WO2014024608A1 - ブロア - Google Patents

ブロア Download PDF

Info

Publication number
WO2014024608A1
WO2014024608A1 PCT/JP2013/068209 JP2013068209W WO2014024608A1 WO 2014024608 A1 WO2014024608 A1 WO 2014024608A1 JP 2013068209 W JP2013068209 W JP 2013068209W WO 2014024608 A1 WO2014024608 A1 WO 2014024608A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
opening
diaphragm
piezoelectric
blower chamber
Prior art date
Application number
PCT/JP2013/068209
Other languages
English (en)
French (fr)
Inventor
金井俊吾
神谷岳
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014529387A priority Critical patent/JP5692468B2/ja
Publication of WO2014024608A1 publication Critical patent/WO2014024608A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the present invention relates to a blower that transports gas.
  • Patent Document 1 discloses a blower for supplying oxygen necessary for cooling a heat source provided in a portable electronic device or for generating electricity with a fuel cell.
  • FIG. 10A to 10E are cross-sectional views of the blower according to Patent Document 1.
  • FIG. The blower is opposed to the blower body 1, the diaphragm 2 whose outer peripheral portion is fixed to the blower body 1, the piezoelectric element 3 provided on one main surface of the diaphragm 2, and the piezoelectric element 3 of the blower body 1.
  • a wall portion 1b that forms an inflow passage 7 and that is spaced from the other main surface.
  • the blower body 1 has a wall portion 1 a facing the diaphragm 2.
  • the blower body 1 constitutes a blower chamber 4 together with a diaphragm 2. Further, in the area of the blower body 1 that faces the center of the diaphragm 2, an opening 5 a that communicates the inside and the outside of the blower chamber 4 is provided.
  • discharge port 5b is provided in the area
  • the gas discharged from the blower chamber 4 draws the gas outside the blower through the inflow passage 7 and discharges it from the discharge port 5b. For this reason, the flow rate of the gas discharged from the discharge port 5b increases by the amount of the drawn gas.
  • the foreign matter F sucked into the blower chamber 4 has a large inertia force because the specific gravity of the foreign matter F is larger than the specific gravity of gas (generally air). Therefore, the foreign matter F attracts the main surface of the diaphragm 2 facing the opening 5a. It collides and accumulates on the main surface (see FIG. 11). In particular, as the flow rate of the gas sucked from the opening 5a increases, the foreign matter F easily collides with the main surface of the diaphragm 2 facing the opening 5a due to inertia.
  • the specific gravity of the foreign matter F is larger than the specific gravity of gas (generally air). Therefore, the foreign matter F attracts the main surface of the diaphragm 2 facing the opening 5a. It collides and accumulates on the main surface (see FIG. 11). In particular, as the flow rate of the gas sucked from the opening 5a increases, the foreign matter F easily collides with the main surface of the diaphragm 2 facing the opening 5a due to inertia.
  • an object of the present invention is to provide a blower that suppresses a decrease in discharge flow rate and a decrease in discharge pressure and is less likely to stop operation due to foreign matter than in the past.
  • the blower of the present invention has the following configuration in order to solve the above problems.
  • a diaphragm (1) a diaphragm; A driver that is provided on at least one main surface of the diaphragm and flexibly vibrates the diaphragm; A first housing that forms a blower chamber together with the diaphragm, The first housing has a top plate portion facing the diaphragm, and a side wall portion connecting the diaphragm and the top plate portion, The top plate is provided with a first opening for communicating the inside and outside of the blower chamber, A second opening that communicates the inside and the outside of the blower chamber is provided in a region of the diaphragm that faces the first opening.
  • the vibration plate bends and vibrates. Then, the volume of the blower chamber periodically changes due to the bending vibration of the diaphragm, and the gas outside the blower is sucked from the first opening to the blower chamber, or the gas in the blower chamber is discharged from the first opening. Or Also in this configuration, when gas outside the blower is sucked into the blower chamber, foreign matters such as dust are also sucked into the blower chamber through the first opening.
  • the second opening is provided in the region of the diaphragm facing the first opening where the foreign substances can be accumulated most. Therefore, a part of the gas sucked into the blower chamber flows out from the second opening. And since the foreign material attracted
  • the blower having this configuration it is possible to suppress the decrease in the discharge flow rate and the decrease in the discharge pressure of the blower, and it is less likely to stop the operation due to foreign matter than in the past.
  • the volume of the blower chamber periodically changes due to the bending vibration of the diaphragm. That is, the blower chamber changes from the maximum expanded state to the maximum contracted state in T / 2 cycle (s) in one cycle T, and changes from the maximum contracted state to the maximum expanded state in the next T / 2 cycle (s). To do.
  • the gas suction is performed when the blower chamber changes from the maximum contracted state to the maximum expanded state. That is, the suction of the gas is performed during T / 2.
  • the change amount of the gas flowing into the blower chamber from the opening area S of the first opening is ⁇ V / S
  • the average flow velocity of the gas sucked from the first opening to the blower chamber is ⁇ V / S / (T / 2).
  • the distance that the gas enters the blower chamber from the first opening and travels through the blower chamber is ⁇ V / S obtained by multiplying the average flow velocity by the gas suction time T / 2.
  • the blower having a structure in which the distance L between the top plate portion and the diaphragm when the diaphragm is stationary satisfies the relationship ⁇ V / S ⁇ L, the foreign matter sucked into the blower chamber is It collides with the main surface of the diaphragm opposite to and accumulates.
  • the configuration (1) is suitable for a blower having a structure in which L satisfies the relationship of ⁇ V / S ⁇ L as in this configuration.
  • the central axis of the first opening coincides with the central axis of the second opening.
  • the flow velocity of the gas sucked from the first opening to the blower chamber is maximum at the central axis of the first opening. For this reason, the accumulation of foreign matter in the blower chamber is also maximized at a location that intersects the central axis of the first opening in the main surface of the diaphragm facing the first opening. In this configuration, since the central axis of the first opening coincides with the central axis of the second opening, accumulation of foreign matters in the blower chamber is further suppressed.
  • the diameter of the second opening is smaller than the diameter of the first opening.
  • the said drive body is cyclic
  • the driving body can bend and vibrate the diaphragm with high efficiency without blocking the second opening.
  • the top plate portion bends and vibrates with bending vibration of the diaphragm.
  • the vibration amplitude can be substantially increased.
  • the discharge pressure per power consumption can be increased, and the discharge flow rate per power consumption can be increased. Therefore, the discharge pressure can be increased while the power consumption is low, and the discharge flow rate can be increased.
  • An air passage is formed between the first casing and the first casing by covering the first casing, and a third opening is provided in a region facing the first opening. And a second housing.
  • the discharge flow rate per power consumption is significantly increased. Therefore, the discharge flow rate can be increased while the power consumption is low.
  • the decrease in the discharge flow rate of the blower and the decrease in the discharge pressure are suppressed, and the operation stop due to the foreign matter is less likely to occur than in the past.
  • FIG. 1 is an external perspective view of a piezoelectric blower 100 according to an embodiment of the present invention. It is a disassembled perspective view of the piezoelectric blower 100 shown in FIG.
  • FIG. 2 is a sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
  • FIG. 4 is a cross-sectional view of the piezoelectric blower 100 taken along line SS when the piezoelectric blower 100 shown in FIG. 1 is resonantly driven at the frequency (fundamental wave) of the primary vibration mode of the blower body.
  • 4A is a diagram when the volume of the blower chamber is increased
  • FIG. 4B is a diagram when the volume of the blower chamber is decreased.
  • FIG. 1 It is a figure which shows the relationship between the discharge pressure of the piezoelectric blower 100 shown in FIG. 1 in 2 types of alternating current drive voltages, and the diameter of the 2nd opening part. It is a figure which shows the relationship between the discharge flow volume of the piezoelectric blower 100 shown in FIG. 1, and the diameter of the 2nd opening part 34 in two types of alternating current drive voltages. It is a figure which shows the relationship between the power consumption of the piezoelectric blower 100 shown in FIG. 1 in two types of alternating current drive voltages, and the diameter of the 2nd opening part. It is sectional drawing of the piezoelectric blower 500 which concerns on the comparative example of embodiment of this invention.
  • FIG. 1 It is a figure which shows the relationship between the discharge pressure of the piezoelectric blower 100 shown in FIG. 1 in 2 types of alternating current drive voltages, and the diameter of the 2nd opening part.
  • FIG. 9 is a diagram comparing the change with time of the discharge flow rate in the tobacco smoke test of the piezoelectric blower 100 shown in FIG. 1 and the change with time of the discharge flow rate in the tobacco smoke test of the piezoelectric blower 500 shown in FIG. 8. It is sectional drawing of the micro blower 900 which concerns on patent document 1. FIG. It is sectional drawing of the micro blower 900 which concerns on patent document 1. FIG.
  • FIG. 1 is an external perspective view of a piezoelectric blower 100 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the piezoelectric blower 100 shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
  • the piezoelectric blower 100 includes an outer casing 17, a top plate 37, a side plate 38, a vibration plate 39, a piezoelectric element 40, and a cap 42 in order from the top, and has a structure in which these are stacked in order.
  • the top plate 37, the side plate 38, and the diaphragm 39 constitute a blower chamber 36.
  • the piezoelectric blower 100 has dimensions of a width of 20 mm ⁇ a length of 20 mm ⁇ a height of 1.85 mm in a region other than the nozzle 18.
  • the top plate 37 and the side plate 38 constitute the “first housing” of the present invention.
  • the outer casing 17 corresponds to the “second casing” of the present invention.
  • the top plate 37 corresponds to the “top plate portion” of the present invention, and the side plate 38 corresponds to the “side wall portion” of the present invention.
  • the piezoelectric element 40 corresponds to the “driving body” of the present invention.
  • the discharge port 24 corresponds to the “third opening” of the present invention.
  • the blower body is constituted by the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40.
  • the outer casing 17 has a nozzle 18 provided at the center of a discharge port 24 through which a gas such as air is discharged.
  • the nozzle 18 has a size of an outer diameter of 2.0 mm ⁇ an inner shape (that is, a discharge port 24) of a diameter of 0.8 mm ⁇ a height of 1.6 mm. Screw holes 56A to 56D are provided in the square of the outer casing 17.
  • the outer casing 17 has a U-shaped cross section with an opening at the bottom.
  • the outer housing 17 houses the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39, and the piezoelectric element 40.
  • the outer casing 17 is made of, for example, resin.
  • the top plate 37 of the blower chamber 36 has a disk shape and is made of, for example, metal.
  • the top plate 37 is provided with a central portion 61, a key-shaped protruding portion 62 that protrudes horizontally from the central portion 61 and contacts the inner wall of the outer casing 17, and an external terminal 63 for connecting to an external circuit. It has been.
  • a first opening 45 that connects the inside and the outside of the blower chamber 36 is provided in the central portion 61 of the top plate 37.
  • the first opening 45 is provided at a position facing the discharge port 24 of the outer casing 17.
  • the top plate 37 is provided on the upper surface of the side plate 38.
  • the side plate 38 of the blower chamber 36 has an annular shape, and is made of metal, for example.
  • the side plate 38 is provided on the upper surface 39 ⁇ / b> A of the diaphragm 39. Therefore, the thickness of the side plate 38 is the height of the blower chamber 36.
  • the diaphragm 39 has a disk shape and is made of metal, for example.
  • the diaphragm 39 constitutes a blower chamber 36 together with the side wall 30 and the top plate 37.
  • a second opening 34 that connects the inside and the outside of the blower chamber 36 is provided.
  • the central axis of the first opening 45 and the central axis of the second opening 34 that extend in the thickness direction of the diaphragm 39 coincide with each other.
  • the diameter of the second opening 34 is smaller than the diameter of the first opening 45.
  • the piezoelectric element 40 is made of, for example, lead zirconate titanate ceramics, and expands and contracts according to the applied AC driving voltage.
  • the piezoelectric element 40 has an annular shape.
  • the piezoelectric element 40 is provided on the lower surface 39 ⁇ / b> B opposite to the blower chamber 36 around the second opening 34 in the diaphragm 39. Therefore, the piezoelectric element 40 can flexibly vibrate the diaphragm 39 without blocking the second opening 34.
  • the joined body of the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 is elastically supported with respect to the outer casing 17 by the four projecting portions 62 provided on the top plate 37. Yes.
  • the electrode conduction plate 70 includes an internal terminal 73 connected to the piezoelectric element 40 and an external terminal 72 connected to an external circuit.
  • the tip of the internal terminal 73 is joined to the flat plate surface of the piezoelectric element 40 with solder. By setting the position joined by solder to a position corresponding to the bending vibration node of the piezoelectric element 40, the vibration of the internal terminal 73 can be further suppressed.
  • the cap 42 is provided with a disk-shaped suction port 53.
  • the diameter of the suction port 53 is larger than the diameter of the piezoelectric element 40.
  • the cap 42 is provided with notches 55A to 55D at positions corresponding to the screw holes 56A to 56D of the outer casing 17.
  • the cap 42 has a protruding portion 52 that protrudes toward the top plate 37 on the outer peripheral edge.
  • the cap 42 holds the outer casing 17 with the projecting portion 52, and houses the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39, and the piezoelectric element 40 together with the outer casing 17.
  • the cap 42 is made of resin, for example.
  • an air passage 31 is provided between the joined body of the top plate 37, the side plate 38, the diaphragm 39 and the piezoelectric element 40 and the outer casing 17 and the cap 42.
  • the piezoelectric blower 100 is disposed with the tip of the nozzle 18 facing the object to be cooled (heat source) such as a CPU.
  • the piezoelectric blower 100 cools the cooled object by discharging air from the discharge port 24 to the cooled object.
  • FIG. 4A and 4B show the SS line of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is resonantly driven at the frequency (fundamental wave) of the primary vibration mode of the blower body. It is sectional drawing. Here, the arrows in the figure indicate the flow of air.
  • the air discharged from the blower chamber 36 draws air outside the piezoelectric blower 100 through the suction port 53 and the air passage 31 and discharges it from the discharge port 24. Therefore, the flow rate of air discharged from the discharge port 24 is increased by the flow rate of air drawn from the outside.
  • the discharge flow rate can be increased while the power consumption is low.
  • the piezoelectric blower 100 it is difficult for foreign matter to accumulate on the upper surface 39A of the diaphragm 39 that faces the first opening 45. Therefore, even if the piezoelectric blower 100 operates for a long time, accumulation of foreign matters in the blower chamber 36 can be suppressed. That is, a decrease in the discharge flow rate of the piezoelectric blower 100 and a decrease in the discharge pressure are suppressed.
  • the piezoelectric blower 100 of the present embodiment the decrease in the discharge flow rate and the discharge pressure are suppressed, and the operation stop due to foreign matter is less likely to occur than in the past.
  • the opening area of the first opening 45 shown in FIG. 3 is S, and the distance between the top plate 37 and the diaphragm 39 when the diaphragm 39 shown in FIG. 3 is stationary (that is, when the diaphragm 39 is stationary).
  • the height of the blower chamber 36) is L, L has a structure satisfying the relationship of ⁇ V / S ⁇ L. Therefore, the configuration in which the second opening 34 is provided in the region of the diaphragm 39 facing the first opening 45 is suitable for the piezoelectric blower 100 of the present embodiment.
  • the volume of the blower chamber 36 is periodically changed by the bending vibration of the diaphragm 39. That is, the blower chamber 36 changes from the maximum expanded state to the maximum contracted state in T / 2 cycle (s) in one cycle T, and from the maximum contracted state to the maximum expanded state in the next T / 2 cycle (s). Change.
  • the air suction is performed when the blower chamber 36 changes from the maximum contracted state to the maximum expanded state. That is, air suction is performed during T / 2.
  • the average flow velocity of the air sucked into the blower chamber 36 from the first opening 45 is ⁇ V / S / (T / 2).
  • the distance that air enters the blower chamber 36 through the first opening 45 and travels through the blower chamber 36 is ⁇ V / S obtained by multiplying the average flow velocity by the air suction time T / 2.
  • the piezoelectric blower 100 having a structure in which the distance L between the top plate 37 and the vibration plate 39 when the vibration plate 39 is stationary satisfies the relationship ⁇ V / S ⁇ L, the foreign matter sucked into the blower chamber 36 is removed. Then, it collides with and deposits on the upper surface 39A of the diaphragm 39 facing the first opening 45.
  • the configuration in which the second opening 34 is provided in the region of the diaphragm 39 facing the first opening 45 is suitable for the piezoelectric blower 100 having a structure in which L satisfies the relationship of ⁇ V / S ⁇ L.
  • the flow velocity of air sucked from the first opening 45 to the blower chamber 36 is maximized at the central axis of the first opening 45.
  • the accumulation of foreign matter in the blower chamber 36 is also maximized at a location that intersects the central axis of the first opening 45 in the main surface of the diaphragm 39 that faces the first opening 45.
  • the piezoelectric blower 100 since the central axis of the first opening 45 and the central axis of the second opening 34 coincide with each other, the accumulation of foreign matter in the blower chamber 36 is further suppressed.
  • the diameter of the second opening 34 is smaller than the diameter of the first opening 45. Therefore, more air is sucked into the blower chamber 36 or discharged from the blower chamber 36 from the first opening 45 having a larger diameter. That is, in the first opening 45, the discharge flow rate is higher than that in the second opening 34, and the discharge pressure is increased. On the other hand, since the foreign matter is minute, it flows out from the second opening 34 even if the diameter of the second opening 34 is small.
  • the accumulation of foreign matter in the blower chamber 36 can be suppressed, the discharge flow rate can be increased, and the discharge pressure can be increased.
  • FIG. 5 is a diagram showing the relationship between the discharge pressure of the piezoelectric blower 100 shown in FIG. 1 and the diameter of the second opening 34.
  • FIG. 6 is a diagram showing the relationship between the discharge flow rate of the piezoelectric blower 100 shown in FIG. 1 and the diameter of the second opening 34.
  • FIG. 7 is a diagram showing the relationship between the power consumption of the piezoelectric blower 100 shown in FIG. 1 and the diameter of the second opening 34. 5 to 7, a plurality of piezoelectric blowers 100 in which the diameter of the second opening 34 is changed are prepared, and for each piezoelectric blower 100, 10 Vpp corresponding to the frequency (fundamental wave) of the primary vibration mode of the blower body. Or the result of having applied the sine wave alternating current drive voltage of 15Vpp and measuring the discharge pressure of each piezoelectric blower 100, the discharge flow rate, and the power consumption is shown.
  • the diameter of the first opening 45 is fixed to 0.6 mm.
  • the diameter of the second opening 34 is preferably smaller than the diameter of the first opening 45. This is because the air in the blower chamber 36 during the operation of the piezoelectric blower 100 is not only in the first opening 45 but also in the second as the diameter of the second opening 34 is increased. This is considered to be due to more outflow from the opening 34.
  • FIG. 8 is a cross-sectional view of a piezoelectric blower 500 according to a comparative example of the embodiment of the present invention.
  • the piezoelectric blower 500 is different from the piezoelectric blower 100 in the vibration plate 539 and the piezoelectric element 540. Other configurations are the same.
  • the diaphragm 539 is different from the diaphragm 39 in that it does not have the second opening 34.
  • Other configurations are the same.
  • the piezoelectric element 540 is different from the piezoelectric element 40 in that it has a disk shape. Other configurations are the same.
  • FIG. 9 is a diagram comparing the change with time of the discharge flow rate of the piezoelectric blower 100 shown in FIG. 1 and the change with time of the discharge flow rate of the piezoelectric blower 500 shown in FIG.
  • the blower after burning tobacco in a resin case having a width of 30 cm, a length of 54 cm and a height of 35 cm, the blower is blown to each piezoelectric blower 100, 500 in an atmosphere having a tobacco concentration of 16.75 [mg / m 3 ].
  • the figure shows the results of applying a sine wave AC drive voltage of 12.5 Vpp corresponding to the frequency (fundamental wave) of the primary vibration mode of the main body and measuring the discharge flow rates of the piezoelectric blowers 100 and 500 for 30 minutes.
  • the operation of the piezoelectric blower 100 in which the second opening 34 is provided is less likely to be stopped by foreign matter than the piezoelectric blower 500 in which the second opening 34 is not provided. Also, the reason for this result is that the foreign matter sucked into the blower chamber 36 from the first opening 45 flows out from the second opening 34, and the accumulation of foreign matters on the upper surface 39A of the diaphragm 39 is suppressed. This is probably because
  • the piezoelectric blower 100 of the present embodiment the decrease in the discharge flow rate and the decrease in the discharge pressure are suppressed, and the operation stop due to foreign matter is less likely to occur than in the past.
  • air is used as the gas, but the present invention is not limited to this.
  • the gas can be applied even if it is a gas other than air.
  • the piezoelectric element 40 is provided as a blower drive source, but the present invention is not limited to this.
  • it may be configured as a blower that performs a pumping operation by electromagnetic drive.
  • the piezoelectric element 40 is made of lead zirconate titanate ceramic, but is not limited thereto.
  • it may be made of a non-lead piezoelectric ceramic material such as potassium sodium niobate and alkali niobate ceramics.
  • a unimorph type piezoelectric vibrator is used, but the present invention is not limited to this.
  • a bimorph type piezoelectric vibrator in which the piezoelectric elements 40 are provided on both surfaces of the vibration plate 39 may be used.
  • the annular piezoelectric element 40 is used, but the present invention is not limited to this.
  • the piezoelectric element 40 may be oval or polygonal.
  • the shape of the piezoelectric element 40 may be a disc shape, a polygonal plate shape, or an elliptical plate shape without holes. Further, a plurality of piezoelectric elements 40 having no holes may be arranged around the second opening 34.
  • the disc-shaped diaphragm 39 and the disc-shaped top plate 37 are used, but the present invention is not limited to this.
  • these shapes may be a rectangular plate shape, a polygonal plate shape, or an elliptical plate shape.
  • the piezoelectric blower 100 is driven to resonate at the frequency (fundamental wave) of the primary vibration mode of the blower body, but the present invention is not limited to this.
  • resonance driving may be performed at a frequency of an odd-order vibration mode having a plurality of vibration antinodes and higher than the third-order vibration mode.
  • the top plate 37 flexes and vibrates concentrically with the bending vibration of the diaphragm 39.
  • the present invention is not limited to this. In the implementation, only the diaphragm 39 may be flexibly vibrated, and the top plate 37 may not necessarily be flexibly vibrated with the flexural vibration of the diaphragm 39.
  • the diameter of the second opening 34 is shorter than the diameter of the first opening 45 is shown, but the present invention is not limited to this.
  • the diameter of the first opening 45 and the diameter of the second opening 34 may be substantially equal.
  • the piezoelectric blower 100 is disposed with the discharge port 24 facing the object to be cooled, such as a CPU, and the object to be cooled is cooled by the air discharged from the discharge port 24.
  • the piezoelectric blower 100 may be disposed with the suction port 53 facing the object to be cooled, and the object to be cooled may be cooled with air flowing out from the suction port 53.
  • the piezoelectric blower 100 is disposed with the discharge port 24 facing the first cooled body and the suction port 53 facing the second cooled body, and the first and second air flows from the discharge port 24 and the suction port 53. You may cool both to-be-cooled bodies simultaneously.

Abstract

 吐出流量の減少および吐出圧力の低下を抑制し、従来よりも異物による動作の停止が起こり難いブロアを提供する。圧電ブロア(100)は、外筐体(17)、天板(37)、側板(38)、振動板(39)、圧電素子(40)、及びキャップ(42)を備える。天板(37)、側板(38)、及び振動板(39)は、ブロア室(36)を構成する。天板(37)には第1開口部(45)が設けられている。そして、第1開口部(45)と対向する振動板(39)の領域には、ブロア室(36)の内部と外部とを連通させる第2開口部(34)が設けられている。交流駆動電圧が圧電素子(40)に印加されると、振動板(39)は屈曲振動し、天板(37)も、振動板(39)の屈曲振動に伴って屈曲振動する。これにより、ブロア室(36)の体積は、図(4)(A)(B)に示すように周期的に変化する。

Description

ブロア
 本発明は、気体の輸送を行うブロアに関するものである。
 特許文献1には、携帯型電子機器の内部に設けられている熱源を冷却するため、あるいは燃料電池で発電するために必要な酸素を供給するためのブロアが開示されている。
 図10(a)~(e)は、特許文献1に係るブロアの断面図である。このブロアは、ブロア本体1と、外周部がブロア本体1に固定されているダイヤフラム2と、ダイヤフラム2の一方の主面に設けられた圧電素子3と、ブロア本体1の圧電素子3と対向する他方の主面と間隔を空けて配置され、流入通路7を形成する壁部1bと、を備えている。
 ブロア本体1は、ダイヤフラム2に対向する壁部1aを有する。ブロア本体1は、ダイヤフラム2とともにブロア室4を構成している。また、ダイヤフラム2の中心部と対向するブロア本体1の領域には、ブロア室4の内部と外部を連通させる開口部5aが設けられている。
 そして、第1開口部5aと対向する壁部1bの領域には、吐出口5bが設けられている。
 以上の構成において、交流駆動電圧が圧電素子3に印加されると、圧電素子3が伸縮し、圧電素子3の伸縮によりダイヤフラム2が屈曲振動する。そして、ダイヤフラム2の屈曲振動により、図10(b)~(e)に示すようにブロア室4の体積が変化する。
 詳述すると、交流駆動電圧が圧電素子3に印加されてダイヤフラム2が圧電素子3側へ屈曲すると、ブロア室4の体積が増大する。これに伴い、ブロアの外部の気体が流入通路7及び開口部5aを介してブロア室4内に吸引される。
 次に、交流駆動電圧が圧電素子3に印加されてダイヤフラム2がブロア室4側へ屈曲すると、ブロア室4の体積が減少する。これに伴い、ブロア室4内の気体が開口部5a及び流入通路7を介して吐出口5bから吐出される。
 このとき、ブロア室4から吐出される気体によって,ブロアの外部の気体が流入通路7を介して引き込まれて吐出口5bから吐出される。そのため、吐出口5bから吐出される気体の流量が、引き込まれる気体の流量分多くなる。
国際公開第2008/069266号パンフレット
 しかしながら、前記特許文献1のブロアでは、ブロアの外部の気体がブロア室4内に吸引される際に、埃などの異物Fも一緒にブロア室4へ吸引されてしまう。ブロア室4に吸引された気体は、開口部5aに対向するダイヤフラム2の主面に衝突して分散する。
 一方、ブロア室4に吸引された異物Fは、異物Fの比重が気体(一般的には空気)の比重より大きいことから慣性力が大きいため、開口部5aに対向するダイヤフラム2の主面に衝突して該主面上に堆積する(図11参照)。特に、開口部5aから吸引される気体の流速が大きいほど、異物Fは慣性によって、開口部5aに対向するダイヤフラム2の主面に衝突し易い。
 そのため、前記特許文献1のブロアが長時間に渡って動作すると、時間の経過とともにブロア室4における異物Fの堆積量が増える。異物Fの堆積量が増えると、堆積した異物Fが障害となり、開口部5aからブロア室4へ気体が流れ込み難くなる。これにより、開口部5aからブロア室4へ吸引される気体の流量が減少する。
 この結果、ブロア室4から開口部5a、流入通路7及び吐出口5bを介して吐出される気体の吐出流量が少なくなっていくため、流入通路7を介して引き込まれるブロアの外部の気体の流量も減少する。すなわち、ブロアの吐出流量の減少及び吐出圧力の低下がおきる。
 そして、開口部5aが塞がるまで異物Fの堆積量が増えると、開口部5aからブロア室4へ気体が流れ込まなくなり、ブロアの動作が停止してしまう。すなわち、ブロアが以後動作できなくなってしまう。
 そこで本発明は、吐出流量の減少および吐出圧力の低下を抑制し、従来よりも異物による動作の停止が起こり難いブロアを提供することを目的とする。
 本発明のブロアは、前記課題を解決するために以下の構成を備えている。
(1)振動板と、
 前記振動板の少なくとも一方の主面に設けられ、前記振動板を屈曲振動させる駆動体と、
 前記振動板とともにブロア室を構成する第1筐体と、を備え、
 前記第1筐体は、前記振動板に対向する天板部と、前記振動板と前記天板部とを接続する側壁部と、を有し、
 前記天板部には、前記ブロア室の内部と外部とを連通させる第1開口部が設けられており、
 前記第1開口部と対向する前記振動板の領域には、前記ブロア室の内部と外部とを連通させる第2開口部が設けられている。
 この構成では、駆動電圧が駆動体に印加されると、振動板が屈曲振動する。そして、この振動板の屈曲振動によりブロア室の体積が周期的に変化し、ブロアの外部の気体が第1開口部からブロア室へ吸引されたり、ブロア室の気体が第1開口部から吐出されたりする。この構成においても、ブロアの外部の気体がブロア室に吸引される際に、埃などの異物も一緒に第1開口部からブロア室へ吸引される。
 しかし、この構成では、その異物が最も堆積し得る第1開口部と対向する振動板の領域に、第2開口部が設けられている。そのため、ブロア室に吸引された気体の一部は、第2開口部から流出する。そして、ブロア室に吸引された異物は、異物の比重が気体の比重より大きいことから慣性力が大きいため、その気体の一部とともに第2開口部から流出する。よって、この構成では異物が第1開口部と対向する振動板の主面に堆積し難い。すなわち、異物のブロア室内部への堆積によるブロアの吐出流量の減少および吐出圧力の低下が抑制される。
 したがって、この構成のブロアによれば、ブロアの吐出流量の減少および吐出圧力の低下を抑制し、従来よりも異物による動作の停止がおこりにくい。
(2)前記ブロア室の最大拡張時の体積と前記ブロア室の最大収縮時の体積との差をΔVとし、前記第1開口部の開口面積をSとし、前記振動板が静止しているときの前記天板部と前記振動板との間隔をLとしたとき、前記ΔV、S、Lは、ΔV/S≧Lの関係を満たしていることが好ましい。
 前述したように、振動板の屈曲振動によりブロア室の体積は周期的に変化する。すなわち、ブロア室は、1周期Tのうち、T/2周期(s)で最大拡張状態から最大収縮状態へ変化し、次のT/2周期(s)で最大収縮状態から最大拡張状態へ変化する。
 気体の吸引は、ブロア室が最大収縮状態から最大拡張状態へ変化する際に行われる。すなわち、気体の吸引は、T/2の間に行われる。ここで、第1開口部の開口面積Sからブロア室に流入する気体の変化量はΔV/Sであるので、第1開口部からブロア室へ吸引された気体の平均流速は、ΔV/S/(T/2)となる。そして、気体が、第1開口部からブロア室へ入り、ブロア室内を進む距離は、平均流速に気体の吸引時間T/2を乗算して得られるΔV/Sである。
 すなわち、振動板が静止しているときの天板部と振動板との間隔Lが、ΔV/S≧Lの関係を満たす構造のブロアでは、ブロア室に吸引された異物が、第1開口部に対向する振動板の主面に衝突して堆積する。
 したがって、前記(1)の構成は、この構成のようなLがΔV/S≧Lの関係を満たす構造のブロアにおいて好適である。
(3)前記第1開口部の中心軸と前記第2開口部の中心軸とは、一致していることが好ましい。
 第1開口部からブロア室へ吸引される気体の流速は、第1開口部の中心軸で最大になる。そのため、ブロア室内の異物の堆積も、第1開口部と対向する振動板の主面の内、第1開口部の中心軸と交わる箇所で最大になる。この構成では、第1開口部の中心軸と第2開口部の中心軸とが一致しているため、ブロア室内の異物の堆積がより抑えられる。
(4)前記第2開口部の直径は、前記第1開口部の直径より小さいことが好ましい。
 この構成では、直径が大きい第1開口部の方から、より多くの空気がブロア室へ吸引または吐出される。すなわち、第1開口部において、第2開口部より大きな吐出流量および吐出圧力が得られる。一方、異物は、第2開口部の直径が小さくとも第2開口部から流出する。
 したがって、この構成によれば、ブロア室内の異物の堆積が抑えられるとともに、吐出流量を多くすることができ、吐出圧力を高くすることができる。
(5)前記駆動体は、環状であり、前記振動板における前記第2開口部の周囲に設けられていることが好ましい。
 この構成では駆動体が、第2開口部を塞ぐことなく、振動板を高効率で屈曲振動させることができる。
(6)前記天板部は、前記振動板の屈曲振動に伴って屈曲振動することが好ましい。
 この構成では、振動板の振動に伴い天板部が振動するため、実質的に振動振幅を増すことができる。
 従って、この構成によれば、消費電力あたりの吐出圧力を高くすることができ、消費電力あたりの吐出流量を多くすることができる。そのため、低消費電力でありながら吐出圧力を高くすることができ、吐出流量を多くすることができる。
(7)前記第1筐体を間隔を設けて被覆することで前記第1筐体との間に通気路を形成し、前記第1開口部と対向する領域に第3開口部が設けられている第2筐体と、を備えることが好ましい。
 この構成では、ブロア室から吐出される気体によって、ブロアの外部に存在する気体が通気路を介して引き込まれて第3開口部から吐出される。そのため、第3開口部から吐出される気体の流量が、引き込まれる気体の流量分多くなる。
 従って、この構成によれば、消費電力あたりの吐出流量が大幅に多くなる。そのため、低消費電力でありながら吐出流量を多くすることができる。
 この発明によれば、ブロアの吐出流量の減少および吐出圧力の低下を抑制し、従来よりも異物による動作の停止が起こり難い。
本発明の実施形態に係る圧電ブロア100の外観斜視図である。 図1に示す圧電ブロア100の分解斜視図である。 図1に示す圧電ブロア100のS-S線の断面図である。 図4は、図1に示す圧電ブロア100をブロア本体の1次振動モードの周波数(基本波)で共振駆動させた際における、圧電ブロア100のS-S線の断面図である。図4(A)はブロア室の体積が増大したときの図、図4(B)はブロア室の体積が減少したときの図である。 2種類の交流駆動電圧における図1に示す圧電ブロア100の吐出圧力と第2開口部34の直径との関係を示す図である。 2種類の交流駆動電圧における図1に示す圧電ブロア100の吐出流量と第2開口部34の直径との関係を示す図である。 2種類の交流駆動電圧における図1に示す圧電ブロア100の消費電力と第2開口部34の直径との関係を示す図である。 本発明の実施形態の比較例に係る圧電ブロア500の断面図である。 図1に示す圧電ブロア100のたばこ煙試験での吐出流量の経時変化と図8に示す圧電ブロア500のたばこ煙試験での吐出流量の経時変化とを比較した図である。 特許文献1に係るマイクロブロア900の断面図である。 特許文献1に係るマイクロブロア900の断面図である。
《本発明の実施形態》
 以下、本発明の実施形態に係る圧電ブロア100について説明する。
 図1は、本発明の実施形態に係る圧電ブロア100の外観斜視図である。図2は、図1に示す圧電ブロア100の分解斜視図である。図3は、図1に示す圧電ブロア100のS-S線の断面図である。
 圧電ブロア100は、上から順に、外筐体17、天板37、側板38、振動板39、圧電素子40、及びキャップ42を備え、それらが順に積層された構造を有している。天板37、側板38、及び振動板39は、ブロア室36を構成している。圧電ブロア100は、幅20mm×長さ20mm×ノズル18以外の領域の高さ1.85mmの寸法となっている。
 なお、天板37と側板38とが本発明の「第1筐体」を構成している。外筐体17が本発明の「第2筐体」に相当する。また、天板37が本発明の「天板部」に相当し、側板38が本発明の「側壁部」に相当する。また、圧電素子40が本発明の「駆動体」に相当する。また、吐出口24が本発明の「第3開口部」に相当する。また、天板37、側板38、振動板39、及び圧電素子40によって、ブロア本体が構成されている。
 外筐体17は、例えば空気等の気体が吐出される吐出口24が中心に設けられたノズル18を有する。このノズル18は、外形の直径2.0mm×内形(即ち吐出口24)の直径0.8mm×高さ1.6mmの寸法となっている。外筐体17の四角には、ネジ穴56A~56Dが設けられている。
 外筐体17は、下方が開口した断面コ字状である。外筐体17は、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を収納する。外筐体17は、例えば樹脂からなる。
 ブロア室36の天板37は、円板状であり、例えば金属からなる。天板37には、中央部61と、中央部61から水平方向に突出し、外筐体17の内壁に当接する鍵状の突出部62と、外部回路に接続するための外部端子63とが設けられている。
 また、天板37の中央部61には、ブロア室36の内部と外部とを連通させる第1開口部45が設けられている。この第1開口部45は、外筐体17の吐出口24と対向する位置に設けられている。天板37は、側板38の上面に設けられている。
 ブロア室36の側板38は、円環状であり、例えば金属からなる。側板38は、振動板39の上面39Aに設けられている。そのため、側板38の厚みは、ブロア室36の高さとなる。
 振動板39は、円板状であり、例えば金属からなる。振動板39は、側壁30と天板37と共にブロア室36を構成する。そして、第1開口部45と対向する振動板39の領域には、ブロア室36の内部と外部とを連通させる第2開口部34が設けられている。ここで、振動板39の厚み方向に延びる、第1開口部45の中心軸と第2開口部34の中心軸とは、一致している。また、第2開口部34の直径は、第1開口部45の直径より小さい。
 圧電素子40は、例えばチタン酸ジルコン酸鉛系セラミックスからなり、印加された交流駆動電圧に応じて伸縮する。圧電素子40は、円環状である。圧電素子40は、振動板39における第2開口部34の周囲におけるブロア室36とは逆側の下面39Bに設けられている。そのため、圧電素子40は、第2開口部34を塞ぐことなく、振動板39を高効率で屈曲振動させることができる。
 そして、天板37、側板38、振動板39、及び圧電素子40の接合体は、天板37に設けられている4個の突出部62によって外筐体17に対して弾性的に支持されている。
 電極導通用板70は、圧電素子40に接続される内部端子73と、外部回路に接続される外部端子72とで構成されている。内部端子73の先端は圧電素子40の平板面にはんだで接合されている。はんだで接合される位置を圧電素子40の屈曲振動の節に相当する位置とすることにより、内部端子73の振動がより抑制できる。
 キャップ42には、円板形状の吸引口53が設けられている。吸引口53の直径は、圧電素子40の直径より大きい。また、キャップ42には、外筐体17のネジ穴56A~56Dに対応する位置に切欠き55A~55Dが設けられている。
 また、キャップ42は、外周縁に、天板37側へ突出する突出部52を有する。キャップ42は、突出部52で外筐体17を挟持し、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を、外筐体17とともに収納する。キャップ42は、例えば樹脂からなる。
 そして、図3に示すように、天板37、側板38、振動板39及び圧電素子40の接合体と外筐体17及びキャップ42との間には通気路31が設けられている。
 以上の構成において圧電ブロア100は、ノズル18の先端をCPU等の被冷却体(熱源)に向けて、配置される。そして、圧電ブロア100は、被冷却体に吐出口24から空気を吐出して被冷却体を冷却する。
 以下、圧電ブロア100が動作している間における空気の流れについて説明する。
 図4(A)(B)は、図1に示す圧電ブロア100を、ブロア本体の1次振動モードの周波数(基本波)で共振駆動をさせた際における、圧電ブロア100のS-S線の断面図である。ここで、図中の矢印は、空気の流れを示している。
 図3に示す状態において、ブロア本体の1次振動モードの周波数(基本波)に対応する交流駆動電圧が外部端子63,72から圧電素子40に印加されると、振動板39は同心円状に屈曲振動する。同時に、天板37は、振動板39の屈曲振動に伴うブロア室36の圧力変動により、振動板39の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同心円状に屈曲振動する。これにより、図4(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。
 図4(A)に示すように、交流駆動電圧が圧電素子40に印加されて振動板39が圧電素子40側へ屈曲すると、ブロア室36の体積が増大する。これに伴い、圧電ブロア100の外部の空気が吸引口53、通気路31、及び第2開口部34を介してブロア室36内に吸引される。さらに、圧電ブロア100の外部の空気が吸引口53、通気路31、及び第1開口部45を介してブロア室36内に吸引される。ブロア室36からの空気の流出は無いものの、吐出口24から圧電ブロア100の外部への空気の流れの慣性力が働いている。
 図4(B)に示すように、交流駆動電圧が圧電素子40に印加されて振動板39がブロア室36側へ屈曲すると、ブロア室36の体積が減少する。これに伴い、ブロア室36内の空気が第2開口部34、通気路31を介して吸引口53から吐出される。さらに、ブロア室36内の空気が第1開口部45、通気路31を介して吐出口24から吐出される。
 このとき、ブロア室36から吐出される空気によって、圧電ブロア100の外部の空気が吸引口53及び通気路31を介して引き込まれて吐出口24から吐出される。そのため、吐出口24から吐出される空気の流量が、外部から引き込まれる空気の流量分多くなる。
 以上により、圧電ブロア100では、消費電力あたりの吐出流量が多くなるに従って、この実施形態の圧電ブロア100によれば、低消費電力でありながら吐出流量を多くすることができる。
 ところで、圧電ブロア100の外部の空気が第1開口部45からブロア室36内に吸引される際に、埃などの異物も一緒に第1開口部45からブロア室36へ吸引されるが、圧電ブロア100では、その異物が最も堆積し得る第1開口部45と対向する振動板39の領域に、第2開口部34が設けられている。そのため、ブロア室36に吸引された空気の一部は、第2開口部34から流出する。そして、ブロア室36に吸引された異物は、異物の比重が空気の比重より大きいことから慣性力が大きいため、その空気の一部とともに第2開口部34から排出される。
 よって、圧電ブロア100では異物が、第1開口部45と対向する振動板39の上面39Aに堆積し難い。そのため、圧電ブロア100が長時間動作しても、ブロア室36内の異物の堆積が抑えられる。すなわち、圧電ブロア100の吐出流量の減少および吐出圧力の低下が抑制される。
 したがって、本実施形態の圧電ブロア100によれば、吐出流量の減少および吐出圧力を抑制し、従来よりも異物による動作の停止が起こり難い。
 また、圧電ブロア100は、図4(A)、(B)に示すブロア室36の最大拡張時の体積Vとブロア室36の最大収縮時の体積Vとの差をΔVとし、図3に示す第1開口部45の開口面積をSとし、図3に示す振動板39が静止しているときの天板37と振動板39との間隔(即ち、振動板39が静止しているときのブロア室36の高さ)をLとしたとき、LがΔV/S≧Lの関係を満たす構造を有している。そのため、第1開口部45と対向する振動板39の領域に第2開口部34が設けられている構成は、本実施形態の圧電ブロア100に好適である。
 詳述すると、前述したように、振動板39の屈曲振動によりブロア室36の体積は周期的に変化する。すなわち、ブロア室36は、1周期Tのうち、T/2周期(s)で最大拡張状態から最大収縮状態へ変化し、次のT/2周期(s)で最大収縮状態から最大拡張状態へ変化する。
 空気の吸引は、ブロア室36が最大収縮状態から最大拡張状態へ変化する際に行われる。すなわち、空気の吸引は、T/2の間に行われる。ここで、第1開口部45の開口面積Sからブロア室36に流入する空気の変化量はΔV/Sであるので、第1開口部45からブロア室36へ吸引された空気の平均流速は、ΔV/S/(T/2)となる。そして、空気が、第1開口部45からブロア室36へ入り、ブロア室36内を進む距離は、平均流速に空気の吸引時間T/2を乗算して得られるΔV/Sである。
 すなわち、振動板39が静止しているときの天板37と振動板39との間隔Lが、ΔV/S≧Lの関係を満たす構造の圧電ブロア100では、ブロア室36に吸引された異物が、第1開口部45に対向する振動板39の上面39Aに衝突して堆積する。
 したがって、第1開口部45と対向する振動板39の領域に第2開口部34が設けられている構成は、LがΔV/S≧Lの関係を満たす構造の圧電ブロア100において好適である。
 また、第1開口部45からブロア室36へ吸引される空気の流速は、第1開口部45の中心軸で最大になる。そのため、ブロア室36内の異物の堆積も、第1開口部45と対向する振動板39の主面の内、第1開口部45の中心軸と交わる箇所で最大になる。圧電ブロア100では、第1開口部45の中心軸と第2開口部34の中心軸とが一致しているため、ブロア室36への異物の堆積がより抑えられる。
 また、圧電ブロア100では、第2開口部34の直径は、第1開口部45の直径より小さい。そのため、直径が大きい第1開口部45の方から、より多くの空気がブロア室36へ吸引されたり、ブロア室36から吐出されたりする。すなわち、第1開口部45においては、第2開口部34より吐出流量が多くなり、吐出圧力が高くなる。一方、異物は、微小なため、第2開口部34の直径が小さくとも第2開口部34から流出する。
 したがって、本実施形態の圧電ブロア100によれば、ブロア室36内への異物の堆積が抑えられるとともに、吐出流量を多くすることができ、吐出圧力を高くすることができる。
 次に、圧電ブロア100における第2開口部34の直径と、圧電ブロア100の吐出圧力、吐出流量、及び消費電力との関係について説明する。
 図5は、図1に示す圧電ブロア100の吐出圧力と第2開口部34の直径との関係を示す図である。図6は、図1に示す圧電ブロア100の吐出流量と第2開口部34の直径との関係を示す図である。図7は、図1に示す圧電ブロア100の消費電力と第2開口部34の直径との関係を示す図である。図5~図7では、第2開口部34の直径を変化させた圧電ブロア100を複数用意し、各圧電ブロア100に対してブロア本体の1次振動モードの周波数(基本波)に対応する10Vpp又は15Vppの正弦波交流駆動電圧を印加し、各圧電ブロア100の吐出圧力、吐出流量、及び消費電力を測定した結果を示している。
 なお、図5~図7に示す測定において、第1開口部45の直径は0.6mmに固定されている。
 これらの測定結果より、第2開口部34の直径が大きくなるにしたがって、圧電ブロア100の吐出圧力が低下し、吐出流量が減少することが明らかとなった。また、第2開口部34の直径が変化しても、消費電力は殆ど変化しないことが明らかとなった。
 この結果から、第2開口部34の直径は、第1開口部45の直径より小さいことが好ましい。このような結果になった理由は、第2開口部34の直径が長くなるにしたがって、圧電ブロア100が動作している間におけるブロア室36の空気が、第1開口部45だけでなく第2開口部34の方からもより多く流出するようになるためであると考えられる。
 次に、本発明の実施形態の比較例に係る圧電ブロア500について説明する。
 図8は、本発明の実施形態の比較例に係る圧電ブロア500の断面図である。圧電ブロア500が圧電ブロア100と相違する点は、振動板539及び圧電素子540である。その他の構成については同じである。
 詳述すると、振動板539は第2開口部34を有さない点で振動板39と相違する。その他の構成については同じである。また、圧電素子540は円板状である点で圧電素子40と相違する。その他の構成については同じである。
 次に、圧電ブロア100の吐出流量の経時変化と圧電ブロア500の吐出流量の経時変化とを比較する。
 図9は、図1に示す圧電ブロア100の吐出流量の経時変化と図8に示す圧電ブロア500の吐出流量の経時変化とを比較した図である。図9では、横30cm×縦54cm×高さ35cmの樹脂ケース内でたばこを燃焼させた後、たばこ濃度16.75[mg/m]の雰囲気中で各圧電ブロア100、500に対してブロア本体の1次振動モードの周波数(基本波)に対応する12.5Vppの正弦波交流駆動電圧を印加し、各圧電ブロア100、500の吐出流量を30分間測定した結果を示している。
 この測定結果より、圧電ブロア500の動作時間が5分を過ぎた時点から、圧電ブロア500の吐出流量は、急激に減少することが明らかとなった。反対に、圧電ブロア100は長時間動作しても、圧電ブロア100の吐出流量が殆ど減少しないことが明らかとなった。
 この結果から、第2開口部34が設けられている圧電ブロア100の方が、第2開口部34が設けられていない圧電ブロア500より、異物による動作の停止が起こり難いと考えられる。また、このような結果になった理由は、第1開口部45からブロア室36に吸引された異物が第2開口部34から流出し、振動板39の上面39Aへの異物の堆積が抑えられたためであると考えられる。
 したがって、本実施形態の圧電ブロア100によれば、吐出流量の減少および吐出圧力の低下を抑制し、従来よりも異物による動作の停止が起こり難い。
《その他の実施形態》
 前記実施形態では気体として空気を用いているが、これに限るものではない。当該気体が、空気以外の他の気体であっても適用できる。
 また、前記実施形態ではブロアの駆動源として圧電素子40を設けたが、これに限るものではない。例えば、電磁駆動でポンピング動作を行うブロアとして構成されていても構わない。
 また、前記実施形態では、圧電素子40はチタン酸ジルコン酸鉛系セラミックスからなるが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などからなってもよい。
 また、前記実施形態ではユニモルフ型の圧電振動子を使用しているが、これに限るものではない。振動板39の両面に圧電素子40を設けたバイモルフ型の圧電振動子を使用してもよい。
 また、前記実施形態では円環状の圧電素子40を用いたが、これに限るものではない。例えば、圧電素子40が楕円形や多角形の環状であってもよい。第2開口部34を覆うものでなければ、圧電素子40の形状は、穴を有しない円板状、多角板状、楕円板状であってもよい。また、穴を有しない圧電素子40を第2開口部34の周りに複数配置してもよい。
 また、前記実施形態では円板状の振動板39及び円板状の天板37を用いたが、これに限るものではない。例えば、これらの形状が矩形板状や多角板状、楕円板状であってもよい。
 また、前記実施形態では、圧電ブロア100を、ブロア本体の1次振動モードの周波数(基本波)で共振駆動させたが、これに限るものではない。実施の際は、複数の振動の腹を有する、3次振動モード以上の奇数次の振動モードの周波数で共振駆動させても良い。
 また、前記実施形態では、天板37が、振動板39の屈曲振動に伴って同心円状に屈曲振動する例を示したが、これに限るものではない。実施の際は、振動板39のみが屈曲振動してもよく、必ずしも天板37が、振動板39の屈曲振動に伴って屈曲振動しなくても良い。
 また、前記実施形態では、第2開口部34の直径は第1開口部45の直径より短い例を示したが、これに限るものではない。例えば、第1開口部45の直径と第2開口部34の直径とが略等しくてもよい。
 また、前記実施形態では、吐出口24をCPU等の被冷却体に向けて圧電ブロア100を配置し、吐出口24から吐出される空気で被冷却体を冷却しているが、これに限るものではない。実施の際は、吸引口53を被冷却体に向けて圧電ブロア100を配置し、吸引口53から流出する空気で被冷却体を冷却してもよい。また、吐出口24を第1被冷却体に向け、吸引口53を第2被冷却体に向けて圧電ブロア100を配置し、吐出口24及び吸引口53から流出する空気で第1、第2被冷却体の両方を同時に冷却してもよい。
 最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1…ブロア本体
1a…壁部
1b…壁部
2…ダイヤフラム
3…圧電素子
4…ブロア室
5a…第1開口部 
5b…吐出口
7…流入通路
17…外筐体
18…ノズル
24…吐出口
31…通気路
34…第2開口部
36…ブロア室
37…天板
38…側板
39…振動板
39A…上面
39B…下面
40…圧電素子
42…キャップ
45…第1開口部
52…突出部
53…吸引口
55A~55D…切欠き
56A~56D…ネジ穴
61…中央部
62…突出部
63…外部端子
70…電極導通用板
72…外部端子
73…内部端子
100…圧電ブロア
500…圧電ブロア
539…振動板
540…圧電素子
900…マイクロブロア
F…異物

Claims (7)

  1.  振動板と、
     前記振動板の少なくとも一方の主面に設けられ、前記振動板を屈曲振動させる駆動体と、
     前記振動板とともにブロア室を構成する第1筐体と、を備え、
     前記第1筐体は、前記振動板に対向する天板部と、前記振動板と前記天板部とを接続する側壁部と、を有し、
     前記天板部には、前記ブロア室の内部と外部とを連通させる第1開口部が設けられており、
     前記第1開口部と対向する前記振動板の領域には、前記ブロア室の内部と外部とを連通させる第2開口部が設けられている、ブロア。
  2.  前記ブロア室の最大拡張時の体積と前記ブロア室の最大収縮時の体積との差をΔVとし、前記第1開口部の開口面積をSとし、前記振動板が静止しているときの前記天板部と前記振動板との間隔をLとしたとき、前記ΔV、S、Lは、ΔV/S≧Lの関係を満たしている、請求項1に記載のブロア。
  3.  前記第1開口部の中心軸と前記第2開口部の中心軸とは、一致している、請求項1または2に記載のブロア。
  4.  前記第2開口部の直径は、前記第1開口部の直径より小さい、請求項1から3のいずれか1項に記載のブロア。
  5.  前記駆動体は、環状であり、前記振動板における前記第2開口部の周囲に設けられている、請求項1から4のいずれか1項に記載のブロア。
  6.  前記天板部は、前記振動板の屈曲振動に伴って屈曲振動する、請求項1から5のいずれか1項に記載のブロア。
  7.  前記第1筐体を間隔を設けて被覆することで前記第1筐体との間に通気路を設け、前記第1開口部と対向する領域に第3開口部が設けられている第2筐体と、を備える、請求項1から6のいずれか1項に記載のブロア。
PCT/JP2013/068209 2012-08-10 2013-07-03 ブロア WO2014024608A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014529387A JP5692468B2 (ja) 2012-08-10 2013-07-03 ブロア

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012177921 2012-08-10
JP2012-177921 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014024608A1 true WO2014024608A1 (ja) 2014-02-13

Family

ID=50067848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068209 WO2014024608A1 (ja) 2012-08-10 2013-07-03 ブロア

Country Status (2)

Country Link
JP (1) JP5692468B2 (ja)
WO (1) WO2014024608A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089994A (zh) * 2015-09-21 2015-11-25 吉林大学 一种双悬臂梁振子无阀压电泵
WO2015178104A1 (ja) * 2014-05-20 2015-11-26 株式会社村田製作所 ブロア
CN106062364A (zh) * 2014-02-21 2016-10-26 株式会社村田制作所 鼓风机
WO2016181833A1 (ja) * 2015-05-08 2016-11-17 株式会社村田製作所 ポンプ、流体制御装置
WO2016199624A1 (ja) * 2015-06-11 2016-12-15 株式会社村田製作所 ポンプ
JPWO2017038565A1 (ja) * 2015-08-31 2018-04-05 株式会社村田製作所 ブロア
EP3351797A1 (en) * 2017-01-20 2018-07-25 Microjet Technology Co., Ltd Fluid transportation device
CN109424519A (zh) * 2017-08-31 2019-03-05 研能科技股份有限公司 微机电的流体控制装置
JP2019044770A (ja) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 気体輸送装置
JP2019044769A (ja) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 気体輸送装置
CN109505764A (zh) * 2017-09-15 2019-03-22 研能科技股份有限公司 气体输送装置
WO2019124060A1 (ja) * 2017-12-22 2019-06-27 株式会社村田製作所 ポンプ
WO2019230189A1 (ja) * 2018-05-29 2019-12-05 株式会社村田製作所 流体制御装置
US10801637B2 (en) 2017-09-15 2020-10-13 Microjet Technology Co., Ltd. Gas transportation device
US10883487B2 (en) 2017-08-31 2021-01-05 Microjet Technology Co., Ltd. Micro-electromechanical fluid control device
US11098347B2 (en) 2014-07-08 2021-08-24 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
CN114222859A (zh) * 2019-09-11 2022-03-22 京瓷株式会社 压电泵以及泵单元
JP2023008755A (ja) * 2021-07-02 2023-01-19 フロー・システムズ・インコーポレーテッド 中央を固定されているアクチュエータのための上部チャンバ空洞
US11705382B2 (en) 2018-08-10 2023-07-18 Frore Systems Inc. Two-dimensional addessable array of piezoelectric MEMS-based active cooling devices
US11765863B2 (en) 2020-10-02 2023-09-19 Frore Systems Inc. Active heat sink
US11796262B2 (en) 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
US11802554B2 (en) 2019-10-30 2023-10-31 Frore Systems Inc. MEMS-based airflow system having a vibrating fan element arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059660A1 (zh) * 2015-10-08 2017-04-13 广东奥迪威传感科技股份有限公司 一种压电微气泵结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113918A (ja) * 2003-10-07 2005-04-28 Samsung Electronics Co Ltd バルブレスマイクロ空気供給装置
JP2009250132A (ja) * 2008-04-07 2009-10-29 Sony Corp 冷却装置及び電子機器
JP2011027079A (ja) * 2009-07-29 2011-02-10 Murata Mfg Co Ltd マイクロブロア
WO2011040320A1 (ja) * 2009-10-01 2011-04-07 株式会社村田製作所 圧電マイクロブロア

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113918A (ja) * 2003-10-07 2005-04-28 Samsung Electronics Co Ltd バルブレスマイクロ空気供給装置
JP2009250132A (ja) * 2008-04-07 2009-10-29 Sony Corp 冷却装置及び電子機器
JP2011027079A (ja) * 2009-07-29 2011-02-10 Murata Mfg Co Ltd マイクロブロア
WO2011040320A1 (ja) * 2009-10-01 2011-04-07 株式会社村田製作所 圧電マイクロブロア

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062364B (zh) * 2014-02-21 2018-03-13 株式会社村田制作所 鼓风机
DE112015000889B4 (de) 2014-02-21 2023-04-20 Murata Manufacturing Co., Ltd. Gebläse
CN106062364A (zh) * 2014-02-21 2016-10-26 株式会社村田制作所 鼓风机
JP6065160B2 (ja) * 2014-05-20 2017-01-25 株式会社村田製作所 ブロア
WO2015178104A1 (ja) * 2014-05-20 2015-11-26 株式会社村田製作所 ブロア
US10738773B2 (en) 2014-05-20 2020-08-11 Murata Manufacturing Co., Ltd. Blower
CN106460828A (zh) * 2014-05-20 2017-02-22 株式会社村田制作所 鼓风机
US11781181B2 (en) 2014-07-08 2023-10-10 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
US11098347B2 (en) 2014-07-08 2021-08-24 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
JPWO2016181833A1 (ja) * 2015-05-08 2017-12-07 株式会社村田製作所 ポンプ、流体制御装置
WO2016181833A1 (ja) * 2015-05-08 2016-11-17 株式会社村田製作所 ポンプ、流体制御装置
GB2554231A (en) * 2015-05-08 2018-03-28 Murata Manufacturing Co Pump, and fluid control device
GB2554231B (en) * 2015-05-08 2020-12-02 Murata Manufacturing Co Pump and fluid control device
US10697450B2 (en) 2015-05-08 2020-06-30 Murata Manufacturing Co., Ltd. Pump having a top portion fixed to an external structure
GB2554293A (en) * 2015-06-11 2018-03-28 Murata Manufacturing Co Pump
JPWO2016199624A1 (ja) * 2015-06-11 2018-02-15 株式会社村田製作所 ポンプ
DE112016002205B4 (de) 2015-06-11 2021-09-16 Murata Manufacturing Co., Ltd. Pumpe
US10125760B2 (en) 2015-06-11 2018-11-13 Murata Manufacturing Co., Ltd. Pump
WO2016199624A1 (ja) * 2015-06-11 2016-12-15 株式会社村田製作所 ポンプ
GB2554293B (en) * 2015-06-11 2020-08-19 Murata Manufacturing Co Pump
JPWO2017038565A1 (ja) * 2015-08-31 2018-04-05 株式会社村田製作所 ブロア
US10947965B2 (en) 2015-08-31 2021-03-16 Murata Manufacturing Co., Ltd. Blower
US11661935B2 (en) 2015-08-31 2023-05-30 Murata Manufacturing Co., Ltd. Blower
CN105089994A (zh) * 2015-09-21 2015-11-25 吉林大学 一种双悬臂梁振子无阀压电泵
CN105089994B (zh) * 2015-09-21 2017-05-10 吉林大学 一种双悬臂梁振子无阀压电泵
EP3351797A1 (en) * 2017-01-20 2018-07-25 Microjet Technology Co., Ltd Fluid transportation device
JP2019044770A (ja) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 気体輸送装置
JP7137407B2 (ja) 2017-08-31 2022-09-14 研能科技股▲ふん▼有限公司 気体輸送装置
US10883487B2 (en) 2017-08-31 2021-01-05 Microjet Technology Co., Ltd. Micro-electromechanical fluid control device
JP2019044769A (ja) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 気体輸送装置
CN109424519A (zh) * 2017-08-31 2019-03-05 研能科技股份有限公司 微机电的流体控制装置
US10801637B2 (en) 2017-09-15 2020-10-13 Microjet Technology Co., Ltd. Gas transportation device
CN109505764A (zh) * 2017-09-15 2019-03-22 研能科技股份有限公司 气体输送装置
US11795934B2 (en) 2017-12-22 2023-10-24 Murata Manufacturing Co., Ltd. Piezoelectric pump with an upper and lower vibrating body
WO2019124060A1 (ja) * 2017-12-22 2019-06-27 株式会社村田製作所 ポンプ
JPWO2019124060A1 (ja) * 2017-12-22 2020-04-23 株式会社村田製作所 ポンプ
JP7147919B2 (ja) 2018-05-29 2022-10-05 株式会社村田製作所 流体制御装置
US11761439B2 (en) 2018-05-29 2023-09-19 Murata Manufacturing Co., Ltd. Fluid control device
JPWO2019230189A1 (ja) * 2018-05-29 2021-02-18 株式会社村田製作所 流体制御装置
US11391276B2 (en) 2018-05-29 2022-07-19 Murata Manufacturing Co., Ltd. Fluid control device
JP2021119305A (ja) * 2018-05-29 2021-08-12 株式会社村田製作所 流体制御装置
WO2019230189A1 (ja) * 2018-05-29 2019-12-05 株式会社村田製作所 流体制御装置
US11705382B2 (en) 2018-08-10 2023-07-18 Frore Systems Inc. Two-dimensional addessable array of piezoelectric MEMS-based active cooling devices
US11735496B2 (en) 2018-08-10 2023-08-22 Frore Systems Inc. Piezoelectric MEMS-based active cooling for heat dissipation in compute devices
US11710678B2 (en) 2018-08-10 2023-07-25 Frore Systems Inc. Combined architecture for cooling devices
US11784109B2 (en) 2018-08-10 2023-10-10 Frore Systems Inc. Method and system for driving piezoelectric MEMS-based active cooling devices
US11830789B2 (en) 2018-08-10 2023-11-28 Frore Systems Inc. Mobile phone and other compute device cooling architecture
EP4030055A4 (en) * 2019-09-11 2023-10-04 Kyocera Corporation PIEZOELECTRIC PUMP AND PUMP UNIT
CN114222859A (zh) * 2019-09-11 2022-03-22 京瓷株式会社 压电泵以及泵单元
US11802554B2 (en) 2019-10-30 2023-10-31 Frore Systems Inc. MEMS-based airflow system having a vibrating fan element arrangement
US11796262B2 (en) 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
US11765863B2 (en) 2020-10-02 2023-09-19 Frore Systems Inc. Active heat sink
JP7335308B2 (ja) 2021-07-02 2023-08-29 フロー・システムズ・インコーポレーテッド 中央を固定されているアクチュエータのための上部チャンバ空洞
JP2023008755A (ja) * 2021-07-02 2023-01-19 フロー・システムズ・インコーポレーテッド 中央を固定されているアクチュエータのための上部チャンバ空洞

Also Published As

Publication number Publication date
JPWO2014024608A1 (ja) 2016-07-25
JP5692468B2 (ja) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5692468B2 (ja) ブロア
JP5692465B2 (ja) ブロア
JP6528849B2 (ja) ブロア
JP5962848B2 (ja) 圧電ブロア
US11047376B2 (en) Actuator support structure and pump device
JP6414625B2 (ja) ブロア
JP5110159B2 (ja) 圧電マイクロブロア
JP6269907B1 (ja) バルブ、気体制御装置
JP6065160B2 (ja) ブロア
JP6575634B2 (ja) ブロア
WO2013187270A1 (ja) ブロア
JP2016211442A (ja) ブロア
JP6089584B2 (ja) ブロア
JP2013151908A (ja) 流体制御装置
JP2009121333A (ja) 送風ファン、及び熱交換ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827170

Country of ref document: EP

Kind code of ref document: A1