JP7315218B2 - 金属溶湯駆動装置および金属溶湯駆動方法 - Google Patents

金属溶湯駆動装置および金属溶湯駆動方法 Download PDF

Info

Publication number
JP7315218B2
JP7315218B2 JP2019233175A JP2019233175A JP7315218B2 JP 7315218 B2 JP7315218 B2 JP 7315218B2 JP 2019233175 A JP2019233175 A JP 2019233175A JP 2019233175 A JP2019233175 A JP 2019233175A JP 7315218 B2 JP7315218 B2 JP 7315218B2
Authority
JP
Japan
Prior art keywords
inner cylinder
molten metal
cylinder
driving device
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019233175A
Other languages
English (en)
Other versions
JP2021100765A (ja
Inventor
謙三 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zmag Ltd
Original Assignee
Zmag Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zmag Ltd filed Critical Zmag Ltd
Priority to JP2019233175A priority Critical patent/JP7315218B2/ja
Publication of JP2021100765A publication Critical patent/JP2021100765A/ja
Application granted granted Critical
Publication of JP7315218B2 publication Critical patent/JP7315218B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

本発明は、金属溶湯駆動装置および金属溶湯駆動方法に関し、より詳しくは、炉内に設置された状態で炉内の金属溶湯を外部に汲み出すための金属溶湯駆動装置、および当該金属溶湯駆動装置を用いた金属溶湯駆動方法に関する。
従来、アルミニウム等の非鉄金属を溶解する溶解炉、あるいは非鉄金属の溶湯(以下、単に「金属溶湯」ともいう。)を保持する保持炉から外部に金属溶湯を搬送する方式として、(i)回転羽根を用いて金属溶湯を駆動するメカニカル式、(ii)電磁力により金属溶湯を駆動する電磁ポンプ式、(iii)現在最も普及しているタップ式が知られている。タップ式では、炉の貫通孔に差し込まれている鉄製のタップ(栓)を抜くことで、炉内の金属溶湯を外部に排出する。
なお、特許文献1には、炉内の金属溶湯に下部を部分的に浸漬した状態で使用される金属溶湯駆動装置(非鉄金属溶湯ポンプ)が記載されている。この装置は、電動機で永久磁石を回転させる構成を有し、永久磁石を回転させることで、ポンプ室内の金属溶湯に渦電流を発生させて金属溶湯を回転させる。金属溶湯に作用する遠心力によりポンプ室内の金属溶湯はその外周部分が高圧となるため、ポンプ室から流出し外部に排出される。
特開2011-139611号公報
ところで、炉内の非鉄金属の溶湯は、高温(例えば700℃以上)であり、活性が極めて強い。このため、金属溶湯の搬送においては熱と腐食の問題を解決する必要がある。
メカニカル式では、回転羽根が金属溶湯に直接接触するため、その損傷が激しく、比較的短期間で修理または交換する必要がある。このため、ランニングコストや信頼性の点で問題がある。
電磁ポンプ式では、電磁コイルに大電力を流すため消費電力が大きい。また、コイル自身がジュール熱により発熱するため、大がかりな冷却装置を設けることが必要となる。
タップ式では、人手による作業が欠かせないため、安全面で重大な問題を抱えている。近年、活性の極めて強い非鉄金属溶湯を扱う際の安全性確保がより重視されてきている。このため、非鉄金属製品の製造全般おいて人手の介在をできるだけ回避するための技術の開発が求められている。
上記のように、メカニカル式、電磁ポンプ式およびタップ式のいずれの方式も、コストや信頼性、安全性の点で課題を抱えている。
また、従来、金属溶湯を収納した炉内に金属溶湯駆動装置を設置するのに長時間を要するという課題がある。より詳しくは、炉内の金属溶湯の温度は高温であるところ、熱衝撃による破損を防止するために、金属溶湯駆動装置を長時間(例えば数時間以上)かけてゆっくりと金属溶湯中に浸漬させて設置する必要がある。このため、金属溶湯駆動装置の導入ないし交換時には非鉄金属製品の製造ラインを長時間止めざるを得ず、ダウンタイムロスが大きいという課題があった。
本発明は、上記の技術的な認識に基づいてなされたものであり、その目的は、金属溶湯を収納した炉内に短時間で設置可能であるとともに、経済的で安全かつ信頼性の高い金属溶湯駆動装置、および当該金属溶湯駆動装置を用いた金属溶湯駆動方法を提供することを目的とする。
本発明の第1の態様に係る金属溶湯駆動装置は、
バス内の金属溶湯を汲み上げて前記バスの外部に吐出する金属溶湯駆動装置であって、
外筒と、前記外筒の内部に同軸に収納された内筒と、前記内筒の下側開口部に連通接続する溶湯取込口が設けられ、前記外筒の下側開口部を閉塞する底板と、を有する基体と、
導電性材料で構成された第1および第2の引出線体と、
前記外筒と前記内筒により画成される磁場装置収納空間内に収納され、前記内筒の内部の内筒内空間を挟んで横向きに対向するN極部およびS極部を有する磁場装置と、
を備え、
前記内筒は、互いに別体で順次積層された内筒下側部と内筒中間部と内筒上側部とを有し、
前記内筒下側部および前記内筒上側部は非導電性材料で構成され、前記内筒中間部は導電性材料で構成され、
前記第1の引出線体は、前記内筒中間部の第1の接続部に電気的に接続され、前記第2の引出線体は、前記内筒内空間を挟んで前記第1の接続部と横方向に向かい合う前記内筒中間部の第2の接続部に電気的に接続されており、
前記内筒内空間に金属溶湯が存在しない予備加熱状態においては、前記第1の引出線体と前記第2の引出線体との間に前記内筒中間部を通って電流が流れることで前記内筒中間部にジュール熱が発生するように構成されており、前記バス内に前記金属溶湯駆動装置が設置され、前記内筒内空間に前記内筒中間部の電気抵抗よりも抵抗値の小さな金属溶湯が存在する稼働状態においては、前記第1の引出線体と前記第2の引出線体との間に前記金属溶湯を介してバイパス電流が流れ、前記N極部から前記S極部に走る磁力線と前記バイパス電流とが交差してローレンツ力を発生させ、このローレンツ力が前記金属溶湯を駆動して前記内筒内空間において上動させるように構成されている、
ことを特徴とする。
本発明の第2の態様に係る金属溶湯駆動装置は、
バス内の金属溶湯を汲み上げて前記バスの外部に吐出する金属溶湯駆動装置であって、
外筒と、前記外筒の内部に同軸に収納された内筒と、前記内筒の下側開口部に連通接続する溶湯取込口が設けられ、前記外筒の下側開口部を閉塞する底板と、を有する基体と、
導電性材料で構成された第1および第2の引出線体と、
前記外筒と前記内筒により画成される磁場装置収納空間内に収納され、前記内筒の内部の内筒内空間を挟んで横向きに対向するN極部およびS極部を有する磁場装置と、
を備え、
前記内筒は非導電性材料で構成され、
前記第1の引出線体は、その先端部が前記内筒の内周面に露出するように、前記内筒の第1の接続部に電気的に接続され、前記第2の引出線体は、その先端部が前記内筒の内周面に露出するように、前記内筒内空間を挟んで前記第1の接続部と横方向に向かい合う前記内筒の第2の接続部に電気的に接続され、
前記内筒内空間に金属溶湯が存在しない予備加熱状態においては、外部から前記内筒内空間に取り入れられた空気を加熱手段で加熱し前記内筒内空間を流動させるように構成されており、前記バス内に前記金属溶湯駆動装置が設置され、前記内筒内空間に前記内筒中間部の電気抵抗よりも抵抗値の小さな金属溶湯が存在する稼働状態においては、前記第1の引出線体と前記第2の引出線体との間に前記金属溶湯を介してバイパス電流が流れ、前記N極部から前記S極部に走る磁力線と前記バイパス電流とが交差してローレンツ力を発生させ、このローレンツ力が前記金属溶湯を駆動して前記内筒内空間において上動させるように構成されている、
ことを特徴とする。
本発明に係る金属溶湯駆動方法は、
バス内に設置された金属溶湯駆動装置を用いて前記バス内の金属溶湯を汲み上げて前記バスの外部に吐出する金属溶湯駆動方法であって、
前記金属溶湯駆動装置は、
外筒と、前記外筒の内部に同軸に収納された内筒と、前記内筒の下側開口部に連通接続する溶湯取込口が設けられ、前記外筒の下側開口部を閉塞する底板と、を有する基体と、
導電性材料で構成された第1および第2の引出線体と、
前記外筒と前記内筒により画成される磁場装置収納空間内に収納され、前記内筒の内部の内筒内空間を挟んで横向きに対向するN極部およびS極部を有する磁場装置と、を備え、
前記内筒は、互いに別体で順次積層された内筒下側部と内筒中間部と内筒上側部とを有し、
前記内筒下側部および前記内筒上側部は非導電性材料で構成され、前記内筒中間部は導電性材料で構成され、
前記第1の引出線体は、前記内筒中間部の第1の接続部に電気的に接続され、前記第2の引出線体は、前記内筒内空間を挟んで前記第1の接続部と横方向に向かい合う前記内筒中間部の第2の接続部に電気的に接続されており、
前記金属溶湯駆動方法は、
前記内筒内空間に金属溶湯が存在しない予備加熱状態において、前記第1の引出線体と前記第2の引出線体との間に前記内筒中間部を通る電流を流すことにより、前記内筒中間部にジュール熱を発生させ、
前記予備加熱された金属溶湯駆動装置を前記バス内の金属溶湯に部分的に浸漬し、
前記内筒内空間に前記内筒中間部の電気抵抗よりも抵抗値の小さな金属溶湯が存在する稼働状態において、前記第1の引出線体と前記第2の引出線体との間に前記金属溶湯を介してバイパス電流を流すことにより、前記N極部から前記S極部に走る磁力線と前記バイパス電流とが交差して発生するローレンツ力により前記金属溶湯を駆動して前記内筒内空間において上動させる、
ことを特徴とする。
実施形態に係る金属溶湯駆動システムの概略図である。 実施形態に係る金属溶湯駆動装置の縦断面図である。 図2のI-I線に沿う横断面図である。 実施形態に係る内筒の縦断面図である。 図4AのII-II線に沿う横断面図である。 内筒中間部および引出線体を示す一部断面図である。 変形例に係る内筒中間部の横断面図である。 予備加熱状態における一対の引出線体間を流れる電流の経路を示す図である。 稼働状態における一対の引出線体間を流れる電流(バイパス電流)の経路を示す図である。 変形例に係る内筒中間部および引出線体を示す一部断面図である。 実施形態に係る金属溶湯駆動方法を示すフローチャートである。 予備加熱状態における熱の伝播経路を示す図である。 稼働状態における内筒中間部の横断面図である。 稼働状態における金属溶湯および冷却用空気の移動経路を示す図である。
以下、本発明に係る実施形態について図面を参照しながら説明する。なお、各図においては、同等の機能を有する構成要素に同一の符号を付している。
<金属溶湯駆動装置の設置態様>
まず、図1を参照して、本実施形態に係る金属溶湯駆動装置1のバス100内への設置態様について説明する。
本実施形態に係る金属溶湯駆動装置1は、図1に示すように、バス100内の金属溶湯Mに下部を部分的に浸漬した状態で使用される。
金属溶湯駆動装置1は、バス100内に設置された状態で、バス100の金属溶湯Mを汲み上げて別の炉(受炉)200に注ぐ、炉内設置型ポンプとして機能する。受炉200には、バス100から搬送された金属溶湯M’が溜まっている。後ほど詳しく説明するように、金属溶湯駆動装置1は、内筒12内に浸入した金属溶湯Mに上向きのローレンツ力を作用させて上方に駆動するように構成されている。
なお、金属溶湯は、非鉄金属の溶湯であり、金属(例えばAl,Cu,Zn,Si)、または合金(例えばAl,Cu,ZnおよびSiのうち少なくとも2つからなる合金、またはマグネシウム合金)の溶湯である。
また、バス100の種類は、特に限定されず、例えば、溶解炉、保持炉および溶解保持炉のいずれであってもよい。
図1に示すように、金属溶湯駆動装置1には、ブロワー60および電源装置80が接続されている。ブロワー60は、金属溶湯駆動装置1内に、磁場装置30を冷却するための空気を送り込むためのものである。電源装置80は、ケーブル71,72を介して後述の引出線体(電極)21,22に接続されており、引出線体21と引出線体22間に電流を流すためのものである。本実施形態では、電源装置80は電源制御盤として構成されている。
また、溶湯レベルセンサ90は、バス100内の金属溶湯Mの湯面の高さ(湯面レベル)を計測するために設けられている。この溶湯レベルセンサ90は電源装置80に接続されている。電源装置80は、溶湯レベルセンサ90により計測された湯面の高さに応じて、出力する電流値を変化させる。より詳しくは、電源装置80は、バス100内の金属溶湯Mの湯面レベルに応じて後述のバイパス電流Ibの大きさを変化させる。
<<金属溶湯駆動装置の詳細構成>>
次に、図2~図8を参照して、本実施形態に係る金属溶湯駆動装置1の詳細について説明する。
図2は、本実施形態に係る金属溶湯駆動装置1の縦断面図である。図3は、図2のI-I線に沿う横断面図である。図4Aは、実施形態に係る内筒12の縦断面図であり、図4Bは図4AのII-II線に沿う横断面図である。図5は、内筒中間部12bおよび引出線体21,22を示す一部断面図である。図6は、変形例に係る円筒状の内筒中間部12bの横断面図である。図7は、予備加熱状態における引出線体21,22間を流れる電流Iaの経路を示す図である。図8は、稼働状態における引出線体21,22間を流れるバイパス電流Ibの経路を示す図である。
金属溶湯駆動装置1は、バス100内の金属溶湯Mを汲み上げて溶湯吐出口P1からバス100の外部に吐出するように構成されている。
金属溶湯駆動装置1は、図2に示すように、基体10と、一対の引出線体21,22と、磁場装置30と、ヒータ50と、を備えている。
<基体10の構成>
基体10は、耐火材容器であり、外筒11と、内筒12と、底板13と、外筒蓋部14と、吐出筒部15と、内筒蓋部16と、支持筒17と、複数の脚部19と、を有する。この基体10は耐火材(例えばシリコンカーバイド(SiC))から構成される。以下、基体10の構成要素ごとに詳しく説明する。
外筒11は筒状の部材である。本実施形態では、外筒11は円柱状であるが、これに限られず角柱状であってもよい。図2に示すように、外筒11の内周面を覆うように断熱材41が設けられている。これにより、外筒11の外部の熱(すなわち、バス100内の金属溶湯Mの熱)が磁場装置収納空間S1に伝わることを可及的に抑制することができる。
内筒12は、筒状の部材であり、外筒11の内部に同軸に収納されている。外筒11と内筒12により二重筒構造が形成されている。なお、内筒12は図2に示すように角柱状であることが好ましいが、他の形状(例えば円柱状)であってもよい。
内筒12の内部の空間(内筒内空間)S2は、金属溶湯Mの流路となる。外筒11と内筒12により、磁場装置30が収納される磁場装置収納空間S1が画成される。
内筒12の外周面を覆うように断熱材42が設けられている。これにより、内筒内空間S2の金属溶湯Mの熱が磁場装置収納空間S1に伝わることを可及的に抑制することができる。
内筒12は、図4Aに示すように、互いに別体で順次積層された内筒下側部12aと内筒中間部12bと内筒上側部12cとを有する。内筒下側部12aは底板13の溶湯取込口13aと連通接続されている。本実施形態では、内筒12の中心軸が溶湯取込口13aの中心を通る。
内筒中間部12bは、内筒下側部12aの上に積層されている。この内筒中間部12bは、内筒内空間S2に浸入した金属溶湯Mを上方に駆動するエンジン部として機能する。なお、内筒中間部12bの高さ位置は、金属溶湯駆動装置1がバス100内に設置された状態において、金属溶湯M中に沈む高さに設定されている(図13参照)。
内筒上側部12cは内筒中間部12bの上に積層されている。この内筒上側部12cには、接続口P5が設けられている。内筒上側部12cの上側開口部は内筒蓋部16により閉塞されている。
内筒下側部12aおよび内筒上側部12cは非導電性材料、詳しくは非導電性の耐火材で構成されている。
内筒中間部12bは、導電性材料、詳しくは、導電性の耐火材で構成されている。より詳しくは、内筒中間部12bは、引出線体21,22間の通電により発熱し、耐火性のある、純カーボン等の自己発熱型の導電性耐火材によって構成されている。内筒中間部12bの電気抵抗値は、内筒内空間S2に金属溶湯Mが存在する状態(稼働状態)において引出線体21,22間の電流が当該金属溶湯Mを通って流れるように(図8、図12参照)、金属溶湯Mの電気抵抗値よりも大きい値に設定されている。
内筒下側部12aと内筒中間部12bとの間の接続、および内筒中間部12bと内筒上側部12cとの間の接続は、例えば、ほぞ継ぎにより行う。なお、接続方法はこれに限定されない。他の例としては、一方の接合部分をテーパー状に尖らせ、他方の接合部分をすり鉢状に凹ませておき、両者を嵌合させて接続するようにしてもよい。内筒中間部12bが個別に取り外し可能に構成されることで、他の部材に比べて劣化し易い内筒中間部12bを定期的に交換することが可能となる。これにより、金属溶湯駆動装置1の信頼性を大幅に向上させることができる。
図4Bに示すように、内筒中間部12bの横断面は長方形状である。互いに対向する短辺に接続孔H1と接続孔H2が設けられている。接続孔H1,H2は、図5に示すように、内筒中間部12bの上面から途中まで穿孔されている。本実施形態では、接続孔H1,H2はネジ穴(雌ねじ)として構成されている。先端部が雄ネジとして構成された引出線体21,22は接続孔H1,H2に螺合している。
なお、図5では、接続孔H1,H2は、内筒中間部12bの途中まで穿孔されているが、内筒中間部12bを縦方向に貫通するように穿孔されてもよい。
また、接続孔H1,H2は雌ねじでなくてもよい。例えば、内壁が平坦な接続孔に引出線体21,22が挿入されて内筒中間部12bに電気的に接続されるようにしてもよい。この場合、引出線体21,22と内筒中間部12bとの間の電気的接続を確実に確保するために、接続孔H1,H2に低融点金属を注入してもよい。
接続孔H1と接続孔H2が内筒中間部12bの長方形状の対向する短辺にそれぞれ設けられることにより、後述のバイパス電流Ibが引出線体21,22間を長辺に沿って比較的平行に流れるため(図8参照)、ローレンツ力(すなわち、金属溶湯の駆動力)の大きさを制御することが容易となる。
また、内筒中間部12bの横断面は矩形状に限られず、例えば、図6に示すように円形状であってもよい。この場合においても、接続孔H1,H2は、内筒内空間S2を挟んで向かい合う位置に設けられることが好ましい。
底板13は、図2に示すように、内筒12の下側開口部に連通接続する溶湯取込口13aが設けられている。この底板13は、外筒11の下側開口部であって、内筒12の下側開口部以外の部分(すなわち、外筒11と内筒12で挟まれた環状の部分)を閉塞する。バス100内の金属溶湯Mは溶湯取込口13aを通って内筒内空間S2に浸入する。
なお、図2に示すように、底板13の内面を覆うように断熱材44が設けられている。これにより、外筒11の外部の熱(すなわち、バス100内の金属溶湯Mの熱)が磁場装置収納空間S1に伝わることを可及的に抑制することができる。
また、底板13の下面には複数の脚部19が設けられている。例えば、底板13の中心(溶湯取込口13a)から等距離の位置に4つの脚部19が設けられる。
外筒蓋部14は、図2に示すように、中央部分に設けられた開口に内筒12が挿通されており、外筒11の上側開口部を閉塞する。外筒蓋部14の内面を覆うように断熱材43が設けられている。これにより、外筒蓋部14の外部の熱が磁場装置収納空間S1に伝わることを可及的に抑制することができる。
外筒蓋部14には、磁場装置収納空間S1に連通する空気取入口P3が設けられている。この空気取入口P3にブロワー60が接続されている。そのため、ブロワー60が送出された冷却用の空気は、空気取入口P3を通って磁場装置収納空間S1に送り込まれる。
吐出筒部15は、内筒12の接続口P5を介して内筒上側部12cに接続し、略横方向に延在する筒状の部材である。この吐出筒部15は、ローレンツ力により内筒内空間S2を上動した金属溶湯Mを溶湯吐出口P1から外部に吐出する。
図2に示すように、吐出筒部15には、外部の空気を吐出筒部15の内部に取り入れるための空気取入口P2と、空気取入口P2から外部の空気が取り入れられる際に溶湯吐出口P1を閉塞する吐出口蓋15aとが設けられている。詳しくは後述するが、予備加熱を行う際に吐出口蓋15aを閉じた状態で、空気取入口P2を介してブロワー(図示せず)の空気を取り入れることで、内筒内空間S2に空気を流動させる。
内筒蓋部16は、図2に示すように、内筒12の内筒上側部12cの上側開口部を閉塞する。この内筒蓋部16には、内筒12内の空気を加熱するためのヒータ50が挿入されている。
支持筒17は、図2に示すように、内筒12を収容し且つ磁場装置30を吊持する。本実施形態では、支持筒17は、外筒蓋部14の中央部分に設けられた開口(挿通孔)の内端面に固定されている。支持筒17は内筒12よりも太径で、その内部に内筒12が同軸に収納されている。磁場装置30は支持筒17の外周に固定され吊持されている。
なお、支持筒17は、ラック&ピニオン等の昇降機構(図示せず)を介して外筒蓋部14に接続されることで、昇降機構により上下動可能に構成されてもよい。これにより、磁場装置30の高さ位置を変更することができ、内筒中間部12bを横方向に貫通する磁力線の数を容易に調整することができる。その結果、電源装置80の出力電流を変えずとも、金属溶湯に作用するローレンツ力を調整することができるようになる。
また、支持筒17の内周面を覆うように断熱材(図示せず)が設けられてもよい。これにより、内筒内空間S2の金属溶湯Mの熱が磁場装置収納空間S1に伝わることをさらに抑制することができる。
内筒12と支持筒17とにより画成された空間(支持筒内空間)S3は、冷却用空気の流路として機能する。ブロワー60から送出された冷却用の空気は、外筒蓋部14の空気取入口P3から磁場装置収納空間S1内に送り込まれ、磁場装置収納空間S1を下方に流動する。そして、磁場装置30を通過し、冷却した後、支持筒内空間S3を通って上方に流動し、支持筒17の上側開口部にある空気排出口P4から外部に排出される(図13参照)。
支持筒内空間S3を冷却用空気が流れることにより、内筒内空間S2を上動する金属溶湯の熱が磁場装置収納空間S1に伝わることを抑制できる。すなわち、支持筒内空間S3を流れる空気によりエアカーテンが形成される。その結果、磁場装置30が加熱されることを抑制し、磁場強度を維持することができる。
ヒータ50は、内筒12の加熱効率を良くするために、あるいは、内筒12の上部を迅速に加熱するために用いられる。ヒータ50としては、例えば、市販の浸漬ヒータが適用可能である。なお、ヒータ50は、内筒蓋部16以外の場所(例えば、内筒12または吐出筒部15)に設けられてもよい。また、ヒータ50は省略してもよい。
<引出線体21,22>
一対の引出線体21,22は、導電性材料(例えばタングステン等)で構成されており、電源装置80にケーブル71,72を介して電気的に接続されている。詳しくは、図5に示すように、引出線体21の先端部は、内筒中間部12bの接続孔H1に電気的に接続されている。同様に、引出線体22の先端部は、内筒中間部12bの接続孔H2に電気的に接続されている。
より詳しくは、引出線体21,22の先端部(下端部分)は、それぞれ、内筒上側部12cを縦方向に貫通して内筒中間部12bに達したのち内筒中間部12bAを縦方向に部分的に貫通している。このように、引出線体21,22は内筒12の内周面に露出しないように内筒中間部12bに電気的に接続されていることにより、引出線体21,22が腐食等により劣化することを防止できる。
なお、引出線体21,22の先端部の外周面と、接続孔H1,H2との隙間には、導電性の低融点合金(図示せず)が充填されてもよい。これにより、金属溶湯駆動装置1が金属溶湯Mに部分的に浸漬された状態において低融点合金が液体となるため、引出線体21,22と内筒中間部12bとの間の電気的な導通を容易かつ確実に確保することができる。
接続孔H1は、引出線体21と内筒中間部12bを電気的に接続する第1の接続部として機能し、接続孔H2は、引出線体22と内筒中間部12bを電気的に接続する第2の接続部として機能する。
引出線体21,22と内筒中間部12bとの間の電気的接続は、上記の形態に限られない。例えば、少なくとも先端部が平板状に構成された引出線体を用意し、先端部に設けられたボルト挿通孔にボルトを挿通させ、当該ボルトが内筒中間部12bの外壁に形成されたネジ穴と螺合するようにしてもよい。これにより、引出線体21,22が内筒中間部12bの外壁に圧着され電気的に接続される。この場合は内筒中間部12bの外壁に形成されたネジ穴が接続部となる。
このように第1および第2の接続部は、接続孔H1,H2に限られるものではなく、引出線体21,22が内筒中間部12bに電気的に接続される部分であればよい。いずれの接続形態を採るにせよ、第2の接続部が内筒内空間S2を挟んで第1の接続部と横方向に向かい合う位置に設けられることが好ましい。
<磁場装置30>
次に、磁場装置30について説明する。
磁場装置30は、図2および図3に示すように、外筒11と内筒12により画成される磁場装置収納空間S1内に収納されている。磁場装置30の高さは、内筒中間部12bと略同じ高さに設定される。また、ブロワー60から空気取入口P3を介して外筒11内に送り込まれた冷却空気が通り抜けるように磁場装置30の下端と底板13との間には隙間が設けられている。
磁場装置30は、内筒12の内部の内筒内空間S2を挟んで横向きに対向するN極部およびS極部を有する。本実施形態では内筒中間部12bの横断面が長方形状であり、互いに対向する短辺の部分に引出線体21および引出線体22がそれぞれ接続される。このため、N極部とS極部は、内筒中間部12bの長辺部分の外側に設けられている。
詳しくは、図3に示すように、磁場装置30は、内筒内空間S2を挟んで横向きに対向する永久磁石31と、永久磁石32とを有する。永久磁石31は、N極が内筒中間部12bに対向するように配置され、N極部として機能する。一方、永久磁石32は、S極が内筒中間部12bに対向するように配置され、S極部として機能する。より詳しくは、永久磁石31は、N極が内筒中間部12bの長辺側の外壁と対向するように支持筒17の外周面に固定されている。永久磁石32は、S極が内筒中間部12bの長辺側の外壁と対向するように支持筒17の外周面に固定されている。
上記のように磁場装置30が永久磁石を用いることにより、電磁石の場合に比べて、消費電力を格段に低減して温室効果ガスの発生を抑制することができるとともに、磁場装置30の構造を簡易にすることができる。
なお、磁場装置30のN極部とS極部は電磁石により構成されてもよい。
図3に示すように、磁場装置30は、永久磁石31の外側面(S極)と、永久磁石32の外側面(N極)とを接続するヨーク部33を有しており、磁気回路が形成されている。このようにして高パーミアンスの磁気回路が形成されることにより、磁場の漏えいを極めて少なくすることができる。その結果、金属溶湯Mからの熱による熱減磁を可及的に抑制することができるようになる。
なお、本実施形態では、ヨーク部33は平面視で円環状であるが、このような形状に限られない。すなわち、磁気回路は、例えば、C型であってもよいし、ダブルヨーク型であってもよい。また、ヨーク部33は、外筒11の内周面の断熱材41に接するように設けられてもよい。
前述のように、磁場装置30は、支持筒17の外周面に固定されている。支持筒17がラック&ピニオン等の昇降機構により上下に移動することで、磁場装置30の高さを調整することができる。すなわち、磁場装置30は、磁場装置収納空間S1内に縦方向に沿って位置調整可能に収納されている。これにより、内筒中間部12bの内筒内空間S2における磁場強度を容易に調整することができる。
なお、昇降機構を用いずに磁場装置30の高さを変えることも可能である。例えば、磁場装置30と底板13の間にスペーサを介在させて、磁場装置30の高さを調整してもよい。高さの異なる複数のスペーサを用意しておくことで、磁場装置30の高さを適宜調整することができる。この場合は支持筒17を省いてもよい。
上記のように磁場装置30を上下動可能に構成することで、引出線体21と引出線体22との間に一定の電流を流した状態においても、内筒内空間S2の金属溶湯に作用するローレンツ力を調整することができるようになる。これにより、例えば、バイパス電流によって駆動力を一次調整し、その後、磁場装置30の縦方向位置により駆動力を二次調整することができる。このような調整方法によれば、駆動力の調整範囲の幅を拡げることができる。また、二次調整により、消費電力の増加を回避し、ランニングコストのさらなる低減を図ることができる。
<予備加熱状態における電流経路>
次に、図7を参照して、予備加熱状態において引出線体21,22間を流れる電流の経路について説明する。予備加熱状態では、内筒内空間S2に金属溶湯Mが存在しない。予備加熱状態は、例えば、バス100内に金属溶湯駆動装置1が設置されていない状態である。あるいは、金属溶湯駆動装置1が空のバス100内に設置された状態である。
予備加熱状態において電源装置80から電流を出力すると、図7に示すように、引出線体21と引出線体22との間に内筒中間部12bを通って電流Iaが流れる。本実施形態では、引出線体21から引出線体22に向け、内筒中間部12bを通って電流Iaが流れる。
電流Iaが流れることにより、内筒中間部12bにジュール熱が発生する。このジュール熱により内筒12が加熱される。より詳しくは、内筒中間部12bが発生するジュール熱が内筒下側部12aおよび内筒上側部12cに伝播することで、金属溶湯Mの流路を構成する内筒12が加熱される。さらに内筒12の熱が底板13や外筒11等に伝導することで、金属溶湯駆動装置1が加熱される(図11参照)。
<稼働状態における電流経路>
次に、図8を参照して、稼働状態において引出線体21,22間を流れる電流の経路について説明する。稼働状態では、金属溶湯駆動装置1はバス100内に設置されており、内筒内空間S2に内筒中間部12bの電気抵抗よりも抵抗値の小さな金属溶湯Mが存在する。この状態において、電源装置80から電流を出力すると、図8に示すように、引出線体21と引出線体22との間に金属溶湯Mを介してバイパス電流Ibが流れる。このバイパス電流Ibが流れることにより、内筒中間部12b内の金属溶湯M中において、磁場装置30のN極部(永久磁石31)からS極部(永久磁石32)に走る磁力線MLとバイパス電流Ibが交差して、上向きのローレンツ力を発生させる。このローレンツ力が内筒中間部12bの金属溶湯Mを駆動して、内筒内空間S2において上動させる。その結果、バス100内の金属溶湯Mは内筒12内を通って汲み上げられ、吐出筒部15を通って溶湯吐出口P1から外部に吐出される。
<作用効果>
以上説明したように、本実施形態に係る金属溶湯駆動装置1では、内筒内空間S2に金属溶湯Mが存在しない状態で引出線体21,22間に電流を流すことで、内筒中間部12bにジュール熱を発生させる。このジュール熱により、内筒12等の基体10を十分に予備加熱することができる。このため、バス100内に金属溶湯駆動装置1を短時間で設置することができる。また、金属溶湯駆動装置1をバス100内の金属溶湯Mに部分的に浸漬させる際に、金属溶湯Mが凝固したり、金属溶湯駆動装置1が熱衝撃により破損することを防止できる。よって、信頼性の高い金属溶湯駆動装置を提供することができる。
さらに、本実施形態に係る金属溶湯駆動装置1では、金属溶湯駆動装置1を金属溶湯Mに部分的に浸漬させた状態において、引出線体21,22間の電流が内筒内空間S2の金属溶湯Mを通るバイパス電流Ibとして流れる。このバイパス電流Ibと、磁場装置30の磁力線MLとが交差することで、金属溶湯Mに上向きのローレンツ力が作用し、金属溶湯Mは内筒12中を上動することとなる。このように金属溶湯駆動装置1は、回転羽根や電動機といった可動手段を用いることなく、またタップ式のように人手を介することなく、金属溶湯Mを汲み上げることができる。
さらに、金属溶湯駆動装置1では、永久磁石31,32によるローレンツ力を利用するため、電磁石の場合に比べて消費電力を格段に低減することができる。また、永久磁石31,32自身は発熱しないため、電磁石の場合のように複雑な冷却装置が不要であることから、磁場装置30の構造を簡易にすることができる。
さらに、金属溶湯駆動装置1では、磁場装置30と底板13との間に冷却用空気が流れる隙間を確保するように磁場装置30が支持筒17に吊持されている。また、支持筒17は内筒12を収納し、両者の間に空気の流路(支持筒内空間S3)が形成される。これにより、磁場装置30を効率的に空冷することができる。
上記のように、本実施形態によれば、金属溶湯を収納した炉内に短時間で設置可能であり、経済的で安全かつ信頼性の高い金属溶湯駆動装置を提供することができる。
<金属溶湯駆動装置の変形例>
上記実施形態に係る金属溶湯駆動装置1では、内筒中間部12bは導電性の耐火材で構成したが、非導電性の耐火材で構成することも可能である。本変形例においては、引出線体21,22の一部を内筒中間部(内筒12を一体的に構成した場合は内筒中間部に相当する部分)の内周面に露出させる。
例えば、図9に示すように、非導電性耐火材から構成される内筒中間部12bAの内周面に開口部Aを設け、この開口部Aから引出線体21,22の先端部の少なくとも一部を露出させる。より詳しくは、引出線体21,22の先端部(下端部分)は、それぞれ、内筒上側部12cの肉厚部分を縦方向に貫通して内筒中間部12bAに達したのち内筒中間部12bAの肉厚部分を縦方向に部分的に貫通し、内筒中間部12bAの内面側に形成した一対の開口部Aによって引出線体21,22のそれぞれの一部が内筒内空間S2に露呈する。
これにより、内筒中間部が非導電性であっても、内筒内空間S2に金属溶湯Mが存在する稼働状態においてバイパス電流Ibを流すことができる。すなわち、電流は、金属溶湯Mを介して引出線体21,22間を流れる。したがって、上記実施形態の場合と同様に、金属溶湯にローレンツ力を作用させて内筒内空間S2において金属溶湯を上動させることができる。
本変形例では、内筒内空間S2に金属溶湯が存在しない予備加熱状態において引出線体21,22間に電流が流れないため、内筒中間部12bにジュール熱が発生しない。このため、予備加熱を行う際には、ヒータ50等の加熱手段により内筒内空間S2の空気を加熱し流動させることで、金属溶湯駆動装置を加熱する。
なお、本変形例の場合、内筒12は、内筒下側部12a、内筒中間部12bおよび内筒上側部12cに分けず、非導電性耐火材により一体的に構成されてもよい。この場合、一体に構成された内筒12のうち、内筒中間部12bに相当する高さ位置(磁場装置30と同じ高さ)に開口部Aを設ける。
本変形例に係る金属溶湯駆動装置によれば、金属溶湯を収納した炉内に短時間で設置可能であり、経済的で安全かつ信頼性の高い金属溶湯駆動装置を提供することができる。
なお、図9に示すような形態(すなわち、引出線体が内筒の内周面に露出する形態)において、内筒(内筒中間部)が導電性の耐火材で構成されていてもよい。この場合は実施形態で説明したように、内筒中間部でジュール熱を発生させて余熱を行うことが可能となる。
<<金属溶湯駆動方法>>
次に、上述の実施形態に係る金属溶湯駆動装置1を用いた金属溶湯駆動方法について、図10のフローチャートに沿って説明する。
まず、一対の引出線体21,22間に電流を流して、金属溶湯駆動装置1の予備加熱する(ステップS1)。本ステップは、金属溶湯駆動装置1がバス100内に設置されず、内筒内空間S2に金属溶湯Mが存在しない状態で行う。
ステップS1では、引出線体21と引出線体22との間に内筒中間部12bを通る電流Iaを流すことにより、内筒中間部12bにジュール熱を発生させる。図11に示すように、内筒中間部12bで発生したジュール熱が内筒下側部12aおよび内筒上側部12cに伝播することで、金属溶湯Mの流路を構成する内筒12が加熱される。さらに、内筒12の熱が底板13、外筒11、外筒蓋部14等に伝導することで金属溶湯駆動装置1が加熱される。例えば、金属溶湯駆動装置1は200~300℃まで加熱される。
なお、加熱効率をさらに良くするために、予備加熱状態において、外部から内筒内空間S2に取り入れられた空気を加熱手段により加熱し、この加熱された空気により内筒12を加熱してもよい。例えば、ステップS1において、図11に示すように、吐出口蓋15aを閉じておき、吐出筒部15の空気取入口P2にブロワー(図示せず)を接続して吐出筒部15内に空気を送り込む。吐出筒部15内に送り込まれた空気は、吐出口蓋15aで逆流し、ヒータ50で加熱され、内筒内空間S2を下方に流れ、最終的に溶湯取込口13aから排出される。このようにして内筒内空間S2を流れる加熱空気と、内筒中間部12bのジュール熱により、内筒12は迅速に加熱される。その結果、金属溶湯駆動装置1の加熱効率が向上し、予備加熱処理に要する時間を短縮することができる。
ステップS1の後、予備加熱された金属溶湯駆動装置1をバス100内の金属溶湯Mに部分的に浸漬する(ステップS2)。この際、ステップS1で十分に加熱されているため、金属溶湯駆動装置1が熱衝撃により破損したり、金属溶湯Mが凝固する等の事態を回避することができる。
ステップS2の後、一対の引出線体21,22間に電流を流して、ローレンツ力により金属溶湯Mを汲み上げる(ステップS3)。本ステップでは、図12に示すように、溶湯取込口13aから内筒内空間S2に浸入した金属溶湯Mにバイパス電流Ibが流れる。このバイパス電流Ibと、磁場装置30の磁力線MLが交差して発生するローレンツ力が金属溶湯Mに作用する。図13に示すように、このローレンツ力により金属溶湯Mを駆動して内筒内空間S2において上動させる。このようにして上動された金属溶湯Mは、吐出筒部15を通って溶湯吐出口P1から外部(ここでは受炉200)に吐出される。
図5に示すように、引出線体21,22は内筒内空間S2に露出していないため、金属溶湯Mと接触することがない。このため、引出線体21,22の摩耗を防止することができる。その結果、ランニングコストを低減することができる。
なお、運転開始時においては、内筒12の上部は金属溶湯Mに浸漬されていないために温度が比較的低い。特に冬場は外気温の影響で内筒12上部の温度が急速に低下することが懸念される。そこで、少なくとも運転開始からしばらくの間、ヒータ50で内筒12内を加熱するようにしてもよい。
次に、バス100から所定量の金属溶湯を汲み出したかどうかを判定する(ステップS4)。例えば、図1に示すシステムにおいて、受炉200に所定量の金属溶湯M’が溜まったかどうかを判定する。この判定は、例えば、受炉200に設けられた溶湯レベルセンサ(図示せず)により行われる。
そして、所定量の金属溶湯を汲み出したと判定された場合(S4:Yes)、電源装置80は電流を止める(ステップS5)。これにより、金属溶湯にローレンツ力が作用しなくなり、吐出動作が停止する。なお、本ステップは、受炉200の溶湯レベルセンサを電源装置80に接続しておくことで、自動で行うことが可能である。
一方、所定量の金属溶湯を汲み出したと判定されない場合(S4:No)、バス100内の金属溶湯Mの湯面レベルが低下したかどうかを判定する(ステップS6)。本ステップにおいて、湯面レベルは溶湯レベルセンサ90により計測される。計測値は電源装置80に送信される。
バス100内の金属溶湯Mの湯面レベルが低下した場合(ステップS6:Yes)、電源装置80は出力する電流を上げる(ステップS7)。これにより、金属溶湯駆動装置1の駆動力が上がり、吐出量が増加する。
一方、バス100内の金属溶湯Mの湯面レベルが上昇した場合(ステップS6:No)、電源装置80は出力する電流を下げる(ステップS8)。これにより、金属溶湯駆動装置1の駆動力が下がり、吐出量が減少する。なお、計測された湯面レベルが変化していない場合は、電源装置80は出力電流を変化させる必要はない。
ステップS7またはステップS8を実行後、ステップS4に戻り、所定量の金属溶湯を汲み出したかどうかの判定を再度行う。
上記フローを実行することで、バス100内の金属溶湯Mを外部に所定量だけ汲み出すことができる。また、従来のポンプでは運転開始時と終了間際では金属溶湯の吐出量が変動してしまう問題が発生していたところ、計測された湯面レベルに応じてバイパス電流Ibを制御することにより、本実施形態によれば、常に一定の吐出量を得ることができる。また、電流の制御を自動で行うことで、人手の介在を減らすことができる。
また、上記の金属溶湯駆動方法では、図13に示すように、外筒蓋部14の空気取入口P3から磁場装置収納空間S1内に圧送されたブロワー60の空気が磁場装置収納空間S1を流動し、磁場装置30を冷却した後、支持筒17の下側開口部から支持筒内空間S3に入り、上方に流動する。そして、支持筒17の上側開口部にある空気排出口P4から外部に排出される。これにより、磁場装置30の周囲にエアカーテンが形成されるため、高温環境下であっても磁場装置30の磁力を維持することができる。
最後に本実施形態による具体的な効果を以下に列挙する。
・タップ式のように人手を介することなく炉内の非鉄金属溶湯を汲み出すことができるため、極めて高い安全性を実現できる。
・本実施形態に係る金属溶湯駆動装置は可動部分(回転羽根、電動機等)の無い構造であるため、極めて容易に取り扱うことができる。
・従来のポンプでは、炉内の金属溶湯に浸漬するときに熱衝撃で装置が破損してしまうことを避けるためにゆっくりと(例えば1cm/分以下の速度で)金属溶湯にポンプを沈めてゆかなければならなかった。これに対し、本実施形態によれば、金属溶湯駆動装置を迅速に予備加熱し、予備加熱された金属溶湯駆動装置を金属溶湯中に迅速に浸漬させることが可能である。したがって、金属溶湯駆動装置を素早く交換することができる。例えば、従来のポンプの場合、交換のために4~5時間の間、非鉄金属製品の製造ラインを止める必要があった。これに対し、本実施形態に係る金属溶湯駆動装置の場合、1時間程度で交換を終えることができる。その結果、ダウンタイムロスを大幅に減少させることができる。
・本実施形態に係る金属溶湯駆動装置では摩耗する部分がほとんどないため、従来のポンプに比べてランニングコストを大幅に低減(例えば10分の1以下)することができる。
・電源装置の出力電流により、金属溶湯に作用するローレンツ力(駆動力)を制御するため、吐出量を湯面レベル等に応じて容易に調整することができる。このため、炉内の金属溶湯の湯面レベルに影響を受けずに安定した吐出量を確保できる。
上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した実施形態に限定されるものではない。特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
1 金属溶湯駆動装置
10 基体
11 外筒
12 内筒
12a 内筒下側部
12b 内筒中間部
12c 内筒上側部
13 底板
13a 溶湯取込口
14 外筒蓋部
15 吐出筒部
15a 吐出口蓋
16 内筒蓋部
17 支持筒
19 脚部
21,22 引出線体
30 磁場装置
31,32 永久磁石
33 ヨーク部
41,42,43 断熱材
50 ヒータ
60 ブロワー
71,72 ケーブル
80 電源装置
90 溶湯レベルセンサ
100 バス
200 受炉
A (内筒中間部の)開口部
H1,H2 接続孔
Ia (予備加熱状態の)電流
Ib (稼働状態の)バイパス電流
M 金属溶湯
ML 磁力線
P1 溶湯吐出口
P2,P3 空気取入口
P4 空気排出口
P5 接続口
S1 磁場装置収納空間
S2 内筒内空間
S3 支持筒内空間

Claims (17)

  1. バス内の金属溶湯を汲み上げて前記バスの外部に吐出する金属溶湯駆動装置であって、
    外筒と、前記外筒の内部に同軸に収納された内筒と、前記内筒の下側開口部に連通接続する溶湯取込口が設けられ、前記外筒の下側開口部を閉塞する底板と、を有する基体と、
    導電性材料で構成された第1および第2の引出線体と、
    前記外筒と前記内筒により画成される磁場装置収納空間内に収納され、前記内筒の内部の内筒内空間を挟んで横向きに対向するN極部およびS極部を有する磁場装置と、
    を備え、
    前記内筒は、互いに別体で順次積層された内筒下側部と内筒中間部と内筒上側部とを有し、
    前記内筒下側部および前記内筒上側部は非導電性材料で構成され、前記内筒中間部は導電性材料で構成され、
    前記第1の引出線体は、前記内筒中間部の第1の接続部に電気的に接続され、前記第2の引出線体は、前記内筒内空間を挟んで前記第1の接続部と横方向に向かい合う前記内筒中間部の第2の接続部に電気的に接続されており、
    前記基体は、前記内筒を収容し且つ前記磁場装置を吊持する支持筒をさらに有し、
    前記内筒内空間に金属溶湯が存在しない予備加熱状態においては、前記第1の引出線体と前記第2の引出線体との間に前記内筒中間部を通って電流が流れることで前記内筒中間部にジュール熱が発生するように構成されており、前記バス内に前記金属溶湯駆動装置が設置され、前記内筒内空間に前記内筒中間部の電気抵抗よりも抵抗値の小さな金属溶湯が存在する稼働状態においては、前記第1の引出線体と前記第2の引出線体との間に前記金属溶湯を介してバイパス電流が流れ、前記N極部から前記S極部に走る磁力線と前記バイパス電流とが交差してローレンツ力を発生させ、このローレンツ力が前記金属溶湯を駆動して前記内筒内空間において上動させるように構成されている、
    ことを特徴とする金属溶湯駆動装置。
  2. 前記内筒中間部の横断面は長方形状であり、前記第1の接続部および前記第2の接続部は、互いに対向する短辺にそれぞれ設けられていることを特徴とする請求項1に記載の金属溶湯駆動装置。
  3. 前記第1および第2の引出線体は、前記内筒中間部の内周面に露出しないように前記内筒中間部に電気的に接続されていることを特徴とする請求項1または2に記載の金属溶湯駆動装置。
  4. 前記第1および第2の引出線体の先端部が前記内筒中間部に設けられた接続孔と螺合していることを特徴とする請求項3に記載の金属溶湯駆動装置。
  5. 前記磁場装置は、前記内筒内空間を挟んで横向きに対向する第1の永久磁石と第2の永久磁石とを有し、前記第1の永久磁石のN極が前記内筒中間部に対向するように配置され、前記第2の永久磁石のS極が前記内筒中間部に対向するように配置されていることを特徴とする請求項1~3のいずれかに記載の金属溶湯駆動装置。
  6. 前記磁場装置は、前記第1の永久磁石のS極と、前記第2の永久磁石のN極とを接続するヨーク部をさらに有することを特徴とする請求項5に記載の金属溶湯駆動装置。
  7. 前記磁場装置は、前記磁場装置収納空間内に、縦方向に沿って位置調整可能に収納されていることを特徴とする請求項5または6に記載の金属溶湯駆動装置。
  8. 前記内筒の内部の空気を加熱するためのヒータをさらに有することを特徴とする請求項1~7のいずれかに記載の金属溶湯駆動装置。
  9. 前記外筒の内周面、前記内筒の外周面、および前記底板の内面のうち少なくともいずれかを覆うように断熱材が設けられていることを特徴とする請求項1~8のいずれかに記載の金属溶湯駆動装置。
  10. 前記基体は、前記内筒が挿通され且つ前記外筒の上側開口部を閉塞する外筒蓋部をさらに有することを特徴とする請求項1~9のいずれかに記載の金属溶湯駆動装置。
  11. 前記外筒蓋部には、ブロワーに接続され、前記磁場装置収納空間に連通する空気取入口が設けられていることを特徴とする請求項10に記載の金属溶湯駆動装置。
  12. 前記支持筒は、昇降機構により上下動可能に構成されていることを特徴とする請求項1~11のいずれかに記載の金属溶湯駆動装置。
  13. 前記内筒の前記内筒上側部に設けられた接続口を介して前記内筒上側部に接続し、前記ローレンツ力により前記内筒内空間を上動した金属溶湯を溶湯吐出口から外部に吐出する吐出筒部をさらに有することを特徴とする請求項1~12のいずれかに記載の金属溶湯駆動装置。
  14. 前記吐出筒部には、外部の空気を前記吐出筒部の内部に取り入れるための空気取入口と、前記空気取入口から外部の空気が取り入れられる際に前記溶湯吐出口を閉塞する吐出口蓋とが設けられていることを特徴とする請求項13に記載の金属溶湯駆動装置。
  15. 前記第1の引出線体および前記第2の引出線体に電気的に接続された電源装置を備え、 前記電源装置は、前記バス内の金属溶湯の湯面レベルに応じて前記バイパス電流の大きさを変化させることを特徴とする請求項1~14のいずれかに記載の金属溶湯駆動装置。
  16. バス内に設置された金属溶湯駆動装置を用いて前記バス内の金属溶湯を汲み上げて前記バスの外部に吐出する金属溶湯駆動方法であって、
    前記金属溶湯駆動装置は、
    外筒と、前記外筒の内部に同軸に収納された内筒と、前記内筒の下側開口部に連通接続する溶湯取込口が設けられ、前記外筒の下側開口部を閉塞する底板と、を有する基体と、
    導電性材料で構成された第1および第2の引出線体と、
    前記外筒と前記内筒により画成される磁場装置収納空間内に収納され、前記内筒の内部の内筒内空間を挟んで横向きに対向するN極部およびS極部を有する磁場装置と、を備え、
    前記内筒は、互いに別体で順次積層された内筒下側部と内筒中間部と内筒上側部とを有し、
    前記内筒下側部および前記内筒上側部は非導電性材料で構成され、前記内筒中間部は導電性材料で構成され、
    前記第1の引出線体は、前記内筒中間部の第1の接続部に電気的に接続され、前記第2の引出線体は、前記内筒内空間を挟んで前記第1の接続部と横方向に向かい合う前記内筒中間部の第2の接続部に電気的に接続されており、
    前記基体は、前記内筒を収容し且つ前記磁場装置を吊持する支持筒をさらに有し、
    前記金属溶湯駆動方法は、
    前記内筒内空間に金属溶湯が存在しない予備加熱状態において、前記第1の引出線体と前記第2の引出線体との間に前記内筒中間部を通る電流を流すことにより、前記内筒中間部にジュール熱を発生させ、
    前記予備加熱された金属溶湯駆動装置を前記バス内の金属溶湯に部分的に浸漬し、
    前記内筒内空間に前記内筒中間部の電気抵抗よりも抵抗値の小さな金属溶湯が存在する稼働状態において、前記第1の引出線体と前記第2の引出線体との間に前記金属溶湯を介してバイパス電流を流すことにより、前記N極部から前記S極部に走る磁力線と前記バイパス電流とが交差して発生するローレンツ力により前記金属溶湯を駆動して前記内筒内空間において上動させる、
    ことを特徴とする金属溶湯駆動方法。
  17. 前記予備加熱状態において、前記ジュール熱に加えて、外部から前記内筒内空間に取り入れられヒータにより加熱された空気により前記内筒を加熱することを特徴とする請求項16に記載の金属溶湯駆動方法。
JP2019233175A 2019-12-24 2019-12-24 金属溶湯駆動装置および金属溶湯駆動方法 Active JP7315218B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019233175A JP7315218B2 (ja) 2019-12-24 2019-12-24 金属溶湯駆動装置および金属溶湯駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019233175A JP7315218B2 (ja) 2019-12-24 2019-12-24 金属溶湯駆動装置および金属溶湯駆動方法

Publications (2)

Publication Number Publication Date
JP2021100765A JP2021100765A (ja) 2021-07-08
JP7315218B2 true JP7315218B2 (ja) 2023-07-26

Family

ID=76651171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233175A Active JP7315218B2 (ja) 2019-12-24 2019-12-24 金属溶湯駆動装置および金属溶湯駆動方法

Country Status (1)

Country Link
JP (1) JP7315218B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063211A (zh) 2007-05-15 2007-10-31 沈阳铝镁设计研究院 一种铝电解槽用直流电磁泵
JP2012206143A (ja) 2011-03-30 2012-10-25 Sukegawa Electric Co Ltd 溶融金属用誘導電磁ポンプ
WO2014024330A1 (ja) 2012-08-08 2014-02-13 Takahashi Kenzo 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉
JP2017087236A (ja) 2015-11-05 2017-05-25 高橋 謙三 溶湯搬送ポンプ及び溶湯搬送システム
JP2019515141A (ja) 2016-05-03 2019-06-06 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv 蒸発装置に液体材料を供給するための装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678370A (en) * 1979-11-29 1981-06-27 Nippon Rutsubo Kk Electromagnetic pump for fused metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063211A (zh) 2007-05-15 2007-10-31 沈阳铝镁设计研究院 一种铝电解槽用直流电磁泵
JP2012206143A (ja) 2011-03-30 2012-10-25 Sukegawa Electric Co Ltd 溶融金属用誘導電磁ポンプ
WO2014024330A1 (ja) 2012-08-08 2014-02-13 Takahashi Kenzo 永久磁石式筒型溶湯攪拌装置及び永久磁石式汲み出しポンプ付溶解炉
JP2017087236A (ja) 2015-11-05 2017-05-25 高橋 謙三 溶湯搬送ポンプ及び溶湯搬送システム
JP2019515141A (ja) 2016-05-03 2019-06-06 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv 蒸発装置に液体材料を供給するための装置

Also Published As

Publication number Publication date
JP2021100765A (ja) 2021-07-08

Similar Documents

Publication Publication Date Title
ES2643080T3 (es) Horno de inducción de crisol frío con amortiguamiento por corrientes de Foucault
JP2013542552A (ja) 誘導コイル及び溶融炉一体型コールドクルーシブル誘導溶融炉
US11261860B2 (en) Method to control the temperature of an electromagnetic pump
JP2015075324A (ja) 溶融物の誘導加熱式排出装置及び方法
US2536859A (en) Method and device for pumping molten metals
JP4900773B2 (ja) フロートガラスの製造装置及びその方法
JP7315218B2 (ja) 金属溶湯駆動装置および金属溶湯駆動方法
KR101823946B1 (ko) 영구 자석식 용탕 교반 장치 및 그를 가진 용해로 및 연속 주조 장치
CN101509730A (zh) 直流电励磁的熔炼炉用底装式电磁搅拌器
WO2015037408A1 (ja) 誘導加熱炉用坩堝
CN204100794U (zh) 非晶合金用的洁净熔融系统
JP7069039B2 (ja) 蒸発装置に液体材料を供給するための装置
JP5432812B2 (ja) 非鉄金属用溶解炉及び非鉄金属の溶解方法
WO2012137910A1 (ja) 非鉄金属用炉装置
US3196795A (en) Electromagnetic pump system
KR102260278B1 (ko) 용탕 교반 장치 및 그를 구비한 연속 주조 장치 시스템
JP2005205479A (ja) はんだ付け装置
JP5126974B2 (ja) 誘導加熱による溶融炉および誘導加熱方法
JPH06229906A (ja) 耐火物の耐侵食性評価装置
CN107210110B (zh) 电导线布置和用于制造电导线布置的方法
JP3258426B2 (ja) 鋳造装置および鋳造製品の製造方法
JP2018069293A (ja) 金属材料の溶解供給装置およびそれを用いた減圧鋳造装置
CN113321403A (zh) 用于熔融玻璃的方法和装置
CN105624419A (zh) 一种真空电弧重熔炉
JP5126973B2 (ja) ガラス溶融炉

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7315218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150