WO2014024330A1 - 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉 - Google Patents

永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉 Download PDF

Info

Publication number
WO2014024330A1
WO2014024330A1 PCT/JP2012/078636 JP2012078636W WO2014024330A1 WO 2014024330 A1 WO2014024330 A1 WO 2014024330A1 JP 2012078636 W JP2012078636 W JP 2012078636W WO 2014024330 A1 WO2014024330 A1 WO 2014024330A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
chamber
magnetic field
furnace body
drive chamber
Prior art date
Application number
PCT/JP2012/078636
Other languages
English (en)
French (fr)
Inventor
謙三 高橋
Original Assignee
Takahashi Kenzo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Kenzo filed Critical Takahashi Kenzo
Priority to US14/111,130 priority Critical patent/US9593884B2/en
Priority to KR1020137023852A priority patent/KR101644978B1/ko
Priority to CA2831598A priority patent/CA2831598C/en
Priority to EP12868335.6A priority patent/EP2708839B1/en
Priority to AU2012365869A priority patent/AU2012365869B2/en
Publication of WO2014024330A1 publication Critical patent/WO2014024330A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D27/005Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D45/00Equipment for casting, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/02Electrodynamic pumps
    • H02K44/04Conduction pumps

Definitions

  • the present invention relates to a permanent magnet type cylindrical molten metal stirrer and a permanent magnet type pump for agitation of Al, Cu, Zn, Si or at least two of these alloys, Mg alloys, or other metal melts. It relates to a melting furnace with a pump.
  • Conventional non-ferrous metal or other metal agitation uses an electromagnetic coil to generate a moving magnetic field by applying a low-frequency or high-frequency current to generate a moving magnetic field, or a rotating blade is inserted into the melt to directly agitate the melt.
  • a mechanical stirrer and the like The main objectives of these are to make the composition of the molten metal in the furnace uniform, to make the temperature distribution of the molten metal uniform, and to shorten the melting time in the melting furnace.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the amount of heat generation, maintenance is easy and easy to use, the installation position is flexible, and the stirring ability can be adjusted. And providing a melting furnace with a permanent magnet pump.
  • the apparatus and melting furnace of the present invention are configured as follows.
  • Permanent magnet type molten metal stirring device of the present invention A furnace body having a molten metal chamber for storing molten metal; A stirring device for stirring the molten metal in the furnace body; With The stirring device A molten metal driving chamber constituting section that is disposed in the molten metal chamber and forms a driving chamber for giving driving force to the molten metal and having both ends open; A pair of electrodes arranged in the drive chamber for flowing a current in the drive chamber in the presence of molten metal; A magnetic field device composed of permanent magnets arranged outside the furnace body, wherein one of an N pole and an S pole is opposed to the furnace body, and the magnetic field lines from the one pole are the current and A magnetic field device that crosses and generates an electromagnetic force that drives the molten metal from one end to the other end in the drive chamber; It is comprised as provided with.
  • the permanent magnet type molten metal stirring device of the present invention is: A furnace body having a molten metal chamber for storing molten metal; A stirring device for stirring the molten metal in the furnace body; With The stirring device A molten metal drive chamber constituent part that is disposed outside the furnace body and forms a drive chamber in cooperation with the outer wall of the furnace body, the drive chamber being formed of the molten metal chamber and the molten metal opened in the side wall.
  • a molten metal driving chamber component communicating with the outlet and the inlet;
  • a pair of electrodes arranged in the drive chamber for flowing a current in the drive chamber in the presence of molten metal;
  • a magnetic field device composed of permanent magnets arranged outside the furnace body and outside the molten metal driving chamber component, wherein one of an N pole and an S pole faces the molten metal driving chamber component, Magnetic field lines from one of the poles intersect the current to cause the molten metal to flow into the molten metal chamber from the driving chamber and to flow out of the molten metal chamber into the driving chamber, and generate a magnetic field device. It is comprised as provided with.
  • the permanent magnet type molten metal stirring device of the present invention is: A furnace body having a molten metal chamber for storing molten metal; A stirring device for stirring the molten metal in the furnace body; With The stirring device A molten metal drive chamber constituting part disposed outside the furnace body and having a drive chamber, the drive chamber communicating with the molten metal chamber via an outlet and an inlet of the molten metal opened on a side wall of the furnace body A molten metal driving chamber component, A pair of electrodes arranged in the drive chamber for flowing a current in the drive chamber in the presence of molten metal; A magnetic field device constituted by permanent magnets housed in a housing space of a magnetic field device formed in a state isolated from the molten metal by the molten metal drive chamber constituent part and the side wall of the furnace body, One pole of the N pole and the S pole is opposed to the above in the molten metal drive chamber constituting part, Magnetic field lines from the one pole intersect the current to generate an electromagnetic force that causes the molten metal to
  • the melting furnace with a permanent magnet pump is A furnace body having a molten metal chamber for storing molten metal; A pump device arranged in the furnace body and pumping out the molten metal to the outside; With The pump device is A molten metal driving chamber component for applying a driving force to the molten metal, one end being opened in the molten metal chamber and the other end being opened outside the molten metal chamber, forming a driving chamber, and a molten metal driving chamber component, A pair of electrodes arranged in the drive chamber for flowing a current in the drive chamber in the presence of molten metal; A magnetic field device composed of permanent magnets arranged outside the furnace body, wherein one of an N pole and an S pole is opposed to the furnace body, and the magnetic field lines from the one pole are the current and A magnetic field device that crosses and generates an electromagnetic force that drives the molten metal from one end to the other end in the drive chamber; It is comprised as provided with.
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1.
  • A Explanatory drawing of a side surface of a molten metal drive chamber constituent part, (b) a sectional view taken along line IIIb-IIIb.
  • A The top view of the 2nd Embodiment of this invention, (b) The IVb-IVb sectional view taken on the line.
  • A The top view of the 3rd Embodiment of this invention, (b) The Vb-Vb sectional view taken on the line.
  • FIG. 13 is a sectional view taken along line XIII-XIII in FIG. 12. Side surface sectional drawing of the 8th Embodiment of this invention.
  • FIG. 1 and 2 show a plan view of the first embodiment of the present invention and a cross-sectional view taken along the line II-II in FIG.
  • the permanent magnet type molten metal stirring device 10 of this embodiment includes a furnace body 1 having a molten metal chamber MR, and a stirring device 3 attached to the furnace body 1.
  • the stirring device 3 has a permanent magnet type magnetic field device 4, a cylindrical molten metal drive chamber constituting unit 5, and a power control panel 6 connected to a power source.
  • the magnetic field device 4 is a so-called monopolar permanent magnet.
  • the magnetic field device 4 is provided outside the side wall 1 ⁇ / b> A of the furnace body 1, the molten metal drive chamber constituting part 5 is provided in the furnace body 1, and the power control panel 6 is provided at an arbitrary position outside the furnace body 1.
  • the stirring device 3 rotates the molten metal M in the furnace body 1 counterclockwise, for example, as indicated by an arrow A in FIG. 1 by electromagnetic force according to Fleming's left hand rule. Is.
  • the magnetic field device 4 faces the molten metal drive chamber constituting portion 5 with the side wall 1 ⁇ / b> A of the furnace body 1 interposed therebetween.
  • FIGS. 3 (a) and 3 (b) The structure of the cylindrical molten metal drive chamber constituting portion 5 is particularly shown in FIGS. 3 (a) and 3 (b).
  • FIG. 3A is a front view in which a part of the molten metal drive chamber constituting portion 5 is broken
  • FIG. 3B is a sectional view taken along the line IIIb-IIIb.
  • the molten metal drive chamber constituting portion 5 has a slightly long cylindrical shape, and its cross section is a frame shape.
  • the internal space of the melt drive chamber constituting section 5 is driven and accelerated by applying an electromagnetic force F to the melt M according to Fleming's left-hand rule (toward the left or right in FIG. 3A).
  • the top plate 5a and the bottom plate 5b of the molten metal drive chamber component 5 are provided with a pair of electrodes 7a and 7b embedded in the inner surface portions thereof. Between these electrodes 7a and 7b, in the presence of the molten metal M, for example, a direct current I flows from the electrode 7a to the electrode 7b (or from the electrode 7b to 7a). These electrodes 7 a and 7 b are connected to the power supply control panel 6 through wirings 9 and 9. A part of these wirings 9, 9 is provided in an embedded state in the molten metal drive chamber constituting portion 5. This is to prevent the direct contact between the wirings 9 and 9 and the high-temperature molten metal M, thereby extending the life.
  • the position where the electrodes 7a and 7b are embedded in the molten metal drive chamber constituting portion 5 is approximately the center of the length L of the molten metal drive chamber constituting portion 5. Further, the length L is preferably equal to or greater than the distance D between the electrodes 7a and 7b. This is because the current flowing between the electrodes 7a and 7b does not leak outside the acceleration space AS of the molten metal driving chamber constituting section 5 and flows only in the acceleration space AS. The electrodes 7a and 7b are inevitable to be damaged because they are in contact with the molten metal M. For this reason, also in this embodiment and other embodiments described below, the electrodes 7a and 7b are provided in a replaceable manner.
  • the power supply control panel 6 is configured so that the output to the wirings 9 and 9 can be adjusted in both voltage and current.
  • the polarity of the pair of output terminals is also switchable.
  • the magnetic field device 4 is constituted by a permanent magnet and is used as a so-called monopolar magnet. That is, one of the S pole and the N pole (N pole in this embodiment) is disposed so as to face the furnace body 1. That is, as can be seen from FIG. 2 in particular, the N pole is provided so as to face the molten metal drive chamber constituting portion 5 through the side wall 1A of the furnace body 1. In FIG. 2, there is a gap between the magnetic field device 4 and the side wall 1 ⁇ / b> A, but there may be no gap so as to be installed as close as possible to the molten metal drive chamber constituting unit 5.
  • the force that is, the rotational speed of the molten metal M can be controlled. Further, the polarity of the output to the wirings 9 and 9 can be switched by the power supply control panel 6 to change the direction of the electromagnetic force F and to reverse the rotation direction of the molten metal M in the furnace body 1.
  • the magnetic field device 4 is disposed on the side of the furnace body 1, but this magnetic field device 4 can be disposed below the furnace body 1 instead.
  • FIGS. 4 (a) and 4 (b) This is shown in FIGS. 4 (a) and 4 (b) as a second embodiment.
  • 4A is a plan view
  • FIG. 4B is a sectional view taken along the line IV-IV.
  • the molten metal drive chamber constituting section 5 is arranged so that the current I flows in the horizontal direction in the figure.
  • the magnetic field lines ML run in the vertical direction, the current I flows in the horizontal direction, and both are substantially orthogonal.
  • FIG. 4A is a plan view
  • FIG. 4B is a sectional view taken along the line IV-IV.
  • the molten metal drive chamber constituting section 5 is arranged so that the current I flows in the horizontal direction in the figure.
  • the magnetic field lines ML run in the vertical direction
  • the current I flows in the horizontal direction
  • both are substantially orthogonal.
  • the electromagnetic force F that drives the molten metal M is generated as in FIG. 1, and the molten metal M is rotationally driven as indicated by an arrow A.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. This is the same in all embodiments described below.
  • FIG. 5 (a) and 5 (b) show a third embodiment in which the molten metal M in the furnace body 1 is rotationally driven in the vertical direction as indicated by an arrow A in FIG. 5 (b).
  • 5A is a plan view
  • FIG. 5B is a cross-sectional view taken along the line Vb-Vb.
  • the current I and the lines of magnetic force ML are generated so as to generate an electromagnetic force F that causes the molten metal driving chamber forming section 5 to suck the molten metal M from below and discharge it upward. I am doing so. More details are as follows.
  • the melt driving chamber forming portion 5 is incorporated in the furnace body 1 in a so-called standing state by a desired means.
  • the current I flows between the electrodes 7a and 7b along the vertical direction in the figure, and the magnetic force line ML flows along the horizontal direction in the figure.
  • the upward electromagnetic force F arises.
  • the molten metal M in the furnace body 1 is rotationally driven in the vertical direction as indicated by an arrow A shown in FIG.
  • the Fleming's left-hand rule is applied to the molten metal M in the acceleration space AS of the tubular molten metal driving chamber constituting portion 5.
  • the electromagnetic force F is applied. That is, the embodiment of the present invention only needs to have such an acceleration space AS by some means. Therefore, in order to provide such an acceleration space AS, the molten metal drive chamber constituting portion 5 does not need to be cylindrical in itself.
  • a fourth embodiment of the present invention configured from such a viewpoint will be described.
  • FIGS. 6A and 6B show the molten metal drive chamber constituting portion 5A used in the fourth and fifth embodiments.
  • the molten metal drive chamber constituting portion 5A is configured by cutting out one side surface of the molten metal drive chamber constituting portion 5 shown in FIG. 3A, and has a U-shaped cross section, that is, a so-called lateral channel. Has a mold.
  • This molten metal drive chamber constituting portion 5A can be used in place of the molten metal drive chamber constituting portion 5 of FIG. However, in this case, the molten metal drive chamber constituting portion 5A is not used alone, but is used so as to create the acceleration space AS in cooperation with the side wall 1A (or the bottom wall 1B) of the furnace body 1.
  • the molten metal drive chamber constituting portion 5A is used in such a manner that the end surface 5a1 of the top plate 5a and the end surface 5b1 of the bottom plate 5b are in contact with the inner surface of the furnace body 1 to form the acceleration space AS.
  • FIG. 7 and 8 show a fourth embodiment and a fifth embodiment configured based on such a technical idea. That is, FIG. 7 shows a cross section corresponding to FIG. 2 of the first embodiment, and shows a third embodiment using the molten metal drive chamber constituting portion 5A. FIG. 8 shows a cross-section corresponding to FIG. 4B of the second embodiment, and shows a fifth embodiment using the molten metal drive chamber constituting portion 5A.
  • the acceleration space AS is formed by the molten metal drive chamber constituting portions 5 and 5A housed in the furnace body 1.
  • the acceleration space AS may be formed by the means.
  • the acceleration space AS is formed by externally attaching the molten metal drive chamber constituting portion 5 ⁇ / b> B to the furnace body 1. More details are as follows.
  • the molten metal drive chamber constituting portion 5B shown in FIG. 11 is used.
  • the molten metal drive chamber constituting portion 5B has a container shape in which only the top plate portion of the six surfaces is opened, and the electrodes 7a and 7b are attached to protrude from the inner surface of the bottom plate 5Ba.
  • the side wall 101A has an outlet 101a through which the molten metal M flows out and an inlet 101b through which the molten metal M flows from the outside. is doing.
  • the magnetic field device 4 is provided so as to face the electrodes 7a and 7b in the horizontal direction in FIG. 10 via the bottom plate 5Ba of the molten metal drive chamber constituting portion 5B. .
  • the current I flowing between the electrodes 7a and 7b and the magnetic force lines ML from the magnetic field device 4 cross each other in a substantially orthogonal state, and the electromagnetic force F shown in FIG. 9 is obtained.
  • the electromagnetic force F drives the molten metal M in the acceleration space AS, and the molten metal M in the furnace body 101 flows out of the outlet 101a and enters the acceleration space AS.
  • the molten metal M in the space AS flows into the furnace body 101 from the inlet 101b. Thereby, the molten metal M in the furnace body 1 is driven to rotate as indicated by an arrow A in FIG.
  • the seventh embodiment shows an example in which the magnetic field device 4 is arranged in an isolated state between the electrodes 7a and 7b and the furnace body 101. More details are as follows.
  • a separate melt drive / storage device 105 is attached to the furnace body 101 in a sealed state.
  • the molten metal drive / storage device 105 includes an acceleration space AS and functions as a so-called original molten metal drive chamber component, and in addition to the storage space 105 ⁇ / b> A for storing the magnetic field device 4 together with the side wall 101 ⁇ / b> A of the furnace body 101. It has the function of forming.
  • the storage space 105A is naturally isolated from the molten metal M, and the magnetic field device 4 does not touch the molten metal M.
  • electrodes 7 a and 7 b are provided in the vertical direction in the drawing in the acceleration space AS in the molten metal drive and storage device 105.
  • this acceleration space AS is open only at the top, and as can be seen from FIG. 12, the furnace main body 101 and its outlet 101a and inlet 101b communicate with each other.
  • the magnetic field device 4 is stored in the storage space 105A.
  • the current I between the electrodes 7a and 7b and the magnetic force line ML from the magnetic field device 4 intersect to generate an electromagnetic force F, which is finally the same as in the previous embodiment.
  • Molten metal M is driven along arrow A as shown in FIG.
  • the molten metal drive chamber constituting section 5 shown in FIG. 2 can be configured to be continuously rotatable around an axis perpendicular to the paper surface in the drawing. With such a configuration, the molten metal drive chamber constituting portion 5 can be rotated to the direction of the molten metal drive chamber constituting portion 5 shown in FIG. In this case, it is necessary to change the direction of the magnetic field device 4 in accordance with the change in the direction of the molten metal drive chamber constituting unit 5.
  • FIG. 14 shows yet another embodiment of the present invention.
  • This embodiment shows the example which comprised the molten metal pump which can send out the molten metal M in a furnace main body out of a furnace main body by changing the structure of a molten metal drive chamber structure part.
  • the molten metal drive chamber constituting portion 205 having one end of the molten metal drive chamber constituting portion 5 shown in FIG. 1 is used, and the discharge pipe portion 205a communicating with the acceleration space AS is provided on the top plate portion.
  • a pair of electrodes 7a and 7b are arranged in the thickness direction of the paper surface in FIG.
  • an electromagnetic force F is generated in the same manner as described above, and the molten metal M is driven from right to left as indicated by an arrow in the figure, and then discharged from the tip of the discharge pipe portion 205a to the outside and received by the receiving box 207. .
  • the N pole of the permanent magnet of the magnetic field device 4 is opposed to the molten metal drive chamber constituent part, but it is natural that the S pole may be opposed to the molten metal drive chamber structural part. It is.
  • a drive chamber is provided, and a current I is passed between a pair of electrodes provided therein, and a magnetic field is applied to the current I so that the molten metal is efficiently driven by a stirrer.
  • a molten metal or a non-ferrous metal is a fluid
  • the force applied to the fluid is dispersed in all directions. Therefore, it cannot stir efficiently.
  • the present inventor notices that when the stirring force is applied to the molten metal in a limited space (driving chamber DR), the magnitude and direction of the force can be defined and the molten metal can be driven with high efficiency. It was.
  • this limited space is formed by the tubular or U-shaped (channel type) molten metal driving chamber constituting section 5.
  • the inventor conducted an experiment to confirm the effect of the present invention.
  • the results are as follows.
  • the substance to be agitated in this case a metal and a non-ferrous metal melt, both have high electrical conductivity (low resistance), so the applied voltage between the electrodes is small. For this reason, power consumption can be suppressed to an extremely small value. Even if the present invention is applied to a so-called large furnace, the value is estimated to be 10 Kw or less. In the case of the conventional type stirring device (the most common linear type furnace bottom stirring device), it is understood that the permanent magnet type molten metal stirring device of the present invention is superior, considering that power consumption of 500 Kw or more is necessary.
  • the driving chamber DR (acceleration space AS) is partitioned and the current I flows therein, and the current I leaks outside the driving chamber DR.
  • the electromagnetic force F according to Fleming's law is generated by applying a magnetic field to the current I, and the driving force is applied to the molten metal M in the driving chamber DR as a confined space by the electromagnetic force F.
  • the molten metal M in the driving chamber DR can be reliably driven to rotate the molten metal M in the furnace body with high efficiency, or the molten metal M in the furnace body can be pumped out to the outside with high efficiency. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

 発熱量を抑え、メンテナンスも容易で使いやすく、設置位置に融通性があり、攪拌能力をも調節できる省エネ型攪拌装置を提供する。溶湯を収納する溶湯室を有する炉本体と、前記炉本体内の前記溶湯を攪拌するための攪拌装置と、を備え、前記攪拌装置は、前記溶湯室内に配置されて、溶湯に駆動力を与えるための且つ両端が開放した駆動室を形成する、溶湯駆動室構成部と、前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、前記炉本体外に配置された永久磁石で構成した磁場装置であって、N極及びS極の一方の極が前記炉本体に対向しており、前記一方の極からの磁力線が、前記電流と交差して、前記駆動室内において、溶湯を一端から他端に向けて駆動する電磁力を発生させる、磁場装置と、を備えるものとして構成される。

Description

永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉
 本発明はAl,Cu,Zn,Si又はこれらのうち少なくとも2つの合金、あるいはMg合金と等の、あるいは他の金属溶湯の攪拌を行うための永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉に関する。
 従来非鉄金属あるいは他の金属の溶湯攪拌には、電磁コイル使い低周波あるいは高周波電流を流して移動磁界を発生させ溶湯攪拌する電磁攪拌装置や、回転羽根を溶湯中に挿入し、直接溶湯攪拌する機械式攪拌装置等があった。これらはいずれも炉内溶湯の組成の均一化、溶湯温度分布の均一化を図ること、溶解炉では溶解時間短縮等が主な目的となっていた。
 しかしながら電磁コイル式の場合、大きな消費電力や複雑なメンテナンスが必要であり、またイニシアルコストの高さも問題であった。また機械式攪拌装置の場合は回転羽の消耗が激しく回転羽根交換費用が年単位でみても極めて高額にもなることがあり、また交換に際し長時間が炉を停止することが避けられず、このダウンタイムによる損失が非常に大きいこと等問題が多かった。また最近では永久磁石回転移動磁界方式も使用され始めているが、炉補強ステンレス板の発熱により、性能を制限されることがあるなどの問題点もあった。
特許公報特許第4376771号 特許公報特許第4245673号
 本発明は上述の問題点を解消するためになされたもので、その目的は発熱量を抑え、メンテナンスも容易で使いやすく、設置位置に融通性があり、攪拌能力をも調節できる省エネ型攪拌装置及び永久磁石式汲み出しポンプ付溶解炉を提供することにある。
 本発明の装置及び溶解炉は以下のように構成される。
 本発明の永久磁石式溶湯攪拌装置は、
 溶湯を収納する溶湯室を有する炉本体と、
 前記炉本体内の前記溶湯を攪拌するための攪拌装置と、
 を備え、
 前記攪拌装置は、
 前記溶湯室内に配置されて、溶湯に駆動力を与えるための且つ両端が開放した駆動室を形成する、溶湯駆動室構成部と、
 前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
 前記炉本体外に配置された永久磁石で構成した磁場装置であって、N極及びS極の一方の極が前記炉本体に対向しており、前記一方の極からの磁力線が、前記電流と交差して、前記駆動室内において、溶湯を一端から他端に向けて駆動する電磁力を発生させる、磁場装置と、
 を備えるものとして構成される。
 さらに、本発明の永久磁石式溶湯攪拌装置は、
 溶湯を収納する溶湯室を有する炉本体と、
 前記炉本体内の前記溶湯を攪拌するための攪拌装置と、
 を備え、
 前記攪拌装置は、
 前記炉本体外に配置されて、前記炉本体の外側壁との共同によって駆動室を形成する溶湯駆動室構成部であって、前記駆動室は前記溶湯室と、前記側壁に開口された溶湯の流出口及び流入口を介して連通している、溶湯駆動室構成部と、
 前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
 前記炉本体外及び前記溶湯駆動室構成部外に配置された永久磁石で構成した磁場装置であって、N極及びS極の一方の極が前記溶湯駆動室構成部に対向しており、前記一方の極からの磁力線が、前記電流と交差して、溶湯を、前記駆動室から前記溶湯室に流入させると共に前記溶湯室から前記駆動室に流出させる、電磁力を発生させる、磁場装置と、
 を備えるものとして構成される。
 さらに、本発明の永久磁石式溶湯攪拌装置は、
 溶湯を収納する溶湯室を有する炉本体と、
 前記炉本体内の前記溶湯を攪拌するための攪拌装置と、
 を備え、
 前記攪拌装置は、
 前記炉本体外に配置され且つ駆動室を有する溶湯駆動室構成部であって、前記駆動室は前記溶湯室と、前記炉本体の側壁に開口された溶湯の流出口及び流入口を介して連通している、溶湯駆動室構成部と、
 前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
 前記溶湯駆動室構成部と前記炉本体の側壁とによって溶湯から隔離された状態に形成された磁場装置の収納空間内に収納された永久磁石で構成した磁場装置であって、
  N極及びS極の一方の極が前記溶湯駆動室構成部における前記に対向しており、
  前記一方の極からの磁力線が、前記電流と交差して、溶湯を、前記駆動室から前記溶湯室に流入させると共に前記溶湯室から前記駆動室に流出させる、電磁力を発生させる、
 磁場装置と、
 を備えるものとして構成される。
本発明の永久磁石式汲み出しポンプ付溶解炉は、
 溶湯を収納する溶湯室を有する炉本体と、
 前記炉本体内に配置され、前記溶湯を外部に汲み出すポンプ装置と、
 を備え、
 前記ポンプ装置は、
 溶湯に駆動力を与えるための溶湯駆動室構成部であって、一端が前記溶湯室内において開放し、他端が前記溶湯室外に開放する、駆動室を形成する、溶湯駆動室構成部と、
 前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
 前記炉本体外に配置された永久磁石で構成した磁場装置であって、N極及びS極の一方の極が前記炉本体に対向しており、前記一方の極からの磁力線が、前記電流と交差して、前記駆動室内において、溶湯を一端から他端に向けて駆動する電磁力を発生させる、磁場装置と、
 を備えるものとして構成される。
本発明の第1の実施形態の平面図。 図1のII-II線断面図。 (a)溶湯駆動室構成部の側面説明図、(b)そのIIIb-IIIb線断面図。 (a)本発明の第2の実施形態の平面図、(b)そのIVb-IVb線断面図。 (a)本発明の第3の実施形態の平面図、(b)そのVb-Vb線断面図。 (a)異なる溶湯駆動室構成部の側面説明図、(b)そのVIb-VIb線断面図。 本発明の第4の実施形態の一部を示す側面断面図。 本発明の第5の実施形態の一部を示す側面断面図。 本発明の第6の実施形態の平面図。 図9のX―X線断面図。 図9の溶湯駆動室構成部の斜視図。 本発明の第7の実施形態の平面図。 図12のXIII-XIII線断面図。 本発明の第8の実施形態の側面断面図。
 以下に本発明の実施形態の永久磁石式溶湯攪拌装置を図面を参照しながら説明する。なお、以下に説明する各図における縮尺は全図において同一ではなく、図面毎に任意に選択してある。
 図1及び図2は、本発明の第1の実施形態の平面図及び図1のII-II線断面図を示す。
 図1からわかるように、この実施形態の永久磁石式溶湯攪拌装置10は、溶湯室MRを有する炉本体1と、この炉本体1に対して取り付けられる攪拌装置3と、を有する。
 攪拌装置3は、永久磁石式の磁場装置4と、筒型の溶湯駆動室構成部5と、電源に接続された電源制御盤6と、を有する。磁場装置4はいわゆる単極型永久磁石である。この磁場装置4は、炉本体1の側壁1Aの外側に設けられ、溶湯駆動室構成部5は炉本体1内に設けられ、電源制御盤6は炉本体1外の任意の位置に設けられる。この攪拌装置3は、特に図1からわかるように、フレミングの左手の法則による電磁力によって、炉本体1内の溶湯Mを、例えば図1に矢印Aで示すように、左回りに回転駆動するものである。磁場装置4は、図2からもわかるように、炉本体1の側壁1Aを挟んで前記溶湯駆動室構成部5と対向している。
 前記筒型の溶湯駆動室構成部5の構造は、特に図3(a)、(b)に示される。図3(a)は溶湯駆動室構成部5の一部を破断した正面図、(b)はそのIIIb-IIIb線断面図である。これらの図3(a)、(b)からわかるように、溶湯駆動室構成部5はやや長尺状の筒型をしており、その横断面が枠型となっている。この溶湯駆動室構成部5の内部空間は、後述するように、溶湯Mにフレミングの左手の法則による(図3(a)中左方向へあるいは右方向へ向かう)電磁力Fを与えて駆動加速する加速空間AS(駆動室DR)として使用される。この溶湯駆動室構成部5の天板5aと底板5bにはその内側の表面部分にそれぞれ一対の電極7a、7bが埋め込み状態に設けられている。これらの電極7a、7b間には、溶湯Mの存在下において、例えば、電極7aから電極7bへ(あるいは電極7bから7aへ)直流の電流Iが流れる。これらの電極7a、7bは、配線9,9を介して、前記電源制御盤6に接続されている。これらの配線9,9は、その一部が溶湯駆動室構成部5中に埋設状態に設けられている。これは、配線9,9と高温の溶湯Mとの直接的な接触が防ぎ、長寿命化を図るためである。
 図3(a)からわかるように、前記電極7a、7bの溶湯駆動室構成部5への埋め込み位置は、溶湯駆動室構成部5の長さLのほぼ中央としている。さらに、この長さLは、電極7a、7b間の距離D以上であることが望ましい。それは、電極7a、7b間に流れる電流が、溶湯駆動室構成部5の加速空間ASの外部に漏れることなく、加速空間AS内のみを流れるようにするためである。なお、電極7a、7bは溶湯Mに接するため損傷するのは避けられない。このため、本実施形態及び以下で説明する他の実施形態においても、電極7a、7bは交換可能に設けられている。
 前記電源制御盤6は、前記配線9,9への出力を、電圧と電流の両方において調節可能に構成されている。また、一対の出力端子の極性も切り換え可能に構成されている。
 前記磁場装置4は、先にも述べたように、永久磁石によって構成され、いわゆる単極磁石として用いられている。つまり、S極とN極の一方(この実施形態ではN極)が炉本体1に対向するように配置されている。つまり、特に図2からわかるように、炉本体1の側壁1Aを介して溶湯駆動室構成部5にN極が対向するように設けられている。図2中、磁場装置4と側壁1Aとの間には隙間があるが、できるだけ溶湯駆動室構成部5に近く設置すべく、隙間はなくてもよい。このように構成したので、特に図2からわかるように、磁場装置4のN極から出た磁力線MLが、電極7a、7b間に流れる電流Iとほぼ直交する。これにより、特に図1からわかるように、フレミングの左手の法則による電磁力Fが生じる。この電磁力Fによって、加速空間AS内の溶湯Mが駆動され、それにより、最終的に、炉本体1中の溶湯Mは、図1に矢印Aで示すように、図中左回りに回転駆動される。
 この際、電源制御盤6からの出力を制御することにより、電極7a、7b間に流れる電流Iの値を変化させて、前記の電磁力Fの強さを制御し、溶湯Mを回転駆動する力即ち溶湯Mの回転速度を制御することができる。さらには、電源制御盤6により、配線9,9への出力の極性を切り換えて、電磁力Fの向きを変え、炉本体1内の溶湯Mの回転方向を逆とすることもできる。
 以上に説明した第1の実施形態では、磁場装置4を炉本体1の側方に配置したが、これに代え、この磁場装置4を炉本体1の下方に配置することができる。これを第2の実施形態として図4(a)、(b)に示す。図4(a)は平面図、(b)はそのIV-IV線断面図である。特に図4(b)からわかるように、溶湯駆動室構成部5は、電流Iが図中横向きに流れるように配置される。これにより、磁力線MLは上下方向に走り、電流Iは横向きに流れ、両者はほぼ直交する。これにより、図4(a)からわかるように、図1と同様に、溶湯Mを駆動する電磁力Fが発生し、溶湯Mは矢印Aに示すように回転駆動される。なお、本実施形態において、前述の第1の実施形態と同等の部材には同一の符号を付して詳しい説明は省略する。これは以下に説明する全ての実施形態において同様である。
 図5(a)、(b)は、炉本体1中の溶湯Mを、図5(b)に矢印Aで示すように、縦向きに回転駆動するようにした第3の実施形態を示す。図5(a)は平面図、(b)はそのVb-Vb線断面図である。この実施形態では、図5(b)に示すように、溶湯駆動室形成部5で溶湯Mを下から吸い込んで上方へ排出するような電磁力Fが生じるように電流Iと磁力線MLが発生するようにしている。より詳しくは、以下の通りである。
 図3(a)、(b)に示す溶湯駆動室形成部5を所望の手段でいわゆる立てた状態に炉本体1に組み込んでいる。図5(a)からわかるように、電流Iは電極7a、7b間を図中上下方向に沿って流れ、磁力線MLは図中左右方向に沿って流れる。これにより、図5(b)に示すように、フレミングの法則に従った上向きの電磁力Fが生じる。これにより、炉本体1中の溶湯Mは図5(b)に示す矢印Aのように縦向きに回転駆動される。
 以上の第1乃至第3の実施形態の説明からもわかるように、溶湯Mを駆動するにあたっては、筒状の溶湯駆動室構成部5の持つ加速空間AS内の溶湯Mにフレミングの左手の法則による電磁力Fを加えるようにしている。つまり、本発明の実施形態としては、何らかの手段により、このような加速空間ASを有するものであればよい。従って、このような加速空間ASを具備するにあたっては、溶湯駆動室構成部5がそれ自体が筒状で有る必要はない。以下にこのような観点で構成した本発明の異なる第4の実施形態を説明する。
 図6(a)、(b)は、第4及び第5の実施形態で用いる溶湯駆動室構成部5Aを示す。この溶湯駆動室構成部5Aは、図3(a)に示す溶湯駆動室構成部5の一側面を切り欠いたものとして構成され、横断面がU字状となっており、つまりいわゆる横向きのチャネル型をしている。この溶湯駆動室構成部5Aを、図3の溶湯駆動室構成部5に代えて用いることができる。ただし、この場合には、この溶湯駆動室構成部5Aをそれ単独で用いるのではなく、炉本体1の側壁1A(あるいは底壁1B)と協同して前記加速空間ASを作るようにして用いる。つまり、この溶湯駆動室構成部5Aを、その天板5aの端面5a1と底板5bの端面5b1が炉本体1の内面に当接して、加速空間ASが形成されるようにして用いる。
 図7、図8は、このような技術的思想に基づいて構成した第4の実施形態、第5の実施形態を示す。つまり、図7は、第1の実施形態の図2に対応する断面を示し、溶湯駆動室構成部5Aを用いた第3の実施形態を示す。図8は、第2の実施形態の図4(b)に対応する断面を示し、溶湯駆動室構成部5Aを用いた第5の実施形態を示す。
 以上に説明した第1乃至第5実施形態では、加速空間ASを、炉本体1内に収納する溶湯駆動室構成部5、5Aによって形成していた。しかしながら、本発明の基本的な技術的思想としては、加速空間ASを有すればよいことから、溶湯駆動室構成部5,5Aを必ずしも炉本体1内に収納した形を採る必要はなく、何らかの手段で加速空間ASが形成されればよい。このような技術的思想に従って構成した第6の実施形態を以下に説明する。
 図9-図11は第6の実施形態を示す。この第6の実施形態においては、炉本体1に対して溶湯駆動室構成部5Bを外付けすることにより加速空間ASを形成している。より詳しくは以下の通りである。
 この第6の実施形態においては、図11に示す溶湯駆動室構成部5Bを用いる。この溶湯駆動室構成部5Bは、6面のうちの天板部分のみが開放された容器状をしており、底板5Baの内表面に電極7a、7bを突出した状態に取り付けている。一方、特に図9からわかるように、炉本体101においては、側壁101Aに、内部の溶湯Mが外部に流出する流出口101aと、外部から溶湯Mが内部に流入する流入口101bと、を開口している。而して、図9,図10からわかるように、図11に示す溶湯駆動室構成部5Bを炉本体101の側壁101Aに外側から密閉状態に付設している。また、前に説明した各実施形態と同様に、磁場装置4が、溶湯駆動室構成部5Bの底板5Baを介して、電極7a、7bと図10中横向きに対向するように、設けられている。以上の構成により、電極7a、7b間に流れる電流Iと、磁場装置4からの磁力線MLがほぼ直交する状態で交叉し、図9に示す電磁力Fが得られる。この電磁力Fにより、先に説明したのと同様に、加速空間AS内の溶湯Mは駆動され、炉本体101内の溶湯Mは流出口101aから流出して加速空間AS内に入り込むとともに、加速空間AS内の溶湯Mは流入口101bから炉本体101内に流入する。これにより、炉本体1内の溶湯Mは図9の矢印Aに示すように回転駆動される。
 図12及び図13は第7の実施形態を示す。この第7の実施形態は電極7a、7bと炉本体101との間に磁場装置4を隔離した状態で配置するようにした例を示す。より詳しくは以下の通りである。
 この第7の実施形態においては、炉本体101に対して別体の溶湯駆動兼収納装置105を密閉状態に付設している。この溶湯駆動兼収納装置105は、加速空間ASを備えていわゆる本来の溶湯駆動室構成部としての機能の他に、磁場装置4を収納する収納空間105Aを炉本体101の側壁101Aとの共同で形成するという機能を備える。この収納空間105Aは、当然、溶湯Mに対して隔離された状態にあり、磁場装置4が溶湯Mに触れることはない。
 より詳しくは、図13からわかるように、溶湯駆動兼収納装置105における加速空間AS内には電極7a、7bが図中上下方向に設けられている。図13からわかるようにこの加速空間ASは上方のみが開放しており、図12からわかるように、炉本体101とその流出口101aと流入口101bによって連通している。また、前記収納空間105Aには磁場装置4が収納されている。これにより、特に図13からわかるように、電極7a、7b間の電流Iと、磁場装置4からの磁力線MLとが交わり、電磁力Fが発生し、前述の実施形態と同様に最終的には溶湯Mが図12に示すように矢印Aに沿って駆動される。
 なお、以上に説明した実施形態とは別の実施形態として以下の構成を採ることもできる。即ち、例えば、図2に示す溶湯駆動室構成部5を図中紙面と垂直な軸の回りに連続的に回転可能な構成とすることができる。このような構成により、溶湯駆動室構成部5を回転により図4(b)に示す溶湯駆動室構成部5の向きとすることもできる。この場合には、溶湯駆動室構成部5の向きの変化に追随させて磁場装置4の向きも変化するようにする必要がある。
 図14は本発明のさらに異なる実施形態を示す。この実施形態は、溶湯駆動室構成部の構造を変えることにより、炉本体内の溶湯Mを炉本体外に送出可能な溶湯ポンプを構成した例を示す。簡単には、例えば図1に示す溶湯駆動室構成部5の一端を閉じた溶湯駆動室構成部205を用い、天板部に加速空間ASに連通する吐出管部205aを設けている。
 また、図14中紙面の厚さ方向に一対の電極7a、7b(7aのみ表示)を配置している。これにより、前述と同様に電磁力Fが生じ、溶湯Mは同図に矢印で示すように右から左に駆動され、次いで吐出管部205aの先端から外部に吐出され、受箱207で受けられる。
 以上に説明した各実施形態では、磁場装置4の永久磁石のN極を溶湯駆動室構成部に対向させているが、S極を溶湯駆動室構成部に対向させるようにしても良いのは当然である。
 本発明の実施形態では、駆動室を設けて、この中に設けた一対の電極間に電流Iを流し且つこの電流Iに磁場をかけるようにして、溶湯を効率よく攪拌装置駆動するようにしたことを特徴の1つとしている。一般に、攪拌対象とする物質(本発明では金属溶湯または非鉄金属溶湯)が流体であれば、流体に加えられた力はあらゆる方向に分散してしまう。
 したがって効率よく攪拌することができない。しかるに、本発明者は、攪拌力を限られた空間(駆動室DR)内で溶湯に作用させると、その力の大きさと方向を規定して、溶湯を高効率で駆動することができることに気がついた。本発明はまさにこの本発明者に特有の知得に基づいてなされたものである。実施形態レベルで言えば、この限られた空間(駆動室DR)を筒状あるいはU字型(チャネル型)の溶湯駆動室構成部5によって作り上げている。
 本発明者は本発明の効果を確認する実験を行った。その結果は以下の通りである。
 断面20×40mm、磁場0.1Tにおいて、以下の攪拌流速Vm/minが得られた。
 電流(Amp) 流速(V) 圧力(P)  流量(m 3 /min)(Al換算)
   20Amp   15~20  0.05Kg/cm   0.043~0.057
   40Amp   35~45  0.1 Kg/cm   0.1~0.13
   80Amp   50~60  0.15Kg/cm   0.144~0.173
 電流値及び磁場強度を上げることによりこれら値をさらに向上することができる。より正確には、流速、圧力は電流値に比例すると考えられるが電力供給ケーブルとしての配線9,9と電極7a、7bとの接続状態の安定さ、不安定さにより、バラツキがみられた。
 攪拌対象物質、この場合は金属および非鉄金属溶湯であるが、いずれも電気伝導度は高い(抵抗が小さい)ため、電極間印加電圧は小さなものとなる。このため、消費電力は極めて小さいものに抑えることができる。いわゆる大型炉に本発明を適用してもその値は10Kw以下が推測される。従来型攪拌装置(最も一般的リニヤー式炉底攪拌装置)の場合は500Kw以上の電力消費が必要であったことを考えれば、本発明の永久磁石式溶湯攪拌装置の優位さがわかる。
 以上に述べたように、本発明の実施形態においては、溶湯を駆動するに当たり、駆動室DR(加速空間AS)を区画し、この中で電流Iを流し、電流Iは駆動室DR外に漏れないようにし、この電流Iに磁場をかけて、フレミングの法則に従った電磁力Fを発生させ、この電磁力Fにより、閉じ込められた空間としての駆動室DR内の溶湯Mに駆動力を加えるようにしたので、駆動室DR内の溶湯Mを確実に駆動して、炉本体内の溶湯Mを高効率に回転駆動でき、あるいは、炉本体内の溶湯Mを高効率で外部に汲み出すことができる。

Claims (13)

  1.  溶湯を収納する溶湯室を有する炉本体と、
     前記炉本体内の前記溶湯を攪拌するための攪拌装置と、
     を備え、
     前記攪拌装置は、
     前記溶湯室内に配置されて、溶湯に駆動力を与えるための且つ両端が開放した駆動室を形成する、溶湯駆動室構成部と、
     前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
     前記炉本体外に配置された永久磁石で構成した磁場装置であって、N極及びS極の一方の極が前記炉本体に対向しており、前記一方の極からの磁力線が、前記電流と交差して、前記駆動室内において、溶湯を一端から他端に向けて駆動する電磁力を発生させる、磁場装置と、
     を備えることを特徴とする永久磁石式溶湯攪拌装置。
  2.  前記溶湯駆動室構成部は、単独で前記駆動室を構成している、ことを特徴とする請求項1に記載の永久磁石式溶湯攪拌装置。
  3.  前記溶湯駆動室構成部は、前記炉本体の内壁との協同により前記駆動室を構成している、ことを特徴とする請求項1に記載の永久磁石式溶湯攪拌装置。
  4.  前記溶湯駆動室構成部は、両端が開放した筒状として構成されていることを特徴とする請求項2に記載の永久磁石式溶湯攪拌装置。
  5.  前記溶湯駆動室構成部は、チャネル状として構成されていることを特徴とする請求項3に記載の永久磁石式溶湯攪拌装置。
  6.  前記一対の電極は、前記駆動室を横切って対向するように、前記駆動室内に取り付けられている、ことを特徴とする請求項1記載の永久磁石式溶湯攪拌装置。
  7.  前記一対の電極は縦方向に対向するように設けられ、前記磁場装置は前記炉本体の側壁に対向して配置されて横向きに磁力線を出す/磁力線が入るように構成され、これにより前記電磁力を横向きのものとして発生させる、ことを特徴とする請求項6に記載の永久磁石式溶湯攪拌装置。
  8.  前記一対の電極は横方向に対向するように設けられ、前記磁場装置は前記炉本体の側壁に対向して配置されて横向きに磁力線を出す/磁力線が入るように構成され、これにより前記電磁力を縦向きのものとして発生させる、ことを特徴とする請求項6に記載の永久磁石式溶湯攪拌装置。
  9.  前記一対の電極は横方向に対向するように設けられ、前記磁場装置は前記炉本体の底壁に対向して配置されて縦向きに磁力線を出す/磁力線が入るように構成され、これにより前記電磁力を横向きのものとして発生させる、ことを特徴とする請求項6に記載の永久磁石式溶湯攪拌装置。
  10.  前記駆動室における前記両端間の距離が、前記一対の電極間の距離以上である、ことを特徴とする請求項1乃至9の1つに記載の永久磁石式溶湯攪拌装置。
  11.  溶湯を収納する溶湯室を有する炉本体と、
     前記炉本体内の前記溶湯を攪拌するための攪拌装置と、
     を備え、
     前記攪拌装置は、
     前記炉本体外に配置されて、前記炉本体の外側壁との協同によって駆動室を形成する溶湯駆動室構成部であって、前記駆動室は前記溶湯室と、前記側壁に開口された溶湯の流出口及び流入口を介して連通している、溶湯駆動室構成部と、
     前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
     前記炉本体外及び前記溶湯駆動室構成部外に配置された永久磁石で構成した磁場装置であって、N極及びS極の一方の極が前記溶湯駆動室構成部に対向しており、前記一方の極からの磁力線が、前記電流と交差して、溶湯を、前記駆動室から前記溶湯室に流入させると共に前記溶湯室から前記駆動室に流出させる、電磁力を発生させる、磁場装置と、
     を備えることを特徴とする永久磁石式溶湯攪拌装置。
  12.  溶湯を収納する溶湯室を有する炉本体と、
     前記炉本体内の前記溶湯を攪拌するための攪拌装置と、
     を備え、
     前記攪拌装置は、
     前記炉本体外に配置され且つ駆動室を有する溶湯駆動室構成部であって、前記駆動室は前記溶湯室と、前記炉本体の側壁に開口された溶湯の流出口及び流入口を介して連通している、溶湯駆動室構成部と、
     前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
     前記溶湯駆動室構成部と前記炉本体の側壁とによって溶湯から隔離された状態に形成された磁場装置の収納空間内に収納された永久磁石で構成した磁場装置であって、
      N極及びS極の一方の極が前記溶湯駆動室構成部における前記駆動室に対向しており、
      前記一方の極からの磁力線が、前記電流と交差して、溶湯を、前記駆動室から前記溶湯室に流入させると共に前記溶湯室から前記駆動室に流出させる、電磁力を発生させる、
     磁場装置と、
     を備えることを特徴とする永久磁石式溶湯攪拌装置。
  13.  溶湯を収納する溶湯室を有する炉本体と、
     前記炉本体内に配置され、前記溶湯を外部に汲み出すポンプ装置と、
     を備え、
     前記ポンプ装置は、
     溶湯に駆動力を与えるための溶湯駆動室構成部であって、一端が前記溶湯室内において開放し、他端が前記溶湯室外に開放する、駆動室を形成する、溶湯駆動室構成部と、
     前記駆動室内に配置され、溶湯の存在下において、前記駆動室内に電流を流すための、一対の電極と、
     前記炉本体外に配置された永久磁石で構成した磁場装置であって、N極及びS極の一方の極が前記炉本体に対向しており、前記一方の極からの磁力線が、前記電流と交差して、前記駆動室内において、溶湯を一端から他端に向けて駆動する電磁力を発生させる、磁場装置と、
     を備えることを特徴とする永久磁石式汲み出しポンプ付溶解炉。
PCT/JP2012/078636 2012-08-08 2012-11-05 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉 WO2014024330A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/111,130 US9593884B2 (en) 2012-08-08 2012-11-05 Permanent magnet type cylindrical molten-metal agitator and melting furnace with permanent magnet type suction pump
KR1020137023852A KR101644978B1 (ko) 2012-08-08 2012-11-05 영구 자석식 통형 용탕 교반 장치 및 영구 자석식 양수 펌프 부착 용해로
CA2831598A CA2831598C (en) 2012-08-08 2012-11-05 Permanent magnet type cylindrical molten-metal agitator and melting furnace with permanent magnet type suction pump
EP12868335.6A EP2708839B1 (en) 2012-08-08 2012-11-05 Permanent magnet type cylindrical molten metal stirring device, and melting furnace
AU2012365869A AU2012365869B2 (en) 2012-08-08 2012-11-05 Permanent magnet type cylindrical molten metal stirring device, and melting furnace with permanent magnet type suction pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012176275A JP5819270B2 (ja) 2012-08-08 2012-08-08 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉
JP2012-176275 2012-08-08

Publications (1)

Publication Number Publication Date
WO2014024330A1 true WO2014024330A1 (ja) 2014-02-13

Family

ID=49584574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078636 WO2014024330A1 (ja) 2012-08-08 2012-11-05 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉

Country Status (7)

Country Link
US (1) US9593884B2 (ja)
EP (1) EP2708839B1 (ja)
JP (1) JP5819270B2 (ja)
KR (1) KR101644978B1 (ja)
CN (2) CN103575121B (ja)
AU (1) AU2012365869B2 (ja)
WO (1) WO2014024330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021100765A (ja) * 2019-12-24 2021-07-08 株式会社ヂーマグ 金属溶湯駆動装置および金属溶湯駆動方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819270B2 (ja) * 2012-08-08 2015-11-18 高橋 謙三 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉
JP5551297B1 (ja) 2013-08-08 2014-07-16 高橋 謙三 攪拌装置付き連続鋳造用鋳型装置
JP5815763B2 (ja) 2014-01-24 2015-11-17 高橋 謙三 永久磁石式溶湯攪拌装置及びそれを有する溶解炉並びに連続鋳造装置
JP6033807B2 (ja) * 2014-03-27 2016-11-30 高橋 謙三 金属溶湯攪拌装置及び金属溶湯移送装置
CA2949837C (en) 2014-05-21 2021-07-13 Novelis Inc. Mixing eductor nozzle and flow control device
JP5948405B1 (ja) 2014-12-26 2016-07-06 高橋 謙三 導電性金属の駆動方法及び駆動装置
JP6039010B1 (ja) * 2015-04-23 2016-12-07 高橋 謙三 導電性金属溶解炉及びそれを備えた導電性金属溶解炉システム並びに導電性金属溶解方法
PL3086069T3 (pl) * 2015-04-23 2019-11-29 Digimet 2013 Sl Piec do topienia i obróbki metalu i odpadów metalu oraz jego sposób
EP3306245B1 (en) * 2015-06-03 2020-09-09 Kenzo Takahashi Conductive metal melting furnace, conductive metal melting furnace system equipped with same, and conductive metal melting method
JP6445201B2 (ja) * 2017-04-13 2018-12-26 高橋 謙三 溶湯攪拌装置及びそれを備えた連続鋳造装置システム
WO2018190387A1 (ja) * 2017-04-13 2018-10-18 謙三 高橋 溶湯攪拌装置及びそれを備えた連続鋳造装置システム
AT521190B1 (de) * 2018-04-27 2021-08-15 Fill Gmbh Verfahren zum Gießen einer Schmelze eines metallischen Werkstoffes, sowie zum Durchführen des Verfahrens ausgebildete Gießvorrichtung
KR102478006B1 (ko) 2020-12-03 2022-12-15 정승찬 자동차 긴급 제동장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189229A (ja) * 2005-01-07 2006-07-20 Kenzo Takahashi 攪拌装置及び攪拌装置付溶解炉
JP2006349293A (ja) * 2005-06-17 2006-12-28 Kenzo Takahashi 攪拌装置付溶解炉及び溶解炉用攪拌装置
JP4245673B2 (ja) 1996-11-14 2009-03-25 高橋 謙三 攪拌装置付きアルミ溶解炉、溶融アルミ攪拌装置及び溶湯アルミ攪拌方法
JP4376771B2 (ja) 2004-12-22 2009-12-02 高橋 謙三 攪拌装置
JP2011139611A (ja) * 2009-12-28 2011-07-14 Kenzo Takahashi 非鉄金属溶湯ポンプ
JP2011237056A (ja) * 2010-05-06 2011-11-24 Sanken Sangyo Co Ltd 非鉄金属用溶解炉及び非鉄金属の溶解方法
JP2011257129A (ja) * 2011-07-04 2011-12-22 Kenzo Takahashi 攪拌装置付溶解炉及び溶解炉用攪拌装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857678B2 (ja) * 1976-02-14 1983-12-21 株式会社東芝 電磁撹拌装置
KR100419757B1 (ko) * 2001-08-22 2004-02-21 김춘식 연속주조장치에 있어서의 전자기 교반장치
GB0213848D0 (en) * 2002-06-15 2002-07-24 Stein Atkinson Strody Ltd Furnace
US20040234379A1 (en) 2003-05-22 2004-11-25 Nanocoolers, Inc. Direct current magnetohydrodynamic pump configurations
KR101213559B1 (ko) 2004-12-22 2012-12-18 겐조 다카하시 교반장치 및 방법과, 그 교반장치를 이용한 교반장치 부착용해로
JP4772407B2 (ja) * 2005-07-15 2011-09-14 高橋 謙三 溶湯搬送装置
CN100373120C (zh) * 2006-01-16 2008-03-05 山东华特磁电科技股份有限公司 超强永磁旋流搅拌器
LV13636B (en) 2006-04-19 2007-12-20 Gors Sia Technique and device for inductive mixing of liquid metal
US7651656B2 (en) * 2006-07-20 2010-01-26 Kenzo Takahashi Melting furnace with agitator and agitator for melting furnace
CN101258376B (zh) * 2006-07-20 2012-07-04 高桥谦三 带搅拌装置的熔解炉以及熔解炉用搅拌装置
CN200963579Y (zh) * 2006-11-02 2007-10-24 潍坊华特磁电设备有限公司 循环式永磁搅拌器
CN100516253C (zh) * 2007-07-10 2009-07-22 山东华特磁电科技股份有限公司 一种搅拌熔池及其在线设置方法
CN201104121Y (zh) * 2007-10-15 2008-08-20 曹建光 永磁搅拌合金电熔炉
JP5242254B2 (ja) * 2008-06-25 2013-07-24 高橋 謙三 アルミニウム溶解炉及びアルミニウム溶解炉付溶解炉システム
JP5646138B2 (ja) * 2008-06-27 2014-12-24 高橋 謙三 攪拌装置付溶解炉
JP5163615B2 (ja) * 2008-10-29 2013-03-13 トヨタ自動車株式会社 撹拌装置、溶解装置および溶解方法
JP4995234B2 (ja) * 2008-12-26 2012-08-08 株式会社ヂーマグ 非鉄金属溶湯ポンプ及びそれを用いた非鉄金属溶解炉
US8420008B2 (en) 2009-09-30 2013-04-16 Novelis Inc. Side well for metal melting furnace
JP5546974B2 (ja) 2010-04-07 2014-07-09 株式会社ヂーマグ 非鉄金属溶湯ポンプ及びそれを用いた溶解炉システム
JP5669509B2 (ja) 2010-07-16 2015-02-12 高橋 謙三 攪拌装置付き連続鋳造用鋳型装置
CN201844702U (zh) * 2010-11-02 2011-05-25 山东华特磁电科技股份有限公司 斜向流动搅拌熔炉
JP5819270B2 (ja) 2012-08-08 2015-11-18 高橋 謙三 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245673B2 (ja) 1996-11-14 2009-03-25 高橋 謙三 攪拌装置付きアルミ溶解炉、溶融アルミ攪拌装置及び溶湯アルミ攪拌方法
JP4376771B2 (ja) 2004-12-22 2009-12-02 高橋 謙三 攪拌装置
JP2006189229A (ja) * 2005-01-07 2006-07-20 Kenzo Takahashi 攪拌装置及び攪拌装置付溶解炉
JP2006349293A (ja) * 2005-06-17 2006-12-28 Kenzo Takahashi 攪拌装置付溶解炉及び溶解炉用攪拌装置
JP2011139611A (ja) * 2009-12-28 2011-07-14 Kenzo Takahashi 非鉄金属溶湯ポンプ
JP2011237056A (ja) * 2010-05-06 2011-11-24 Sanken Sangyo Co Ltd 非鉄金属用溶解炉及び非鉄金属の溶解方法
JP2011257129A (ja) * 2011-07-04 2011-12-22 Kenzo Takahashi 攪拌装置付溶解炉及び溶解炉用攪拌装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2708839A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021100765A (ja) * 2019-12-24 2021-07-08 株式会社ヂーマグ 金属溶湯駆動装置および金属溶湯駆動方法
JP7315218B2 (ja) 2019-12-24 2023-07-26 株式会社ヂーマグ 金属溶湯駆動装置および金属溶湯駆動方法

Also Published As

Publication number Publication date
CN103575121B (zh) 2015-12-23
US20140079561A1 (en) 2014-03-20
KR20140049978A (ko) 2014-04-28
EP2708839B1 (en) 2016-09-21
JP2014035131A (ja) 2014-02-24
JP5819270B2 (ja) 2015-11-18
AU2012365869A1 (en) 2014-02-27
CN203550641U (zh) 2014-04-16
CN103575121A (zh) 2014-02-12
EP2708839A1 (en) 2014-03-19
US9593884B2 (en) 2017-03-14
AU2012365869B2 (en) 2016-01-14
EP2708839A4 (en) 2014-10-29
KR101644978B1 (ko) 2016-08-02

Similar Documents

Publication Publication Date Title
WO2014024330A1 (ja) 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉
JP2014035131A5 (ja)
EP2381201B1 (en) Non-ferrous metal melt pump and non-ferrous metal melting furnace using the same
JP2006349293A (ja) 攪拌装置付溶解炉及び溶解炉用攪拌装置
CA2578691C (en) Melting furnace with agitator and agitator for melting furnace
US6703742B1 (en) Electric motor with rotor being a drive wheel
CN210669854U (zh) 电磁泵、散热系统和电子设备
JP5474879B2 (ja) 攪拌装置付金属溶解炉
CA2831598C (en) Permanent magnet type cylindrical molten-metal agitator and melting furnace with permanent magnet type suction pump
JP2007336746A (ja) 流体送り装置
WO2022138198A1 (ja) 金属溶湯ポンプ
US10281216B2 (en) Molten metal stirring device and molten metal transfer device
CN220056310U (zh) 采用电磁力直接控制含有颗粒的导电液体流速的装置
CN201688718U (zh) 有色金属冶炼泵及所使用的有色金属冶炼炉
JP2021100765A (ja) 金属溶湯駆動装置および金属溶湯駆動方法
KR20220045382A (ko) 하모닉 드라이브 일체형 자성 유체 밀봉 장치
PT91565B (pt) Dispositivo para bombear metal fundido de um reservatorio
JP2015209794A (ja) 液体ポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012365869

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2012868335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012868335

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137023852

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111130

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE