WO2014024762A1 - アンテナ装置および無線通信装置 - Google Patents

アンテナ装置および無線通信装置 Download PDF

Info

Publication number
WO2014024762A1
WO2014024762A1 PCT/JP2013/070844 JP2013070844W WO2014024762A1 WO 2014024762 A1 WO2014024762 A1 WO 2014024762A1 JP 2013070844 W JP2013070844 W JP 2013070844W WO 2014024762 A1 WO2014024762 A1 WO 2014024762A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
coil
antenna
ground conductor
multilayer substrate
Prior art date
Application number
PCT/JP2013/070844
Other languages
English (en)
French (fr)
Inventor
郷地直樹
用水邦明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014529456A priority Critical patent/JP5761463B2/ja
Priority to CN201390000443.XU priority patent/CN204335178U/zh
Publication of WO2014024762A1 publication Critical patent/WO2014024762A1/ja
Priority to US14/515,630 priority patent/US9509051B2/en
Priority to US15/299,888 priority patent/US9705193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards

Definitions

  • the present invention relates to an antenna device including a magnetic body and a coil conductor, and a wireless communication device including the antenna device.
  • Patent Document 1 proposes a method of forming an antenna in a substrate and modularizing it using a method for manufacturing a multilayer wiring substrate. According to the antenna device having the structure shown in Patent Document 1, since the substrate is made of resin, the shape freedom is high, and it is relatively easy to incorporate components into the substrate.
  • an object of the present invention is to provide an antenna device capable of obtaining good antenna characteristics while achieving high functionality and downsizing, and a wireless communication device including the antenna device.
  • the antenna device of the present invention includes a multilayer substrate in which a plurality of dielectric or magnetic sheets are laminated, A first main surface, a second main surface, a first side surface parallel to the coil winding axis, and the coil winding; A coil conductor having a second side parallel to the axis; A first ground conductor facing the first main surface and disposed outside the coil conductor; A second ground conductor facing the second main surface and disposed outside the coil conductor; An interlayer connection conductor for conducting the first ground conductor and the second ground conductor; With The interlayer connection conductor is arranged only on the first side surface side.
  • the antenna coil conductor built in the multilayer substrate is not surrounded by the loop formed by the ground conductor in the multilayer substrate and the interlayer connection conductor conducted to the ground conductor. For this reason, a current in the opposite direction to the current flowing through the coil conductor does not flow through the loop, and the generated magnetic field is not canceled.
  • At least one of the first ground conductor and the second ground conductor has a notch-shaped portion on the second side surface side. Thereby, directivity can be controlled.
  • the multilayer substrate is a laminate of resin sheets, and a magnetic material is disposed in a coil opening of the coil conductor.
  • the coil antenna which has a magnetic body core in a coil winding range is comprised, and it can reduce in size by the effect of high magnetic permeability.
  • a sintered magnetic body can be disposed and the coil conductor is formed in the dielectric portion, low loss characteristics can be obtained.
  • an electronic component that conducts to the coil conductor is mounted on the upper surface of the multilayer substrate as necessary.
  • the module provided with the antenna can be configured.
  • an electronic component is mounted on the upper surface of the multilayer substrate, and the mounting position of the electronic component is unevenly distributed at a position avoiding at least the second side surface side. Thereby, directivity can be controlled.
  • the electronic component when an electronic component is mounted on the upper surface of the multilayer substrate, the electronic component is located at a position overlapping with the coil conductor, the first ground conductor, or the second ground conductor in the sheet stacking direction. It is preferable to be mounted. Thereby, the flatness of the mounting position of the electronic component is maintained, and this facilitates the surface mounting of the mounting component on the surface of the resin multilayer substrate. In addition, connection failure due to deformation of the resin multilayer substrate can be made difficult to occur.
  • a coil that electromagnetically couples to the coil conductor and emits an electromagnetic field as necessary. This makes it possible to improve the antenna gain and control the directivity.
  • a wireless communication device of the present invention includes a multilayer substrate in which a plurality of dielectric or magnetic sheets are laminated, A coil conductor having a coil winding axis perpendicular to the stacking direction of the multilayer substrate and having a first main surface, a second main surface, a first side surface, and a second side surface; A first ground conductor facing the first main surface and disposed outside the coil conductor; A second ground conductor facing the second main surface and disposed outside the coil conductor; An interlayer connection conductor that conducts the first ground conductor and the second ground conductor only on the first side surface; and And a communication circuit connected to the coil conductor.
  • This configuration provides an antenna device with good antenna characteristics, provides low loss characteristics, and increases the maximum communicable distance.
  • the antenna coil conductor incorporated in the multilayer substrate is not surrounded by the loop formed by the ground conductor in the multilayer substrate and the interlayer connection conductor conducted therewith, so that the magnetic field generated by the coil conductor is canceled out.
  • the wireless communication apparatus of the present invention it is possible to realize a reduction in loss and an increase in the maximum communicable distance.
  • FIG. 1 is a cross-sectional view of a main part of an antenna integrated RF module 201 according to the first embodiment.
  • FIG. 2 is an exploded perspective view of some resin sheets of the resin multilayer substrate included in the antenna integrated RF module 201.
  • FIG. 3 is a circuit diagram of the antenna integrated RF module 201.
  • FIG. 4 is a conceptual diagram showing how the magnetic field generated by the antenna unit of the antenna integrated RF module 201 is expanded.
  • FIG. 5 is a diagram illustrating how the magnetic field generated by the antenna unit of the antenna-integrated RF module 201 according to the second embodiment is expanded.
  • FIG. 6 is a cross-sectional view of the main part of the antenna-integrated RF module 203 according to the third embodiment.
  • FIG. 7 is an exploded perspective view of a part of the antenna integrated RF module 203.
  • FIG. 8 is a cross-sectional view of a main part of the antenna-integrated RF module 204 according to the fourth embodiment.
  • FIG. 9 is a cross-sectional view of the main part of the antenna device according to the fifth embodiment.
  • FIG. 10 is an exploded perspective view of the booster coil 301.
  • FIG. 11 is an equivalent circuit diagram of the antenna device shown in FIG.
  • FIG. 12A is a cross-sectional view of a main part of the antenna integrated RF module 206 according to the sixth embodiment, and
  • FIG. 12B is a cross-sectional view of the antenna part 101P extracted.
  • FIG. 12A is a cross-sectional view of a main part of the antenna integrated RF module 206 according to the sixth embodiment
  • FIG. 12B is a cross-sectional view of the antenna part 101P extracted.
  • FIG. 13 is an exploded perspective view of some resin sheets of the resin multilayer substrate provided in the antenna integrated RF module according to the sixth embodiment.
  • FIG. 14 is an external perspective view of the RF module 207 according to the seventh embodiment.
  • FIG. 15 is a diagram illustrating the internal structure of the wireless communication device 401 according to the eighth embodiment, and is a plan view in a state where the upper housing 91 and the lower housing 92 are separated and the interior is exposed. It is.
  • FIG. 16 is a cross-sectional view of an antenna integrated RF module as a comparative example.
  • FIG. 1A is a cross-sectional view of the main part of the antenna integrated RF module 201 according to the first embodiment
  • FIG. 1B is a cross-sectional view of the antenna part 101P extracted.
  • FIG. 2 is an exploded perspective view of some resin sheets of the resin multilayer substrate included in the antenna integrated RF module 201.
  • the antenna integrated RF module 201 includes a resin multilayer substrate 10 in which a plurality of resin sheets 11 to 18 are laminated, and various electrodes formed on the resin multilayer substrate 10. As shown in FIG. 2, a plurality of linear portions 21 of the coil conductor are formed on the lower surface of the resin sheet 12. On the upper surface of the resin sheet 15, a plurality of linear portions 22 of coil conductors are formed. A plurality of via conductors 23 and 24 of coil conductors are formed in the resin sheets 12 to 15. The basic configuration of the resin sheets 13 and 14 is the same. These via conductors 23 connect the first ends of the plurality of line portions 21 and the first ends of the plurality of line portions 22.
  • the via conductor 24 connects the second ends of the plurality of line portions 21 and the second ends of the plurality of line portions 22. That is, the coil conductor has a coil winding axis orthogonal to the stacking direction of the multilayer substrate, and the first main surface PS1 and the second main surface PS2 are defined by the line portions 21 and 22 and the via conductors 23 and 24.
  • An antenna portion formed by a helical coil conductor along a horizontally installed flat rectangular tube having a first side surface SS1 parallel to the coil winding axis and a second side surface SS2 parallel to the coil winding axis 101P is configured.
  • Electrode and solder resist 50 are formed on the upper surface of the resin multilayer substrate 10, and mounting components 61, 62, 63 and the like are mounted. Terminal electrodes and a solder resist 50 are formed on the lower surface (mounting surface) of the resin multilayer substrate 10.
  • the mounted components 61, 62, 63 are RFIC, chip capacitors, chip inductors and the like.
  • a first ground conductor 27 and a terminal electrode facing the first main surface PS1 are formed on the lower surface of the resin sheet 11.
  • a second ground conductor 28 and other electrodes facing the second main surface PS2 are formed on the upper surface of the resin sheet 16.
  • the first ground conductor 27 and the second ground conductor 28 are connected via an interlayer connection conductor 29 formed of a plurality of via conductors 25.
  • the interlayer connection conductor 29 passes through the vicinity of the coil conductors by the line portions 21 and 22 and the via conductors 23 and 24, but the interlayer connection conductor 29, the first ground conductor 27 and the second ground conductor 28 are coil conductors. Does not constitute a closed loop. That is, the interlayer connection conductor 29 is disposed only on the first side surface SS1 side. Therefore, the magnetic field generated by the antenna portion 101P by the coil conductor is not canceled out, and an antenna device with high radiation efficiency can be configured while being small.
  • FIG. 16 shows a cross-sectional view of an antenna integrated RF module as a comparative example.
  • the first ground conductor 27 and the second ground conductor 28 are connected to each other through interlayer connection conductors 29A and 29B formed of a plurality of via conductors.
  • the interlayer connection conductors 29A and 29B, the first ground conductor 27, and the second ground conductor 28 constitute a closed loop surrounding the antenna portion 101P.
  • Other configurations are the same as those shown in FIG.
  • the antenna integrated RF module of this comparative example since the current in the direction to cancel the magnetic field generated by the antenna portion 101P by the coil conductor flows in the closed loop, the radiation efficiency is low.
  • the antenna integrated RF module 201 is used as a short-range wireless communication module such as NFC.
  • a wireless communication device having a short-range wireless communication function can be configured.
  • FIG. 3 is a circuit diagram of the RF module 201 with an integrated antenna.
  • an inductor L10 corresponds to the helical coil conductor
  • a capacitor C10 is an element for constituting a resonance circuit together with the inductor L10.
  • These inductor L10 and capacitor C10 constitute an antenna 101.
  • Capacitors C21 and C22 are elements for adjusting the degree of coupling between the RFIC 61 and the antenna coil L10.
  • the inductors L11 and L12 and the capacitors C11, C12, and C20 constitute a transmission filter. For example, when the communication circuit operates in the card mode, the RFIC 61 operates passively.
  • the power supply voltage is generated from the input signal to the RX terminal, the received signal is read, and a circuit (load) connected to the TX terminal is transmitted during transmission. Modulate the load. Further, for example, when the communication circuit operates in the reader / writer mode, the RFIC 61 operates in an active manner. Therefore, the RX terminal is opened at the time of transmission and a transmission signal is transmitted from the TX terminal. Input the received signal.
  • the module shown in FIG. 3 is merely an example, and it goes without saying that the present invention is not limited to this.
  • one or both of the transmission terminal Tx and the reception terminal Rx of the RFIC 61 may be an unbalanced terminal.
  • FIG. 4 is a conceptual diagram showing how the magnetic field generated by the antenna unit of the antenna integrated RF module 201 is expanded. Since the coil winding axis of the antenna unit 101P is perpendicular to the paper surface, the magnetic flux passes through the coil winding axis and forms a loop from one coil opening to the other coil opening. Since the ground conductors 27 and 28 exist above and below the antenna portion 101P in the layer direction, and the interlayer connection conductor 29 exists on one side, the magnetic field expands in a direction to avoid them. MF in FIG. 4 shows how the magnetic field expands. Accordingly, sensitivity is particularly generated in the direction in which the magnetic field spreads.
  • FIG. 5 is a diagram illustrating how the magnetic field generated by the antenna unit of the antenna-integrated RF module 201 according to the second embodiment is expanded.
  • the antenna integrated RF module 201 is arranged at the end of the mounting substrate 70. Since the ground conductor is formed on almost the entire surface of the mounting substrate 70, when the antenna integrated RF module 201 is mounted on the end portion of the mounting substrate 70, the end portion (edge side) GE of the ground conductor of the mounting substrate 70. Are close to each other, the magnetic field is further expanded by the action of the induced current flowing along the end portions (end sides) GE of the ground conductors 27 and 28 and the ground conductor of the mounting substrate 70. As a result, wider directivity can be obtained.
  • the magnetic field wraps around the back surface of the mounting substrate, communication in the back surface direction of the mounting substrate is also possible.
  • one end of the line portions 21 and 22 of the coil conductor does not necessarily have to be close to the end (end side) GE of the ground conductors 27 and 28. Even in that case, since the magnetic field circulates to the back surface of the mounting substrate, communication in the back surface direction of the mounting substrate is also possible.
  • FIG. 6 is a cross-sectional view of the main part of the antenna-integrated RF module 203 according to the third embodiment.
  • FIG. 7 is an exploded perspective view of a part of the antenna integrated RF module 203.
  • the antenna integrated RF module 203 includes a resin multilayer substrate 10 in which a plurality of resin sheets 11 to 18 are laminated, various electrodes formed on the resin multilayer substrate 10, and a magnetic core 40.
  • the difference from the antenna integrated RF module 201 shown in FIG. 1 is that a magnetic core 40 is embedded in the resin multilayer substrate 10.
  • the resin sheets 13 and 14 have an opening AP at the center.
  • a cavity is formed by stacking these openings AP.
  • the magnetic body core 40 is embed
  • the magnetic core 40 is located in the coil opening of the coil conductor constituted by the linear portions 21 and 22 and the via conductors 23 and 24.
  • the magnetic core 40 is, for example, a sintered rectangular parallelepiped magnetic ferrite. With this configuration, it can be used as a coil antenna with a magnetic core.
  • the coil conductor is not directly formed on the surface of the magnetic material, a magnetic material with high permeability and low loss can be used for the magnetic core for the coil antenna.
  • the conductor is formed by etching or the like, it can be formed with high dimensional accuracy and stable electrical characteristics can be obtained.
  • the central part of the coil conductor forming range tends to be thin, but the magnetic core 40 is arranged in the central part of the coil conductor forming range. By doing so, the thickness dimension is made uniform.
  • FIG. 8 is a cross-sectional view of a main part of the antenna-integrated RF module 204 according to the fourth embodiment.
  • the antenna integrated RF module 204 includes a resin multilayer substrate 10 in which a plurality of resin sheets are laminated, various electrodes formed on the resin multilayer substrate 10, a magnetic core 40, and built-in components 64 and 65.
  • a difference from the RF module 203 with an integrated antenna shown in FIG. 6 is that embedded components 64 and 65 such as ICs and passive elements are embedded in the resin multilayer substrate 10.
  • the antenna unit (feeding coil) 101P there may be a built-in component below the antenna unit (feeding coil) 101P.
  • the distance between the antenna unit 101P and the communication partner (reader / writer) side antenna is reduced. Further, the gap between the ground conductor having a relatively large area on the mounting substrate 70 and the antenna unit 101P is increased. As a result, the antenna characteristics are improved.
  • FIG. 9 is a cross-sectional view of the main part of the antenna device according to the fifth embodiment.
  • it is not a simple antenna device, but an antenna device configured with the antenna integrated RF module 203 (that is, including the RF module).
  • This antenna device includes an antenna integrated RF module 203 and a booster coil 301.
  • the configuration of the antenna integrated RF module 203 is as described in the third embodiment, but the antenna unit 101P in the antenna integrated RF module 203 is used as a power supply coil for supplying power to the booster coil 301.
  • FIG. 10 is an exploded perspective view of the booster coil 301.
  • the booster coil 301 includes an insulator base 3, a first coil 1 formed on the first surface, a second coil 2 formed on the second surface, and a magnetic sheet 4.
  • the first coil 1 and the second coil 2 are conductors patterned in a rectangular spiral shape, and are patterned so as to be capacitively coupled in a state where current flows in the same direction in plan view.
  • the two coil conductors are patterned so that when a clockwise current flows through one coil conductor in a plan view from the same direction, a current flows clockwise through the other coil conductor.
  • the antenna unit 101P and the booster coil 301 of the RF module 203 are arranged so as to be magnetically coupled to each other, as indicated by a magnetic field spread MF in FIG. 9 (MF does not represent a line of magnetic force).
  • the magnetic sheet 4 is thin enough not to interfere with the magnetic field coupling between the antenna unit 101P of the RF module 203 and the booster coil 301. Further, the magnetic sheet 4 shields the magnetic field generated from the booster coil 301 and suppresses the generation of eddy currents in the ground conductor formed on the mounting substrate 70.
  • FIG. 11 is an equivalent circuit diagram of the antenna device shown in FIG.
  • the antenna integrated RF module 203 includes an inductance component L1 due to the coil conductor of the antenna portion 101P and the magnetic core 40 (see FIG. 6), a resistance component R1 of the antenna portion 101P, a capacitor C1, and an RFIC.
  • the capacitor C1 is a capacitor for adjusting the resonance frequency of the antenna unit (feeding coil) 101P.
  • the booster coil 301 includes inductance components L2 and L3 of the first coil 1 and the second coil 2, capacitance components C2 and C3 generated between the first coil 1 and the second coil 2, the first coil 1 and the second coil 2. Resistance components R2, R3, and the like.
  • the antenna portion 101P formed on the resin multilayer substrate 10 may be used as a power feeding coil, and the booster coil 301 separate from the resin multilayer substrate 10 may be used as a booster antenna.
  • the longest communicable distance can be extended.
  • FIG. 12A is a cross-sectional view of a main part of the antenna integrated RF module 206 according to the sixth embodiment
  • FIG. 12B is a cross-sectional view of the antenna part 101P extracted.
  • FIG. 13 is an exploded perspective view of some resin sheets of the resin multilayer substrate provided in the antenna integrated RF module.
  • the antenna integrated RF module 206 includes a resin multilayer substrate 10 in which a plurality of resin sheets 11 to 17 are laminated, and various electrodes formed on the resin multilayer substrate 10. As shown in FIG. 13, a plurality of linear portions 21 of the coil conductor are formed on the lower surface of the resin sheet 12. On the upper surface of the resin sheet 15, a plurality of linear portions 22 of coil conductors are formed. A plurality of via conductors 23 and 24 of coil conductors are formed in the resin sheets 12 to 15. The basic configuration of the resin sheets 13 and 14 is the same. These via conductors 23 connect the first ends of the plurality of line portions 21 and the first ends of the plurality of line portions 22.
  • the via conductor 24 connects the second ends of the plurality of line portions 21 and the second ends of the plurality of line portions 22.
  • the antenna portion 101P is formed of a helical coil conductor.
  • the basic configuration of the antenna unit 101P is the same as that of the antenna unit 101P shown in FIG.
  • Electrode and solder resist 50 are formed on the upper surface of the resin multilayer substrate 10, and mounting components 61, 62, 63 and the like are mounted. Terminal electrodes and a solder resist 50 are formed on the lower surface (mounting surface) of the resin multilayer substrate 10.
  • the mounted components 61, 62, 63 are RFIC, chip capacitors, chip inductors and the like.
  • a first ground conductor 27 and a terminal electrode facing the first main surface PS1 are formed on the lower surface of the resin sheet 11.
  • a second ground conductor 28 and other electrodes facing the second main surface PS2 are formed on the upper surface of the resin sheet 16.
  • the first ground conductor 27 and the second ground conductor 28 are connected via an interlayer connection conductor 29 formed of a plurality of via conductors 25.
  • the interlayer connection conductor 29, the first ground conductor 27, and the second ground conductor 28 do not constitute a closed loop surrounding the coil conductor. That is, the interlayer connection conductor 29 is disposed only on the first side surface SS1 side.
  • the first ground conductor 27 and the second ground conductor 28 are provided with a notch-shaped portion CP on the second side surface SS2 side.
  • the point provided with these notch-shaped portions CP is the most different point from the example shown in FIG.
  • Other basic configurations are the same as those shown in FIG.
  • the directivity toward the second side surface SS2 is increased.
  • the notch-shaped portion CP is provided in the ( ⁇ x) ( ⁇ y) direction on the coordinate axis shown in FIG. 13, the directivity (the maximum gain direction in the xy plane) is inclined in the ( ⁇ x) direction. That is, by not forming the interlayer connection conductor 29 on the second side surface SS2 side, not only the directivity inclines in the ( ⁇ y) direction in the yz plane, but also the notch-shaped portion CP is provided, so that in the xy plane The directivity can also be controlled.
  • the notch-shaped portion CP may not be provided on both the first ground conductor 27 and the second ground conductor 28, and directivity can be controlled even if the notch-shaped portion CP is provided on only one of them.
  • the directivity can be inclined in the ( ⁇ z) direction by providing the first ground conductor 27 with the cutout shape portion CP, and the directivity can be provided by providing the second ground conductor 28 with the cutout shape portion CP. It can be tilted in the z direction.
  • FIG. 14 is an external perspective view of the RF module 207 according to the seventh embodiment.
  • Mounted components electronic components such as IC and chip components
  • 61, 62, 63, 66 are mounted on the upper surface of the resin multilayer substrate 10.
  • these mounting components 61, 62, 63, and 66 are not evenly arranged on the resin multilayer substrate 10, but are provided at a position where a non-mounting portion NM is provided and is avoided.
  • the terminal electrodes (land) and wiring for mounting are concentrated under the mounting parts 61, 62, 63, 66. Also, the mounting components 61, 62, 63, 66 themselves have terminal electrodes and wiring concentrated on their lower surfaces and inside.
  • the non-mounting part NM since the non-mounting part NM has relatively no concentration of metal parts, the magnetic field generated by the coil conductor in the resin multilayer substrate 10 easily enters and leaves the non-mounting part NM.
  • the broken-line arrows in FIG. 14 are diagrams showing the direction of magnetic flux entering and exiting the non-mounting portion NM.
  • the directivity on the xy plane can be controlled.
  • the mounting components 61, 62, 63, 66 are located at positions where via conductors (for example, 24 and 25 shown in FIG. 13) that are part of the coil conductor or the ground conductor are formed (positions that overlap the via conductor in plan view). It is preferable to mount. Such a region where conductor patterns (particularly via conductors) are densely present is hard and hardly deformed, so that flatness is maintained. This facilitates surface mounting of the mounted component on the surface of the resin multilayer substrate. In addition, connection failure due to deformation of the resin multilayer substrate can be hardly generated. It is also effective to mount the ground conductor at the formation position of the other via conductor (23 shown in FIG. 13) (position overlapping the via conductor in plan view).
  • FIG. 15 is a diagram illustrating the internal structure of the wireless communication device 401 according to the eighth embodiment, and is a plan view in a state where the upper housing 91 and the lower housing 92 are separated and the interior is exposed. It is.
  • the wireless communication apparatus 401 includes the antenna integrated RF module 203 and the booster coil 301 shown in FIG.
  • printed wiring boards 71 and 81 Inside the upper housing 91, printed wiring boards 71 and 81, a battery pack 83, and the like are housed.
  • An antenna integrated RF module 203 is mounted on the printed wiring board 71.
  • the printed wiring board 71 is also equipped with a UHF band antenna 72, a camera module 76, and the like.
  • the printed wiring board 81 is equipped with a UHF band antenna 82 and the like.
  • the printed wiring board 71 and the printed wiring board 81 are connected via a coaxial cable 84.
  • a booster coil 301 is formed on the inner surface of the lower housing 92.
  • the booster coil 301 is magnetically coupled to the antenna portion (feeding coil) of the antenna integrated RF module 203.
  • a multilayer sheet may be produced by using a green sheet made of a magnetic material such as ferrite instead of the resin sheet, and laminating and firing the green sheet.
  • the 13.56 MHz band RF-ID is shown.
  • the present invention can be applied not only to the HF band but also to a UHF band system used in a wireless LAN or the like.

Abstract

 樹脂シート(12)の下面にコイル導体の複数の線条部(21)が形成されている。樹脂シート(15)の上面にコイル導体の複数の線条部(22)が形成されている。樹脂シート(12~15)にはコイル導体の複数のビア導体(23,24)が形成されている。線条部(21,22)およびビア導体(23,24)によるコイル導体によってアンテナ部(101P)が構成されている。樹脂シート(11)の下面には第1のグランド導体(27)、樹脂シート(17)の上面には第2のグランド導体(28)が形成されている。第1のグランド導体(27)と第2のグランド導体(28)とは複数のビア導体(25)による層間接続導体(29)を介して接続されている。この層間接続導体(29)はコイル導体を囲む閉ループを構成していない。

Description

アンテナ装置および無線通信装置
 本発明は、磁性体とコイル導体とを備えたアンテナ装置およびそれを備えた無線通信装置に関する。
 最近の携帯電話端末をはじめとする無線通信機器の小型化、高機能化に伴い、内蔵する部品についても高機能化かつ小型化への要求が高まってきている。例えば多層配線基板の製造方法を用いて、基板内にアンテナを作り込んでモジュール化する方法が特許文献1で提案されている。この特許文献1に示されている構造のアンテナ装置によれば、基板が樹脂であるため、形状自由度が高く、基板への部品の内蔵も比較的容易である。
特開2003-218626号公報
 しかし、モジュールの小型化/高集積化に伴い、内蔵するアンテナに他のチップ部品やグランド導体などが近接すると、不要結合が発生しやすくなり、不要結合が生じるとアンテナ特性が劣化する問題がある。
 そこで、本発明の目的は、高機能化かつ小型化を図りつつ良好なアンテナ特性が得られるアンテナ装置およびそれを備えた無線通信装置を提供することにある。
 本発明のアンテナ装置は、複数の誘電体または磁性体のシートが積層された多層基板と、
 前記多層基板の積層方向に対して直交するコイル巻回軸を有し、且つ第1主面、第2主面、前記コイル巻回軸に対して平行である第1側面、および前記コイル巻回軸に対して平行である第2側面を有するコイル導体と、
 前記第1主面に対向し、且つ前記コイル導体の外側に配置された第1のグランド導体と、
 前記第2主面に対向し、且つ前記コイル導体の外側に配置された第2のグランド導体と、
 前記第1のグランド導体と前記第2のグランド導体とを導通させる層間接続導体と、
を備え、
 前記層間接続導体は前記第1側面側にのみ配置されていることを特徴とする。
 この構成により、多層基板内に内蔵するアンテナ用コイル導体が多層基板内のグランド導体とそれに導通する層間接続導体によるループで囲まれることがない。そのため、そのループに、コイル導体に流れる電流とは逆向きの電流が流れることがなく、発生磁界が打ち消されない。
 必要に応じて、前記第1のグランド導体および前記第2のグランド導体の少なくとも一方は、前記第2側面側に切欠形状部を備えていることが好ましい。これにより、指向性の制御が可能となる。
 必要に応じて、前記多層基板は樹脂シートの積層体であって、前記コイル導体のコイル開口内に磁性体が配置されていることが好ましい。これにより、コイル巻回範囲内に磁性体コアを有するコイルアンテナが構成され、高透磁率の効果により小型化できる。また、焼結磁性体を配置できるとともに、コイル導体が誘電体部に形成されることから、低損失特性が得られる。
 また、必要に応じて、前記多層基板の上面に、前記コイル導体に導通する電子部品が実装されていることが好ましい。これにより、アンテナを備えたモジュールを構成できる。
 また、必要に応じて、前記多層基板の上面に電子部品が搭載されていて、前記電子部品の搭載位置は、少なくとも前記第2側面側を避ける位置に偏在していることが好ましい。これにより、指向性の制御が可能となる。
 また、前記多層基板の上面に電子部品が搭載される場合に、前記シートの積層方向に視て、前記コイル導体、前記第1のグランド導体または前記第2のグランド導体と重なる位置に電子部品が搭載されることが好ましい。これにより、電子部品の搭載位置の平坦性が保たれ、このことにより、樹脂多層基板の表面への搭載部品の表面実装が容易になる。また、樹脂多層基板の変形による接続不良も発生しにくくすることができる。
 また、必要に応じて、コイル導体に対して電磁界結合し、電磁界を放射するコイル(ブースターコイル)をさらに備えることが好ましい。これにより、アンテナの利得向上および指向性制御が可能となる。
 本発明の無線通信装置は、複数の誘電体または磁性体のシートが積層された多層基板と、
 前記多層基板の積層方向に対して直交するコイル巻回軸を有し、且つ第1主面、第2主面、第1側面、および第2側面を有するコイル導体と、
 前記第1主面に対向し、且つ前記コイル導体の外側に配置された第1のグランド導体と、
 前記第2主面に対向し、且つ前記コイル導体の外側に配置された第2のグランド導体と、
 前記第1のグランド導体と前記第2のグランド導体とを前記第1側面側のみで導通させる層間接続導体と、を備えたアンテナ装置と、
 前記コイル導体に接続された通信回路とを備えたことを特徴とする。
 この構成により、良好なアンテナ特性のアンテナ装置を備えて、低損失特性が得られ、通信可能最大距離が大きくなる。
 本発明のアンテナ装置によれば、多層基板内に内蔵するアンテナ用コイル導体が多層基板内のグランド導体とそれに導通する層間接続導体によるループで囲まれることがないので、コイル導体による発生磁界が打ち消されず、小型でありながら放射効率の高いアンテナ装置が構成できる。
 また、本発明の無線通信装置によれば、低損失化や通信可能最大距離の拡大化が実現できる。
図1は第1の実施形態に係るアンテナ一体型RFモジュール201の主要部の断面図である。 図2はアンテナ一体型RFモジュール201が備える樹脂多層基板のうちいくつかの樹脂シートについての分解斜視図である。 図3はアンテナ一体型RFモジュール201の回路図である。 図4はアンテナ一体型RFモジュール201のアンテナ部により生じる磁界の拡がり方を示す概念図である。 図5は第2の実施形態に係るアンテナ一体型RFモジュール201のアンテナ部により生じる磁界の拡がり方を示す図である。 図6は第3の実施形態に係るアンテナ一体型RFモジュール203の主要部の断面図である。 図7はアンテナ一体型RFモジュール203の一部の分解斜視図である。 図8は第4の実施形態に係るアンテナ一体型RFモジュール204の主要部の断面図である。 図9は第5の実施形態に係るアンテナ装置の主要部の断面図である。 図10はブースターコイル301の分解斜視図である。 図11は図10に示したアンテナ装置の等価回路図である。 図12(A)は第6の実施形態に係るアンテナ一体型RFモジュール206の主要部の断面図、図12(B)はアンテナ部101Pを抜き出して表した断面図である。 図13は、第6の実施形態に係るアンテナ一体型RFモジュールが備える樹脂多層基板のうちいくつかの樹脂シートについての分解斜視図である。 図14は第7の実施形態に係るRFモジュール207の外観斜視図である。 図15は第8の実施形態に係る無線通信装置401の筐体内部の構造を示す図であり、上部筐体91と下部筐体92とを分離して内部を露出させた状態での平面図である。 図16は比較例としてのアンテナ一体型RFモジュールの断面図である。
《第1の実施形態》
 図1(A)は第1の実施形態に係るアンテナ一体型RFモジュール201の主要部の断面図、図1(B)はアンテナ部101Pを抜き出して表した断面図である。図2はアンテナ一体型RFモジュール201が備える樹脂多層基板のうちいくつかの樹脂シートについての分解斜視図である。
 アンテナ一体型RFモジュール201は、複数の樹脂シート11~18が積層された樹脂多層基板10と、この樹脂多層基板10に形成された各種電極とを備えている。図2に表れているように、樹脂シート12の下面にはコイル導体の複数の線条部21が形成されている。樹脂シート15の上面にはコイル導体の複数の線条部22が形成されている。樹脂シート12~15にはコイル導体の複数のビア導体23,24が形成されている。樹脂シート13,14の基本構成は同じである。これらのビア導体23は複数の線条部21の第1端と複数の線条部22の第1端とを接続する。また、ビア導体24は複数の線条部21の第2端と複数の線条部22の第2端とを接続する。すなわち、コイル導体は、多層基板の積層方向に対して直交するコイル巻回軸を有し、且つ線条部21,22およびビア導体23,24によって、第1主面PS1、第2主面PS2、コイル巻回軸に対して平行である第1側面SS1、およびコイル巻回軸に対して平行である第2側面SS2を有する横置きの扁平角筒に沿ったヘリカル状のコイル導体によるアンテナ部101Pが構成されている。
 樹脂多層基板10の上面には電極およびソルダーレジスト50が形成されていて、搭載部品61,62,63等が搭載されている。樹脂多層基板10の下面(実装面)には端子電極およびソルダーレジスト50が形成されている。前記搭載部品61,62,63はRFIC、チップコンデンサ、チップインダクタ等である。
 樹脂シート11の下面には第1主面PS1に対向する第1のグランド導体27および端子電極が形成されている。樹脂シート16の上面には第2主面PS2に対向する第2のグランド導体28およびその他の電極が形成されている。第1のグランド導体27と第2のグランド導体28とは複数のビア導体25による層間接続導体29を介して接続されている。この層間接続導体29は線条部21,22およびビア導体23,24によるコイル導体の近傍を通っているが、層間接続導体29、第1のグランド導体27および第2のグランド導体28ではコイル導体を囲む閉ループを構成していない。すなわち、層間接続導体29は第1側面SS1側にのみ配置されている。そのため、コイル導体によるアンテナ部101Pが発生する磁界が打ち消されず、小型でありながら放射効率の高いアンテナ装置が構成できる。
 ここで、比較例としてのアンテナ一体型RFモジュールの断面図を図16に示す。第1のグランド導体27と第2のグランド導体28とは複数のビア導体による層間接続導体29A,29Bを介して接続されている。この層間接続導体29A,29B、第1のグランド導体27および第2のグランド導体28で、アンテナ部101Pを囲む閉ループを構成している。その他の構成は図1に示したものと同じである。この比較例のアンテナ一体型RFモジュールにおいては、コイル導体によるアンテナ部101Pが発生する磁界を打ち消す方向の電流が前記閉ループに流れるので、放射効率は低いものとなる。
 アンテナ一体型RFモジュール201は例えばNFCなどの近距離無線通信モジュールとして用いる。このアンテナ一体型RFモジュール201を組み込み先の実装基板70に実装することで、近距離無線通信機能を有する無線通信装置が構成できる。
 図3はアンテナ一体型RFモジュール201の回路図である。図3において、インダクタL10は上記ヘリカル状のコイル導体に相当し、キャパシタC10はインダクタL10と共に共振回路を構成するための素子である。これらインダクタL10およびキャパシタC10によってアンテナ101が構成される。キャパシタC21,C22はRFIC61とアンテナコイルL10との結合度調整用の素子である。また、インダクタL11,L12およびキャパシタC11,C12,C20は送信フィルタを構成している。例えば通信回路がカードモードで動作する場合、RFIC61はパッシブ動作するので、RX端子への入力信号から電源電圧を生成するとともに受信信号を読み取り、送信時にはTX端子に接続されている回路(負荷)を負荷変調する。また、例えば通信回路がリーダライタモードで動作する場合には、RFIC61はアクティブ動作するので、送信時にRX端子を開放してTX端子から送信信号を送信し、受信時にはTX端子を開放してRX端子から受信信号を入力する。
 なお、図3に示したモジュールはあくまでも一例であって、本発明はこれに限るものでないことは言うまでもない。例えば、RFIC61の送信端子Txまたは受信端子Rxの一方もしくは両方が不平衡端子であってもよい。
 図4はアンテナ一体型RFモジュール201のアンテナ部により生じる磁界の拡がり方を示す概念図である。アンテナ部101Pのコイル巻回軸は紙面に垂直であるので、磁束はコイル巻回軸を通って、一方のコイル開口から他方のコイル開口へループを形成する。アンテナ部101Pの層方向の上下にグランド導体27,28、一方の側部に層間接続導体29が存在するので、これらを避ける方向に磁界が拡がる。図4中のMFはその磁界の拡がる様子を示している。したがって、この磁界の拡がる方向に特に感度が生じることになる。また、コイル導体の線条部21,22の一方の端部がグランド導体27,28の端部(端辺)GEに近接していることによって、このグランド導体27,28の端部(端辺)GEに沿って流れる誘導電流の作用で、磁界がより拡がる。その結果、広指向性が得られる。なお、コイル導体の線条部21,22の一方の端部はグランド導体27,28の端部(端辺)GEに必ずしも近接していなくてもよい。
《第2の実施形態》
 図5は第2の実施形態に係るアンテナ一体型RFモジュール201のアンテナ部により生じる磁界の拡がり方を示す図である。この例では、アンテナ一体型RFモジュール201を実装基板70の端部に配置している。実装基板70には、そのほぼ全面にグランド導体が形成されているので、実装基板70の端部にアンテナ一体型RFモジュール201を実装すると、実装基板70のグランド導体の端部(端辺)GEが近接していることによって、このグランド導体27,28および実装基板70のグランド導体の端部(端辺)GEに沿って流れる誘導電流の作用で、磁界がより拡がる。その結果、さらに広指向性が得られる。また、磁界は実装基板の裏面に回り込むため、実装基板の裏面方向での通信も可能となる。なお、コイル導体の線条部21,22の一方の端部はグランド導体27,28の端部(端辺)GEに必ずしも近接していなくてもよい。その場合でも、磁界は実装基板の裏面に一定回り込むため、実装基板の裏面方向での通信も可能となる。
《第3の実施形態》
 図6は第3の実施形態に係るアンテナ一体型RFモジュール203の主要部の断面図である。図7はアンテナ一体型RFモジュール203の一部の分解斜視図である。
 アンテナ一体型RFモジュール203は、複数の樹脂シート11~18が積層された樹脂多層基板10、この樹脂多層基板10に形成された各種電極および磁性体コア40を備えている。図1に示したアンテナ一体型RFモジュール201と異なるのは樹脂多層基板10内に磁性体コア40を埋設した点である。
 図7に表れているように、樹脂シート13,14には中央部に開口APが形成されている。これらの開口APの積層によってキャビティが構成されている。そして、このキャビティ内に磁性体コア40が埋設されている。この磁性体コア40は、線条部21,22およびビア導体23,24によって構成されるコイル導体のコイル開口内に位置する。
 磁性体コア40は例えば焼結された直方体状の磁性フェライトである。この構成により、磁性体コア付きのコイルアンテナとして用いることができる。
 第3の実施形態によれば、次のような効果を奏する。
・磁性体の表面にコイル導体を直接形成しないため、高透磁率でしかも低損失な磁性体材料をコイルアンテナ用の磁性体コアに使用することができる。
・コイル導体より外側は誘電体(非磁性体)であるので良好なアンテナ特性が得られる。
・コイル導体を同時焼成する必要が無いため、銀パラジウムやタングステンなどのような高温焼成は可能なものの導電率の低い材料を用いる必要が無い。
・導体についてはエッチングなどで形成するため、高い寸法精度で形成でき、安定した電気特性が得られる。
・コイル導体形成範囲の2辺にビア導体23,24が配置されることにより、コイル導体形成範囲の中央部は薄くなる傾向にあるが、コイル導体形成範囲の中央部に磁性体コア40を配置することにより、厚み寸法は均一化される。
《第4の実施形態》
 図8は第4の実施形態に係るアンテナ一体型RFモジュール204の主要部の断面図である。
 アンテナ一体型RFモジュール204は、複数の樹脂シートが積層された樹脂多層基板10、この樹脂多層基板10に形成された各種電極、磁性体コア40および内蔵部品64,65を備えている。図6に示したアンテナ一体型RFモジュール203と異なるのは、樹脂多層基板10内にICや受動素子などの内蔵部品64,65を埋設した点である。
 特に、図8に表れているように、アンテナ部(給電コイル)101Pの下側に内蔵部品があってもよい。
 基板70の表面側に離れた位置に通信相手(リーダライター)側アンテナがあるので、この実施形態の構造によれば、アンテナ部101Pと通信相手(リーダライター)側アンテナとの距離が縮まる。また、実装基板70の相対的に大面積のグランド導体とアンテナ部101Pとの間隙が大きくなる。これらのことからアンテナ特性が向上する。
《第5の実施形態》
 図9は第5の実施形態に係るアンテナ装置の主要部の断面図である。但し、この例では、単なるアンテナ装置ではなく、アンテナ一体型RFモジュール203とともに構成される(すなわちRFモジュールを含む)アンテナ装置である。このアンテナ装置はアンテナ一体型RFモジュール203およびブースターコイル301で構成される。アンテナ一体型RFモジュール203の構成は第3の実施形態で示したとおりであるが、アンテナ一体型RFモジュール203内のアンテナ部101Pはブースターコイル301に給電するための給電コイルとして用いる。
 図10はブースターコイル301の分解斜視図である。ブースターコイル301は、絶縁体基材3、その第1面に形成された第1コイル1、第2面に形成された第2コイル2、および磁性体シート4を備えている。第1コイル1と第2コイル2はそれぞれ矩形渦巻状にパターン化された導体であり、平面視で同方向に電流が流れる状態で容量結合するようにパターン化されている。同一方向からの平面視で、一方のコイル導体に時計回りの電流が流れるとき、他方のコイル導体にも時計回りに電流が流れるように、二つのコイル導体はパターン化されている。
 図9に磁界の拡がりMF(MFは磁力線を表しているわけではない。)で示すように、RFモジュール203のアンテナ部101Pとブースターコイル301とは互いに磁界結合するように配置されている。磁性体シート4はRFモジュール203のアンテナ部101Pとブースターコイル301との磁界結合を妨げない程度に薄い。また、磁性体シート4は、ブースターコイル301から発生される磁界をシールドして、実装基板70に形成されているグランド導体に渦電流が生じるのを抑制する。
 図11は図9に示したアンテナ装置の等価回路図である。アンテナ一体型RFモジュール203はアンテナ部101Pのコイル導体および磁性体コア40(図6参照)によるインダクタンス成分L1、アンテナ部101Pの抵抗成分R1、キャパシタC1およびRFIC等で構成される。キャパシタC1はアンテナ部(給電コイル)101Pの共振周波数を調整するための容量である。ブースターコイル301は、第1コイル1および第2コイル2のインダクタンス成分L2,L3、第1コイル1と第2コイル2との間に生じるキャパシタンス成分C2,C3、第1コイル1および第2コイル2の抵抗成分R2,R3等で構成される。
 このようにして、樹脂多層基板10に形成されたアンテナ部101Pを給電用のコイルとして用い、樹脂多層基板10とは別体のブースターコイル301をブースターアンテナとして用いてもよい。このことによって、通信可能最長距離を拡張できる。
《第6の実施形態》
 図12(A)は第6の実施形態に係るアンテナ一体型RFモジュール206の主要部の断面図、図12(B)はアンテナ部101Pを抜き出して表した断面図である。図13は、このアンテナ一体型RFモジュールが備える樹脂多層基板のうちいくつかの樹脂シートについての分解斜視図である。
 アンテナ一体型RFモジュール206は、複数の樹脂シート11~17が積層された樹脂多層基板10と、この樹脂多層基板10に形成された各種電極とを備えている。図13に表れているように、樹脂シート12の下面にはコイル導体の複数の線条部21が形成されている。樹脂シート15の上面にはコイル導体の複数の線条部22が形成されている。樹脂シート12~15にはコイル導体の複数のビア導体23,24が形成されている。樹脂シート13,14の基本構成は同じである。これらのビア導体23は複数の線条部21の第1端と複数の線条部22の第1端とを接続する。また、ビア導体24は複数の線条部21の第2端と複数の線条部22の第2端とを接続する。この構造により、ヘリカル状のコイル導体によるアンテナ部101Pが構成されている。アンテナ部101Pの基本構成は図2に示したアンテナ部101Pと同じである。
 樹脂多層基板10の上面には電極およびソルダーレジスト50が形成されていて、搭載部品61,62,63等が搭載されている。樹脂多層基板10の下面(実装面)には端子電極およびソルダーレジスト50が形成されている。前記搭載部品61,62,63はRFIC、チップコンデンサ、チップインダクタ等である。
 樹脂シート11の下面には第1主面PS1に対向する第1のグランド導体27および端子電極が形成されている。樹脂シート16の上面には第2主面PS2に対向する第2のグランド導体28およびその他の電極が形成されている。第1のグランド導体27と第2のグランド導体28とは複数のビア導体25による層間接続導体29を介して接続されている。層間接続導体29、第1のグランド導体27および第2のグランド導体28はコイル導体を囲む閉ループを構成していない。すなわち、層間接続導体29は第1側面SS1側にのみ配置されている。
 図12(A)および図13に示すように、第1のグランド導体27および第2のグランド導体28は、第2側面SS2側に切欠形状部CPを備えている。これら切欠形状部CPを備えている点が図2に示した例と最も異なる点である。その他の基本的な構成は図2に示したものと同じである。
 このように、第1のグランド導体27および第2のグランド導体28の第2側面側に切欠形状部CPを備えることにより、第2側面SS2側への指向性を高まる。また、図13で示す座標軸で、(-x)(-y)方向に切欠形状部CPを備えているので、指向性(xy平面での最大利得方向)は(-x)方向へ傾く。すなわち、層間接続導体29を第2側面SS2側に形成しないことによって、yz平面内で(-y)方向へ指向性が傾くだけでなく、切欠形状部CPを備えることで、xy平面内での指向性を制御することもできる。
 上記切欠形状部CPは、第1のグランド導体27および第2のグランド導体28の両方に無くてもよく、一方にのみ切欠形状部CPを備えても、指向性制御が可能である。また、例えば第1のグランド導体27に切欠形状部CPを備えることで指向性を(-z)方向に傾けることができ、第2のグランド導体28に切欠形状部CPを備えることで指向性をz方向に傾けることができる。
《第7の実施形態》
 図14は第7の実施形態に係るRFモジュール207の外観斜視図である。樹脂多層基板10の上面には搭載部品(ICやチップ部品等の電子部品)61,62,63,66が搭載されている。但し、これら搭載部品61,62,63,66は樹脂多層基板10上に均等に配置されているのではなく、非搭載部NMを設け、そこを避ける位置に搭載されている。
 搭載部品61,62,63,66の下部には実装のための端子電極(ランド)や配線が集中している。また、搭載部品61,62,63,66自体も、それらの下面や内部に端子電極や配線が集中している。一方、非搭載部NMは相対的に金属部の集中が無いので、樹脂多層基板10内のコイル導体による発生磁界が非搭載部NMを出入りし易い。図14中の破線の矢印は、この非搭載部NMを出入りする磁束の方向を示す図である。
 このような非搭載部NMを設けることで、xy平面での指向性を制御することもできる。
 また、搭載部品61,62,63,66は、コイル導体またはグランド導体の一部であるビア導体(例えば図13に示した24,25)の形成位置(平面視でビア導体と重なる位置)に搭載することが好ましい。このような、導体パターン(特にビア導体)が密に存在する領域は硬く、変形しにくいので、平坦性が保たれる。このことにより、樹脂多層基板の表面への搭載部品の表面実装が容易になる。また、樹脂多層基板の変形による接続不良も発生しにくくできる。なお、グランド導体の、もう一方のビア導体(図13に示した23)の形成位置(平面視でビア導体と重なる位置)に搭載することも有効である。
《第8の実施形態》
 図15は第8の実施形態に係る無線通信装置401の筐体内部の構造を示す図であり、上部筐体91と下部筐体92とを分離して内部を露出させた状態での平面図である。この無線通信装置401は図9に示したアンテナ一体型RFモジュール203およびブースターコイル301を備えたものである。
 上部筐体91の内部にはプリント配線板71,81、バッテリーパック83等が収められている。プリント配線板71にはアンテナ一体型RFモジュール203が実装されている。このプリント配線板71にはUHF帯アンテナ72、カメラモジュール76等も搭載されている。また、プリント配線板81にはUHF帯アンテナ82等が搭載されている。プリント配線板71とプリント配線板81とは同軸ケーブル84を介して接続されている。
 下部筐体92の内面にはブースターコイル301が形成されている。このブースターコイル301はアンテナ一体型RFモジュール203のアンテナ部(給電コイル)と磁界結合する。
 なお、以上に示した例では、誘電体(非磁性体)の樹脂シートを用いた例を示したが、樹脂シートに磁性体の粉末もしくは誘電体の粉末またはその両方を混入させたシートを用いてもよい。
 また、樹脂シートの代わりに、フェライトなどの磁性体からなるグリーンシートを用い、そのグリーンシートを積層、焼成することによって多層基板を作製してもよい。
 また、以上に示した例では、13.56MHz帯のRF-IDについて示したが、本発明はHF帯だけではなく、無線LAN等で利用されるUHF帯のシステムなどについても同様に適用できる。
AP…開口
CP…切欠形状部
NM…非搭載部
PS1…第1主面
PS2…第2主面
SS1…第1側面
SS2…第2側面
1…第1コイル
2…第2コイル
3…絶縁体基材
4…磁性体シート
10…樹脂多層基板
11~17…樹脂シート
21,22…線条部
23~25…ビア導体
27…第1のグランド導体
28…第2のグランド導体
29,29A,29B…層間接続導体
40…磁性体コア
50…ソルダーレジスト
61~63,66…搭載部品
64,65…内蔵部品
70…実装基板
71,81…プリント配線板
72…UHF帯アンテナ
76…カメラモジュール
81…プリント配線板
82…UHF帯アンテナ
83…バッテリーパック
84…同軸ケーブル
91…下部筐体
92…上部筐体
101P…アンテナ部
201,203,204,206,207…RFモジュール
301…ブースターコイル
401…無線通信装置

Claims (8)

  1.  複数の誘電体または磁性体のシートが積層された多層基板と、
     前記多層基板の積層方向に対して直交するコイル巻回軸を有し、且つ第1主面、第2主面、前記コイル巻回軸に対して平行である第1側面、および前記コイル巻回軸に対して平行である第2側面を有するコイル導体と、
     前記第1主面に対向し、且つ前記コイル導体の外側に配置された第1のグランド導体と、
     前記第2主面に対向し、且つ前記コイル導体の外側に配置された第2のグランド導体と、
     前記第1のグランド導体と前記第2のグランド導体とを導通させる層間接続導体と、
    を備え、
     前記層間接続導体は前記第1側面側にのみ配置されていることを特徴とするアンテナ装置。
  2.  前記第1のグランド導体および前記第2のグランド導体の少なくとも一方は、前記第2側面側に切欠形状部を備えた、請求項1に記載のアンテナ装置。
  3.  前記多層基板は樹脂シートの積層体であって、前記コイル導体のコイル開口内に磁性体が配置されている、請求項1または2に記載のアンテナ装置。
  4.  前記多層基板の上面に、前記コイル導体に導通する電子部品が実装されている、請求項1~3のいずれかに記載のアンテナ装置。
  5.  前記多層基板の上面に電子部品が搭載されていて、前記電子部品の搭載位置は、少なくとも前記第2側面側を避ける位置に偏在している、請求項1~3のいずれかに記載のアンテナ装置。
  6.  前記多層基板の上面に電子部品が搭載されていて、前記電子部品は前記シートの積層方向に視て、前記コイル導体、前記第1のグランド導体または前記第2のグランド導体と重なる位置に搭載されている、請求項1~3のいずれかに記載のアンテナ装置。
  7.  前記コイル導体に対して電磁界結合し、電磁界を放射するコイルをさらに備えた、請求項1~6のいずれかに記載のアンテナ装置。
  8.  複数の誘電体または磁性体のシートが積層された多層基板と、
     前記多層基板の積層方向に対して直交するコイル巻回軸を有し、且つ第1主面、第2主面、前記コイル巻回軸に対して平行である第1側面、および前記コイル巻回軸に対して平行である第2側面を有するコイル導体と、
     前記第1主面に対向し、且つ前記コイル導体の外側に配置された第1のグランド導体と、
     前記第2主面に対向し、且つ前記コイル導体の外側に配置された第2のグランド導体と、
     前記第1のグランド導体と前記第2のグランド導体とを前記第1側面側のみで導通させる層間接続導体と、を備えたアンテナ装置と、
     前記コイル導体に接続された通信回路とを備えたことを特徴とする無線通信装置。
PCT/JP2013/070844 2012-08-09 2013-08-01 アンテナ装置および無線通信装置 WO2014024762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014529456A JP5761463B2 (ja) 2012-08-09 2013-08-01 アンテナ装置および無線通信装置
CN201390000443.XU CN204335178U (zh) 2012-08-09 2013-08-01 天线装置及无线通信装置
US14/515,630 US9509051B2 (en) 2012-08-09 2014-10-16 Antenna device and wireless communication apparatus
US15/299,888 US9705193B2 (en) 2012-08-09 2016-10-21 Antenna device and wireless communication apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-176951 2012-08-09
JP2012176951 2012-08-09
JP2013136251 2013-06-28
JP2013-136251 2013-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/515,630 Continuation US9509051B2 (en) 2012-08-09 2014-10-16 Antenna device and wireless communication apparatus

Publications (1)

Publication Number Publication Date
WO2014024762A1 true WO2014024762A1 (ja) 2014-02-13

Family

ID=50067993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070844 WO2014024762A1 (ja) 2012-08-09 2013-08-01 アンテナ装置および無線通信装置

Country Status (4)

Country Link
US (2) US9509051B2 (ja)
JP (1) JP5761463B2 (ja)
CN (1) CN204335178U (ja)
WO (1) WO2014024762A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129460A1 (ja) * 2014-02-25 2015-09-03 株式会社村田製作所 無線通信端末の製造方法
JPWO2016098527A1 (ja) * 2014-12-17 2017-06-15 株式会社村田製作所 アンテナモジュールおよび電子機器
JP2017163406A (ja) * 2016-03-10 2017-09-14 株式会社村田製作所 電子機器
JP2017229091A (ja) * 2014-12-19 2017-12-28 株式会社村田製作所 無線icデバイス
US10374305B2 (en) 2015-07-30 2019-08-06 Murata Manufacturing Co., Ltd. Multilayer substrate and electronic device
JP2019140658A (ja) * 2017-03-21 2019-08-22 京セラ株式会社 複合アンテナ、無線通信モジュール、および無線通信機器
JP2021507508A (ja) * 2017-12-15 2021-02-22 クアルコム,インコーポレイテッド ラミネート積層基板における埋め込み垂直インダクタ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491447B (en) * 2010-03-24 2014-10-22 Murata Manufacturing Co RFID system
WO2014024762A1 (ja) * 2012-08-09 2014-02-13 株式会社村田製作所 アンテナ装置および無線通信装置
US20150340422A1 (en) * 2014-05-23 2015-11-26 Texas Instruments Incorporated Method of manufacturing a micro-fabricated wafer level integrated inductor or transformer for high frequency switch mode power supplies
US20150340338A1 (en) 2014-05-23 2015-11-26 Texas Instruments Incorporated Conductor design for integrated magnetic devices
WO2016143570A1 (ja) * 2015-03-11 2016-09-15 株式会社村田製作所 インピーダンス変換素子および通信装置
USD812598S1 (en) * 2015-06-17 2018-03-13 Inside Secure Data communication antenna
FR3045191B1 (fr) * 2015-12-15 2018-11-16 Continental Automotive France Procede de realisation d'une antenne solenoide et circuit imprime integrant ladite antenne
FR3045190B1 (fr) * 2015-12-15 2018-11-16 Continental Automotive France Procede de realisation d'une antenne implantee dans un circuit imprime et circuit imprime associe
CN107732418A (zh) * 2016-08-12 2018-02-23 国民技术股份有限公司 一种非接触天线模块及通信设备
JP6888667B2 (ja) * 2017-03-21 2021-06-16 株式会社村田製作所 アンテナモジュール及び通信装置
JP7455516B2 (ja) * 2019-03-29 2024-03-26 Tdk株式会社 素子内蔵基板およびその製造方法
US11102886B2 (en) * 2019-09-30 2021-08-24 Samsung Electro-Mechanics Co., Ltd. Printed circuit board
JPWO2021112086A1 (ja) * 2019-12-03 2021-06-10
CN112185684A (zh) * 2020-10-06 2021-01-05 广州添利电子科技有限公司 一种嵌入磁铁变压器印刷线圈电路版制造工艺
JP2022177405A (ja) * 2021-05-18 2022-12-01 Tdk株式会社 アンテナモジュール及びコイルパターン付き磁性シート

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090745A1 (ja) * 2007-01-25 2008-07-31 Nidec Sankyo Corporation ループアンテナ
WO2008133018A1 (ja) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. 磁界結合型アンテナ、磁界結合型アンテナモジュールおよび磁界結合型アンテナ装置、ならびにこれらの製造方法
JP2011024146A (ja) * 2009-07-18 2011-02-03 Mitsubishi Cable Ind Ltd アンテナ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222489B1 (en) * 1995-08-07 2001-04-24 Murata Manufacturing Co., Ltd. Antenna device
JP3774136B2 (ja) * 2000-10-31 2006-05-10 三菱マテリアル株式会社 アンテナ及びそれを用いた電波送受信装置
JP3982268B2 (ja) 2002-01-17 2007-09-26 ソニー株式会社 アンテナ回路装置及びその製造方法
JP3847292B2 (ja) * 2003-11-21 2006-11-22 松下電器産業株式会社 非接触リーダライタ用アンテナ、および非接触リーダライタ
JP4183707B2 (ja) * 2003-11-28 2008-11-19 富士通株式会社 非接触リーダおよび/またはライタを具える情報処理装置、および磁気的結合用のコイル・アンテナ
WO2009128437A1 (ja) 2008-04-14 2009-10-22 株式会社村田製作所 無線icデバイス、電子機器及び無線icデバイスの共振周波数の調整方法
JP2009283771A (ja) * 2008-05-23 2009-12-03 Toshiba Tec Corp 積層プリント基板
JP5251610B2 (ja) 2009-03-03 2013-07-31 Tdk株式会社 アンテナ装置及びこれに用いるアンテナ素子
JP5366645B2 (ja) * 2009-05-07 2013-12-11 日本電信電話株式会社 高周波基板
JP4748334B2 (ja) * 2009-09-01 2011-08-17 横浜ゴム株式会社 アンテナ
JP2011239268A (ja) * 2010-05-12 2011-11-24 Sony Corp アンテナ装置、電子機器及び電子機器システム
JP5062382B2 (ja) * 2010-09-07 2012-10-31 株式会社村田製作所 アンテナ装置
WO2014024762A1 (ja) * 2012-08-09 2014-02-13 株式会社村田製作所 アンテナ装置および無線通信装置
JP5967028B2 (ja) * 2012-08-09 2016-08-10 株式会社村田製作所 アンテナ装置、無線通信装置およびアンテナ装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090745A1 (ja) * 2007-01-25 2008-07-31 Nidec Sankyo Corporation ループアンテナ
WO2008133018A1 (ja) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. 磁界結合型アンテナ、磁界結合型アンテナモジュールおよび磁界結合型アンテナ装置、ならびにこれらの製造方法
JP2011024146A (ja) * 2009-07-18 2011-02-03 Mitsubishi Cable Ind Ltd アンテナ装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129460A1 (ja) * 2014-02-25 2015-09-03 株式会社村田製作所 無線通信端末の製造方法
JPWO2016098527A1 (ja) * 2014-12-17 2017-06-15 株式会社村田製作所 アンテナモジュールおよび電子機器
US10141650B2 (en) 2014-12-17 2018-11-27 Murata Manufacturing Co., Ltd. Antenna module and electronic device
JP2017229091A (ja) * 2014-12-19 2017-12-28 株式会社村田製作所 無線icデバイス
US10374305B2 (en) 2015-07-30 2019-08-06 Murata Manufacturing Co., Ltd. Multilayer substrate and electronic device
JP2017163406A (ja) * 2016-03-10 2017-09-14 株式会社村田製作所 電子機器
JP2019140658A (ja) * 2017-03-21 2019-08-22 京セラ株式会社 複合アンテナ、無線通信モジュール、および無線通信機器
JP2021507508A (ja) * 2017-12-15 2021-02-22 クアルコム,インコーポレイテッド ラミネート積層基板における埋め込み垂直インダクタ
US11817239B2 (en) 2017-12-15 2023-11-14 Qualcomm Incorporated Embedded vertical inductor in laminate stacked substrates
JP7442446B2 (ja) 2017-12-15 2024-03-04 クアルコム,インコーポレイテッド ラミネート積層基板における埋め込み垂直インダクタ

Also Published As

Publication number Publication date
JP5761463B2 (ja) 2015-08-12
US20150035718A1 (en) 2015-02-05
JPWO2014024762A1 (ja) 2016-07-25
US9509051B2 (en) 2016-11-29
US20170040697A1 (en) 2017-02-09
US9705193B2 (en) 2017-07-11
CN204335178U (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5761463B2 (ja) アンテナ装置および無線通信装置
US10033104B2 (en) Antenna device and wireless communication device
JP6260729B2 (ja) 給電素子
JP5655962B2 (ja) アンテナ装置および無線通信装置
JP6256600B2 (ja) アンテナ装置および電子機器
JP5758909B2 (ja) 通信端末装置
JP5994917B2 (ja) アンテナ装置および電子機器
JP6269902B2 (ja) アンテナ装置および電子機器
JP5633662B1 (ja) アンテナコイル内蔵モジュール、アンテナ装置および通信機器
JP2013168780A (ja) 表面実装型アンテナ
JP5736949B2 (ja) 高周波回路モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000443.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827891

Country of ref document: EP

Kind code of ref document: A1