以下の元素(3)及び(4)を含む触媒であってもよい。
元素(3):鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種類の元素
元素(4):アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素
触媒(E)に含まれる、前記元素(3)と前記元素(4)とのモル比は、[元素(3)の合計/元素(4)の合計]で表して、5~180であることが好ましい。触媒のモル比をこのように制御することにより、FT反応の反応性を確保しやすくなる。
本実施形態のC2~C4オレフィンの製造方法に用いられる触媒(E)は、触媒金属として、鉄とカリウムの組合せが好ましく、これらのモル比は、[鉄/カリウム]で表して、5~180が好ましい。また、前記触媒(E)はマンガンを含んでいてよく、この場合、鉄とマンガンとカリウムの総モル数に対する鉄の含有量は、50~90モル%、マンガンの含有量は、9.5~48モル%、カリウムの含有量は、0.5~10モル%が好ましく、鉄の含有量は、50~90モル%、マンガンの含有量は、9.5~45モル%、カリウムの含有量は、0.5~10モル%がより好ましい。
 なお、本実施形態において、触媒に含まれる金属のモル比は、エネルギー分散形蛍光X線分析(以下、「EDS分析」と称することがある。)、又は誘導結合プラズマ発光分析(以下、「ICP発光分析」と称することがある。)により求めることができる。
(触媒(E)の製造方法)
 本実施形態のC2~C4オレフィンの製造方法にて用いられる、触媒(E)の製造方法について説明する。
 触媒(E)の製造方法には、特に限定はないが、
 (i)遷移金属塩の溶液又は分散液を調製する工程
 (ii)工程(i)で調製した溶液又は分散液と、沈殿剤とを混合して沈殿物を生成させ、懸濁液を得る工程
 (iii)工程(ii)で得られた懸濁液から沈殿物を分離した後、得られた沈殿物を洗浄し、乾燥させて、乾燥物を得る工程
 (iv)工程(iii)で得られた乾燥物にアルカリ金属の塩又はアルカリ土類金属の塩を含浸させ含浸物を得る工程
 (v)工程(iv)で得られた含浸物を加熱処理して、触媒を得る工程
の各工程を含むことが望ましい。ただし不要な場合は、適宜、工程(iv)を省略できる。以下、詳細に述べる。
<工程(i)>
 工程(i)では、遷移金属塩の溶液又は分散液を調製する。
 遷移金属塩としては、得られる触媒の精製工程における除去が容易であることから、水に対する溶解性に優れることが好ましい。そのような塩としては、例えば、酢酸塩、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、炭酸塩、硫酸塩、硝酸塩及びそれらの水和物などの塩、並びに金属錯体を挙げることができる。なかでも加熱による陰イオン分の除去が容易であることから、炭酸塩、硝酸塩が好ましく、硝酸塩がより好ましい。前記遷移金属塩中の遷移金属としては、鉄、コバルト、ニッケル、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン、セリウムがあげられる。遷移金属塩として具体的には、硝酸コバルト、硝酸鉄、硝酸ニッケル、硝酸マンガン、硝酸銅、硝酸亜鉛が挙げられる。なかでも、硝酸鉄と硝酸マンガンの組合せが好ましく、そのモル比は、[硝酸鉄/硝酸マンガン]で表して、1.22~8.95で使用することが好ましい。
 溶液又は分散液の調製は、上述の遷移金属塩を溶媒に加えて、遷移金属塩を溶解又は分散することで行うことができる。また、上述の複数の遷移金属塩を適宜混合することで混合溶液又は混合分散液を調製することとしてもよい。
 溶液又は分散液中の金属イオンの含有量は、溶液又は分散液の質量に対し、3×10-7質量%以上20質量%以下の範囲であることが好ましく、3×10-5質量%以上20質量%以下の範囲であることがより好ましく、3×10-3質量%以上20質量%以下の範囲であることがさらに好ましい。この範囲であれば、触媒の製造のために金属成分が少なすぎることもなく、また金属成分が多すぎるために凝集することなく、好適に触媒を製造することができる。
 用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールであり、特に好ましくは水である。
 また、分散液の調製時に、分散性を向上させるための分散剤を併用してもよい。前記分散剤としては、水溶性ポリマーを挙げることができる。具体的には、ポリエチレングリコール(PEG)、ポリプロピレングリコール等のアルキレンエーテル構造を有するポリマー;ポリビニルアルコール;ポリビニルエーテル;ポリアクリレート;ポリビニルピロリドン(PVP);ポリ(メルカプトメチレンスチレンーN-ビニル-2-ピロリドン);ポリアクリロニトリル等が挙げられる。
<工程(ii)>
 工程(ii)では、工程(i)で調製した溶液又は分散液と沈殿剤とを混合して沈殿物を生成させ、懸濁液を得る。
 ここで「沈殿剤」とは、溶媒に溶解して水酸化物イオンを生じさせるものである。「沈殿剤溶液」とは沈殿剤を溶媒に溶解させたものである。沈殿剤としては、このような性質を有していれば特に制限されるものではないが、アルカリ性化合物が好ましく用いられる。沈殿剤としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、尿素、炭酸アンモニウム等を用いることができる。なかでも金属イオンを含まず、触媒中の金属組成を制御しやすい観点から、アンモニア、尿素、炭酸アンモニウムが好ましく、アンモニアがより好ましい。
 沈殿剤の使用量としては、工程(i)で得られた溶液又は分散液中の遷移金属塩のモル量に対して、1倍量以上50倍量以下(モル量)であることが好ましく、2倍量以上30倍量以下(モル量)であることがより好ましく、5倍量以上20倍量以下(モル量)であることがさらに好ましい。
 工程(ii)では、例えば、上述の量の沈殿剤を用い、工程(i)で得られた溶液又は分散液と懸濁液を調製する。沈殿剤溶液は、沈殿剤の濃度が、沈殿剤溶液の質量に対し、0.1質量%以上50質量%以下の範囲であることが好ましく、1質量%以上30質量%以下の範囲であることがより好ましく、5質量%以上25質量%以下の範囲であることがさらに好ましい。その後、沈殿剤溶液と工程(i)で調製した溶液又は分散液とを並流させて0.1時間以上10時間以下、好ましくは0.5時間以上5時間以下、より好ましくは1時間以上3時間以下、容器に滴下し、滴下終了後、0.5時間以上8時間以下、好ましくは0.5時間以上6時間以下、より好ましくは0.5時間以上4時間以下、連続的に撹拌する。その後、8時間以上48時間以下静置することが好ましい。これにより、工程(i)で得られた溶液又は分散液に含まれる金属イオンが水酸化物として沈殿し、生じた水酸化物が懸濁した懸濁液が得られる。
懸濁液のpHは7~14であることが好ましく、8~14であることがより好ましい。
<工程(iii)>
 工程(iii)では、工程(ii)で得られた懸濁液から沈殿物(水酸化物)を分離した後、得られた沈殿物を洗浄し、乾燥させて、乾燥物を得る。
 工程(ii)で得られた懸濁液から、沈殿物を例えばろ過により分離したのち、沈殿物を例えば水洗して洗浄した後、乾燥させることで、乾燥物が得られる。乾燥物を得る際の乾燥温度としては、水分を概ね除去できる程度の温度であればよく、20℃以上150℃以下が好ましく、60℃以上130℃以下がより好ましい。乾燥時間としては、1時間以上48時間以下が好ましく、12時間以上36時間以下がより好ましい。これにより、工程(ii)で生じた水酸化物を主成分とする乾燥物が得られる。
<工程(iv)>
 工程(iv)では、(iii)で得られた乾燥物にアルカリ金属の塩又はアルカリ土類金属の塩を含浸させ含浸物を得る。手法としては、含浸法、イオン交換法等の通常用いられる方法を適宜選択できる。特に好ましい方法としては含浸法を挙げることができ、含浸法の中でも特に好ましい方法としてはIncipient Wetness法を挙げることが出来る。Incipient Wetness法とは、多孔質物質の細孔容積と同容量の溶液を含浸させる方法である。即ち、A(cm/g)の細孔容積を有する多孔質物質をB(g)用いた場合、細孔容積はA×B(cm)となる。このA×B(cm)と同容量の溶液を含浸させる。なお、ある細孔径における細孔容積率、即ち細孔径分布は一般的なガス吸着法で測定することができる。より具体的には、アルカリ金属の塩又はアルカリ土類金属の塩を含む溶液を(iii)で得られた乾燥物の細孔容積と同容量調製し、(iii)で得られた乾燥物に含浸させる。複数の金属を含浸する際は、同時含浸・逐次含浸のいずれも選べるが、同時含浸が好ましい。
 上記アルカリ金属の塩又はアルカリ土類金属の塩としては、水に対する溶解性が高い塩が好ましく、炭酸塩、硝酸塩がより好ましく用いられる。
 前記塩としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくは、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはナトリウム、カリウム、マグネシウム、カルシウムが挙げられ、特に好ましくはカリウム、マグネシウムが挙げられる。
前記アルカリ金属の塩又はアルカリ土類金属の塩の溶液における、アルカリ金属の塩又はアルカリ土類金属の塩の濃度は、溶液の総質量に対し、1質量%以上70質量%以下であることが好ましく、5質量%以上50質量%以下がより好ましい。
上記アルカリ金属の塩又はアルカリ土類金属の塩の溶液に用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。これらの溶媒は複数のものを混合して用いても良い。
上記含浸物を得る際の温度としては10℃以上100℃未満が好ましく、20℃以上80℃以下がより好ましく、20℃以上60℃以下がさらに好ましい。また含浸時間は0.1時間以上3時間以下が好ましく、0.5時間以上2時間以下がより好ましく、0.5時間以上1時間以下がさらに好ましい。
<工程(v)>
 工程(v)では、工程(iv)で得られた含浸物を加熱処理して、触媒(E)を得る。
 工程(iv)で得られた含浸物を加熱する際の温度としては、水酸化物から脱水して酸化物に十分変換できることから、300℃以上800℃以下が好ましく、300℃以上600℃以下がより好ましく、400℃以上600℃以下がさらに好ましい。また加熱時間は1時間以上48時間以下が好ましく、1時間以上24時間以下がより好ましく、1時間以上12時間以下がさらに好ましい。
これにより、酸化物を主成分とする触媒(E)が得られる。
 FT反応には、上述の製造方法で得られた触媒(E)をそのまま用いてもよいし、予め粉砕、成型、整粒等の何らかの処理を行ってから用いてもよい。
 FT反応に使用する前に、触媒(E)は常圧以上10MPa以下の水素雰囲気下又は常圧以上10MPa以下の合成ガス雰囲気下で、200~500℃、1~24時間、還元して活性化させることができる。このような活性化処理は当分野で一般的に行われるものであり、効率的な活性化を行うために推奨される。なお、ここでの合成ガスは、一酸化炭素に対する水素のモル比が、[水素/一酸化炭素]で表して、0.5~5であることが好ましく、0.5~2であることがより好ましい。
 以下の説明では、活性化処理で用いるガスを、FT反応で用いる合成ガスと区別するために「還元ガス」と称することがある。
 活性化処理の温度としては250℃以上450℃以下が好ましく、280℃以上430℃以下がより好ましい。
 活性化処理の圧力としては常圧以上10MPa以下が好ましく、常圧以上3MPa以下aがより好ましい。
 活性化処理の時間としては5時間以上15時間以下が好ましく、8時間以上12時間以下がより好ましい。
 活性化処理において、合成ガスの供給速度(F)(mol/h)に対する触媒質量(W)(g)の割合の比(W/F)としては0.01g・h/mol以上500g・h/mol以下が好ましく、1g・h/mol以上100g・h/mol以下がより好ましく、5g・h/mol以上30g・h/mol以下が特に好ましい。
 活性化処理で用いる還元ガスは、水素ガス又は合成ガスを用いることができる。合成ガスを用いる場合、H/CO(モル比)は0.5以上3.0以下が好ましく、0.5以上2.5以下がより好ましく、0.6以上2.0以下がさらに好ましい。また、還元ガスと反応で用いる合成ガスとが同じガスであっても構わない。
(触媒(E)の担体)
 本実施形態のC2~C4オレフィンの製造方法に用いる触媒(E)は、上述の酸化物を主成分とする触媒のみで構成されていてもよく、酸化物を主成分とする触媒の他に、炭素担体、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、酸化亜鉛、ポリマー(ポリエチレングリコール、ポリアクリレート、ポリメタクリレート、ポリビニルピロリドンなど)などの他の成分を含んでいてもよい。これらの成分は担体として用いることもできる。
 触媒(A)において好ましい担体成分としては、炭素担体を挙げることができる。炭素担体としては、活性炭、カーボンブラック、カーボンナノファイバー、カーボンナノチューブ、フラーレンなどを挙げることができ、好ましくは活性炭、カーボンブラック、カーボンナノファイバー、カーボンナノチューブがあげられ、より好ましくは活性炭、カーボンブラックがあげられ、特に好ましくは活性炭である。
 また、触媒(B)において好ましい担体成分としては、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、酸化亜鉛を挙げることができる。
触媒(B)には、大きな細孔(ピーク細孔径30nm以上300nm以下)及び小さな細孔(ピーク細孔径30nm未満)を共に有する担体を用いることができる。ある細孔径における細孔容積率、即ち細孔径分布は自動吸着測定装置、例えばAutosorb-1(カンタクローム・インスツルメンツ社製)を用い、BJH法(窒素をプローブとして用いる)で測定することができる。ここでは、その細孔径を有する孔の数が極大となる細孔径のことを「ピーク細孔径」と称する。大きな細孔は反応ガスの拡散と生成した炭化水素の触媒外部への拡散を促進し、小さな細孔は高比表面積と触媒成分の高分散状態を維持する。その結果、活性の高い触媒が得られる。
大きな細孔(ピーク細孔径30nm以上300nm以下)の細孔容積は、全細孔容積の30%~90%であるのが好ましく、50%~90%であるのがより好ましく、60%~90%であるのがさらに好ましい。小さな細孔(ピーク細孔径30nm未満)とのの細孔容積は、全細孔容積の10%~70%であるのが好ましく、10%~50%であるのがより好ましく、10%~40%であるのがさらに好ましい。
上記の大きな細孔及び小さな細孔を共に有する担体は、1種類の細孔のみを有する担体にナノ粒子の分散体、又は遷移金属塩の溶液を含浸させ、得られた含浸物を加熱処理することによって調製することができる。遷移金属塩の溶液を含浸させた後にアンモニア、水酸化カリウム、水酸化ナトリウムなどの塩基で処理し得た含浸物を加熱処理することでも調製することができる。以下、ここでは、1種類の細孔のみを有する担体を「原料担体」、大きな細孔及び小さな細孔を共に有する担体を「2種類の細孔を有する担体」と称する。
原料担体の種類は特に制限されないが、細孔径が10nm~500nmのものが好ましく、30nm~400nmがより好ましく、30nm~300nmが特に好ましく用いられる。原料担体として例えばアルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、酸化亜鉛などを用いることができ、好ましくはシリカが挙げられる。
2種類の細孔を有する担体の調製に用いるナノ粒子は、原料担体の細孔内に担持されれば特に制限はないが、動的光散乱法で得られる分散粒径が0.1nm~50nmのものが好ましく、1nm~30nmのものがより好ましく、5nm~25nmのものが特に好ましく用いられる。ナノ粒子として例えばアルミニウム、珪素、チタン、ジルコニウム、マグネシウム、セリウム、マンガン、亜鉛の酸化物、複合酸化物、水酸化物、及び複合水酸化物を用いることができ、好ましくはシリカ、ジルコニアが挙げられる。これらのナノ粒子が含まれる分散体は、複数のものを混合して用いても良い。
2種類の細孔を有する担体の調製に用いる金属塩としては、得られる触媒の精製工程における除去が容易であることから、水に対する溶解性に優れることが好ましい。そのような塩としては、例えば、酢酸塩、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、硫酸塩、硝酸塩、オキシ塩化物塩、オキシ硝酸塩及びそれらの水和物などの塩、並びに金属錯体を挙げることができる。なかでも加熱による陰イオン分の除去が容易であることから、硝酸塩が好ましく用いられる。前記遷移金属塩中の遷移金属としては、鉄、コバルト、ニッケル、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン、セリウムがあげられる。
 遷移金属塩の溶液の調製は、上述の遷移金属塩を溶媒に加えて、遷移金属塩を溶解することで行うことができる。また、上述の複数の遷移金属塩を適宜混合することで混合溶液又は混合分散液を調製することとしてもよい。
 用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。これらの溶媒は複数のものを混合して用いても良い。
 2種類の細孔を有する担体の調製において加熱処理する際の温度としては、200℃以上800℃以下が好ましく、300℃以上700℃以下がより好ましい。また加熱時間は1時間以上48時間以下が好ましく、1時間以上10時間以下がより好ましい。
これにより、2種類の細孔を有する担体が得られる。
 触媒(E)が担体成分を含む場合、触媒(E)における触媒金属(担体成分を含む触媒(E)において、担体成分に該当しない金属を意味する)の含有率は、本実施形態の軽質オレフィン製造反応に用いる触媒が、良好な触媒能を奏しうる割合であれば特に限定されない。触媒(E)における触媒金属の割合は、触媒の総質量に対し、100質量%未満であればよく、1質量%以上99質量%以下であることが好ましく、3質量%以上97質量%以下であることがより好ましく5質量%以上95質量以下であることがさらに好ましい。担体成分の量は、触媒の総質量に対して1質量%以上99質量%以下となる量であることが好ましく、3質量%以上97質量%以下となる量であることがより好ましく5質量%以上95質量以下となる量であることがさらに好ましい。
 上述の担体成分を触媒に導入する場合、沈殿法、ゲル化法、含浸法、イオン交換法等の通常用いられる方法を適宜選択できる。
触媒(A)に担体成分を導入する方法として特に好ましい方法としては、工程(i)において担体成分を上記溶液又は分散液に分散させ、工程(ii)において沈殿剤を添加して生じる沈殿物とともに沈殿させる方法が好ましい。工程(i)の上記溶液又は分散液に加える担体成分の量は、触媒における触媒金属の割合が、触媒(A)の総質量に対し、1質量%以上99質量%以下となる量であることが好ましく、3質量%以上97質量%以下となる量であることがより好ましく5質量%以上95質量以下となる量であることがさらに好ましい。
また、触媒(B)に担体成分を導入する方法として特に好ましい方法としては、コバルト塩の溶液を、含浸法を用いて導入し、含浸物を加熱処理する方法が好ましい。その際、助触媒としてマンガンや亜鉛を含む溶液を同時含浸又は逐次含浸できる。
用いるコバルト塩としては例えば硝酸塩、酢酸塩、炭酸塩、硫酸塩などを挙げることができ、好ましくは硝酸塩が挙げられる。
コバルト塩の溶液の調製は、上述のコバルト塩を溶媒に加えて、コバルト塩を溶解することで行うことができる。
用いる溶媒としては、無機塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。これらの溶媒は複数のものを混合して用いても良い。
含浸の方法は公知の種々の方法を用いることができるが、Incipient Wetness法を用いるのが好ましい。
その後、得られた含浸物を加熱処理する。加熱温度は、300℃以上800℃以下が好ましく、加熱時間は1時間以上48時間以下が好ましい。
 以上のようにして、FT反応に用いる触媒を調製することができる。
(合成ガス)
 本実施形態のC2~C4オレフィンの製造方法に用いる合成ガスは、水素と一酸化炭素を含むガス、水素と二酸化炭素を含むガス、水素と一酸化炭素及び二酸化炭素を含むガスなどを用いることができる。中でも特に、水素と一酸化炭素の合計が、合成ガス全体の体積に対し、50体積%以上100体積%以下であると好ましい。このような合成ガスを用いると、生産性が高くなる。合成ガス中の水素と一酸化炭素とのモル比は、一酸化炭素の水素化反応が進みやすく生産性が高くなるため、[水素/一酸化炭素]で表して、0.3以上であることが好ましい。また原料ガス中の一酸化炭素の存在量が少な過ぎることによる生産性の低下を抑制するため、合成ガス中の水素と一酸化炭素とのモル比は、3以下であることが好ましい。
 合成ガス中の水素と一酸化炭素とのモル比は、[水素/一酸化炭素]で表して、0.5以上3.0以下がより好ましく、0.5以上2.5以下がよりさらに好ましく、0.6以上2.0以下が特に好ましい。
(FT反応)
本発明のFT反応において、分散媒を用いることが特徴であり、分散媒により炭化水素生成物が触媒上から直ちに抽出される等の効果により、炭化水素生成物の炭素数が増大し難く、炭素原子数2~4のオレフィンの含有量の高い炭化水素生成物を得ることができると推定している。FT反応は、上述の合成ガスと上述の触媒とを、スラリー床液相合成プロセスを用いて連続式で反応させることが望ましい。FT反応の圧力は、0.1MPa以上30MPa以下であることが好ましく、0.1MPa以上10MPa以下であることがより好ましく、0.5MPa以上3MPa以下であることが特に好ましい。ここで「FT反応の圧力」とは反応容器内の圧力を意味する。
反応容器内には、あらかじめ上述の触媒を分散媒中に、(例えばスラリー状に)分散させておくことが好ましい。分散媒としては、前記合成ガスと触媒(D)とを反応させる工程における反応温度および反応圧力において液状である有機化合物を用いることが好ましい。分散媒としては、例えば、常圧下100℃以上600℃以下の温度範囲で液状となる有機化合物を用いることができる。ここで、「a℃以上b℃以下の温度範囲で液状となる有機化合物」とは、「a℃以上b℃以下の温度範囲のうち少なくともいずれかの温度で液状である有機化合物」を意味し、常圧は、0.1MPaを意味する。
分散媒として好ましくは常圧下150℃以上400℃以下、より好ましくは常圧下150℃以上350℃以下、さらに好ましくは常圧下200℃以上330℃以下、特に好ましくは常圧下200℃以上300℃以下の温度範囲で液状となる有機化合物を用いることができる。このような有機化合物はFT反応条件下、分散媒として好適に用いることができる。該有機化合物としては炭化水素化合物及び含酸素炭化水素化合物を挙げることが出来る。該炭化水素化合物として好ましくは、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサンなどの炭素数10~100程度のパラフィン及びその混合物が挙げられ、FT反応で副生する炭素数10~100程度のパラフィン(FTワックスと一般的に呼ばれるもの)や市販の炭素数10~100程度のポリアルファオレフィンを用いることも出来る。該含酸素炭化水素化合物として好ましくはデカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサデカノールなどの炭素数10~100程度のアルコール;デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸などの炭素数10~100程度のカルボン酸;ポリエチレングリコール、ポリプロピレングリコール、シリコーン及びその混合物が挙げられる。該有機化合物としては炭化水素化合物が好ましい。
 触媒(E)と分散媒との割合は基本的には任意であるが、好ましくは、触媒(E)1gに対して分散媒が1mL以上10L以下であり、より好ましくは、5mL以上2L以下であり、さらに好ましくは、10mL以上1L以下である。
 本実施形態のC2~C4オレフィンの製造方法におけるFT反応は、反応温度が100℃以上600℃以下であることが好ましく、反応温度が200℃以上500℃以下であることがより好ましく、250℃以上400℃以下であることがよりさらに好ましく、250℃以上350℃以下であることが特に好ましい。
 また、本実施形態のC2~C4オレフィンの製造方法におけるFT反応は、合成ガスのモルあたりの供給速度(F)(mol/h)に対する触媒の質量(W)(g)の比(W/F)が、0.01g・h/mol以上100g・h/mol以下であることが好ましく、1.0g・h/mol以上50g・h/mol以下であることがより好ましく、5.0g・h/mol以上30g・h/mol以下であることが特に好ましい。
FT反応の時間について、連続式の場合には反応容積(V)(mL)を合成ガスの体積あたりの供給速度(F’)(mL/h)の比(V/F’)として表され、1.0×10-5h以上50h以下が好ましく、1.0×10-3h以上20h以下がより好ましく、4.0×10-3h以上5h以下がさらに好ましい。
FT反応による生成物は複数の化合物(炭化水素)の混合物として得られるが、この生成物における各化合物の存在比は、公知のガスクロマトグラフィー技術を用いて分析することができる。これにより、FT反応で得られた各炭化水素成分の組成を算出することが出来る。
 第1工程のFT反応で製造される炭化水素化合物は、炭素数2~4のオレフィンを含むオレフィンを20炭素モル%より多く100炭素モル%以下含有することが好ましく、50炭素モル%以上100炭素モル%以下含有することがより好ましく、60炭素モル%以上100炭素モル%以下含有することがさらに好ましい。すなわち、第1工程で製造される炭化水素化合物においては、炭素数2~4のオレフィンと炭素数が5以上のオレフィンとを合わせた総オレフィン量が、20炭素モル%より多く100炭素モル%以下であることが好ましく、50炭素モル%以上100炭素モル%以下含有することがより好ましく、60炭素モル%以上100炭素モル%以下含有することがさらに好ましい。
なお、「炭素モル%」とは、「得られる炭化水素生成物を構成する全炭素原子数に対する、オレフィンを構成する全炭素原子数の割合」のことを指す。
 後述する第2工程の接触分解においては、例えばパラフィン(飽和炭化水素)であるヘキサンを出発原料とすると、下記式1に示すように、1分子のパラフィンから1分子のパラフィン(プロパン)と1分子のオレフィン(プロピレン)の2分子が生成し得る。一方、オレフィンであるヘキセンを出発原料とすると、下記式2に示すように、1分子のオレフィンから2分子のオレフィン(プロピレン)が生成することが可能であり、高効率にオレフィンを得ることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
そのため、第1工程において上述の割合でオレフィンを含む炭化水素化合物を得ることができれば、第2工程での接触分解により、炭素数2~4のオレフィン、特にプロピレンの含有量をさらに向上させることができる。
 また、第1工程のFT反応で製造される炭化水素化合物は、プロピレンを3炭素モル%以上100炭素モル%以下含有することが好ましく、5炭素モル%以上100炭素モル%以下含有することがより好ましく、10炭素モル%以上100炭素モル%以下含有することがさらに好ましい。
 そのため、本実施形態における第1工程においては、上述の割合でオレフィンを含む炭化水素化合物が得られるように、FT反応の触媒の種類や温度条件などの反応条件を適宜選択するとよい。
<第2工程>
次いで、第2工程について説明する。第2工程は、第1工程で得られた炭化水素生成物を分解触媒存在下で接触分解する工程を備える。第2工程として接触分解を備えることにより、炭素数2~4のオレフィン、特にプロピレンの含有量をさらに向上させることができる。
前記接触分解においては、反応器として、固定床反応器、移動床反応器、流動床反応器など、接触分解を行うために用いる反応器として通常知られた反応器を用いることができる。
 図1は、本実施形態の炭素原子数2~4のオレフィンの製造方法を実施する製造装置の一例を示す図であり、第1工程(FT反応)及び第2工程(接触分解反応)を備える炭素原子数2~4のオレフィンの製造装置を示す模式図である。
 図1に示す炭素原子数2~4のオレフィンの製造装置は、合成ガスを収容するタンク1と、タンク1から供給される合成ガスを用いて第1工程を行う第1反応器2と、第1反応器2で得られた反応物を用いて接触分解を行う第2反応器4と、を有している。タンク1、第1反応器2、第2反応器4は、この順に連結されている。また、第1反応器2と第2反応器4との間には、背圧弁3が設けられており、第1反応器2と第2反応器4との各反応器の圧力を調整する。
その他、炭素原子数2~4のオレフィンの製造設備は、適宜、液体生成物を捕らえるための冷却トラップを設置してもよい。
 接触分解にはアルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素を含むゼオライトからなる分解触媒を用いる。
前記ゼオライトは、前記の金属を導入すれば天然ゼオライト又は合成ゼオライトのいずれも使用することができ、好ましくはZSM-5型が使用される。ZSM-5は、SiOとAlとのモル比が、[SiO/Al]で表して、50以上4000以下(SiとAlとのモル比(以下、「Si/Al比」ともいう)が、[Si/Al]で表して25以上2000以下)であるものが好ましく、90以上1000以下(Si/Al比が45以上500以下)であるものがより好ましく、200以上800以下(Si/Al比が100以上400以下)であるものが特に好ましい。
 また、分解触媒の酸強度、密度などの酸特性及び耐久性は、リン含有化合物、ランタン含有化合物、アルカリ土類金属含有化合物などで処理することで向上させることもできる。
なおゼオライトとは一般的な定義に従い、「結晶性の多孔質アルミノケイ酸塩及びメタロケイ酸塩」を意味する。ZSM-5とは単位胞組成はM[AlSi96-n192]・xHOで表される。Mはプロトン、アンモニウムカチオン、金属カチオンなどのカチオンであり、nは0より大きく27未満の数、xは0以上の数である。以下、Mがプロトンのものを特にHZSM-5と呼称することがある。
 分解触媒は、アルカリ金属、アルカリ土類金属及びd-ブロック元素とからなる群から選ばれる1種以上の元素とを含むゼオライトが望ましく、「d-ブロック元素」とは、周期律表における3族元素から12族元素のうち、ランタノイド及びアクチノイドを除く元素のことを指す。前記ゼオライトにこれらの金属元素を、分解触媒の総質量(ゼオライトにこれらの金属を導入させた後の質量)に対し、0.01質量%以上30質量%以下含有されるものが好ましく、0.05質量%以上20質量%以下含有されるものがより好ましく、0.1質量%以上10質量%以下含有されるものが特に好ましい。
 また、これらの金属元素は、金属-酸素結合を介してゼオライトに導入されることが好ましい。具体的には、Ba-O結合、Mn-O結合、Cu-O結合等が挙げられる。なかでもBa-O結合が好ましい。金属元素の含有比(モル比)は、[SiO/Al/金属元素の酸化物]で表して、50~4000/1/0.1~50が好ましい。より具体的には、バリウムの含有比(モル比)は、[SiO/Al/BaO]で表して、50~4000/1/0.1~50が好ましい。
 前記ゼオライトに含まれるアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが好ましい。
 前記ゼオライトに含まれるアルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくはマグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはマグネシウム、カルシウム、バリウムが挙げられ、特に好ましくはカルシウム、バリウムが挙げられる。
 前記ゼオライトに含まれるd-ブロック元素としては、スカンジウム、チタン、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金がより好ましく、バナジウム、マンガン、鉄、コバルト、銅、ニオブ、モリブデン、銀、タンタル、タングステンであることがさらに好ましく、マンガン、鉄、コバルト、銅、銀であることがよりさらに好ましく、マンガン、銅、銀であることが殊更に好ましく、マンガン、銅であることが特に好ましい。
 前記ゼオライトに含まれる元素は、アルカリ土類金属又はd-ブロック元素がより好ましく、アルカリ土類金属が特に好ましい。
分解触媒の調製において、ゼオライト(好ましくはZSM-5)にアルカリ金属、アルカリ土類金属及びd-ブロック元素を含有させる手法としては、ゼオライト製造後に導入する又はゼオライト製造時に導入する方法等の通常用いられる方法を適宜選択できる。金属を均一に含有させるという面ではゼオライト製造時に導入する方法が好ましく、市販ゼオライトを簡便に利用できるという面ではゼオライト製造後に導入する方法が好ましい。これらの方法は、用いるゼオライトや本実施形態の製造方法を用いた製造設備の維持の簡便さなどから、適宜選択して分解触媒を調製することができる。
なお、分解触媒を構成する元素のモル比は、誘導結合プラズマ発光分析(以下、「ICP分析」と称することがある。)で求めることができる。
 (分解触媒の製造方法)
 以下、第2工程で用いる分解触媒の製造方法について説明する。
 分解触媒は、アルカリ金属、アルカリ土類金属又は遷移金属(好ましくはd-ブロック元素)をゼオライト製造時に導入する場合、ケイ素源、アルミニウム源、構造規定剤、溶媒、及びゼオライトに導入する金属元素の原料(導入元素源)の混合物を耐圧容器に仕込み、反応させることにより製造することができる。反応温度としては、50℃以上250℃以下が好ましく、100℃以上200℃以下がより好ましい。また反応時間としては、0.1時間以上150時間以下が好ましく、1時間以上120時間以下がより好ましい。
また、これらの混合物から水を除去した乾燥ゲルを水、又は構造規定剤を含む水と接触させないように耐圧容器に仕込み、蒸気を供給し反応させることにより、分解触媒を製造することも可能である。反応温度としては、50℃以上250℃以下が好ましく、100℃以上200℃以下がより好ましい。また反応時間としては、0.1時間以上150時間以下が好ましく、1時間以上120時間以下がより好ましい。得られたものは、引き続き所定の温度及び時間(例えば、300℃以上800℃以下で1時間以上48時間以下)で焼成処理を行ってもよい。
前記ケイ素源、アルミニウム源、構造規定剤、及び導入元素源は、目的組成となるように各適量を反応させる。いずれも1種のみを用いてもよし、2種以上を組み合わせて用いてもよい。
 (ケイ素源)
 「ケイ素源」とは、ケイ素を含有する化合物であり、分解触媒のゼオライトの構成成分となりうる原料を意味する。ケイ素源としてはゼオライトの構成成分となりうるものであれば特に限定されない。
ケイ素源としては、例えば、テトラアルキルオルソシリケート、シリカ、シリカゲル、熱分解法シリカ、沈降シリカ、コロイダルシリカ、水ガラス、湿式シリカ、無定形シリカ、ヒュームドシリカ、ケイ酸ナトリウム、カオリナイト、珪藻土、ケイ酸アルミニウムなどが挙げられ、好ましくはテトラアルキルオルソシリケート、ヒュームドシリカが挙げられる。
 (アルミニウム源)
 「アルミニウム源」とは、アルミニウムを含有する化合物であり、分解触媒のゼオライトの構成成分となりうる原料を意味する。アルミニウム源としてはゼオライトの構成成分となりうるものであれば特に限定されない。
アルミニウム源としては、例えば、アルミン酸塩、酸化アルミニウム、ベーマイト、オキシ水酸化アルミニウム、水酸化アルミニウム、アルミニウム塩(塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウムなど)、アルミニウムアルコキシド(アルミニウムイソプロポキシドなど)、アルミナホワイト、フッ化アルミニウムなどが挙げられ、好ましくは硝酸アルミニウム、酸化アルミニウムが挙げられる。
 (構造規定材)
 「構造規定剤」とは、ゼオライトの構造を決定するための化合物である。構造規定剤としては特に限定されず、公知の様々な構造規定剤を用いることができる。例えば、有機塩基、特に四級アンモニウム化合物、アミンなどを挙げることができる。
構造規定剤としてより具体的には、四級アンモニウム化合物としてテトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラn-ブチルアンモニウム、ベンジルトリメチルアンモニウム、3-(トリフルオロメチル)フェニルトリメチルアンモニウム及びn-ヘキサデシルトリメチルアンモニウムの水酸化物塩、リン酸塩、フッ化物塩、塩化物塩、臭化物塩及び酢酸塩などが挙げられ、アミンとしてジプロピルアミン、トリエチルアミン、シクロヘキシルアミン、1-メチルアミダゾール、モルホリン、ピリジン、ピペリジン、ジエチルエタノールアミンなどが挙げられる。
構造規定剤として好ましくは、四級アンモニウム化合物であるテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラn-ブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドや、アミンであるジプロピルアミン、トリエチルアミン、モルホリン、ピリジン、ピペリジンが挙げられる。
また、構造規定剤としてより好ましくは、四級アンモニウム化合物であるテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラn-ブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドが挙げられ、さらに好ましくはテトラプロピルアンモニウムヒドロキシドが挙げられる。
 (導入元素源)
 「導入元素源」とは、分解触媒のゼオライトに導入されるアルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素を含有する化合物であり、導入元素源としては分解触媒のゼオライトの構成成分となりうるものであれば特に限定されない。例えば、金属塩、金属錯体などを挙げることができる。
導入元素源としてより具体的には、導入される金属元素の炭酸塩、硝酸塩、亜硝酸塩、硫酸塩、亜硫酸塩、酢酸塩、ギ酸塩、リン酸塩、リン酸水素塩、リン酸二水素塩、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、水酸化物塩、アセチルアセトナト錯体などが挙げられる。なかでも加熱による陰イオン分の除去が容易であることから、硝酸塩、炭酸塩、酢酸塩が好ましく用いられる。
導入元素源として用いるこれらの化合物中の金属元素は、望ましくはアルカリ金属、アルカリ土類金属及びd-ブロック元素からなる群から1種類以上選ばれる元素である。
導入元素源に含まれるアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが好ましい。
導入元素源に含まれるアルカリ土類金属は、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくはマグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはマグネシウム、カルシウム、バリウムが挙げられ、特に好ましくはカルシウム、バリウムが挙げられる。
導入元素源に含まれるd-ブロック元素は、スカンジウム、チタン、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金又は金であることが好ましく、バナジウム、マンガン、鉄、コバルト、銅、ニオブ、モリブデン、銀、タンタル、タングステンであることがより好ましく、マンガン、鉄、コバルト、銅、銀であることがさらに好ましく、マンガン、銅、銀であることがよりさらに好ましく、銅、マンガンであることが特に好ましい。
導入元素源に含まれる金属元素は、アルカリ土類金属及びd-ブロック元素が好ましく、アルカリ土類金属がより好ましい。
具体的には、導入元素源としては、酢酸銅、硝酸銅、酢酸マンガン、硝酸マンガン、酢酸バリウム、硝酸バリウム、酢酸カルシウム、硝酸カルシウムが好ましく、酢酸バリウム、硝酸バリウム、酢酸カルシウム、硝酸カルシウムがより好ましい。
上記のアルカリ金属、アルカリ土類金属又は遷移金属をゼオライト製造時に導入する場合に用いる溶媒としては、一般的にゼオライト製造時に用いられる溶媒でよく、例えば、水、アルコール化合物、ニトリル化合物、アミド化合物、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、エーテル化合物、ハロゲン化炭化水素、エステル化合物などが挙げられる。好ましくは、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンが挙げられ、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられる。これらの溶媒は複数のものを混合して用いてもよい。
 また、分解触媒は、上述の分解触媒の製造方法における混合物から導入元素源を除いた混合物を用いてゼオライトを合成し、得られたゼオライトに後からアルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の金属元素を導入して製造することもできる。得られたものは、引き続き所定の温度及び時間(例えば、300℃以上800℃以下で1時間以上48時間以下)で焼成処理を行ってもよい。
 後から導入する方法としては、導入金属元素を含む塩の溶液を用いて、一般的に行われている公知の方法で行うことができる。具体的には、ゼオライトを、導入金属元素を含む塩の溶液に浸漬し、静置もしくは撹拌する。この際、0℃以上100℃未満、好ましくは20℃以上80℃以下の温度で、0.1時間以上24時間以下、好ましくは1時間以上6時間以下の時間で静置もしくは撹拌する。得られたスラリーを蒸発乾固、もしくはろ過乾燥することで導入金属元素をゼオライトに導入することが出来る。蒸発乾固は20℃以上100℃未満、好ましくは40℃以上80℃以下の温度で、0.1時間以上48時間以下、好ましくは1時間以上24時間以下の時間で行う。ろ過乾燥は、ろ過した後に前記溶媒で洗浄してもよく、その後に20℃以上150℃以下、好ましくは60℃以上130℃以下の温度で、1時間以上48時間以下、好ましくは12時間以上36時間以下の時間乾燥する。
導入金属元素の導入は必要に応じて複数回繰り返してもよく、その回数について特に制限は無い。
導入金属元素を含む塩としてより具体的には、導入金属元素の炭酸塩、硝酸塩、亜硝酸塩、硫酸塩、亜硫酸塩、酢酸塩、ギ酸塩、リン酸塩、リン酸水素塩、リン酸二水素塩、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、水酸化物塩、アセチルアセトナト錯体などが挙げられる。なかでも加熱による陰イオン分の除去が容易であることから、硝酸塩、酢酸塩が好ましく用いられる。
導入金属元素は、アルカリ金属、アルカリ土類金属及びd-ブロック元素からなる群から1種類以上選ばれる金属が望ましい。
導入されるアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが好ましい。
導入されるアルカリ土類金属は、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、より好ましくはマグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、さらに好ましくはマグネシウム、カルシウム、バリウムが挙げられ、特に好ましくはカルシウム、バリウムが挙げられる。
導入されるd-ブロック元素は、スカンジウム、チタン、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金又は金であることが好ましく、バナジウム、マンガン、鉄、コバルト、銅、ニオブ、モリブデン、銀、タンタル、タングステンであることがより好ましく、マンガン、鉄、コバルト、銅、銀であることがさらに好ましく、マンガン、銅、銀であることがよりさらに好ましく、銅、マンガンであることが特に好ましい。
導入金属元素はアルカリ土類金属がより好ましい。
導入元素を含む塩の溶液は上記の導入元素塩を溶媒に溶解することで得られる。
ゼオライトを、導入金属元素を含む塩の溶液に浸漬し、静置もしくは撹拌する。得られたスラリーを蒸発乾固、もしくはろ過乾燥することで導入金属元素をゼオライトに導入することが出来る。
 前記溶媒としては、導入元素塩の溶解性が高いことから、水、メタノール、エタノール、プロパノール、エチレングリコール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどの極性溶媒が好ましく、より好ましくは水、メタノール、エタノール、プロパノール、エチレングリコールが挙げられ、特に好ましくは水が挙げられる。これらの溶媒は複数のものを混合して用いても良い。
前記分解触媒は、粒径が大きくなるにつれて、接触分解反応の副反応によって生じる炭素析出による性能劣化の影響が出やすくなるため、粒径は5μm以下であることが好ましく、3μm以下であることがより好ましく、0.01μm以上2.5μm以下であることがさらに好ましく、0.01μm以上2μm以下であることが特に好ましい。
前記分解触媒は、適宜、予め粉砕、成型、整粒等の何らかの処理を行ってから用いてもよい。
 前記接触分解の温度範囲は、300℃以上800℃以下であることが好ましく、350℃以上650℃以下であることがより好ましく、400℃以上600℃以下であることがさらに好ましい。
 前記接触分解の反応圧力は、0.01MPa以上1MPa以下であることが好ましく、0.01MPa以上0.5MPa以下であることがより好ましく、0.05MPa以上0.2MPa以下であることがさらに好ましい。
また、前記接触分解処理の時間について、連続式の場合には反応容積(V)(mL)と第1工程で得られた炭化水素生成物の体積あたりの供給速度(F’)(mL/h)の比(V/F’)として表され、1.0×10-6h以上6h以下が好ましく、1.0×10-5h以上3h以下がより好ましく、1.0×10-4h以上1h以下がさらに好ましい。
 上述の製造方法により、炭素原子数2~4のオレフィンの含有量の高い炭化水素生成物を得ることができる。炭素原子数2~4のオレフィンの含有量としては、上述の製造方法により得られる炭化水素生成物を構成する全炭素原子数に対する、炭素原子数2~4のオレフィンを構成する全炭素原子数の割合が、18%以上100%以下であることが好ましく、24%以上100%以下であることがより好ましく、30%以上100%以下であることがさらに好ましく、35%以上100%以下であることが特に好ましく、40%以上100%以下であることが殊更好ましい。
 以上のような製造方法によれば、生成物中の炭素原子数2~4のオレフィン、特にプロピレン含有量を向上させることができる。
なお生成物中の炭素原子数2~4のオレフィンの選択率、特にプロピレンの選択率の観点からは、第1実施形態より第2実施形態の方が好ましい。
 以下に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 本実施例においては、以下の分析手法を用いて、得られたFT反応用の触媒、及びFT反応の結果を評価した。
(EDS分析)
 EDS分析は、エネルギー分散形蛍光X線分析装置(株式会社島津製作所製、RaynyEDX-700)を用いて行った。
(ガスクロマトグラフィー)
 ガスクロマトグラフィーは、株式会社島津製作所製GC-14B及びGC-2014AFscにてFID(水素炎イオン化型検出器)測定を行い、GLサイエンス株式会社製GC320及び株式会社島津製作所製GC-2014ATにてTCD(熱伝導度型検出器)測定を行った。
(ICP分析)
 ICP分析は、誘導結合プラズマ発光分析装置(島津製作所社製、ICPE-9000)を用いて行った。
まず、第一実施形態について述べる。
(実施例1)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(2.2g)、Cu(NO・3HO(1.8g)を秤量し、水(300ml)に溶解させ、Fe-Mn-Cu溶液を調製した。また、28%NHOH水溶液(80ml)を秤量して水(420ml)を加え、NHOH溶液を調製した。
 ビーカーに水(300ml)を秤量して60℃に加熱し、攪拌しながら上述のFe-Mn-Cu溶液をビーカー内の水に1時間かけて滴下した。その際、予めビーカー内の水にNHOH溶液を加え、pHを約8に調整した後にFe-Mn-Cu溶液の滴下を開始した。また、Fe-Mn-Cu溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNHOH溶液を滴下した。
 滴下後、1時間攪拌し、得られた反応混合物を室温下12時間静置し、沈殿を生じさせた。
 生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
 KNO(0.126g)を秤量し、水(3g)に溶解させ、KNO溶液を調製し、Incipient Wetness法により含浸を行った。すなわち、得られたKNO溶液に上述の粉砕物を浸漬させ、この浸漬物を30分間、超音波処理した。
 次いで、得られた浸漬物を真空下、室温で1時間保持した後、120℃常圧下で一晩乾燥させた。得られた乾燥物をメノウ鉢で粉砕した。
 大気中で、電気炉にこの粉砕物を導入し、室温から400℃まで80分間かけて昇温させた後に400℃で3時間保持し、熱処理することで触媒1を得た。
 EDS分析の結果、得られた触媒1の金属含有率(モル比)は、Fe:Mn:Cu:K=74.3:11.2:12.5:2.0であった。
 攪拌機を備えた内容量85mlの反応容器に、触媒1(1g)、ポリアルファオレフィン(20ml、数平均分子量735)を加えた。H/CO比が0.97である合成ガスを0.1MPaで、合成ガスの供給速度(F)(mol/h)に対する触媒の質量(W)(g)の比(以下、「W/F比」と称することがある)10g・h/molで流し、300℃で10時間活性化処理を行った。ここでは、後述のFT反応で用いる合成ガスを、活性化処理のための還元ガスとして用いた。
 その後、H/CO比が0.97である合成ガスを1MPaで、W/F比10g・h/molで流し、280℃で8時間FT反応を行った。
 反応により生じた生成物をガスクロマトグラフィーにて分析することにより、CO転化率、プロピレン選択率及びC2~C4オレフィン選択率を算出した。
(実施例2)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(2.2g)、Cu(NO・3HO(1.8g)を秤量し、水(300ml)に溶解させFe-Mn-Cu溶液を調製した。また、NaCO(15g)を秤量して水(300ml)を加えNaCO溶液を調製した。
 ビーカーに水(300ml)及びポリエチレングリコール(31ml、数平均分子量300)を秤量して60℃に加熱し、攪拌しながら上述のFe-Mn-Cu溶液をビーカー内の水及びポリエチレングリコールに1時間かけて滴下した。その際、予めビーカー内の水にNaCO溶液を加え、pHを約8に調整した後にFe-Mn-Cu溶液の滴下を開始した。また、Fe-Mn-Cu溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNaCO溶液を滴下した。
 滴下後、1時間攪拌し、得られた反応混合物を室温下12時間静置し、沈殿を生じさせた。
 生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
 KNO(0.126g)を秤量し、水(2.5g)に溶解させて調製したKNO溶液と、上記粉砕物とを用いたこと以外は、実施例1と同様にして、触媒2を得た。
 EDS分析の結果、得られた触媒2の金属含有率(モル比)は、Fe:Mn:Cu:K=74.2:11.1:12.6:2.1であった。
 触媒1の代わりに触媒2(1g)を用いたこと以外は、実施例1と同様にしてFT反応を行った。
(実施例3)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(4.39g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。また、NaCO(16.5g)を秤量して水(300ml)を加えNaCO溶液を調製した。
 ビーカーに水(300ml)を秤量して60℃に加熱し、攪拌しながら上述のFe-Mn溶液をビーカー内の水に1時間かけて滴下した。その際、予めビーカー内の水にNaCO溶液を加え、pHを約8に調整した後にFe-Mn溶液の滴下を開始した。また、Fe-Mn溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNaCO溶液を滴下した。
 滴下後、1時間攪拌し、得られた反応混合物を室温下12時間静置し、沈殿を生じさせた。
 生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
 KNO(0.043g)を秤量し、水(3g)に溶解させて調製したKNO溶液と、上記粉砕物とを用いたこと以外は、実施例1と同様にして、触媒3を得た。
 EDS分析の結果、得られた触媒3の金属含有率(モル比)は、Fe:Mn:K=74.5:23.8:1.7であった。
 触媒1の代わりに触媒3(1g)を用いたこと以外は、実施例1と同様にしてFT反応を行った。
(実施例4)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(2.2g)、KNO(0.126g)を秤量し、エチレングリコール(20ml)に溶解させた後、40質量%エタノール水溶液(5ml)を加えた。ここにポリメタクリレート(綜研化学製MX-500(6g)、及び綜研化学製MX-150(12g)の混合物)を加え、5時間浸漬させ、沈殿を生じさせた。得られた沈殿をろ過し、120℃で一晩乾燥させた。
 大気中で、電気炉にこの乾燥物を導入し、室温から400℃まで1℃/分の昇温速度で昇温させ、400℃で6時間保持し、熱処理することで触媒4を得た。
 EDS分析の結果、得られた触媒4の金属含有率(モル比)は、Fe:Mn:K=84.4:13.0:2.6であった。
 触媒1の代わりに触媒4(1g)を用いたこと以外は、実施例1と同様にしてFT反応を行った。
(実施例5)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(4.39g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。また、(NHCO(11.5g)を秤量して水(300ml)を加え(NHCO溶液を調製した。
 ビーカーに水(300ml)を秤量して60℃に加熱し、攪拌しながら上述のFe-Mn溶液をビーカー内の水に1時間かけて滴下した。その際、予めビーカー内の水に(NHCO溶液を加え、pHを約8に調整した後にFe-Mn溶液の滴下を開始した。また、Fe-Mn溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながら(NHCO溶液を滴下した。
 滴下後、1時間攪拌し、得られた反応混合物を室温下12時間静置し、沈殿を生じさせた。
 生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
 KNO(0.058g)を秤量し、水(2.5g)に溶解させて調製したKNO溶液と、上記粉砕物とを用いたこと以外は、実施例1と同様にして、触媒5を得た。
 触媒1の代わりに触媒5(1g)を用いたこと以外は、実施例1と同様にしてFT反応を行った。
(実施例6)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(4.39g)を秤量し、水(200ml)に溶解させFe-Mn溶液を調製した。また、28%NHOH水溶液(30.0ml)を秤量して水(170ml)を加えNHOH溶液を調製した。
 ビーカーに活性炭(4g、和光純薬工業製)及び水(300ml)を秤量して60℃に加熱し、攪拌しながら上述のFe-Mn溶液をビーカー内の水に1時間かけて滴下した。その際、予めビーカー内の水にNHOH溶液を加え、pHを約8に調整した後にFe-Mn溶液の滴下を開始した。また、Fe-Mn溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNHOH溶液を滴下した。
 滴下後、1時間攪拌し、得られた反応混合物を室温下12時間静置し、沈殿を生じさせた。
 生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
 KNO(0.086g)を秤量し、水(10g)に溶解させ、KNO溶液を調製し、Incipient Wetness法により含浸を行った。すなわち、得られたKNO溶液に上述の粉砕物を浸漬させ、この浸漬物を30分間、超音波処理した。
 次いで、得られた浸漬物を真空下、室温で1時間保持した後、120℃で一晩乾燥させた。得られた乾燥物をメノウ鉢で粉砕した。
 アルゴン気流下で、管状炉にこの粉砕物を導入し、室温から400℃まで80分間かけて昇温させた後に400℃で3時間保持し、熱処理することで触媒6を得た。
 EDS分析の結果、得られた触媒6の金属モル含有量比は、Fe:Mn:K=74.4:19.4:6.2であった。
 攪拌機を備えた内容量85mlの反応容器に、触媒6(1g)、ポリアルファオレフィン(20ml、Mn735)を加え、H/CO比が0.67である還元ガスを0.1MPaで、還元ガスの供給速度(F)(mol/h)に対する触媒の質量(W)(g)の比10g・h/molで流し、280℃で10時間活性化処理を行った。
 この後、H/CO比が0.97である合成ガスを1MPaの条件で、W/F比10g・h/molで流し、280℃で8時間FT反応を行った。
 反応により生じた生成物をガスクロマトグラフィーにて分析することにより、CO転化率、プロピレン選択率及びC2~C4オレフィン選択率を算出した。
(実施例7)
Fe(NO・9HO(40.43g)、Mn(NO・6HO(8.78g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。また、28%NHOH水溶液(90ml)を秤量してNHOH溶液を準備した。
ビーカーに水(300ml)を秤量して60℃に加熱し、撹拌しながら上述のFe-Mn溶液及び上述のNHOH溶液を同時に1時間かけて滴下した。その際、予めビーカー内の水にNHOH溶液を加え、pHを約8に調整した後にFe-Mn溶液の滴下を開始した。また、Fe-Mn溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNHOH溶液を滴下した。
滴下後、30時間攪拌した後、得られた反応混合物を20時間静置し、沈殿を生じさせた。
生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
CO(0.0173g)を秤量し、水(4.29g)に溶解させ、KCO溶液を調製した。得られたKCO溶液に上述の粉砕物を分散させ、この分散液を30分間、超音波処理して攪拌した。
次いで、得られた混合物を真空下、室温で1時間保持した後、120℃で一晩乾燥させた。得られた乾燥物をメノウ鉢で粉砕した。
大気中で、電気炉にこの粉砕物を導入し、室温から400℃まで80分間かけて昇温させた後に400℃で3時間保持し、熱処理することで触媒7を(11.32g)得た。
EDS分析の結果、得られた触媒の金属モル含有量比は、Fe:Mn:K=75.47:22.64:1.89であった。
触媒1の代わりに触媒7(1g)を用いたこと、及びFT反応時間を6時間としたこと以外は、実施例1と同様にしてFT反応を行った。
(実施例8)
Fe(NO・9HO(20.2g)、Mn(NO・6HO(6.46g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。調製したFe-Mn溶液を用いること以外は、実施例7と同様にして、触媒8を(6.2333g)得た。
 EDS分析の結果、得られた触媒の金属モル含有量比は、Fe:Mn:K=65.57:33.00:1.43であった。
触媒1の代わりに触媒8(1g)を用いたこと以外は、実施例1と同様にしてFT反応を行った。
(実施例9)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(8.79g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。調製したFe-Mn溶液を用いること以外は、実施例7と同様にして、触媒9を(6.87g)得た。
 EDS分析の結果、得られた触媒の金属モル含有量比は、Fe:Mn:K=57.93:40.64:1.43であった。
触媒1の代わりに触媒9(1g)を用いたこと以外は、実施例7と同様にしてFT反応を行った。
(実施例10)
Fe(NO・9HO(20.2g)、Mn(NO・6HO(10.76g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。調製したFe-Mn溶液を用いること以外は、実施例7と同様にして、触媒10を(6.87g)得た。EDS分析の結果、得られた触媒の金属モル含有量比は、Fe:Mn:K=52.89:45.83:1.28であった。
 触媒1の代わりに触媒10(1g)を用いたこと以外は、実施例7と同様にしてFT反応を行った。結果を下記表1に示す。
(実施例11)
 Fe(NO・9HO(20.2g)、Mn(NO・6HO(8.79g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。また、28%NHOH水溶液(45.0ml)を秤量して水(300ml)を加えNHOH溶液を調製した。
ビーカーに粉末活性炭(太閤S、フタムラ化学株式会社、4g)及び水(200ml)を秤量して60℃に加熱し、撹拌しながら上述のFe-Mn溶液及び上述のNHOH溶液を同時に1時間かけて滴下した。その際、予めビーカー内の水にNHOH溶液を加え、pHを約8に調整した後にFe-Mn溶液の滴下を開始した。また、Fe-Mn溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNHOH溶液を滴下した。
滴下後、30時間攪拌した後、得られた反応混合物を16時間静置し、沈殿を生じさせた。
生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
CO(0.086g)を秤量し、水(20g)に溶解させ、KCO溶液を調製した。得られたKCO溶液に上述の粉砕物を分散させ、この分散液を30分間、超音波処理して攪拌した。
次いで、得られた混合物を真空下、室温で1時間保持した後、120℃で一晩乾燥させた。得られた乾燥物をメノウ鉢で粉砕した。
電気炉にこの粉砕物を導入し、Ar雰囲気下で、室温から400℃まで80分間かけて昇温させた後に400℃で3時間保持し、熱処理することで触媒11を(10.17g)得た。
EDS分析の結果、得られた触媒の金属モル含有量比は、Fe:Mn:K=57.81:40.66:1.53であった。
触媒1の代わりに触媒11(1g)を用いたこと以外は、実施例7と同様にしてFT反応を行った。
(実施例12)
 Fe(NO・9HO(20.2g)、Mn(NO)2・6HO(8.79g)を秤量し、水(300ml)に溶解させFe-Mn溶液を調製した。また、28%NHOH水溶液(45.0ml)を秤量して水(300ml)を加えNHOH溶液を調製した。
ビーカーにカーボンブラック(ケッチェンブラックEC600JD、ライオン株式会社、4g)、水(200ml)を秤量して60℃に加熱し、撹拌しながら上述のFe-Mn溶液及び上述のNHOH溶液を同時に1時間かけて滴下した。その際、予めビーカー内の水にNHOH溶液を加え、pHを約8に調整した後にFe-Mn溶液の滴下を開始した。また、Fe-Mn溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNHOH溶液を滴下した。
滴下後、30時間攪拌した後、得られた反応混合物を16時間静置し、沈殿を生じさせた。
生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
CO(0.086g)を秤量し、水(10g)に溶解させ、KCO溶液を調製した。得られたKCO溶液に上述の粉砕物を分散させ、この分散液を30分間、超音波処理して攪拌した。
次いで、得られた混合物を真空下、室温で1時間保持した後、120℃で一晩乾燥させた。得られた乾燥物をメノウ鉢で粉砕した。
電気炉にこの粉砕物を導入し、Ar雰囲気下で、室温から400℃まで80分間かけて昇温させた後に400℃で3時間保持し、熱処理することで触媒12を(10.15g)得た。
EDS分析の結果、得られた触媒12の金属モル含有量比は、Fe:Mn:K=58.11:40.39:1.54であった。
 触媒1の代わりに触媒12(1g)を用いたこと以外は、実施例7と同様にしてFT反応を行った。
(実施例13)
Fe(NO・9HO(40.46g)、Mn(NO・6HO(17.23g)を秤量し、水(240ml)に溶解させFe-Mn溶液を調製した。また、28%NHOH水溶液(70ml)を秤量してNHOH溶液を準備した。
ビーカーに水(240ml)を秤量して60℃に加熱し、撹拌しながら上述のFe-Mn溶液及び上述のNHOH溶液を同時に1.5時間かけて滴下した。その際、予めビーカー内の水にNHOH溶液を加え、pHを約8に調整した後にFe-Mn溶液の滴下を開始した。また、Fe-Mn溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8を維持するように、反応混合物のpHを測定しながらNHOH溶液を滴下した。
滴下後、30時間攪拌した後、得られた反応混合物を16時間静置し、沈殿を生じさせた。
生成した沈殿をろ過洗浄して120℃で一晩乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
Mg(NO(0.639g)を秤量し、水(3g)に溶解させ、Mg(NO溶液を調製した。得られたMg(NO溶液に上述の粉砕物を分散させ、この分散液を30分間、超音波処理して攪拌した。
次いで、得られた混合物を真空下、室温で1時間保持した後、120℃で一晩乾燥させた。得られた乾燥物をメノウ鉢で粉砕した。
大気中で、電気炉にこの粉砕物を導入し、室温から400℃まで80分間かけて昇温させた後に400℃で3時間保持し、熱処理することで、Fe、Mn及びMgを含有する触媒13を(6.870g)得た。
EDS分析の結果、得られた触媒におけるFe、Mn及びMgの金属モル含有量比は、Fe:Mn=59.57:40.11であった。
触媒1の代わりに触媒13(1g)を用いたこと以外は、実施例7と同様にしてFT反応を行った。
(実施例14)
攪拌機を備えた内容量85mlの反応容器に、触媒9(1g)、ポリアルファオレフィン(20ml、数平均分子量735)を加えた。H/CO比が0.97である合成ガスを0.1MPaで、W/F比10g・h/molで流し300℃で10時間活性化処理を行った。ここでは、後述のFT反応で用いる合成ガスを、活性化処理のための還元ガスとして用いた。
 その後、H/CO比が0.97である合成ガスを1MPaで、W/F比10g・h/molで流し、260℃で8時間FT反応を行った。
 反応により生じた生成物をガスクロマトグラフィーにて分析することにより、CO転化率、プロピレン選択率及びC2~C4オレフィン選択率を算出した。
 実施例1~14について、結果を下記表1に示す。
 なお、表1において、「転化率」(%)は、用いた原料のCO量(モル数)に対する、FT反応で消費されたCO量(モル数)の比であり、「[(消費されたCO量)/(原料CO量)]×100」(%)で求められる値を採用した。また、転化率は、活性化処理後の触媒を用いてFT反応を行い、反応後の混合物(残存原料及び生成物の混合物)におけるCO量の比に基づいて算出した。
 また、「選択率」(%)は、FT反応で生じた全炭化水素中に含まれる炭素原子のモル数に対する、プロピレン中に含まれる炭素原子のモル数の量の比、又はC2~C4オレフィン中に含まれる炭素原子のモル数の量の比である。
 プロピレンの選択率は、「[(生じたプロピレン中に含まれる炭素原子のモル数の量)/(生じた全炭化水素中に含まれる炭素原子のモル数の量)]×100」(%)で求められる値を採用した。
 また、C2~C4オレフィンの選択率は、「[(生じたC2~C4オレフィン中に含まれる炭素原子のモル数の量)/(生じた全炭化水素中に含まれる炭素原子のモル数の量)]×100」(%)で求められる値を採用した。
Figure JPOXMLDOC01-appb-T000003
 
このように実施例1~14はC2~C4の軽質オレフィン選択率、プロピレン選択率が良好であることがわかった。特に、実施例6は、他の実施例1~5、実施例7~14と比べても、C2~C4の軽質オレフィン選択率、プロピレン選択率が高いことが分かった。
(比較例1)
 前記触媒7(0.5g)を固定床反応器に充填し、300℃、常圧で合成ガス(H/CO=1/1、モル比)を40mL/分の流速で10時間流通させてFT反応触媒を活性化処理した。次いで、300℃、1MPaで合成ガス(H/CO=1/1、モル比)を、W/Fが10g・h/molとなる流速で前記触媒に流通させてFT反応を行った。反応時間は6時間とした。得られた生成物は、実施例1と同様にガスクロマトグラフィーにより分析した。
 比較例1の結果を下記表2に示す。比較のために、実施例7の結果を併せて示す。
なお、表2における「転化率」(%)は、表1と同様である。また、表2における「選択率」(%)は、接触分解後に生じた全炭化水素中に含まれる炭素原子のモル数に対する、プロピレン中に含まれる炭素原子のモル数の量の比、又はC2~C4オレフィン中に含まれる炭素原子のモル数の量の比である。
Figure JPOXMLDOC01-appb-T000004
 
 このように分散媒を用いた実施例7は、分散媒を用いない比較例1よりも、C2~C4の軽質オレフィン選択率、プロピレン選択率が高いことがわかった。
 これらの結果から、第1の実施形態の有用性が確かめられた。
次に第2の実施形態について述べる。
(実施例15)
10%テトラプロピルアンモニウムヒドロキシド水溶液(6.506g)、Al(NO・9HO(0.029g)、Ba(CHCOO)(0.097g)、イオン交換水(8.555g)、エタノール(1.968g)を含む溶液に、オルトケイ酸テトラエチル(TEOS)(2.227g)を徐々に加えて激しく攪拌することで均一なゾルとし、180℃で24時間水熱合成を行い、沈殿を生じさせた。
得られた沈殿物をろ過洗浄して120℃で乾燥させ、乾燥物を得た。得られた乾燥物を大気中550℃で5時間焼成することで分解触媒1を0.617g得た。
ICP分析の結果、得られた分解触媒1の酸化物含有比(モル比)はSiO/Al/BaO=252/1.00/6.97であった。
 攪拌機を備えた内容量85mLのスラリー床反応器と、配管を介してスラリー床反応器に接続された固定床反応器と、スラリー床反応器と固定床反応器との間の配管に設けられた背圧弁と、を有する製造装置を用いて、以下の反応を行った。スラリー床反応器は、本発明の第1工程(FT反応)を行う反応器であり、固定床反応器は、本発明の第2工程(接触分解反応)を行う反応器であり、上述の図1に示した製造装置に対応する。
スラリー床反応器に、上述の触媒9(1.0g)ポリアルファオレフィン(20ml、数平均分子量735)を加えた。H/CO比が0.97である合成ガスを0.1MPaで、W/F比10g・h/molで流し、300℃で10時間活性化処理を行った。
その後、H/CO比が0.97の合成ガスを1.0MPaの条件で、W/F比20g・h/molで流し、280℃で6時間FT反応を行って炭化水素化合物を合成した。
生成した炭化水素化合物は、100℃に保たれた背圧弁を通し、上述の分解触媒1と同様な方法で調製した触媒(0.3g)を充填した固定床反応器へ流通させた。固定床反応器において、常圧下550℃で接触分解を行い、分解生成物を得た。接触分解の処理時間は、FT反応と同時に開始し、6時間とした。
分解生成物から、氷冷されたトラップを通すことでガス成分と液体成分とを分取し、ガスクロマトグラフィーを用いて分析を行った。
(実施例16)
10%テトラプロピルアンモニウムヒドロキシド水溶液(6.504g)、Al(NO・9HO(0.028g)、Ba(CHCOO)(0.051g)、イオン交換水(8.574g)、エタノール(1.978g)を含む溶液に、TEOS(2.225g)を徐々に加えて激しく攪拌することで均一なゾルとし、180℃で24時間水熱合成を行い、沈殿を生じさせた。得られた沈殿物について、実施例15と同様にして焼成することで、分解触媒2を0.555g得た。
 ICP分析の結果、得られた分解触媒2の酸化物含有比(モル比)はSiO/Al/BaO=278/1.00/5.37であった。
 第1工程において、活性化処理後の炭化水素化合物の合成時における合成ガスの流速をW/F比10g・h/molとすること、及び第2工程において分解触媒2と同様な方法で調製した触媒を用い、接触分解反応における反応温度を500℃としたこと以外は、実施例15と同様にして分解生成物を得た。分解生成物については、実施例15と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例17)
10%テトラプロピルアンモニウムヒドロキシド水溶液(6.506g)、Al(NO・9HO(0.028g)、Ba(CHCOO)(0.020g)、イオン交換水(8.574g)、エタノール(1.968g)を含む溶液に、TEOS(2.240g)を徐々に加えて激しく攪拌することで均一なゾルとし、180℃で24時間水熱合成を行い、沈殿を生じさせた。得られた沈殿物について、実施例15と同様にして焼成することで、分解触媒3を0.598g得た。
ICP分析の結果、得られた分解触媒3の酸化物含有比(モル比)はSiO/Al/BaO=253/1.00/1.74であった。
 第1工程において、活性化処理後の炭化水素化合物の合成時における合成ガスの流速をW/F比10g・h/molとすること、及び第2工程において分解触媒3と同様な方法で調製した触媒を用いたこと以外は、実施例15と同様にして分解生成物を得た。分解生成物については、実施例15と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例18)
 10質量%テトラプロピルアンモニウムヒドロキシド水溶液(6.507g)、硝酸アルミニウム九水和物(0.029g)、酢酸バリウム(0.010g)、イオン交換水(8.544g)及びエタノール(1.968g)を含む溶液に、オルトケイ酸テトラエチル2.250gを徐々に加えて激しく攪拌することで均一なゾルとし、180℃で24時間水熱合成を行った。得られた沈殿物を120℃で乾燥させた後、550℃で5時間焼成することで、分解触媒4を0.603g得た。
 ICP分析の結果、得られた分解触媒4の酸化物含有比(モル比)はSiO/Al/BaO=306/1.00/1.05であった。
 分解触媒3の代わりに、上述の分解触媒4と同様な手法で得られた触媒を用いたこと以外は、実施例17と同様にして分解生成物を得た。分解生成物については、実施例17と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例19)
10質量%テトラプロピルアンモニウムヒドロキシド水溶液(6.507g)、硝酸アルミニウム九水和物(0.029g)、硝酸マンガン六水和物(0.022g)、イオン交換水(8.546g)及びエタノール(1.973g)を含む溶液に、オルトケイ酸テトラエチル2.232gを徐々に加えて激しく攪拌することで均一なゾルとし、180℃で24時間水熱合成を行った。得られた沈殿物を120℃で乾燥させた後、550℃で5時間焼成することで、分解触媒5を0.550g得た。
 ICP分析の結果、得られた分解触媒5の酸化物含有比(モル比)はSiO/Al/MnO=287/1.00/0.86であった。
分解触媒3の代わりに、上述の分解触媒5と同様な手法で得られた触媒を用いたこと以外は、実施例17と同様にして分解生成物を得た。分解生成物については、実施例17と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例20)
硝酸銅三水和物0.022gを脱イオン水5.005gに溶解させた溶液を、HZSM-5(SiO/Al=280)0.492gに含浸させた後、これを乾燥させ、600℃で5時間焼成することで、分解触媒6を0.438g得た。
ICP分析の結果、得られた分解触媒6の酸化物含有比(モル比)はSiO/Al/CuO=267/1.00/1.11であった。
 分解触媒2の代わりに、上述の分解触媒6と同様な手法で得られた触媒を用いたこと以外は、実施例17と同様にして分解生成物を得た。分解生成物については、実施例17と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例21)
酢酸カルシウム一水和物0.053gを脱イオン水20.189gに溶解させた溶液を、HZSM-5(SiO/Al=280)2.006gに含浸させた後、これを乾燥させ、600℃で5時間焼成することで、分解触媒7を1.845g得た。
ICP分析の結果、得られた分解触媒7の酸化物含有比(モル比)はSiO/Al/CaO=297/1.00/2.28であった。
 分解触媒2の代わりに、上述の分解触媒7と同様な手法で得られた触媒を用いたこと以外は、実施例17と同様にして分解生成物を得た。分解生成物については、実施例17と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例22)
硝酸マグネシウム六水和物0.078gを脱イオン水20.052gに溶解させた溶液を、HZSM-5(SiO/Al=280)2.019gに含浸させた後、これを乾燥させ、600℃で5時間焼成することで、分解触媒8を1.979g得た。
ICP分析の結果、得られた分解触媒8の酸化物含有比(モル比)はSiO/Al/MgO=299/1.00/2.76であった。
 分解触媒2の代わりに、上述の分解触媒8と同様な手法で得られた触媒を用いたこと以外は、実施例17と同様にして分解生成物を得た。分解生成物については、実施例17と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例23)
 リン酸水素アンモニウム0.071gを脱イオン水4.998gに溶解させた溶液を、上述の分解触媒4と同様な手法で得られた触媒0.500gに含浸させた後、これを乾燥させ、600℃で4時間焼成することで、分解触媒9を0.368g得た。
ICP分析の結果、得られた分解触媒9の酸化物含有比(モル比)はSiO/Al/BaO/P=246/1.00/0.57/5.36であった。
 分解触媒2の代わりに、上述の分解触媒9と同様な手法で得られた触媒を用いたこと以外は、実施例17と同様にして分解生成物を得た。分解生成物については、実施例17と同様にガスクロマトグラフィーを用いて分析を行った。
(実施例24)

Fe(NO・9HO(40.41g)、Co(NO・6HO(29.11g)、Mn(NO・6HO(28.71g)を秤量し、水(140ml)に溶解させFe-Co-Mn溶液を調製した。また、NaCO(42.40g)を秤量して水(200ml)に溶解させNaCO溶液を準備した。
ビーカーに上述のFe-Co-Mn溶液を移し60℃に加熱し、撹拌しながら上述のNaCO溶液を2時間かけて滴下した。また、NaCO溶液の滴下中においても、ビーカー内の反応混合物のpHが約pH8~10を維持するように、反応混合物のpHを測定しながらNaCO溶液を滴下した。
滴下後、0.5時間攪拌した後、得られた反応混合物を2時間静置し、沈殿を生じさせた。
生成した沈殿をろ過洗浄して120℃で12時間乾燥させ、乾燥物を得た。得られた乾燥物をメノウ鉢で粉砕し、粉砕物を得た。
大気中で、電気炉にこの粉砕物を導入し、室温から600℃まで2.5時間かけて昇温させた後に600℃で6時間保持し、熱処理することで触媒14を(21.47g)得た。
EDS分析の結果、得られた触媒の金属モル含有量比は、Fe:Co:Mn=34.56:32.85:32.57であった。
上記触媒14(1.5g)を石英管に充填し、還元ガスとして水素ガス(80ml/min)を流し、400℃、10時間処理した後、窒素ガスを流しながら室温まで冷却した。ここに酸素/アルゴン比が0.01であるガス(15ml/min)を4時間流した。このようにして、水素処理された触媒14を得た。
 スラリー床反応器に、上述の手法により調製した水素処理された触媒14(1.0g)ポリアルファオレフィン(20ml、数平均分子量735)を加えた。H/CO比が0.97である合成ガスを0.1MPaで、40ml/minで流し、240℃で1時間保持した。こののち、さらに、H/CO比が0.97である合成ガスを1MPaの条件で、W/F比10g・h/molで流し、240℃で6時間処理を行った。
 この後、H/CO比が0.97である合成ガスを1MPaの条件で、W/F比10g・h/molで流し、280℃で6時間FT反応を行った。
生成した炭化水素化合物は、100℃に保たれた背圧弁を通し、上述の分解触媒4と同様な手法で調製した触媒(0.3g)を充填した固定床反応器へ流通させた。固定床反応器において、常圧下550℃で接触分解を行い、分解生成物を得た。接触分解の処理時間は、FT反応と同時に開始し、6時間とした。
分解生成物から、氷冷されたトラップを通すことでガス成分と液体成分とを分取し、ガスクロマトグラフィーを用いて分析を行った。
(実施例25)

CARiACT Q-50(富士シリシア化学製、5.5g)を大気雰囲気下、室温から300℃まで1時間かけて昇温させた後に300℃で2時間保持した。このCARiACT Q-50を蒸発皿に移し、ジルコニア分散液(2.25g、ZR-30BFN、日産化学製、ジルコニア固形分30.5質量%)をIncipient Wetness法により含浸させた。
この含浸物を大気雰囲気下、室温から600℃まで1時間かけて昇温させた後に600℃で2時間保持した。この熱処理した含浸物を蒸発皿に移し、Co溶液(Co(NO・6HO(3.54g)を水(4.20g)に溶解させ調製)をIncipient Wetness法により含浸させた。
この含浸物を大気雰囲気下120℃で12時間かけて乾燥したのち、大気雰囲気下、室温から400℃まで3時間かけて昇温させた後に400℃で2時間保持し熱処理することで触媒15を(6.93g)得た。
得られた触媒の金属モル含有量比は、Co:Zr=26.59:9.43であった。
上記触媒15(1.5g)を石英管に充填し、還元ガスとして水素ガス(40ml/min)を流し、400℃、10時間処理した後、窒素ガスを流しながら室温まで冷却した。ここに酸素/アルゴン比が0.01であるガス(15ml/min)を4時間流した。このようにして、水素処理された触媒15を得た。
攪拌機を備えた内容量85mlの反応容器に、上記の手法により調製した水素処理された触媒15(1g)、ヘキサデカン(20ml)を加え、H/CO比が2である還元ガスを0.1MPaで、40ml/minで流し、240℃で1時間保持した。こののち、さらに、H/CO比が2である合成ガスを0.5MPaの条件で、W/F比10g・h/molで流し、220℃で6時間FT反応を行った。
生成した炭化水素化合物は、100℃に保たれた背圧弁を通し、上述の分解触媒4と同様な手法で調製した触媒(0.3g)を充填した固定床反応器へ流通させた。固定床反応器において、常圧下550℃で接触分解を行い、分解生成物を得た。接触分解の処理時間は、FT反応と同時に開始し、6時間とした。
分解生成物から、氷冷されたトラップを通すことでガス成分と液体成分とを分取し、ガスクロマトグラフィーを用いて分析を行った。
 第二の実施態様である実施例15~25、及び第一の実施態様である実施例9について、結果を下記表3に示す。
なお、表3における「転化率」(%)は、表1と同様である。また、表3における「選択率」(%)は、接触分解後に生じた全炭化水素中に含まれる炭素原子のモル数に対する、プロピレン中に含まれる炭素原子のモル数の量の比、又はC2~C4オレフィン中に含まれる炭素原子のモル数の量の比である。
Figure JPOXMLDOC01-appb-T000005
 
 このように接触分解を連結した実施例15~実施例23は、FT反応条件が同等であり接触分解を併用していない実施例9と比較して、C2~C4の軽質オレフィン選択率、プロピレン選択率がより一層高まっていることがわかった。
 これらの結果から、第2の実施形態のさらなる有用性が確かめられた。
 本発明の製造方法によれば、C2~C4の軽質オレフィン、特にプロピレンを選択的にFT反応で製造することができる。
 1…タンク、2…第1反応器、3…背圧弁、4…第2反応器

Claims (29)

  1.  フィッシャー・トロプシュ反応において、触媒(A)~(C)からなる群から選ばれる少なくとも1種類の触媒(D)を、分散媒共存下にて、合成ガスと反応させる工程を備える炭素原子数2~4のオレフィンの製造方法であって、
    前記触媒(A)が、鉄を含み、且つ、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素を含む触媒であり、
    前記触媒(B)が、コバルトを含む触媒であって、
    ただし、前記触媒(B)は、コバルトイオン及び鉄イオンと、前記コバルトイオン及び鉄イオンと相互作用する分散剤と、を含む分散液又は溶解液中で、前記コバルトイオン及び鉄イオンを還元して得られた触媒を除く触媒であり、
    前記触媒(C)が、ニッケル又はルテニウムを含む触媒である、炭素原子数2~4のオレフィンの製造方法。
  2.  前記触媒(D)が、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン及びセリウムからなる群から選ばれる1~3種類の元素をさらに含む請求項1に記載の炭素原子数2~4のオレフィンの製造方法。
  3.  前記触媒(D)が、元素(1)及び元素(2)を含み、且つ、限定(3)を満たす請求項1又は2に記載の炭素原子数2~4のオレフィンの製造方法であって、
     前記元素(1)が、鉄及びマンガンであり、
     前記元素(2)が、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素であり、
     前記限定(3)が、鉄、マンガン及び前記元素(2)中の金属元素の総モル数に対する、鉄のモル比をaモル%、マンガンのモル比をbモル%、前記元素(2)中の金属元素の合計のモル比をcモル%としたとき、50≦a≦90、9.5≦b≦48、0.5≦c≦10、であり、ただし、a+b+c=100である、炭素原子数2~4のオレフィンの製造方法。
  4.  前記触媒(D)が、炭素担体をさらに含む請求項1~3のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  5.  前記合成ガスが、水素及び一酸化炭素を含み、且つ、一酸化炭素に対する水素のモル比が[水素/一酸化炭素]で表して、0.3以上3以下である請求項1~4のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  6.  前記合成ガスと触媒(D)とを反応させる工程における反応温度が100℃以上600℃以下である請求項1~5のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  7.  前記合成ガスと触媒(D)とを反応させる工程における反応圧力が0.1MPa以上50MPa以下である請求項1~6のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  8.  前記分散媒が、常圧下100℃以上600℃以下の温度範囲で液状となる有機化合物である請求項1~7のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  9.  前記合成ガスと触媒(D)とを反応させる工程で得られる炭化水素生成物を構成する全炭素原子数に対する、炭素原子数2~4のオレフィンを構成する全炭素原子数の割合が、18%以上である請求項1~8のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  10.  前記合成ガスと触媒(D)とを反応させる工程の後に、前記合成ガスと触媒(D)とを反応させる工程で得られる生成物を接触分解する工程をさらに備える請求項1~9のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  11.  請求項1~10のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法を用いるプロピレンの製造方法。
  12.  フィッシャー・トロプシュ反応において、分散媒共存下にて合成ガスと触媒(E)とを反応させ炭化水素生成物を製造する第1工程と、
    前記炭化水素生成物を、アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素を含むゼオライトからなる分解触媒に接触させ、前記炭化水素生成物を接触分解する第2工程と、を備える炭素原子数2~4のオレフィンの製造方法。
  13. 前記ゼオライトが、アルカリ金属、アルカリ土類金属及びd-ブロック元素からなる群から選ばれる1種類以上の元素を含むゼオライトである請求項12に記載の炭素原子数2~4のオレフィンの製造方法。
  14.  前記ゼオライトが、ZSM-5であり、前記ゼオライトにおけるAlに対するSiOのモル比が、[SiO/Al]で表して、50以上4000以下である請求項12又は請求項13に記載の炭素原子数2~4のオレフィンの製造方法。
  15. 前記分解触媒が、前記アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素を、前記分解触媒の総質量に対し、0.01質量%以上30質量%以下含有する請求項12~14のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  16. 前記分解触媒に含まれる前記アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選ばれる1種類以上の元素が、アルカリ土類金属である請求項12~15のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  17. 前記接触分解における反応圧力が、0.01MPa以上0.5MPa以下である請求項12~16のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  18. 前記触媒(E)が、鉄、コバルト、ニッケル、及びルテニウムからなる群から選ばれる少なくとも1種類の元素を含む請求項12~17のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  19.  前記触媒(E)が、マンガン、銅、亜鉛、チタン、ジルコニウム、ランタン及びセリウムからなる群から選ばれる1~3種類の元素をさらに含む請求項18に記載の炭素原子数2~4のオレフィンの製造方法。
  20. 前記触媒(E)が、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素をさらに含む請求項18又は19に記載の炭素原子数2~4のオレフィンの製造方法。
  21.  前記触媒(E)が、元素(1)及び元素(2)を含み、且つ、限定(3)を満たす請求項12~20のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法であって、
     前記元素(1)が、鉄及びマンガンであり、
     前記元素(2)が、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の金属元素であり、
      前記限定(3)が、鉄、マンガン及び前記元素(2)中の金属元素の総モル数に対する、鉄のモル比をaモル%、マンガンのモル比をbモル%、前記元素(2)中の金属元素の合計のモル比をcモル%としたとき、50≦a≦90、9.5≦b≦48、0.5≦c≦10であり、ただし、a+b+c=100である、炭素原子数2~4のオレフィンの製造方法。
  22. 前記触媒(E)が、炭素担体をさらに含む請求項12~21のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  23.  前記合成ガスが、水素及び一酸化炭素を含み、且つ、一酸化炭素に対する水素のモル比が[水素/一酸化炭素]で表して、0.3以上3以下である請求項12~22のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  24.  前記第1工程における反応温度が、100℃以上600℃以下である請求項12~23のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  25.  前記第1工程における反応圧力が、0.1MPa以上50MPa以下である請求項12~24のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  26.  前記分散媒が、常圧下100℃以上600℃以下の温度範囲で液状となる有機化合物である請求項12~25のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  27.  前記第1工程で得られる炭化水素生成物を構成する全炭素原子数に対する、炭素原子数2~4のオレフィンを構成する全炭素原子数の割合が、18%以上である請求項12~26のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法。
  28.  請求項12~27のいずれか一項に記載の炭素原子数2~4のオレフィンの製造方法を用いるプロピレンの製造方法。
  29.  フィッシャー・トロプシュ反応において、鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種類の元素を含み、且つ、アルカリ金属及びアルカリ土類金属からなる群から選ばれる1~3種類の元素を含む触媒を、分散媒共存下において、合成ガスと反応させる工程を備える炭素原子数2~4のオレフィンの製造方法。
PCT/JP2013/070882 2012-08-10 2013-08-01 炭素原子数2~4のオレフィンの製造方法及びプロピレンの製造方法 WO2014024774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/419,722 US20150225309A1 (en) 2012-08-10 2013-08-01 Method of producing olefin having 2 to 4 carbon atoms and method of producing propylene
JP2014529461A JPWO2014024774A1 (ja) 2012-08-10 2013-08-01 炭素原子数2〜4のオレフィンの製造方法及びプロピレンの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-178547 2012-08-10
JP2012178547 2012-08-10
JP2013-040103 2013-02-28
JP2013040103 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014024774A1 true WO2014024774A1 (ja) 2014-02-13

Family

ID=50068005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070882 WO2014024774A1 (ja) 2012-08-10 2013-08-01 炭素原子数2~4のオレフィンの製造方法及びプロピレンの製造方法

Country Status (3)

Country Link
US (1) US20150225309A1 (ja)
JP (1) JPWO2014024774A1 (ja)
WO (1) WO2014024774A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669720A (zh) * 2015-11-09 2017-05-17 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和应用
JP2020520299A (ja) * 2017-05-01 2020-07-09 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. デバイスを通って輸送される材料を処理及び条件付けするためのデバイス
JP2023504509A (ja) * 2019-12-03 2023-02-03 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 合成ガスを軽質オレフィンへ変換するためのナノ構造鉄系触媒の製造方法
WO2024111649A1 (ja) * 2022-11-22 2024-05-30 住友重機械工業株式会社 フィッシャー・トロプシュ合成反応用触媒及び炭化水素の製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889762B2 (en) * 2016-12-09 2021-01-12 Velocys Technologies Limited Process for operating a highly productive tubular reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161279A (ja) * 2000-11-24 2002-06-04 Japan National Oil Corp フィッシャートロプシュ法による炭化水素類の製造方法
JP2002161280A (ja) * 2000-11-24 2002-06-04 Japan National Oil Corp 二酸化炭素共存下の炭化水素類の製造方法
JP2005517742A (ja) * 2002-02-19 2005-06-16 シェブロン ユー.エス.エー. インコーポレイテッド 高オレフィン性のc19以下のフィッシャートロプシュ製品の製造方法
JP2010116328A (ja) * 2008-11-11 2010-05-27 Nippon Oil Corp 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法
JP2010221108A (ja) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112943B2 (ja) * 2002-10-28 2008-07-02 出光興産株式会社 炭化水素の接触分解によるオレフィンの製造方法
US7875755B2 (en) * 2007-11-30 2011-01-25 Uop Llc Cracking C5+ paraffins to increase light olefin production
EP2496348B1 (de) * 2009-11-06 2016-01-06 Basf Se Eisen- und manganhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff
CA2757012C (en) * 2011-11-03 2021-05-04 University Of Saskatchewan Promoted iron catalysts supported on carbon nanotubes for fischer-tropsch synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161279A (ja) * 2000-11-24 2002-06-04 Japan National Oil Corp フィッシャートロプシュ法による炭化水素類の製造方法
JP2002161280A (ja) * 2000-11-24 2002-06-04 Japan National Oil Corp 二酸化炭素共存下の炭化水素類の製造方法
JP2005517742A (ja) * 2002-02-19 2005-06-16 シェブロン ユー.エス.エー. インコーポレイテッド 高オレフィン性のc19以下のフィッシャートロプシュ製品の製造方法
JP2010116328A (ja) * 2008-11-11 2010-05-27 Nippon Oil Corp 不飽和炭化水素および含酸素化合物の製造方法、触媒およびその製造方法
JP2010221108A (ja) * 2009-03-23 2010-10-07 Cosmo Oil Co Ltd フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669720A (zh) * 2015-11-09 2017-05-17 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和应用
JP2020520299A (ja) * 2017-05-01 2020-07-09 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. デバイスを通って輸送される材料を処理及び条件付けするためのデバイス
JP7078055B2 (ja) 2017-05-01 2022-05-31 ディーエスエム アイピー アセッツ ビー.ブイ. デバイスを通って輸送される材料を処理及び条件付けするためのデバイス
JP2023504509A (ja) * 2019-12-03 2023-02-03 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 合成ガスを軽質オレフィンへ変換するためのナノ構造鉄系触媒の製造方法
JP7462754B2 (ja) 2019-12-03 2024-04-05 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 合成ガスを軽質オレフィンへ変換するためのナノ構造鉄系触媒の製造方法
WO2024111649A1 (ja) * 2022-11-22 2024-05-30 住友重機械工業株式会社 フィッシャー・トロプシュ合成反応用触媒及び炭化水素の製造装置

Also Published As

Publication number Publication date
US20150225309A1 (en) 2015-08-13
JPWO2014024774A1 (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
Singh et al. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review
JP2015164909A (ja) 炭素原子数2〜4のオレフィンの製造方法、プロピレンの製造方法及びオレフィンの製造方法
Wang et al. Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen
KR102156875B1 (ko) 구조 붕괴된 제올라이트 내에 금속 클러스터가 함유된 촉매 및 이의 용도
Owgi et al. Catalytic systems for enhanced carbon dioxide reforming of methane: a review
KR101373823B1 (ko) 선택적 합성오일 생성을 위한 피셔-트롭쉬 반응용 금속 구조체 기반 코발트계 촉매 및 그 제조 방법, 이 금속 구조체 기반 코발트계 촉매를 이용한 선택적 합성 오일 제조 방법
WO2014024774A1 (ja) 炭素原子数2~4のオレフィンの製造方法及びプロピレンの製造方法
CN105618034A (zh) 一种负载型钌金属纳米簇基催化剂及其制备与应用
JP2018520862A (ja) 一段階法によって合成ガスから軽質オレフィンを直接調製する触媒及び方法
KR101230625B1 (ko) 메조포러스 실리카 구조체를 이용한 피셔-트롭시 공정용 촉매
Dragoi et al. Highly dispersed copper (oxide) nanoparticles prepared on SBA-15 partially occluded with the P123 surfactant: toward the design of active hydrogenation catalysts
Amin et al. Effect of a Swelling Agent on the Performance of Ni/Porous Silica Catalyst for CH4–CO2 Reforming
Kong et al. Synthesis of Cu–Mg/ZnO catalysts and catalysis in dimethyl oxalate hydrogenation to ethylene glycol: enhanced catalytic behavior in the presence of a Mg 2+ dopant
Narasimharao et al. Catalytic oxidative cracking of propane over nanosized gold supported Ce 0.5 Zr 0.5 O 2 catalysts
Raveendra et al. Syngas to light olefin synthesis over La doped Zn x Al y O z composite and SAPO-34 hybrid catalysts
Bahari et al. Mesoporous alumina: A comprehensive review on synthesis strategies, structure, and applications as support for enhanced H2 generation via CO2-CH4 reforming
US12070740B2 (en) Catalyst structure and method for producing same, and method for producing hydrocarbon by use of catalyst structure
KR101524574B1 (ko) 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법 및 그 촉매와, 이를 이용한 액체 탄화수소의 합성 방법
Chen et al. Study on the selective oxidation of methane over highly dispersed molybdenum-incorporated KIT-6 catalysts
Roosta et al. Synthesis and evaluation of NiO@ MCM-41 core–shell nanocomposite in the CO 2 reforming of methane
KR20220014120A (ko) 합성가스 제조용 촉매, 이의 제조 방법 및 이를 이용한 합성가스의 제조 방법
Li et al. Effect of cobalt addition on the structure and properties of Ni–MCM-41 for the partial oxidation of methane to syngas
US9139489B2 (en) Method of manufacturing olefin having 2 to 4 carbon atoms by Fischer-Tropsch reaction
Al-Shafei et al. C–H and C–C bond activation of propane to propylene and ethylene selectivity assisted by CO 2 over titania catalysts
Patil et al. A sol–gel route to synthesize vanadium doped silica through ionic liquid control and methylene blue degradation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827658

Country of ref document: EP

Kind code of ref document: A1