JP5682706B2 - 非鉄金属用炉装置 - Google Patents

非鉄金属用炉装置 Download PDF

Info

Publication number
JP5682706B2
JP5682706B2 JP2013508944A JP2013508944A JP5682706B2 JP 5682706 B2 JP5682706 B2 JP 5682706B2 JP 2013508944 A JP2013508944 A JP 2013508944A JP 2013508944 A JP2013508944 A JP 2013508944A JP 5682706 B2 JP5682706 B2 JP 5682706B2
Authority
JP
Japan
Prior art keywords
molten metal
ceramic
melting
induction coil
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013508944A
Other languages
English (en)
Other versions
JPWO2012137910A1 (ja
Inventor
竜三 大出
竜三 大出
信也 片岡
信也 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA GIKEN CO., LTD.
Original Assignee
OSAKA GIKEN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA GIKEN CO., LTD. filed Critical OSAKA GIKEN CO., LTD.
Priority to JP2013508944A priority Critical patent/JP5682706B2/ja
Publication of JPWO2012137910A1 publication Critical patent/JPWO2012137910A1/ja
Application granted granted Critical
Publication of JP5682706B2 publication Critical patent/JP5682706B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/06Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by controlling the pressure above the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/19Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices

Description

本発明は、高周波直接誘導溶解による非鉄金属用の溶解部と給湯用の溶湯貯留部とを備えた非鉄金属用炉装置に関する。
非鉄金属の誘導溶解方法として、黒鉛坩堝を用いた間接加熱式誘導溶解方法と、キャスター又はプラスターで熔湯接液部を構成した直接誘導溶解方法と、遠心鋳造又はグラビティ鋳造などで用いる小型炉のように、セラミック坩堝を用いた誘導溶解方法などが一般に知られている。
黒鉛坩堝を用いた誘導溶解方法は、高温で黒鉛の酸化が激しく、寿命が短く、又間接加熱で有る為、溶解時間が長くなるという問題がある。
また、キャスター又はプラスターで熔湯接液部を構成した直接誘導溶解方法では、接液部が摩耗して、それが異物として溶融金属に混ざったり、クラック発生時に溶融金属の接触により誘導コイルが破損したりするので、定期的な検査が必要となるという問題がある。
更に、小型のセラミック坩堝を使用した誘導溶解方法では、連続鋳造が出来ず、坩堝によるバッチ鋳造しかできないという問題がある。
一方、溶解炉として、アルミニウムなどのインゴットを収容する傾斜状に配置したセラミック製の筒体と、該筒体に外装した高周波誘導コイルと、高周波誘導コイルへの給電手段とを備え、筒体に挿入したインゴットを連続溶解可能となした溶解炉が提案されている(例えば特許文献1参照)。
特開平6−140142号公報
ところが、前記特許文献1記載の溶解炉では、インゴットを連続的に溶解できるものの、溶解した溶融金属は、保温容器に貯留されるので、取鍋などで給湯炉へ供給する必要があることから、鋳造自体は連続的に行えるものではなかった。しかも、本出願人が、特許文献1記載の溶解炉を実際に製作してインゴットを溶解してみると、セラミック製の筒体が熱衝撃により割れるという致命的な問題があり、実施困難なものであった。つまり、高周波誘導コイルの冷却は、通常、水冷によりなされるが、誘導コイル内で水が沸騰しないように、冷却水を100℃未満に冷却する関係上、セラミック製の筒体の外壁部と内壁部間において大きな温度差が生じ、熱衝撃により割れが発生したものと思われる。
本発明の目的は、連続溶解が可能で、しかも連続溶解した溶湯を用いて連続的に鋳造が可能な非鉄金属用炉装置を提供することである。
本出願人は、特許文献1記載の溶解炉に鋳造炉を一体化させて、両炉内を相互に連通する気密空間で構成することで、インゴットやビレットなどの非鉄金属塊を連続的に溶解し、これを用いて連続的な鋳造が可能であるとの発想に基づき、特許文献1記載の溶解炉におけるセラミック製の筒体の熱衝撃による割れの発生を防止し得る構成を種々検討して、本発明を完成するに至った。
本発明に係る非鉄金属用炉装置は、非鉄金属塊を収容するセラミック溶解部と、前記セラミック溶解部に外装した高周波誘導コイルと、前記高周波誘導コイルに油からなる熱媒体を供給して、前記高周波誘導コイルを耐熱温度以下に冷却するとともに、前記高周波誘導コイルを介してセラミック溶解部の外面部を、前記セラミック溶解部の内面部と外面部との温度差による熱衝撃でセラミック溶解部が破損しない温度に温調する温調手段と、前記高周波誘導コイルへの給電手段と、前記セラミック溶解部から供給される溶湯を貯留する溶湯貯留部と、前記溶湯貯留部内の溶湯を保温するヒータと、前記溶湯貯留部内の溶湯を型内へ供給する溶湯供給手段とを備え、前記セラミック溶解部にて溶融した溶湯を溶湯貯留部へ連続的に供給可能となしたものである。ただし、この非鉄金属用炉装置は、セラミック溶解部と高周波誘導コイルと温調手段と給電手段とを有する溶解炉と、溶湯貯留部とヒータと溶湯供給手段とを有する給湯炉の2つの炉を備えた炉装置で構成することもできるし、この溶解炉及び給湯炉に備えさせた構成を一体に組み込んでなる炉装置で構成することもできる。
この炉装置では、セラミック溶解部へ非鉄金属からなるインゴットやビレットなどの非鉄金属塊を順次投入することで、高周波誘導コイルによりセラミック溶解部内の非鉄金属塊が連続的に溶解されて、溶湯貯留部へ供給される。そして、炉内を加圧することで、ストークを通じて溶湯貯留部内の溶湯を型内へ供給し、鋳造品を連続的に製作することができる。しかも、温調手段により、高周波誘導コイルに熱媒体を供給して、高周波誘導コイルを耐熱温度以下に冷却するとともに、高周波誘導コイルを介してセラミック溶解部の外面部を、セラミック溶解部の内面部と外面部との温度差による熱衝撃でセラミック溶解部が破損しない温度(セラミック溶解部の耐熱衝撃温度以下)に温調しながら、セラミック溶解部において非鉄金属塊を溶解できるので、セラミック溶解部の内面部と外面部との温度差による熱衝撃で、セラミック溶解部が割れるという問題を確実に防止できる。また、高周波誘導コイルへ供給する熱媒体として油を用いているので、無機熱媒体を用いる場合と比較して、取り扱いが容易で、しかも漏洩した場合における安全性を確保し易いので好ましい。
ここで、前記温調手段として、20℃〜450℃の熱媒体を高周波誘導コイルへ供給する温調手段を設けたり、前記高周波誘導コイルとセラミック溶解部間に断熱層を配置させ、前記温調手段として、前記高周波誘導コイルへ供給する熱媒体により、前記高周波誘導コイル及び断熱層を介して、前記セラミック溶解部の内面部と外面部との温度差が450℃〜800℃になるように温調する温調手段を設けたりすることが好ましい実施形態である。このように構成することで、熱による高周波誘導コイルの破損を防止しつつ、セラミック溶解部の内面部と外面部との温度差を低く設定して、セラミック溶解部の内面部と外面部との温度差による熱衝撃で、セラミック溶解部が割れてしまうなどの破損を確実に防止できる。
前記温調手段として、前記高周波誘導コイルに熱媒体を供給して、前記セラミック溶解部を予熱可能となした温調手段を設けることも好ましい実施の形態である。このように構成すると、炉装置の始動初期における熱衝撃を抑制してセラミック溶解部の熱衝撃による割れなどの破損を効果的に防止できる。
前記セラミック溶解部をセラミック製の筒体で構成するとともに、前記セラミック溶解部を水平方向に対して角度を付けて配置し、前記セラミック溶解部にストッパーを設けて、前記ストッパーにより、セラミック溶解部に挿入した非鉄金属塊の溶湯貯留部内への脱落を防止可能となすことも好ましい実施の形態である。この場合には、非鉄金属塊をセラミック溶解部にて確実に溶解することができ、しかも溶解した溶湯を自重により溶湯貯留部へ案内することができる。
前記セラミック溶解部を溶湯貯留部側が下側になるように傾斜状に配置し、前記ストッパーにより溶湯の少なくとも一部を堰き止めて、一定量の溶湯を貯留可能となしたり、前記セラミック溶解部に高周波誘導コイルを覆うハウジングを設け、前記セラミック溶解部及びハウジングの下部を溶湯貯留部内の溶湯に浸漬して、前記セラミック溶解部内に侵入する溶湯に、前記非鉄金属塊を浸漬可能となしたりすることも好ましい実施の形態である。このように構成すると、非鉄金属塊だけでなく、非鉄金属塊付近の溶湯を高周波誘導コイルで加熱できるので、非鉄金属塊の溶解時間を大幅に短縮できる。即ち、一般に金属は固相の状態では、電気抵抗値が小さいため、渦電流による発熱量は小さくなるが、溶融して液相になると、電気抵抗値が大きくなって、渦電流による発熱量が大きくなること、非鉄金属塊が溶解するとセラミック溶解部の内面に密接して、高周波誘導コイルとの距離が短くなるので、誘導効率が高くなること、などにより非鉄金属塊の溶解時間を大幅に短縮できる。
また、前記セラミック溶解部をセラミック製の容器で構成し、前記セラミック溶解部から溢れる溶湯を溶湯貯留部へ案内する案内通路を設けることもできる。この場合には、セラミック溶解部から溢れだすまでの溶湯は鋳造に利用できないが、非鉄金属塊だけでなく、非鉄金属塊付近の溶湯を高周波誘導コイルで加熱できるので、非鉄金属塊の溶解時間を大幅に短縮できる。
前記セラミック溶解部として、チタン酸アルミ、アルミナ、マグネシア、シリカの混合セラミックからなるものを用いることが好ましい。このような混合セラミックは、熱衝撃性に優れているので、セラミック溶解部の割れなどの破損を一層効果的に防止する上で好ましい。
前記溶湯貯留部と前記セラミック溶解部とを上下に有するセラミック製の溶解兼貯留坩堝を設けることが好ましい実施の形態である。この場合には、溶解兼貯留坩堝のセラミック溶解部へ非鉄金属からなるインゴットやビレットなどの非鉄金属塊を順次投入することで、高周波誘導コイルによりセラミック溶解部内の非鉄金属塊が連続的に溶解されて、セラミック溶解部からその上側の溶湯貯留部へ順次供給される。そして、炉内を加圧することで、ストークを通じて溶湯貯留部内の溶湯を型内へ供給し、鋳造品を連続的に製作することができる。しかも、溶解兼貯留坩堝に溶湯貯留部とセラミック溶解部とを形成するので、溶湯貯留部とセラミック溶解部とを別個に設ける場合と比較して、非鉄金属用炉装置の構成を大幅に簡単にでき、非鉄金属用炉装置を小型に構成できるとともにその製作コストを格段に安くできる。また、セラミック溶解部から溶湯貯留部への溶湯の供給が連続的に且つ他物に接することなくなされるので、エネルギーロスが少なく、ランニングコストも安くできる。
前記溶湯貯留部をセラミック溶解部よりも大径に構成し、前記溶湯貯留部の軸心とセラミック溶解部の軸心とを偏心位置に配置し、前記セラミック溶解部に外装される高周波誘導コイルを延長して、前記セラミック溶解部に外装される溶解部コイルに加えて、前記溶湯貯留部内の溶湯を保温するヒータとして、前記溶湯貯留部に外装される貯留部コイルを設けることが好ましい実施の形態である。溶湯貯留部は、高周波誘導コイルとは別個に設けたヒータで加熱することも可能であるが、本発明のように、セラミック溶解部に外装される高周波誘導コイルを延長して、溶湯貯留部に外装される貯留部コイルを設けると、別途ヒータを設ける必要がないので、非鉄金属用炉装置の製作コストを安くできる。また、前記溶湯貯留部の軸心とセラミック溶解部の軸心とを偏心位置に配置することで、セラミック溶解部に外装される溶解部コイルと、溶湯貯留部に外装される貯留部コイルの磁束中心をずらして配置でき、貯留部コイルの磁束が溶解部コイルに悪影響を与えることを抑制できる。このため、貯留部コイルに関しては、その巻き数を増やして誘導による加熱範囲を増加させ、溶湯貯留部に収容可能な溶湯量を増大でき、溶解部コイルに関しては、理論的な巻き数で、インゴットやビレットなどの非鉄金属塊を効率良く溶解することができる。
前記溶解部コイルと貯留部コイル間に中間タップを設け、前記溶解部コイルと貯留部コイルとを独立に給電可能となすことが好ましい実施の形態である。この場合には、溶解部コイルへの給電と貯留部コイルへの給電とを適宜に切り替えることによって、非鉄金属の溶解と溶融金属の加熱保持を、消費電力を抑えつつ効率良く行うことが可能となる。
前記溶解兼貯留坩堝として、チタン酸アルミ、アルミナ、マグネシア、シリカの混合セラミックからなるものを用いることが好ましい実施の形態である。このような混合セラミックは、熱衝撃性に優れているので、坩堝の割れなどの破損を一層効果的に防止する上で好ましい。
前記溶湯供給手段では、前記溶湯貯留部内を加圧して、ストークを通じて溶湯貯留部内の溶湯を型内へ供給することが好ましい実施の形態である。このように構成することで、簡単な構造により型内へ溶湯を供給できる。
前記溶湯供給手段では、前記溶湯貯留部内を不活性ガスにて加圧して、前記ストークを通じて溶湯貯留部内の溶湯を型内へ供給することも好ましい実施の形態である。この場合には、酸化しやすい非鉄金属材料、例えば、錫、鉛、亜鉛、マグネシウム、アルミニウム、チタンなどの非鉄金属材料やこれらの非鉄金属材料を含有する合金を溶解する場合であっても、これらの非鉄金属材料の酸化を防止して、品質の良い鋳造品を製作することができる。なお、不活性ガスとしては、アルゴンガスや窒素ガスなどを用いることができる。
本発明に係る非鉄金属用炉装置によれば、非鉄金属塊を連続的に溶解できるとともに、炉内を加圧することで、溶湯貯留部内の溶湯を型内へ供給し、鋳造品を連続的に製作することができる。しかも、温調手段により、高周波誘導コイルを耐熱温度以下に冷却するとともに、高周波誘導コイルを介してセラミック溶解部の外面部を、セラミック溶解部の内面部と外面部との温度差による熱衝撃でセラミック溶解部が破損しない温度に温調しながら、セラミック溶解部において非鉄金属塊を溶解できるので、セラミック溶解部の内面部と外面部との温度差による熱衝撃で、セラミック溶解部が割れるという問題を確実に防止できる。また、高周波誘導コイルへ供給する熱媒体として油を用いているので、無機熱媒体を用いる場合と比較して、取り扱いが容易で、しかも漏洩した場合における安全性を確保し易いので好ましい。
実施例1の非鉄金属用炉装置の縦断面図 (a)〜(c)は給湯方法の説明図 実施例2の非鉄金属用炉装置の縦断面図 実施例3の非鉄金属用炉装置の縦断面図 実施例4の非鉄金属用炉装置の縦断面図 実施例5の非鉄金属用炉装置の縦断面図 図6のVII-VII線断面図
以下、本発明の実施の形態について図面を参照しながら説明する。
先ず、非鉄金属用炉装置の共通する基本構成について説明する。
図1〜図5に示すように、非鉄金属用炉装置10は、非鉄金属からなるインゴットやビレットなどの非鉄金属塊Bを溶解可能な溶解炉11と、溶解炉11から供給される非鉄金属の溶湯Dを保持して型12内へ給湯する給湯炉13とを備えている。この非鉄金属用炉装置10では、例えば、錫、鉛、亜鉛、マグネシウム、アルミニウム、チタンなどの非鉄金属材料やこれらの非鉄金属材料を含有する合金を溶解できる。
溶解炉11は、非鉄金属塊Bを収容するセラミック溶解部14と、セラミック溶解部14に外装した高周波誘導コイル15と、高周波誘導コイル15に熱媒体を供給して、高周波誘導コイル15を耐熱温度以下に冷却するとともに、高周波誘導コイル15を介してセラミック溶解部14の外面部を、セラミック溶解部14の内面部と外面部との温度差による熱衝撃で、セラミック溶解部14が破損しない温度(セラミック溶解部14の耐熱衝撃温度以下)に温調する温調手段16と、高周波誘導コイル15への給電手段17とを備えている。
セラミック溶解部14は、熱衝撃性に優れた混合セラミック、例えばチタン酸アルミとアルミナ、マグネシア、シリカの混合セラミックで構成されている。
高周波誘導コイル15は、断面が丸形や角形の導電性を有する中空パイプ状の部材で構成され、高周波誘導コイル15とセラミック溶解部14間には断熱材や断熱空間からなる厚さ2mm〜5mmの断熱層25が形成されている。高周波誘導コイル15は、温調手段16から供給される熱媒体により、耐熱温度以下に冷却され、またセラミック溶解部14は、高周波誘導コイル15に供給される熱媒体により、高周波誘導コイル15及び断熱層25を介して耐熱衝撃温度以下に温調される。
熱媒体の温度は、セラミック溶解部14の耐熱衝撃温度や高周波誘導コイル15の耐熱温度に応じて適宜に設定できる。例えば、高周波誘導コイル15及び断熱層25を介してセラミック溶解部14の外面部を温調して、セラミック溶解部14の内面部と外面部との温度差が450℃〜800℃、好ましくは450℃〜550℃になるように、20℃〜450℃に設定することになる。より具体的には、非鉄金属として真鍮を溶解する場合には、セラミック溶解部14の内面部と外面部との温度差が450℃〜550℃になるように、熱媒体の温度を、予熱時には350℃〜400℃に設定し、誘導溶解を始めると20℃〜60℃に設定することになる。このような温度に熱媒体を温調することで、熱による高周波誘導コイル15の破損を防止しつつ、セラミック溶解部14が熱衝撃により破損することを確実に防止できる。例えば、非鉄金属として真鍮を溶解する場合には、セラミック溶解部14の内面部の温度が1000℃になるが、高周波誘導コイル15を水冷する場合には、セラミック溶解部14の内面部と外面部との温度差が800℃〜750℃になるのに対して、400℃の熱媒体油を高周波誘導コイル15に供給すると、セラミック溶解部14の外面部の温度が450℃〜550℃となり、セラミック溶解部14の内面部と外面部との温度差が550℃〜450℃となるので、セラミック溶解部14に対する熱衝撃を大幅に少なくして、セラミック溶解部14の熱衝撃による破損を効果的に防止できる。
熱媒体としては、耐熱温度の高い、シリコン油やダウサムA(ダウケミカル社製)などの合成熱媒体油や、不活性ガスを用いることができるが、漏洩した場合でも、炭化するだけで爆発等の問題が発生しないことから、耐熱温度が350℃〜450℃、好ましくは安価に入手できることから350℃〜400℃の熱媒体油を好適に利用できる。なお、非鉄金属用炉装置10の始動時に、温調手段16により予めセラミック溶解部14の外面部を温調してから、高周波誘導コイル15により非鉄金属塊Bを誘導加熱するように構成することも可能で、この場合には非鉄金属用炉装置10の始動初期における熱衝撃でセラミック溶解部14が破損することを防止できる。
給電手段17から高周波誘導コイル15に供給する交流の周波数は任意に設定可能で、溶解する非鉄金属の素材などに応じて、例えば600Vで、20kHz〜35kHzの交流を供給することができる。非鉄金属において誘導効率の高い周波数は、80kHz〜110kHzであるが、パワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)でしか発振機を製作できず、大出力の素子がないため、大出力で発振できるIGBI(Insulated Gate Bipolar Transistor)素子で、でき得る限り高周波となるように発振機を構成した。
給湯炉13は、セラミック溶解部14から供給される溶湯Dを貯留する溶湯貯留部としての給湯槽18と、給湯槽18内の溶湯Dを保温するヒータ19と、給湯槽18内の溶湯Dを型12内へ供給する溶湯供給手段20とを備えている。
溶湯供給手段20としては、給湯炉13内へ非酸化性ガスを供給するガス体供給手段21を備えたものを好適に採用でき、ガス体供給手段21により給湯炉13内へ、窒素ガスやアルゴンガスなどの非酸化性ガスを供給することで、ストーク22を通じて給湯炉13内の溶湯Dを型12へ供給するように構成できる。このように非酸化性ガスを給湯炉13内に供給すると、給湯炉13内の溶湯D上面に酸化皮膜が形成されることを防止して、酸化皮膜が鋳物の中に混入して製品欠陥となることを防止できる。ただし、溶湯供給手段20として、ガス体供給手段21に代えて、給湯炉13の下部に開閉可能な注湯口を形成し、注湯口を開口することで、重力により給湯炉13内の溶湯Dを型12内に供給するように構成したものを採用することも可能である。
型12内への溶湯Dの供給方法は、図2(a)に示すように、型12の下側から供給する方法と、図2(b)に示すように、供給管23を介して型12の側方から溶湯Dを供給する方法と、図2(c)に示すように、供給管24を介して型12の上側から溶湯Dを供給する方法のいずれの方法を採用することもできる。
ただし、この非鉄金属用炉装置10は、前述のように、溶解炉11と給湯炉13の2つの炉を備えた炉装置で構成することもできるし、溶解炉11と給湯炉13を構成する、セラミック溶解部14と、高周波誘導コイル15と、温調手段16と、給電手段17と、給湯槽(溶湯貯留部)18と、ヒータ19と、溶湯供給手段20とを一体に組み込んだ炉装置で構成することもできる。
次に、非鉄金属用炉装置10の具体的な構成について図面を参照しながら説明する。
図1、図2に示すように、実施例1の非鉄金属用炉装置10Aについて説明すると、給湯炉13Aと溶解炉11Aとが左右に配置され、給湯炉13Aの溶湯貯留部としての給湯槽18Aの右側には溶解炉11Aにて溶解した溶湯Dの溶湯待機槽30が設けられ、給湯槽18Aと溶湯待機槽30とは弁体31で開閉可能な連通路31aで連通され、弁体31を開放した状態で、給湯槽18Aと溶湯待機槽30内の溶湯Dのレベルが同じになるように構成されている。
溶解炉11Aは、溶湯待機槽30の上面板32の上側に設置されている。上面板32には溶解炉11Aのハウジング33が設けられ、ハウジング33内には上面板32を貫通して溶湯待機槽30内へ延びる略円筒状のセラミック溶解部14Aが略鉛直方向に配置され、セラミック溶解部14Aの内部空間は溶湯Dの無い状態で溶湯待機槽30及び給湯槽18Aに気密に連通され、セラミック溶解部14Aの下端部は溶湯待機槽30の溶湯D内に浸漬されている。
上面板32よりもやや上側においてセラミック溶解部14Aの内壁部には内側へ向けて突出する環状のストッパー部34が形成され、ストッパー部34の上側には円板状のフィルター35が設置され、非鉄金属塊Bは、セラミック溶解部14Aの上部内に上側から挿入されて、フィルター35上に載置される。
上面板32よりも上側におけるセラミック溶解部14Aの上部には、セラミック溶解部14A内に装填した非鉄金属塊Bの収容位置に対応させて高周波誘導コイル15Aが外装され、給電手段17により高周波誘導コイル15Aへ高周波電流を通電することで、セラミック溶解部14Aに装填した非鉄金属塊Bが誘導加熱されるように構成されている。高周波誘導コイル15Aとセラミック溶解部14A間には断熱材からなる断熱層25Aが形成され、高周波誘導コイル15Aにはそれに対して熱媒体を供給する温調手段16が接続され、この温調手段16からの熱媒体により、高周波誘導コイル15Aが耐熱温度以下に冷却されるとともに、セラミック溶解部14Aの外面部が、高周波誘導コイル15A及び断熱層25Aを介して、セラミック溶解部14Aの内面部と外面部との温度差による熱衝撃で、セラミック溶解部14Aが破損しない温度に温調される。また、非鉄金属塊Bの溶湯Dはフィルター35を通って、酸化物等が除去された後、セラミック溶解部14Aの内壁に沿って流下して溶湯待機槽30に連続的に供給される。なお、符号36は、溶湯待機槽30内の溶湯Dを保温するためのセラミックヒータからなるヒータである。また、符号37は、セラミック溶解部14Aに対して非鉄金属塊Bを装填するために、ハウジング33に設けた開閉扉である。
給湯槽18A内には、給湯炉13A内の溶湯Dを保温するためのヒータ19として、セラミックヒータからなるヒータ19Aが設けられ、給湯炉13Aの上面板38の中央部にはストーク22Aが上下方向に配置され、ストーク22Aの下端部は給湯槽18A内の溶湯Dに浸漬されている。給湯炉13Aには給湯槽18A内へ非酸化性ガスを供給するガス体供給手段21が接続され、弁体31を閉鎖した状態で、ガス体供給手段21により給湯槽18A内へ非酸化性ガスを供給することで、ストーク22Aを通じて型12内に給湯槽18A内の溶湯Dを供給して、鋳造品を鋳造できるように構成されている。
この非鉄金属用炉装置10Aでは、セラミック溶解部14Aに装填した非鉄金属塊Bを順次溶解して、溶湯待機槽30の溶湯Dを連続的に補給できるので、溶湯待機槽30から給湯槽18Aへ溶湯Dを順次供給して、連続的に鋳造を行うことができる。
図3に示す実施例2の非鉄金属用炉装置10Bは、前記実施例1の非鉄金属用炉装置10Aの溶解炉11Aの構成を変更したもので、他の構成は、非鉄金属用炉装置10Aと同一構造なので、同一部材には同一符号を付してその詳細な説明を省略する。
溶解炉11Bについて説明すると、図3に示すように、上面板32を貫通して溶湯待機槽30内へ突出する有底のハウジング40が設けられ、ハウジング40の底板の中央部には略円筒状のセラミック溶解部14Bが略鉛直方向に立設されている。ハウジング40とセラミック溶解部14Bとは耐熱性を有するセラミックで一体的に構成され、ハウジング40の下部は溶湯待機槽30の溶湯D内に浸漬され、セラミック溶解部14Bの下部内には溶湯待機槽30の溶湯Dが充填されるように構成されている。セラミック溶解部14Bの下端部には内側へ突出する環状のストッパー部41が形成され、セラミック溶解部14Bの上端部から挿入した非鉄金属塊Bは、ストッパー部41でセラミック溶解部14Bの下部内に係止されて、セラミック溶解部14Bの下部内の溶湯Dに浸漬される。
セラミック溶解部14Bの下部には、ストッパー部41で係止された非鉄金属塊Bに対応させて、高周波誘導コイル15Bが外装され、給電手段17により高周波誘導コイル15Bへ高周波電流を通電することで、セラミック溶解部14Bに装填した非鉄金属塊Bが誘導加熱されて溶解するように構成されている。高周波誘導コイル15Bとセラミック溶解部14B間には断熱材及び断熱空間からなる断熱層25Bが形成され、高周波誘導コイル15Bにはそれに対して熱媒体を供給する温調手段16が接続され、この温調手段16からの熱媒体により、高周波誘導コイル15Bが耐熱温度以下に冷却されるとともに、セラミック溶解部14Bの外面部が、高周波誘導コイル15B及び断熱層25Bを介して、セラミック溶解部14Bの内面部と外面部との温度差による熱衝撃で、セラミック溶解部14Bが破損しない温度に温調される。なお、符号42は、セラミック溶解部14Bに対して非鉄金属塊Bを装填するために、セラミック溶解部14Bの上端部に設けた開閉扉である。また、符号43は、ハウジング40内への溶湯Dの漏洩検知センサーである。
この溶解炉11Bでは、セラミック溶解部14Bに挿入した非鉄金属塊Bを溶湯Dに浸漬した状態で,非鉄金属塊Bを誘導加熱できるので、非鉄金属塊Bの溶解速度を大幅に向上でき、溶湯Dの生産効率を向上できる。即ち、一般に金属は固相の状態では、電気抵抗値が小さいため、渦電流による発熱量は小さくなるが、溶融して液相になると、電気抵抗値が大きくなって、渦電流による発熱量が大きくなるので、非鉄金属塊Bの溶解時間を大幅に短縮できる。しかも、非鉄金属塊Bとセラミック溶解部14B内の空気との接触を少なくすることで、酸化物の発生を効果的に防止できる。
図4に示す実施例3の非鉄金属用炉装置10Cについて説明すると、溶解炉11Cと給湯炉13Cとが左右に配置され、溶解炉11C内と給湯炉13C内とは気密空間で連通されている。溶解炉11C内には略円筒状のセラミック溶解部14Cが、溶湯貯留部としての給湯槽18C側が下側になるように傾斜状に配置され、セラミック溶解部14Cの途中部には、セラミック溶解部14C内に挿入した非鉄金属塊Bの給湯槽18C内への落下を防止するための半円板状のストッパー50が固定部材51を介して固定され、このストッパー50により溶湯Dの少なくとも一部が堰き止められて、ストッパー50の上流側に一定量の溶湯Dが貯留されるように構成されている。セラミック溶解部14Cの傾斜角度は任意に設定可能であるが、適量の溶湯Dがストッパー50の上流側に貯留されるように、水平方向に対して5°〜15°に設定することが好ましい。
セラミック溶解部14Cの途中部には、ストッパー50で係止された非鉄金属塊Bを加熱できるように、高周波誘導コイル15Cが外装され、給電手段17により高周波誘導コイル15Cへ高周波電流を通電することで、セラミック溶解部14Cに装填した非鉄金属塊Bが誘導加熱されて溶解するように構成されている。高周波誘導コイル15Cとセラミック溶解部14C間には断熱材及び断熱空間からなる断熱層25Cが形成され、高周波誘導コイル15Cにはそれに対して熱媒体を供給する温調手段16が接続され、この温調手段16からの熱媒体により、高周波誘導コイル15Cが耐熱温度以下に冷却されるとともに、セラミック溶解部14Cの外面部が、高周波誘導コイル15C及び断熱層25Cを介して、セラミック溶解部14Cの内面部と外面部との温度差による熱衝撃で、セラミック溶解部14Cが破損しない温度に温調される。
また、この溶解炉11Cでは、セラミック溶解部14Cに挿入した非鉄金属塊Bを溶湯Dに浸漬した状態で、非鉄金属塊Bを誘導加熱できるので、非鉄金属塊Bの溶解速度を大幅に向上でき、溶湯Dの生産効率を向上できる。つまり、前記実施例2と同様に、渦電流による発熱量が大きくなって誘導効率が高くなり、加えて非鉄金属塊Bが溶解するとセラミック溶解部14Cの内面に密接して、高周波誘導コイル15Cとの距離が短くなるので、非鉄金属塊Bの溶解速度を大幅に向上できる。符号52は、セラミック溶解部14Cに対して非鉄金属塊Bを装填するために、溶解炉11Cに設けた開閉扉である。
給湯炉13Cには溶解炉11Cから連続的に供給される溶湯Dを貯留する給湯槽18Cが設けられ、給湯炉13Cの上面板38Cにはストーク22Cが上下方向に配置され、ストーク22Cの下端部は給湯槽18C内の溶湯Dに浸漬されている。なお、符号53は、保持温度計センサーの保護管である。
給湯炉13Cには給湯炉13C内に非酸化性ガスを供給するガス体供給手段21が接続され、ガス体供給手段21により給湯炉13C内へ非酸化性ガスを供給することで、ストーク22Cを通じて型12内に給湯槽18C内の溶湯Dを供給して、鋳造品を鋳造できるように構成されている。給湯槽18C内の溶湯Dを保温するためヒータ19として、給湯槽18Cに外装した高周波誘導コイル54と、高周波誘導コイル15Cに高周波交流を通電する給電手段55と、高周波誘導コイル15Cを冷却する給電手段56とからなる周知の構成の高周波誘導加熱手段19Cが設けられている。
この非鉄金属用炉装置10Cでは、セラミック溶解部14Cに装填した非鉄金属塊Bを順次溶解して、給湯槽18C内の溶湯Dを連続的に補給できるので、連続的に鋳造を行うことが可能となる。また、給湯炉13C内及び溶解炉11C内には、非酸化性ガスが充満されるので、溶湯Dの酸化を防止して、酸化物が鋳物の中に混じって製品欠陥となることを防止できる。
図5に示す実施例4の非鉄金属用炉装置10Dは、前記実施例3の非鉄金属用炉装置10Cの溶解炉11Cの構成を変更したもので、他の構成は、非鉄金属用炉装置10Cと同一構造なので同一部材には同一符号を付してその詳細な説明を省略する。
溶解炉11Dについて説明すると、図5に示すように、溶解炉11Dのハウジング60内には有底な容器からなるセラミック溶解部14Dが略鉛直方向に設置され、セラミック溶解部14Dの上部の給湯炉13C側部分には切欠部61が形成されて、給湯槽18Cまで延びる半円筒状のセラミック製の案内通路を形成する樋部材62が接続されている。樋部材62は、給湯槽18C側へ向けて下り傾斜に配置され、セラミック溶解部14Dからあふれ出た溶湯Dは、樋部材62を通って給湯槽18Cへ供給される。
セラミック溶解部14Dには高周波誘導コイル15Dが外装され、給電手段17により高周波誘導コイル15Dへ高周波電流を通電することで、セラミック溶解部14Dに装填した非鉄金属塊Bが誘導加熱されて溶解するように構成されている。高周波誘導コイル15Dとセラミック溶解部14D間には断熱材及び断熱空間からなる断熱層25Dが形成され、高周波誘導コイル15Dには熱媒体を供給する温調手段16が接続され、この温調手段16からの熱媒体により、高周波誘導コイル15Dが耐熱温度以下に冷却されるとともに、セラミック溶解部14Dの外面部が、高周波誘導コイル15D及び断熱層25Dを介して、セラミック溶解部14Dの内面部と外面部との温度差による熱衝撃で、セラミック溶解部14Dが破損しない温度に温調される。符号63は、セラミック溶解部14Dに対して非鉄金属塊Bを装填するために、溶解炉11Dの上面に設けた開閉扉である。
また、この溶解炉11Dでは、セラミック溶解部14Dが溶湯Dで満杯になるまでは、給湯槽18C側へ溶湯Dは供給されないが、満杯になった後は、非鉄金属塊Bを投入する毎に、それに応じた分量の溶湯Dが給湯槽18Cへ供給されることになる。しかも、セラミック溶解部14Dに挿入した非鉄金属塊Bを溶湯Dに浸漬した状態で、非鉄金属塊Bを誘導加熱できるので、非鉄金属塊Bの溶解速度を大幅に向上でき、溶湯Dの生産効率を向上できる。具体的には、非鉄金属塊Bとして真鍮を溶解する場合において、85KW溶解で、固相でのコイル電流値は85A−600Vで有ったが、溶融し液相になった場合の電流値は110A−600Vとなった。実際の溶解では、10Kgのインゴットを前記コイル電流値で溶解した場合における溶解時間は、空のセラミック溶解部14Dにインゴットを投入した場合には、5分を要したが、10Kgの溶湯Dを満たしたセラミック溶解部14Dに10Kgのインゴットを投入した場合には、1.5分で溶解でき、溶解時間を大幅に短縮できた。
この非鉄金属用炉装置10Dでは、セラミック溶解部14Dに非鉄金属塊Bを投入する毎に、給湯槽18C内へ溶湯Dを補給できるので、給湯槽18C内の溶湯Dで連続的に鋳造を行うことが可能となる。また、給湯炉13C内及び溶解炉11D内には、非酸化性ガスが充満されるので、溶湯Dの酸化を防止して、酸化物が鋳物の中に混入して製品欠陥となることを防止できる。
図6、図7に示すように、実施例5の非鉄金属用炉装置10Eは、前記溶解炉11と給湯炉13とを一体化させたもので、溶湯貯留部18Eとセラミック溶解部14Eとを上下に形成した溶解兼貯留坩堝70と、セラミック溶解部14Eに外装される溶解部コイル71と溶湯貯留部18Eに外装される貯留部コイル72からなる高周波誘導コイル15Eと、高周波誘導コイル15Eへ供給する熱媒体を温調する温調手段16と、高周波誘導コイル15Eへの給電手段17と、型内へ溶湯Dを供給する溶湯供給手段20とを備えている。
溶解兼貯留坩堝70は、前述のセラミック溶解部14と同様に、熱衝撃性に優れた混合セラミック、例えばチタン酸アルミとアルミナ、マグネシア、シリカの混合セラミックで構成されている。
溶解兼貯留坩堝70は上方へ行くにしたがって拡径する有底な円錐台状に形成され、高さ方向の途中部に段差部70aが形成されて、段差部70aよりも下側には円錐台状のセラミック溶解部14Eが形成され、段差部70aよりも上側にはセラミック溶解部14Eよりも大径の円錐台状の溶湯貯留部18Eが形成され、セラミック溶解部14Eの上面は溶湯貯留部18Eの下面に開口され、溶湯貯留部18Eの軸心L1とセラミック溶解部14Eの軸心L2とは偏心位置に配置されている。
溶解兼貯留坩堝70は、絶縁断熱材からなる坩堝収容材73の収容凹部74に装填され、坩堝収容材73の底部及び外側部は断熱材からなる築炉材75で囲繞されている。坩堝収容材73の下部には連続的に連なった高周波誘導コイル15Eからなる溶解部コイル71と貯留部コイル72とが埋設状に設けられ、溶解兼貯留坩堝70を坩堝収容材73の収容凹部74に装填した状態で、溶解部コイル71と貯留部コイル72とがセラミック溶解部14Eと溶湯貯留部18Eとをそれぞれ取り囲むように構成されている。
非鉄金属用炉装置10Eの上部には材料投入パイプ76が設けられ、インゴットやビレットなどの非鉄金属塊Bは材料投入パイプ76から溶湯貯留部18Eを経てセラミック溶解部14E内へ投入されるように構成されている。また、セラミック溶解部14E内へ投入した非鉄金属塊Bは、給電手段17により高周波誘導コイル15Eに高周波電流を通電することで、溶解部コイル71により加熱されて、セラミック溶解部14E内にて溶解される。また、セラミック溶解部14E内の溶湯Dは、材料投入パイプ76から次の非鉄金属塊Bがセラミック溶解部14E内に投入されたときに、セラミック溶解部14Eから溶湯貯留部18Eに溢れ出て溶湯貯留部18Eに順次貯留され、貯留部コイル72により加熱保持されることになる。なお、符号77は、材料投入パイプ76の上端部を開閉可能な蓋部材である。また、本実施の形態では、溶湯貯留部18E内の溶湯Dを保温するヒータ19として、高周波誘導コイル15Eを延長してなる貯留部コイル72を設けたが、実施例1と同様に貯留部コイル72を省略してセラミックヒータを設けることも可能である。
溶解兼貯留坩堝70と坩堝収容材73の収容凹部74間には断熱材からなる断熱層25Eが形成されている。高周波誘導コイル15Eにはそれに対して熱媒体を供給する温調手段16が接続され、この温調手段16からの熱媒体により、高周波誘導コイル15Eが耐熱温度以下に冷却されるとともに、溶解兼貯留坩堝70の外面部が、高周波誘導コイル15E及び断熱層25Eを介して、溶解兼貯留坩堝70の内面部と外面部との温度差による熱衝撃で、溶解兼貯留坩堝70が破損しない温度に温調される。なお、符号78は、温調用熱電対である。また、符号79は、万一、溶解兼貯留坩堝70が破損して、溶解兼貯留坩堝70から溶湯Dが漏れ出した場合の溶湯Dの排出通路である。また、符号80は、溶湯Dの漏れを検出する漏洩検知センサーである。
非鉄金属用炉装置10Eの上面板81の中央部にはストーク22Eが上下方向に配置され、ストーク22Eの下部は溶湯貯留部18E内の溶湯Dに浸漬されている。非鉄金属用炉装置10E内へ非酸化性ガスを供給するガス体供給手段21が接続され、蓋部材77を閉鎖した状態で、ガス体供給手段21により非鉄金属用炉装置10E内へ非酸化性ガスを供給することで、ストーク22Eを通じて型12(図2参照)内に非鉄金属用炉装置10E内の溶湯Dを供給して、鋳造品を鋳造できるように構成されている。
この非鉄金属用炉装置10Eでは、セラミック溶解部14Eに装填した非鉄金属塊Bを順次溶解して、溶湯貯留部18Eに溶湯Dを順次補給できるので、連続的に鋳造を行うことができる。しかも、溶解兼貯留坩堝70に溶湯貯留部18Eとセラミック溶解部14Eとを形成するので、溶湯貯留部18Eとセラミック溶解部14Eとを別個に設ける場合と比較して、非鉄金属用炉装置10Eの構成を大幅に簡単にでき、非鉄金属用炉装置10Eを小型に構成できるとともにその製作コストを格段に安くできる。また、セラミック溶解部14Eから溶湯貯留部18Eへの溶湯Dの供給が連続的に且つ他物に接することなくなされるので、エネルギーロスが少なく、ランニングコストも安くできる。更にまた、高周波誘導コイル15Eにより溶解部コイル71と貯留部コイル72を設け、貯留部コイル72により溶湯貯留部18Eを加熱できるので、別途セラミックヒータなどを設ける場合と比較して、非鉄金属用炉装置10Eの製作コストを安くできる。
また、溶湯貯留部18Eの軸心L1とセラミック溶解部14Eの軸心L1とを偏心位置に配置することで、セラミック溶解部14Eに外装される溶解部コイル71と、溶湯貯留部18Eに外装される貯留部コイル72の磁束中心をずらして配置でき、貯留部コイル72の磁束が溶解部コイル71に悪影響を与えることを抑制できる。このため、貯留部コイル72に関しては、その巻き数を増やして誘導による加熱範囲を増加させ、溶湯貯留部18Eに収容可能な溶湯量を増大でき、溶解部コイル71に関しては、理論的な巻き数で、インゴットやビレットなどの非鉄金属塊Bを効率良く溶解することができる。
つまり、この非鉄金属用炉装置10Eでは、溶解初期においては、溶湯貯留部18Eに溶湯Dが貯留されていないことから、貯留部コイル72が空芯コイルとなり、溶融部コイル71は非鉄金属塊Bにより誘導磁束密度が高くなるので、理論的なターン数で溶解効率を上げる事が出来、溶解が進む。また、非鉄金属塊Bが溶融し、液体金属の溶湯Dになると、高周波の表皮効果により、溶解兼貯留坩堝70内に充満した非鉄金属溶湯Dの表面に誘導電流が流れ発熱し易くなる。この為、貯留部コイル72については誘導効率が落ちた場合でも、発熱量は確保できることになる。
実験に於いては、真鍮インゴット5Kgを溶解する場合、100KW、25KHzの給電手段17を用いて、80%出力設定で、80Aが高周波誘導コイル15Eに流れ、1分半から2分で1000度まで溶解出来た。この際、インゴットが溶解し液状となった所で、高周波誘導コイル15Eの電流が120Aに増加した。その後追加のインゴットは120Aのまま溶解が出来たので、溶解時間が48秒に短縮された。この結果から、溶融後の非鉄金属の溶湯Dの昇温は、出力設定を35%まで下げなければ、昇温時間が極端に早く、1秒あたり20℃から30℃の昇温となった。真鍮インゴット15Kgの溶解の場合には、35%まで出力を下げても1℃/秒位の昇温速度となった。
なお、溶解部コイル71と貯留部コイル72間に中間タップを設け、溶解部コイル71と貯留部コイル72とを独立に給電可能に構成することも好ましい。この場合には、溶解部コイル71への給電と貯留部コイル72への給電とを適宜に切り替えることによって、非鉄金属の溶解と、溶湯Dの加熱保温を、消費電力を抑えつつ効率良く行うこともできる。
以上、本発明の実施形態について説明したが、本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲においてその構成を変更し得ることは勿論である。
10 非鉄金属用炉装置 11 溶解炉
12 型 13 給湯炉
14 セラミック溶解部 15 高周波誘導コイル
16 温調手段 17 給電手段
18 給湯槽 19 ヒータ
20 溶湯供給手段 21 ガス体供給手段
22 ストーク 23 供給管
24 供給管 25 断熱層
10A 非鉄金属用炉装置 11A 溶解炉
13A 給湯炉 14A セラミック溶解部
15A 高周波誘導コイル 18A 給湯槽
19A ヒータ 22A ストーク
25A 断熱層
30 溶湯待機槽 31 弁体
31a 連通路 32 上面板
33 ハウジング 34 ストッパー部
35 フィルター 36 ヒータ
37 開閉扉 38 上面板
10B 非鉄金属用炉装置 11B 溶解炉
14B セラミック溶解部 15B 周波誘導コイル
25B 断熱層 32B 上面板
40 ハウジング 41 ストッパー部
42 開閉扉 43 漏洩検知センサー
10C 非鉄金属用炉装置 11C 溶解炉
13C 給湯炉 14C セラミック溶解部
15C 高周波誘導コイル 18C 給湯槽
19C 高周波誘導加熱手段 22C ストーク
25C 断熱層 38C 上面板
50 ストッパー 51 固定部材
52 開閉扉 53 保護管
54 高周波誘導コイル 55 給電手段
56 冷却手段
10D 非鉄金属用炉装置 11D 溶解炉
14D セラミック溶解部 15D 高周波誘導コイル
25D 断熱層
60 ハウジング 61 切欠部
62 樋部材 63 開閉扉
10E 非鉄金属用炉装置 14E セラミック溶解部
15E 高周波誘導コイル 18E 溶湯貯留部
22E ストーク 25E 断熱層
70 溶解兼貯留坩堝 70a 段差部
71 溶解部コイル 72 貯留部コイル
73 坩堝収容材 74 収容凹部
75 築炉材 76 材料投入パイプ
77 蓋部材 78 温調用熱電対
79 排出通路 80 漏洩検知センサー
81 上面板

Claims (15)

  1. 非鉄金属塊を収容するセラミック溶解部と、
    前記セラミック溶解部に外装した高周波誘導コイルと、
    前記高周波誘導コイルに油からなる熱媒体を供給して、前記高周波誘導コイルを耐熱温度以下に冷却するとともに、前記高周波誘導コイルを介してセラミック溶解部の外面部を、前記セラミック溶解部の内面部と外面部との温度差による熱衝撃でセラミック溶解部が破損しない温度に温調する温調手段と、
    前記高周波誘導コイルへの給電手段と、
    前記セラミック溶解部から供給される溶湯を貯留する溶湯貯留部と、
    前記溶湯貯留部内の溶湯を保温するヒータと、
    前記溶湯貯留部内の溶湯を型内へ供給する溶湯供給手段と、
    を備え、前記セラミック溶解部にて溶融した溶湯を溶湯貯留部へ連続的に供給可能となした、
    ことを特徴とする非鉄金属用炉装置。
  2. 前記温調手段として、20℃〜450℃の熱媒体を高周波誘導コイルへ供給する温調手段を設けた請求項1記載の非鉄金属用炉装置。
  3. 前記高周波誘導コイルとセラミック溶解部間に断熱層を配置させ、前記温調手段として、前記高周波誘導コイルへ供給する熱媒体により、前記高周波誘導コイル及び断熱層を介して、前記セラミック溶解部の内面部と外面部との温度差が450℃〜800℃になるように温調する温調手段を設けた請求項1又は2記載の非鉄金属用炉装置。
  4. 前記温調手段として、前記高周波誘導コイルに熱媒体を供給して、前記セラミック溶解部を予熱可能となした温調手段を設けた請求項1〜のいずれか1項記載の非鉄金属用炉装置。
  5. 前記セラミック溶解部をセラミック製の筒体で構成するとともに、前記セラミック溶解部を水平方向に対して角度を付けて配置し、前記セラミック溶解部にストッパーを設けて、前記ストッパーにより、セラミック溶解部に挿入した非鉄金属塊の溶湯貯留部内への脱落を防止可能となした請求項1〜のいずれか1項記載の非鉄金属用炉装置。
  6. 前記セラミック溶解部を溶湯貯留部側が下側になるように傾斜状に配置し、前記ストッパーにより溶湯の少なくとも一部を堰き止めて、一定量の溶湯を貯留可能となした請求項記載の非鉄金属用炉装置。
  7. 前記セラミック溶解部に高周波誘導コイルを覆うハウジングを設け、前記セラミック溶解部及びハウジングの下部を溶湯貯留部内の溶湯に浸漬して、前記セラミック溶解部内に侵入する溶湯に、前記非鉄金属塊を浸漬可能となした請求項1〜のいずれか1項記載の非鉄金属用炉装置。
  8. 前記セラミック溶解部をセラミック製の容器で構成し、前記セラミック溶解部から溢れる溶湯を溶湯貯留部へ案内する案内通路を設けた請求項1〜のいずれか1項記載の非鉄金属用炉装置。
  9. 前記セラミック溶解部として、チタン酸アルミ、アルミナ、マグネシア、シリカの混合セラミックからなるものを用いた請求項1〜のいずれか1項記載の非鉄金属用炉装置。
  10. 前記溶湯貯留部と前記セラミック溶解部とを上下に有するセラミック製の溶解兼貯留坩堝を設けた請求項1〜のいずれか1項記載の非鉄金属用炉装置。
  11. 前記溶湯貯留部をセラミック溶解部よりも大径に構成し、前記溶湯貯留部の軸心とセラミック溶解部の軸心とを偏心位置に配置し、前記セラミック溶解部に外装される高周波誘導コイルを延長して、前記セラミック溶解部に外装される溶解部コイルに加えて、前記溶湯貯留部内の溶湯を保温するヒータとして、前記溶湯貯留部に外装される貯留部コイルを設けた請求項1記載の非鉄金属用炉装置。
  12. 前記溶解部コイルと貯留部コイル間に中間タップを設け、前記溶解部コイルと貯留部コイルとを独立に給電可能となした請求項1記載の非鉄金属用炉装置。
  13. 前記溶解兼貯留坩堝として、チタン酸アルミ、アルミナ、マグネシア、シリカの混合セラミックからなるものを用いた請求項1〜1のいずれか1項記載の非鉄金属用炉装置。
  14. 前記溶湯供給手段では、前記溶湯貯留部内を加圧して、ストークを通じて溶湯貯留部内の溶湯を型内へ供給する請求項1〜1のいずれか1項記載の非鉄金属用炉装置。
  15. 前記溶湯供給手段では、前記溶湯貯留部内を不活性ガスにて加圧して、前記ストークを通じて溶湯貯留部内の溶湯を型内へ供給する請求項1記載の非鉄金属用炉装置。
JP2013508944A 2011-04-08 2012-04-06 非鉄金属用炉装置 Expired - Fee Related JP5682706B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013508944A JP5682706B2 (ja) 2011-04-08 2012-04-06 非鉄金属用炉装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011085884 2011-04-08
JP2011085884 2011-04-08
PCT/JP2012/059483 WO2012137910A1 (ja) 2011-04-08 2012-04-06 非鉄金属用炉装置
JP2013508944A JP5682706B2 (ja) 2011-04-08 2012-04-06 非鉄金属用炉装置

Publications (2)

Publication Number Publication Date
JPWO2012137910A1 JPWO2012137910A1 (ja) 2014-07-28
JP5682706B2 true JP5682706B2 (ja) 2015-03-11

Family

ID=46969298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013508944A Expired - Fee Related JP5682706B2 (ja) 2011-04-08 2012-04-06 非鉄金属用炉装置

Country Status (2)

Country Link
JP (1) JP5682706B2 (ja)
WO (1) WO2012137910A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807848B2 (ja) * 2013-03-28 2015-11-10 株式会社デンソー 鋳造装置
CN103495718A (zh) * 2013-09-17 2014-01-08 浙江万丰科技开发有限公司 一种低压铸造连续式生产方法及设备
CN105364056A (zh) * 2015-12-22 2016-03-02 江苏天宏机械工业有限公司 连续熔解炉配套定量重力浇注炉
CN117109301B (zh) * 2023-10-25 2023-12-22 山西第三代半导体技术创新中心有限公司 一种用于制备大孔径碳化硅粉料的坩埚结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164465A (ja) * 1995-12-13 1997-06-24 U Mold:Kk 竪型ダイカスト法および装置
JP2826864B2 (ja) * 1989-12-28 1998-11-18 中部電力株式会社 アルミインゴットの冷材供給による急速溶解出湯方法と装置
JP2873593B2 (ja) * 1989-12-28 1999-03-24 中部電力株式会社 アルミインゴットの冷材供給による急速溶解方法と装置
JPH11173763A (ja) * 1997-12-08 1999-07-02 Toshiba Corp 不定形耐火物内張り誘導炉の寿命予測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826864B2 (ja) * 1989-12-28 1998-11-18 中部電力株式会社 アルミインゴットの冷材供給による急速溶解出湯方法と装置
JP2873593B2 (ja) * 1989-12-28 1999-03-24 中部電力株式会社 アルミインゴットの冷材供給による急速溶解方法と装置
JPH09164465A (ja) * 1995-12-13 1997-06-24 U Mold:Kk 竪型ダイカスト法および装置
JPH11173763A (ja) * 1997-12-08 1999-07-02 Toshiba Corp 不定形耐火物内張り誘導炉の寿命予測方法

Also Published As

Publication number Publication date
JPWO2012137910A1 (ja) 2014-07-28
WO2012137910A1 (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
KR101287935B1 (ko) 도가니식 연속 용해로
US8241390B2 (en) Semi-liquid metal processing and sensing device and method of using same
JP5517710B2 (ja) 誘導加熱式アルミ溶解炉およびこれを用いた溶解設備
JP5682706B2 (ja) 非鉄金属用炉装置
RU2459684C2 (ru) Непрерывная разливка реакционноспособных металлов при использовании покрытия из стекла
US7849912B2 (en) Process for electroslag remelting of metals and ingot mould therefor
WO2015037408A1 (ja) 誘導加熱炉用坩堝
ITUD960202A1 (it) Dispositivo di spillaggio per forno elettrico ad arco, forno siviera o paniera e relativo procedimento di spillaggio
ES2301054T3 (es) Procedimiento y dispositivo para la explotacion de un horno de arco electrico.
CA3002498C (en) Slide closure on the spout of a metallurgical vessel
JP2016107333A (ja) 非鉄金属溶解炉、非鉄金属溶解方法、及び非鉄金属溶解設備
KR20000060792A (ko) 알루미늄용탕 보온용 래들
JP2013052407A (ja) ダイカストマシンに金属溶湯を供給する供給装置及び金属溶湯の供給方法
US8662142B2 (en) Method and device for remelting metal in an electric furnace
JP5654339B2 (ja) 誘導加熱式アルミニウム溶解・保持炉
JP5203680B2 (ja) 金属のエレクトロスラグ再溶解のプロセスおよびこれに使用されるインゴット・モールド
KR101356909B1 (ko) 고청정 용강 정련장치 및 고청정 용강 제조방법
JP2826867B2 (ja) アルミインゴットの急速溶解方法と装置
US6558446B1 (en) In situ electroslag refining hot start
KR101534663B1 (ko) 포트롤유닛 예열장치
US20170113270A1 (en) Melting unit for melting down casting materials and method for producing molten material for castings
KR20120018560A (ko) 알루미늄 연속 용해 장치 및 이를 이용한 알루미늄 코일의 제조 장치
JP4362712B2 (ja) 坩堝式溶解保持炉
JP3621042B2 (ja) 浸漬溶解保持炉
KR101082946B1 (ko) 전기유도로를 이용한 합금 도금용 잉곳 제조방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R150 Certificate of patent or registration of utility model

Ref document number: 5682706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees