WO2014020778A1 - 気象再現方法、気象再現装置、及び空気利用装置 - Google Patents

気象再現方法、気象再現装置、及び空気利用装置 Download PDF

Info

Publication number
WO2014020778A1
WO2014020778A1 PCT/JP2012/076318 JP2012076318W WO2014020778A1 WO 2014020778 A1 WO2014020778 A1 WO 2014020778A1 JP 2012076318 W JP2012076318 W JP 2012076318W WO 2014020778 A1 WO2014020778 A1 WO 2014020778A1
Authority
WO
WIPO (PCT)
Prior art keywords
weather
area
weather information
narrow
information
Prior art date
Application number
PCT/JP2012/076318
Other languages
English (en)
French (fr)
Inventor
達也 櫻井
晋輔 佐竹
謙一郎 門
久保田 圭
希東 胡
惠太 山室
謙 角谷
輝 浅香
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50027499&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014020778(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to AU2012386701A priority Critical patent/AU2012386701B2/en
Priority to US14/395,816 priority patent/US20150120193A1/en
Priority to RU2014145538/28A priority patent/RU2584918C1/ru
Priority to JP2014527938A priority patent/JP6084224B2/ja
Priority to CA2872957A priority patent/CA2872957C/en
Priority to AP2014008038A priority patent/AP2014008038A0/xx
Publication of WO2014020778A1 publication Critical patent/WO2014020778A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • F05B2260/8211Parameter estimation or prediction of the weather

Definitions

  • the present invention relates to a weather reproduction method and a weather reproduction device that reproduces meteorological data in a region narrower than the weather data using past weather data, and in particular, an air utilization device arranged at a point where there is no weather observation data.
  • the present invention relates to a weather reproduction method for reproducing weather data, a weather reproduction device, and an air utilization device for designing.
  • air utilization devices that are arranged outdoors and are affected by the surrounding weather conditions and that use air as a heat source or cold source, power source, and / or reactant.
  • An example of an air utilization device that utilizes air as a cold heat source is an air fin cooler.
  • An air utilization apparatus used as a power source is a wind power generator.
  • apparatuses that use air as a reactant include a gas turbine that causes a combustion reaction, and a reactor that performs an oxidation reforming reaction.
  • the wind power generator cannot obtain the desired power generation amount unless the desired air volume and speed are obtained.
  • the amount of exhaust gas from the gas turbine is a function of on-site weather conditions (temperature, pressure and humidity), so based on multiple weather data, generate an emission output notification that includes the generated emission level
  • a method for predicting the discharge amount of a gas turbine is disclosed (the following Patent Document 1).
  • the disclosed prediction method when a user desires prediction of weather conditions, the weather condition near the gas turbine is predicted by accessing a third party weather system or the like and interpolating the data received from the weather service together with the received data. . In this way, the disclosed prediction method predicts the weather when there is no future weather data.
  • Patent Document 2 a weather prediction using a weather simulation (the following Patent Document 2) or a technique relating to a diffusion prediction of radioactive substances (the following Patent Document 3) is disclosed.
  • Patent Document 1 a lean blowout of the combustion system that occurs during operation of lowering the NO X emissions in advance corresponding possible by using the weather information, or be one which avoids the above Patent Documents 2 and 3 is for the prediction of future weather conditions such as weather prediction or diffusion prediction of hazardous substances, and it is completely disclosed to reproduce the weather by weather simulation for the design of air utilization equipment.
  • future weather conditions such as weather prediction or diffusion prediction of hazardous substances
  • the present invention relates to a region including an arrangement location where an air utilization device is disposed and a plurality of times over a period even when there is no weather data of the location where the air utilization device is installed.
  • the purpose is to obtain the wind direction necessary for the design based on the weather that is reproduced by simulating the area including the location, using the weather information attached as input data.
  • a form for solving the above problem is as described below.
  • Weather reproduction that reproduces the weather by weather simulation to design an air utilization device that is placed outdoors and is affected by ambient weather conditions and uses air as either a heat source, power source, or reactant
  • a method From a plurality of weather information related to time and area, including at least wind direction data, a region including an arrangement place where the air utilization device is arranged, and weather information related to a plurality of times over a period of time Select a set, Each of the sets of weather information is input data, a differential equation of the weather information according to a weather analysis model for weather simulation is solved, and the first narrow-area weather information related to a region narrower than the region of the weather information Generate a set From the first set of narrow-area weather information, select a second set of narrow-area weather information that targets the area including the location,
  • a weather reproduction method characterized in that, in order to determine an arrangement direction of the air utilization device, a wind direction having the highest cumulative frequency is calculated using wind direction data included in the second narrow-
  • the air utilization device is disposed in the region so that the gas discharged by the discharge unit of the air utilization device on the windward side is not sucked by the suction portion of the air utilization device on the leeward side.
  • the weather reproduction method according to Item 1 wherein a layout map is generated. Thereby, the arrangement
  • the first narrow area weather information set is regenerated using observation data including at least one of a wind direction, a wind speed, and a temperature of an area targeted by the weather information.
  • the second narrow area weather information is calculated by a three-dimensional hydrodynamic equation, and the weather field information in a region narrower than the second narrow area weather information is calculated, Item 14.
  • the weather reproduction method according to any one of items 1 to 4, further comprising recalculating the first narrow-area weather information set. 6).
  • the first and second narrow-area weather information is three-dimensional data, and includes at least one of wind direction, wind speed, turbulent energy, solar radiation, atmospheric pressure, rainfall, humidity, and temperature.
  • Weather reproduction that reproduces the weather by weather simulation to design an air utilization device that is placed outdoors and is affected by ambient weather conditions and uses air as either a heat source, power source, or reactant
  • a device Meteorological information related to time and area, including at least the area where the air utilization device is arranged, obtained from a plurality of weather information including wind direction data, and related to a plurality of times over a certain period
  • a storage unit for storing a set of Select the set of weather information, Each of the sets of weather information is input data, a differential equation of the weather information according to a weather analysis model for weather simulation is solved, and the first narrow-area weather information related to a region narrower than the region of the weather information Generate a set Selecting a second set of meteorological information from among the set of first narrow-range meteorological information, targeting a region including the placement location; Using the wind direction data included in the second weather information set, in order to determine the arrangement direction of the air utilization device, a processing unit that calculates the wind direction with the highest cumulative frequency; A
  • the processing unit based on the calculated wind direction, the gas discharged from the discharge unit of the air utilization device on the windward side in the area so that the suction unit of the air utilization device on the leeward does not suck the gas.
  • Item 8 The weather reproduction device according to item 7, which generates a layout diagram for arranging the air utilization device.
  • the first narrow-area meteorological information set generation step uses the observation data including at least one of a wind direction, a wind speed, and a temperature of an area targeted by the meteorological information.
  • the processing unit calculates the second narrow-area weather information with a three-dimensional hydrodynamic equation, calculates weather field information in a narrower area than the weather data, 10.
  • the method according to any one of items 7 to 9, including calculating a flow in which the air exhaled and warmed by the air utilization device is recirculated to a suction portion of the air utilization device using the weather field information.
  • the described weather reproduction device 11.
  • the area where the air utilization device is arranged differs from the terrain of the weather information due to any one of leveling, land use, and equipment installation, it is based on the terrain information reflecting any of the leveling, land use, equipment installation 11.
  • the weather reproduction apparatus according to any one of items 7 to 10, further comprising recalculating the first narrow-area weather information set.
  • the first and second narrow-area weather information is three-dimensional data, and includes at least one of wind direction, wind speed, turbulent energy, solar radiation, atmospheric pressure, rainfall, humidity, and temperature.
  • the weather reproduction apparatus according to claim 1. 13.
  • An air utilization device that is arranged outdoors and is influenced by the surrounding weather conditions, and uses air as either a heat source, a power source, or a reactant, A suction part for sucking in the air;
  • An operation unit that performs any one of heat exchange, reaction, and power recovery using the air sucked in the suction unit, A discharge unit for discharging the gas released by any of the heat exchange, reaction, and power recovery operations; From a plurality of weather information related to time and area, including at least wind direction data, a region including an arrangement place where the air utilization device is arranged, and weather information related to a plurality of times over a period of time Select a set, Each of the sets of weather information is input data, a differential equation of the weather information according to a weather analysis model for weather simulation is solved, and
  • the suction unit located on the lee in the wind direction data included in the second narrow area weather information is the gas discharged by the discharge unit located on the wind in the wind direction data included in the second narrow area weather information set.
  • the air utilization device according to item 13 which is arranged so as not to be inhaled.
  • the second narrow area meteorological information is calculated by a three-dimensional hydrodynamic formula to calculate meteorological field information in a region narrower than the second narrow area meteorological information, and the air utilization device is used using the meteorological field information. Calculating the flow of air that has been exhaled and recirculated to the suction portion of the air utilization device, Item 15.
  • the present invention relates to a region including an arrangement location where an air utilization device is disposed and a plurality of times over a period even when there is no weather data of the location where the air utilization device is installed.
  • the wind direction required for the design can be obtained based on the weather that is reproduced by performing the weather simulation on the area including the location, using the weather information attached as input data.
  • meteorological analysis model includes various physical models, and by solving them with a computer, weather simulation with high spatial resolution can be performed to perform weather simulation.
  • the advantage of weather simulation is that it can estimate weather information with higher spatial resolution than field observations.
  • wide area weather information weather information about a wide area including an area where the air utilization device is arranged
  • NOAA National Centers for Environmental Prediction
  • NCEP data as wide-area meteorological information is based on meteorological elements (wind direction, wind speed, turbulent energy, solar radiation, atmospheric pressure, etc.) on a three-dimensional grid point when the world is divided into a grid (grid spacing is 1.5 to 400 km).
  • the physical model included in the weather analysis model is, for example, WRF (The Weather Research & Forecasting Model).
  • the WRF includes various physical models. Physical models include radiation models that calculate solar radiation and atmospheric radiation, turbulence models that represent turbulent mixed layers, ground surface temperature, soil temperature, soil moisture content, snow cover, and ground surface flux. There are surface models.
  • the meteorological analysis model described partial differential equations representing fluid motion in the atmosphere including Naviestokes' equations related to fluid motion and empirical equations derived from atmospheric observation results, and conservation laws for mass and energy
  • a weather simulation can be executed by including the partial differential equation and solving the differential equation simultaneously. Therefore, by using the wide-area weather information as input data, the differential equation according to the weather analysis model for the weather simulation can be solved to generate the weather information of the arrangement area of the air utilization device related to the area of the spatial resolution narrower than the wide-area weather information. .
  • the weather information generated in this way is referred to as “narrow area weather information”.
  • Computational fluid analysis is a computational fluid dynamics (Computational) that solves equations related to fluid motion using a computer. This is a numerical analysis and simulation method that observes flow by applying Fluid Dynamics. Specifically, the fluid state is calculated spatially by the Finite Volume Method using the Naviestokes equation, which is a fluid dynamic equation.
  • the numerical fluid analysis procedure includes 3D model data creation process that reproduces the structure of the facility to be examined, a grid generation process that divides the examination target range into a grid that is the minimum calculation unit, and a computer. Including a step of taking in values and boundary values, solving a hydrodynamic equation in each lattice, and outputting various values (flow velocity, pressure, etc.) obtained as a result of the analysis as an image such as contour display or vector display.
  • Numerical fluid analysis can realize fluid simulation with higher resolution than the weather analysis model, so it is very difficult to reproduce by weather simulation, and small changes in wind speed and direction, and several centimeters to several meters scale It is possible to provide information on the air flow phenomenon peculiar to the spatial scale, such as the change of the air flow around the building from the disturbance of the air flow.
  • the weather reproduction device performs a weather analysis model and a numerical fluid analysis to calculate narrow-area weather information in which the air utilization device is arranged.
  • the weather reproduction device may perform a design temperature calculation process or a wind map generation process, which will be described later.
  • FIG. 1 is a diagram showing an example of a functional configuration of the weather reproduction device.
  • a weather reproduction device 90 shown in FIG. 1 includes a storage unit 12 that stores data and programs, and a processing unit 14 that performs numerical calculation processing.
  • the storage unit 12 includes a weather analysis program 901 such as WRF, a numerical fluid analysis program 903, a design temperature calculation program 905, a wind map generation program 907, a drawing output program 909 for generating a layout map, a weather database 800, NCEP data, and the like.
  • Wide area weather information 801, narrow area weather information 803 obtained by weather simulation, airflow field information 805 obtained by numerical fluid analysis, temperature analysis data 807, wind direction analysis data 808, and layout map data 809 are stored.
  • the weather database holds wide-area weather data 801 and is downloaded from outside or obtained through a storage medium.
  • the processing unit 14 executes the weather analysis program 901 to generate the narrow area weather information 803 from the wide area weather information 801 and perform the weather analysis process stored in the storage unit 12. Further, the processing unit 14 executes the numerical fluid analysis program 903 to generate the airflow field data 807 from the narrow area weather information 803 and perform numerical fluid processing stored in the storage unit 12. Similarly, the processing unit 14 executes a design temperature calculation program 905 and an airflow chart generation program 907, and executes a design temperature calculation process and an airflow chart generation process, which will be described later, and related temperature analysis data. 807 and wind direction analysis data 809 are displayed on the display unit 16 that displays data such as images.
  • the processing unit 14 executes the layout map generation program 909 and outputs layout map data 809 based on the wind direction analysis data 808.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the weather reproduction device.
  • the weather reproduction device 90 shown in FIG. 2 includes a processor 12A, a main storage device 14A, an auxiliary storage device 14B such as a hard disk or SSD (Solid State Drive), a drive device 15 that reads data from the storage medium 900, and a NIC (network A communication device 19 such as an interface card, and these components are connected to each other by a bus 20.
  • the weather reproduction device 90 is connected to the external display 16 and the input device 17 such as a keyboard and a mouse.
  • the processing unit 12 illustrated in FIG. 1 corresponds to the processor 12A
  • the storage unit 14 corresponds to the main storage device 14A.
  • the storage medium 900 stores the weather database 800, the weather analysis program 901, the numerical fluid analysis program 903, the design temperature calculation program 905, the wind map generation program 907, and the layout map generation program 909 shown in FIG. 1 as data. May be. These data 800 to 909 are stored in the storage unit 12 as shown in FIG.
  • the weather reproduction device 90 may be connected to the external server 200 and the computers 210 and 220 via the network 40.
  • the computer 210 and the external server 200 may have the same components as the weather reproduction device 90.
  • the weather database 800 in the server 200 can be received via the network 40.
  • only the weather analysis program 901 related to the weather simulation with a high system load is stored in the weather reproduction device 90, and the other programs are stored in any of the computers 210 and 220. It may be executed.
  • the computer is limited to hardware, but the weather reproduction device 90 may be a data center virtual server.
  • the hardware form may be such that the programs 901 to 909 are stored in the storage unit of the data center, are executed by the processing unit of the data center, and data is output from the data center to the client computer.
  • the external server 200 may have a weather database. In that case, the weather reproduction device 90 acquires wide-area weather data from the external server 200.
  • FIG. 3A is a diagram illustrating an example of an air utilization device.
  • the air utilization device 100 shown in FIG. 3A is disposed outdoors, is affected by the surrounding weather conditions, and utilizes air as one of a heat source, a power source, and a reactant.
  • the air utilization device 100 is not necessarily an essential component, but the suction unit 101 that sucks in air, the operation unit 102 that performs any of heat exchange, reaction, and power recovery using the air sucked in the suction unit, A discharge unit 103 that discharges gas released by any of the operations of exchange, reaction, and power recovery is provided.
  • FIG. 3B is a diagram showing a specific example of the air utilization device.
  • FIG. 3B shows an air fin cooler 100A and a gas turbine 100B as examples of the air utilization device.
  • the gas turbine 100B includes a suction unit 101B, an operation unit 102B, and a discharge unit (chimney) 103B.
  • Combustible gas is burned by the operation unit 102B using the air sucked by the suction unit 101B, the turbine is rotated to generate a driving force, and the compressor 110A is rotated.
  • the exhaust gas is exhausted from the chimney 103B.
  • the gas compressed by the compressor 110A is supplied to the air fin cooler 100A.
  • the illustrated operation unit 102B may be a reactor for the oxidation reforming reaction.
  • the air fin cooler 100A cools the discharge gas heated by the compressor 110 by the heat exchanger 102A with the air sucked from the lower suction portion 101A (not shown), and the upper discharge portion 103A (see FIG. (Not shown).
  • the compressed gas cooled by the air fin cooler 100A is cooled by the cooling device 120 to cool the medium to be cooled.
  • the gas that has been decompressed and heated is returned to the compressor 110A again.
  • the medium to be cooled is, for example, a hydrocarbon gas such as methane or ethane, and is liquefied by being cooled by the cooling device 120.
  • the air utilization device has been described as either an air fin cooler or a gas turbine.
  • the air utilization device is a liquefaction plant that liquefies hydrocarbon gas, which includes an air fin cooler and a gas turbine.
  • hydrocarbon gas which includes an air fin cooler and a gas turbine.
  • an example of a weather reproduction method or a weather reproduction device will be described in an example of an air fin cooler, a gas turbine, and a liquefaction plant, but an embodiment of the present invention is a weather reproduction method, Or, it includes an air fin cooler, a gas turbine, and a liquefaction plant based on the layout designed by the weather reproduction device.
  • FIG. 3C is a diagram showing another specific example of the air utilization device.
  • a wind power generator 100C is shown as an example of the air utilization device.
  • the propeller of the wind power generator 100C corresponds to the suction unit 101C and the discharge unit 103C, and the prime mover corresponds to the operation unit 102C.
  • FIG. 4 is a diagram illustrating an example of wide area weather information.
  • the wide area weather information A100 illustrated in FIG. 4 indicates a region where the air utilization device 100 is disposed. 1100 indicates a coastline. The left side of the Wangan Line 1100 is the sea, and the right side is the land.
  • FIG. 5 is a diagram illustrating an example of narrow-area weather information.
  • FIG. 5 shows a region to be subjected to the weather simulation. The region is divided into a plurality of regions A1 to A15 for performing the weather simulation, and each corresponds to a calculation grid.
  • the evaluation points are set in a grid pattern at a distance interval of 1 to 9 km in the east-west direction and the north-south direction.
  • the air utilization device 100 is arranged, and in order to obtain the temperature or wind direction of the area, the processing unit 12 solves the differential equation of the weather information according to the weather analysis model for the wide area weather information A100.
  • the narrow-area weather information A1 to A16 is generated.
  • FIG. 6 is a diagram showing an example of weather field information.
  • the processing unit 12 performs numerical fluid analysis on the narrow area weather information A16 shown in FIG. 6 and calculates meteorological field information in an area narrower than the narrow area weather information.
  • detailed weather field information around the air utilization device 100 may be obtained using a hydrodynamic model (CFD model) with the weather field information in the area A15 as an initial value. In this case, it can be obtained in 0.5 m increments much smaller than the grid resolution (for example, 1 km) of the weather simulation.
  • CFD model hydrodynamic model
  • the weather field information in the target area A15 in which the air utilization device 100 is arranged can be obtained using a fluid dynamic model, it is possible to obtain precise data taking into account the shape of the building.
  • the hydrodynamic model include K ⁇ ⁇ , LES, DNS, and the like.
  • the calculation apparatus needs to obtain detailed data only for meteorological field information in the target area, it is not necessary to perform CFD model analysis on all of the area A2 to area A15. Therefore, the accuracy can be improved and the processing time can be shortened by performing the CFD analysis only on the target region without requiring an enormous calculation time by the CFD model analysis.
  • a set of the first narrow area weather information is set by using those data as input values. It may be recalculated. This can improve the accuracy of weather simulation using available local data.
  • the area A16 where the air utilization device is arranged may differ from the topography of the weather information due to any of the leveling, land use, and facility installation. Even in such a case, the first narrow-area meteorological information set may be recalculated based on the terrain information reflecting any of the leveling, land use, and facility installation, depending on the arrangement of the air utilization devices. Thereby, the weather condition after an air utilization apparatus is constructed can be accurately simulated.
  • FIG. 7A is a diagram showing an example of temperature data and wind speed data obtained from narrow-area meteorological information.
  • the narrow-area weather information is obtained, for example, over a period of 3 years.
  • FIG. 7 shows data for 2009 as an example.
  • FIG. 7B is a cumulative distribution of temperature obtained from the temperature data of the narrow area weather information
  • FIG. 7C is an excess probability distribution of temperature obtained from the temperature data of the narrow area weather information.
  • the processing unit 12 generates these data. For example, a temperature obtained by adding a temperature margin of 2 ° C. to a temperature having a cumulative probability of 50% or more in the cumulative distribution diagram of temperature, or a temperature obtained by adding a temperature margin of 2 ° C. to a temperature lower than 50 in the temperature excess probability distribution. This is the design temperature for designing the temperature utilization device 100.
  • FIG. 8 is a diagram showing an example of the relationship between the amount of liquefied hydrocarbon gas and the design temperature.
  • the design temperature of the temperature utilization device 100 is a temperature for satisfying a predetermined performance. For this reason, when the temperature becomes higher than the design temperature, the temperature utilization device 100 has a tendency to rapidly decrease its performance. For example, in the example of FIG. 3, when the air fin cooler 100A is designed at the design temperature shown in FIG. 8, when the outside air temperature exceeds the design temperature, the amount of liquefied hydrocarbon gas rapidly decreases. The performance of can not be satisfied.
  • the weather reproduction device since the actual temperature is accurately simulated, even when the air utilization device 100 is designed in an environment where there is no actual measurement data, the outside air temperature is reproduced and the design temperature is obtained. Thus, it is possible to design an air utilization device having a desired performance.
  • FIG. 9 is a wind map obtained from the wind direction data of the narrow-area meteorological information.
  • a wind map is a figure showing the direction of wind and the frequency of wind speed in a certain point at a certain period. The more it extends in the peripheral direction, the higher the cumulative frequency. Further, the wind speed at that time is also indicated by a shaded display or the like. The wind direction with the highest cumulative frequency obtained at this time is called the main wind direction.
  • the main wind direction is indicated by 300.
  • the direction symbol 310 corresponds to the main wind direction 300.
  • the south (S) of the direction symbol indicates the main wind direction.
  • FIG. 10A and FIG. 10B are diagrams showing the relationship between the main wind direction and the air fin cooler.
  • the air fin coolers 100A-1 and 100A-2 shown in FIG. 10A are configured such that the gas discharged from the discharge unit of the air fin cooler 100A-1 that is upstream of the main wind direction 300 is the air fin cooler 100A- It arrange
  • the air fin cooler 100A-2 uses the hot exhaust gas as the cooling gas, so that the desired heat exchange cannot be performed and the predetermined performance cannot be satisfied as shown in FIG.
  • the above problem can be avoided by not arranging the air fin cooler so as to take in the exhaust downwind with respect to the wind direction with the highest cumulative frequency in the generated wind map. That is, on the basis of the calculated wind direction, the air fin cooler is arranged on the layout drawing so that the gas discharged by the discharge unit on the windward side is not sucked by the suction unit on the leeward side.
  • Air fin coolers 100A-1 and 100A-2 shown in FIG. 10B are arranged such that the gas discharged from the discharge unit of the air fin cooler 100A-1 that is upstream of the main wind direction 300 is the air fin cooler 100A-
  • the two suction portions are arranged so as not to be sucked.
  • the air fin cooler 100A-2 can satisfy a predetermined performance.
  • the processing unit 14 is arranged so that the gas discharged from the discharge unit of the air fin cooler 100A-1 is not sucked into the suction unit of the air fin cooler 100A-2 in the leeward direction with respect to the main wind direction.
  • the generated layout map data 400A is generated and output.
  • FIG. 11A and 11B are diagrams showing the relationship between the main wind direction and the gas turbine.
  • the gas exhausted by the exhaust part of the gas turbine 100B-1 located on the windward side with respect to the main wind direction 300 is sucked into the gas turbine 100B-2 located on the leeward side. It is arranged so that the part sucks.
  • the gas turbine 100B-2 has a high possibility of using hot exhaust gas as suction gas, and a desired output cannot be obtained.
  • the above-mentioned problem is avoided by not arranging the gas turbine so as to suck the exhaust downwind with respect to the wind direction with the highest cumulative frequency in the generated wind map. That is, based on the calculated wind direction, the gas turbine is arranged on the layout drawing so that the gas exhausted by the exhaust unit on the windward side is not sucked by the suction unit on the leeward side.
  • the gas exhausted by the exhaust part of the gas turbine 100B-1 located on the windward side with respect to the main wind direction 300 is sucked into the gas turbine 100B-2 located on the leeward side. It is arranged so that the part does not inhale. When arranged in this manner, the gas turbine 100B-2 can satisfy a predetermined performance.
  • the processing unit 14 is arranged so that the gas exhausted by the exhaust unit of the gas turbine 100B-1 is not sucked by the suction unit of the gas turbine 100B-2 in the leeward direction after calculating the main wind direction.
  • FIG. 12A and 12B are diagrams showing the relationship between the main wind direction and a liquefaction plant including a gas turbine and an air fin cooler.
  • the liquefaction plants 100C-1 and 100C-2 shown in FIG. 12A are configured to suck the exhaust gases of the air fin coolers 100A-1 and 100A-2 into the gas turbines 100B-1 and 100B-2, respectively.
  • the liquefaction plants 100C-1 and 100C-2 shown in FIG. 12A with respect to the main wind direction 300, the gas discharged by the discharge part of the liquefaction plant 100C-1 that is on the windward side,
  • the suction part is arranged so as to suck.
  • the liquefaction plant 100C-1 has a high possibility of using hot exhaust gas as the suction gas, and the desired performance cannot be obtained.
  • the above problem can be avoided by not arranging the liquefaction plant so that the exhaust air is sucked downwind with respect to the wind direction having the highest cumulative frequency in the generated wind map. That is, on the basis of the calculated wind direction, the liquefaction plant is arranged on the layout drawing so that the gas discharged by the discharge unit on the windward side is not sucked by the suction unit on the leeward side.
  • the liquefaction plants 100C-1 and 100C-2 shown in FIG. 11B draw the gas discharged from the discharge unit of the liquefaction plant 100C-1 that is upstream of the main wind direction 300 into the liquefaction plant 100C-2 that is leeward. It is arranged so that the part does not inhale. When arranged in this way, the liquefaction plant 100C-2 can satisfy a predetermined performance.
  • the processing unit 14 is arranged so that the gas exhausted by the exhaust unit of the gas turbine 100B-1 is not sucked by the suction unit of the liquefaction plant 100C-2 in the downwind with respect to the main wind direction after calculating the main wind direction.
  • Generate and output diagram data 400C are examples of the gas exhausted by the exhaust unit of the gas turbine 100B-1 is not sucked by the suction unit of the liquefaction plant 100C-2 in the downwind with respect to the main wind direction after calculating the main wind direction.
  • the air fin cooler, the gas turbine, and the liquefaction plant are manufactured or constructed based on the layout map data 400A, 400B, and 400C generated as described above. Thereby, the air utilization apparatus based on the said embodiment can satisfy
  • FIG. 13 is a diagram illustrating an example of a temperature analysis design flowchart.
  • the processing unit 14 of the weather reproduction device 90 executes a weather analysis program, is associated with a time and a region, and an arrangement place where the air utilization device is arranged from a weather database including a plurality of weather information including at least temperature data And a process of selecting a set of weather information related to a plurality of times through a certain period and a certain period (S101).
  • the processing unit 14 of the weather reproduction device 90 executes a weather analysis program, solves a differential equation of weather information according to the weather analysis model using each set of weather information as input data, and has a region narrower than the region of the weather information.
  • a process for generating a set of first narrow-area weather information related to is performed (S102).
  • the processing unit 14 of the weather reproduction device 90 executes a weather analysis program and selects a second set of narrow-area weather information targeted for a region including the arrangement location from the set of first narrow-area weather information. Is executed (S103).
  • the processing unit 14 executes the design temperature calculation program to calculate the design temperature of the air utilization device, and uses the temperature data included in the second narrow-area weather information set to accumulate the temperature in a certain period.
  • a process of generating a frequency distribution or a temperature excess probability distribution is performed (S104).
  • the generation process (S104) calculates a temperature with a cumulative frequency exceeding at least 50% from the weather field information, calculates a temperature with an excess probability smaller than at least 50% from the weather field information, and
  • the design temperature may be calculated by any one of the steps of adding a temperature margin to a temperature having an accumulated frequency exceeding 50% or a temperature having an excess probability smaller than 50%.
  • the processing unit 14 of the weather reproduction device 90 executes a numerical fluid analysis program, calculates the second narrow-area weather information with a three-dimensional hydrodynamic equation, calculates weather field information, and the air utilization device
  • the flow of the warmed air that has been discharged is recirculated to the suction portion of the air utilization device (S105). Thereby, based on the flow of recirculation, the temperature margin with respect to the temperature obtained by the weather simulation can be determined.
  • FIG. 14 is a diagram illustrating an example of a flowchart of temperature analysis design.
  • the illustrated steps S201 to S203 correspond to S101 to S103 in FIG.
  • the processing unit 14 of the weather reproduction device 90 executes the wind map generation program and determines the arrangement direction of the air utilization device, using the wind direction data included in the second narrow-area weather information set, Processing for calculating the wind direction in which the cumulative frequency increases is performed (S204).
  • the processing unit 14 of the weather reproduction device 90 executes the layout drawing generation program, and based on the calculated wind direction, the air use device discharges the gas discharged by the discharge discharge unit of the air use device on the windward side, A layout diagram for arranging the air utilization device in the area is generated so that the suction portion of the air utilization device in the leeward is not sucked.
  • step (S204) the processing unit 14 executes the numerical fluid analysis program, calculates the second narrow area weather information using a three-dimensional hydrodynamic equation, and is narrower than the second narrow area weather information.
  • the meteorological field information of the area is calculated, and using the meteorological field information, the flow of the air that has been exhaled and warmed by the air utilization device is recirculated to the suction portion of the air utilization device (S205).
  • positioning of a temperature utilization apparatus can be determined based on the flow of recirculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 時刻及び領域に関係付けられ、温度データを含む複数の気象情報から、空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを選択し、気象情報のセットの各々を入力データとして、気象シミュレーションのための気象解析モデルに従う前記気象情報の微分方程式を解いて、気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成し、第1狭域気象情報のセットのうち、配置場所を含む領域を対象とする第2狭域気象情報のセットを選択し、空気利用装置の設計温度を算定するために、第2狭域気象情報のセットに含まれる温度データを用いて、ある期間における温度の累積頻度分布又は温度の超過確率分布を生成することを備える気象再現方法が提供される。

Description

気象再現方法、気象再現装置、及び空気利用装置
 本発明は、過去の気象データを用いて、当該気象データより狭い領域の気象データを再現する気象再現方法、および気象再現装置に関し、特に、気象観測データの無い地点に配置される空気利用装置を設計するために、気象データを再現する気象再現方法、気象再現装置、および空気利用装置に関する。
 屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源又は冷熱源、動力源、及び/又は、反応物として利用する空気利用装置がある。空気を冷熱源として利用する空気利用装置は、例えば、エアフィンクーラがある。動力源として利用する空気利用装置は、風力発電機がある。空気を反応物として利用する装置は、例えば、燃焼反応を起こすガスタービンであったり、酸化改質反応を反応器等がある。
 これらの空気利用装置は、空気の風速、風量等によって、必要熱量や、出力エネルギーが大きくことなる。
 エアフィンクーラが配置される領域の風向きによっては、放出ガスが、吸込み側に循環しやすくなる状況が生じる。また、ガスタービンの燃焼ガスも、吸込み側に循環すると、大きさ性能ダウンとなる。
 さらに、風力発電機は所望の風量、風速が得られないと、所望の発電量が得られない。
 例えば、ガスタービンの排気ガスの量は、現場の気象条件(温度、気圧及び湿度)の関数であるため、複数の気象データに基づいて、発生排出レベルを含む排出量出力通知を生成して、ガスタービンの排出量を予測する方法が開示されている(下記、特許文献1)。開示の予測方法では、ユーザが、気象条件の予測を望む場合、第三者天候システムなどにアクセスし、受信したデータと共に天候サービスからのデータを補間して、ガスタービン付近の気象条件を予測する。このようにして、開示の予測方法は、将来の天候データが無い場合、気象予測する。
 また、気象シミュレーションを用いた気象予測(下記、特許文献2)、または、放射性物質等の拡散予測に関する技術(下記、特許文献3)は開示されている。
特開2009-62983号公報 特開2010-60443号公報 特開2005-283202号公報
 上記のように、空気利用装置が配置される地域で、温度や風向を実測する場合、空気利用装置の設計には、エルニーニョ現象の有無等、年変化の影響を考慮して設計する必要があるため、複数年に渡る温度、風向の実測が必要になる。しかしながら、そのような経年データが無い場合、新たに複数年に渡る温度、風向の実測を行うことは困難であるので、精度の低い環境データに基づいて空気利用装置を設計する必要があった。
 また、上記特許文献1は、NO排出量を下げる運転中に生じる燃焼システムのリーンブローアウトを、気象情報を利用して事前対応することで、回避するものであったり、上記特許文献2及び3は、気象予測、または、危険物質の拡散予測等、将来の気象条件の予測を目的としたものであり、空気利用装置の設計のために、気象シミュレーションにより気象を再現することは全く開示されていない。
 1つの側面では、本発明は、空気利用装置が設置される場所の気象データがない場合でも、空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報を入力データとして、配置場所を含む領域を気象シミュレーションすることで再現する気象に基づいて、設計に必要な風向を得ることを目的とする。
 上記課題を解決する形態は、以下に記載のようなものである。
 1.屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源、動力源、及び反応物の何れかとして利用する空気利用装置を設計するために、気象シミュレーションにより気象を再現する気象再現方法であって、
 時刻及び領域に関係付けられ、少なくとも風向データを含む複数の気象情報から、前記空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを選択し、
 前記気象情報のセットの各々を入力データとして、気象シミュレーションのための気象解析モデルに従う前記気象情報の微分方程式を解いて、前記気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成し、
 前記第1狭域気象情報のセットのうち、前記配置場所を含む領域を対象とする第2狭域気象情報のセットを選択し、
 前記空気利用装置の配置方向を決定するために、前記第2狭域気象情報のセットに含まれる風向データを用いて、最も累積頻度が高くなる風向を算定することを特徴とする気象再現方法。
 これにより、空気利用装置の設計に必要な風向データがない場合でも、精度の高い風向データを再現できるので、所望の性能を満たす空気利用装置の設計が可能になる。
 2.前記算定した風向に基づいて、風上にある前記空気利用装置の排出部により排出したガスを、風下にある前記空気利用装置の吸込み部が吸い込まないように、前記領域に前記空気利用装置を配置する配置図を生成する項目1に記載の気象再現方法。
 これにより、適切な空気利用装置の配置場所を得ることができる。
 3.前記第1狭域気象情報のセット生成ステップは、前記気象情報が対象とする領域の風向、風速、温度の少なくとも1つを含む観測データを用いて、前記第1狭域気象情報のセットを再算定すること、をさらに備える項目1又は2に記載の気象再現方法。
 これにより、利用可能な現地のデータを用いて気象シミュレーションの精度を上げることができる。
 4.前記第2狭域気象情報を、3次元の流体力学式で演算して、前記第2狭域気象情報より狭い領域の気象場情報を算定し、
 前記気象場情報を用いて、前記空気利用装置が吐き出して温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定することを含む、項目13の何れか1項に記載の気象再現方法。
 これにより、気象シミュレーションでは得ることができない細かいグリッドでの排出ガスの流れがわかるので、再循環の流れがわかり、それにより、適切な空気利用装置の配置場所を得ることができる。
 5.前記空気利用装置が配置される領域が、整地、土地利用、設備設置の何れかにより、前記気象情報の地形と異なる場合、前記整地、土地利用、設備設置の何れかを反映した地形情報に基づいて、前記第1狭域気象情報のセットを再算定することをさらに備える項目1~4の何れか1項に記載の気象再現方法。
 6.前記第1、及び第2狭域気象情報は、3次元のデータであり、風向、風速、乱流エネルギー、日射、気圧、雨量、湿度、及び温度を少なくとも1つ含む、項目1~5の何れか1項に記載の気象再現方法。
 
 7.屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源、動力源、及び反応物の何れかとして利用する空気利用装置を設計するために、気象シミュレーションにより気象を再現する気象再現装置であって、
 時刻及び領域に関係付けられ、少なくとも風向データを含む複数の気象情報から取得した前記空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを格納する記憶部と、
  前記気象情報のセットを選択し、
  前記気象情報のセットの各々を入力データとして、気象シミュレーションのための気象解析モデルに従う前記気象情報の微分方程式を解いて、前記気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成し、
  前記第1狭域気象情報のセットのうち、前記配置場所を含む領域を対象とする第2気象情報のセットを選択し、
  前記第2気象情報のセットに含まれる風向データを用いて、前記空気利用装置の配置方向を決定するために、最も累積頻度が高くなる風向を算定する処理部と、
 を備える気象再現装置。
 8.前記処理部は、前記算定した風向に基づいて、風上にある前記空気利用装置の吐出部により排出したガスを、風下にある前記空気利用装置の吸込み部が吸い込まないように、前記領域に前記空気利用装置を配置する配置図を生成する項目7に記載の気象再現装置。
 9.前記処理部は、前記第1狭域気象情報のセット生成ステップは、前記気象情報が対象とする領域の風向、風速、温度の少なくとも1つを含む観測データを用いて、前記第1狭域気象情報のセットを再算定する、項目7又は8に記載の気象再現装置。
 10.前記処理部は、前記第2狭域気象情報を、3次元の流体力学式で演算して、前記気象データより狭い領域の気象場情報を算定し、
 前記気象場情報を用いて、前記空気利用装置が吐き出して温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定することを含む、項目7~9の何れか1項に記載の気象再現装置。
 11.前記空気利用装置が配置される領域が、整地、土地利用、設備設置の何れかにより、前記気象情報の地形と異なる場合、前記整地、土地利用、設備設置の何れかを反映した地形情報に基づいて、前記第1狭域気象情報のセットを再算定することをさらに備える項目7~10の何れか1項に記載の気象再現装置。
 12.前記第1、及び第2狭域気象情報は、3次元のデータであり、風向、風速、乱流エネルギー、日射、気圧、雨量、湿度、及び温度を少なくとも1つ含む、項目7~11の何れか1項に記載の気象再現装置。
 13.屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源、動力源、及び反応物の何れかとして利用する空気利用装置であって、
 前記空気を吸い込む吸込み部、
 前記吸込み部で吸込まれた空気を用いて熱交換、反応、及び動力回収の何れかをする操作部、
 前記熱交換、反応、及び動力回収の何れかの操作により放出されるガスを吐き出す排出部を備え、
 時刻及び領域に関係付けられ、少なくとも風向データを含む複数の気象情報から、前記空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを選択し、
 前記気象情報のセットの各々を入力データとして、気象シミュレーションのための気象解析モデルに従う前記気象情報の微分方程式を解いて、前記気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成し、
 前記第1狭域気象情報のセットのうち、前記配置場所を含む領域を対象とする第2狭域気象情報のセットを選択し、
 前記第2狭域気象情報のセットに含まれる風向データを用いて、最も累積頻度が高くなる風向として算定した算定風向に基づいて、前記領域に配置されることを特徴とする空気利用装置。
 14.前記第2狭域気象情報のセットに含まれる風向データにおける風上にある前記排出部により排出したガスを、前記第2狭域気象情報のセットに含まれる風向データにおける風下にある前記吸込み部が吸い込まないように、配置される項目13に記載の空気利用装置。
 15.前記第2狭域気象情報を、3次元の流体力学式で演算して、前記第2狭域気象情報より狭い領域の気象場情報を算定し、前記気象場情報を用いて、前記空気利用装置が吐き出して温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定し、
 前記再循環が生じないように、前記領域に配置される項目13又は14に記載の空気利用装置。
 1つの側面では、本発明は、空気利用装置が設置される場所の気象データがない場合でも、空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報を入力データとして、配置場所を含む領域を気象シミュレーションすることで再現する気象に基づいて、設計に必要な風向を得ることができる。
 また、上記算定した風向に対して、空気利用装置に最適な配置図、及び、最適に配置される空気利用装置を提供することができる。
気象再現装置の機能構成の一例を示す図である。 気象再現装置のハードウェア構成の一例を示す図である。 空気利用装置の一例を示す図である。 空気利用装置の具体例を示す図である。 空気利用装置の別な具体例を示す図である。 広域気象情報の一例を示す図である。 狭域気象情報の一例の一例を示す図である。 気象場情報の一例を示す図である。 狭域気象情報より得られた温度データと、風速データの一例を示す図である。 狭域気象情報の温度データから得られる温度の累積分布である。 狭域気象情報の温度データから得られる温度の頻度確率分布である。 液化された炭化水素ガスの量と、設計温度の関係の一例を示す図である。 狭域気象情報の風向データから得られる風配図である。 主風向とエアフィンクーラの関係を示す図である。 主風向とエアフィンクーラの関係を示す図である。 主風向とガスタービンの関係を示す図である。 主風向とガスタービンの関係を示す図である。 主風向と液化プラントの関係を示す図である。 主風向と液化プラントの関係を示す図である。 温度解析設計のフローチャートの一例を示す図である。 風向解析設計のフローチャートの一例を示す図である。
 以下、図面を参照して、1.気象解析モデル、2.数値流体解析、3.気象再現装置の機能構成及びハードウェア構成、4.空気利用装置、5.空気利用装置近辺の気象情報の再現、6.空気利用装置近辺の温度累積分布、7.空気利用装置近辺の風配図、8.空気利用装置を配置した配置図と、それによる空気利用装置、9.温度解析設計のフローチャート、10.風向解析設計のフローチャートについて、順に説明する。
 1.気象解析モデル
 気象解析モデルとは、様々な物理モデルを含み、それらをコンピュータで解くことで、空間解像度の高い気象の再現計算を行うことで、気象シミュレーションできる。気象シミュレーションの利点としては、現地観測に比べて、空間解像度の高い気象情報を推定することができる点にある。
 気象シミュレーションを行うためには、ネットワークからダウンロードした気象データベースから、初期値、境界値データを取り込む必要がある。空気利用装置を設計するために、十分に詳細な空間解像度はないが、空気利用装置が配置される領域を含む広域に関する気象情報(以下、「広域気象情報」と言う)として、例えば、NOAA(アメリカ海洋大気庁)等が提供する6時間毎の再評価された全球客観解析データであるNCEP(National Centers for Environmental Prediction)がある。広域気象情報としてのNCEPデータは、世界を格子状(格子間隔は、1.5~400km)に分割したときの3次元格子点上の気象要素(風向、風速、乱流エネルギー、日射、気圧、雨量、湿度、及び温度)を含み、6時間毎に用意されている。本実施形態によれば、エルニーニョ現象の有無等、年変化の影響を考慮して設計する必要があるため、複数年に渡る広域気象情報(例えば、上述のNCEPデータ)を、初期値、境界値データとして用いる。
 気象解析モデルに含まれる物理モデルは、例えば、WRF(The Weather
Research & Forecasting Model)がある。WRFには、さまざまな物理モデルが含まれている。物理モデルには、日射量及び大気放射量を計算する放射モデル、乱流混合層を表現する乱流モデル、地表面温度、土壌温度、土中水分量、積雪量、地表面フラックスを算出する地表面モデルなどがある。
 気象解析モデルは、流体の運動に関するナビエストークスの方程式や大気観測結果から導出された経験的な方程式などからなる大気中の流体の動きを表す偏微分方程式と、質量およびエネルギーの保存則を記述した偏微分方程式を含み、上記微分方程式を連立させて解くことで、気象シミュレーションが実行できる。よって、広域気象情報を入力データとして、気象シミュレーションのための気象解析モデルに従う微分方程式を解いて、広域気象情報より狭い空間解像度の領域に関係づけられる空気利用装置の配置領域の気象情報を生成できる。以下、このようにして生成した気象情報を「狭域気象情報」と言う。
 2.数値流体解析
 数値流体解析とは、流体の運動に関する方程式をコンピュータで解く、数値流体力学(Computational
Fluid Dynamics)を応用し、流れを観察する数値解析及びシミュレーション手法を言う。具体的には、流体力学式であるナビエストークス方程式を用い、有限体積法(Finite Volume Method)により空間的に流体の状況を算定する。数値流体解析の手順としては、検討対象とする施設の構造を再現した3Dモデルデータの作成工程、検討対象範囲を、計算最小単位となる格子に分割を行う格子生成工程、コンピュータを用いて、初期値、及び境界値を取り込み、各格子における流体力学式を解く工程、解析結果により得られる諸値(流速、圧力等)をコンター表示やベクトル表示などの画像として出力する出力工程を含む。
 数値流体解析は、気象解析モデルよりも高い解像度の流体シミュレーションを実現可能であるため、気象シミュレーションでは再現することが非常に困難な、風速・風向の細かな変化や、数センチから数メートルスケールの気流の乱れから建築物周辺の気流の変化といった、その空間スケール特有の気流現象についての情報を提供することができる。
 3.気象再現装置の機能構成、及びハードウェア構成
 気象再現装置は、気象解析モデル、及び、数値流体解析を実施して、空気利用装置が配置される狭域の狭域気象情報を算定する。また、気象再現装置は、後述する設計温度算定処理、又は、風配図生成処理を行ってもよい。
 図1は、気象再現装置の機能構成の一例を示す図である。図1に示す気象再現装置90は、データやプログラムを格納する記憶部12、数値演算処理を行う処理部14を有する。記憶部12には、WRF等の気象解析プログラム901、数値流体解析プログラム903、設計温度算定プログラム905、風配図生成プログラム907、配置図を生成する図面出力プログラム909、気象データベース800、NCEPデータ等の広域気象情報801、気象シミュレーションにより得られる狭域気象情報803、数値流体解析により得られる気流場情報805、温度解析データ807、風向解析データ808、及び配置図データ809が格納される。気象データベースは、広域気象データ801を保持し、外部からダウンロード、または、記憶媒体を通して得られる。
 処理部14は、気象解析プログラム901を実行することで、広域気象情報801から狭域気象情報803を生成し、記憶部12に格納する気象解析処理を行う。さらに、処理部14は、数値流体解析プログラム903を実行することで、狭域気象情報803から気流場データ807を生成し、記憶部12に格納する数値流体処理を行う。同様に、処理部14は、設計温度算定プログラム905、及び風配図生成プログラム907を実行して、後述する設計温度算定処理、及び、風配図生成処理をそれぞれ実行し、関連する温度解析データ807及び風向解析データ809を、画像などデータを表示する表示部16に表示する。
 さらに、処理部14は、配置図生成プログラム909を実行して、風向解析データ808に基づく、配置図データ809を出力する。
 図2は、気象再現装置のハードウェア構成の一例を示す図である。図2に示す気象再現装置90は、プロセッサ12A、主記憶装置14A、ハードディスクやSSD(Solid State Drive)等の補助記憶装置14B、記憶媒体900からデータを読み出すドライブ装置15、及び、NIC(ネットワーク・インタフェース・カード)などの通信装置19を備え、これらの構成要素は、互いにバス20で接続する。気象再現装置90は、外部にあるディスプレイ16、及び、キーボードやマウスのような入力装置17と接続する。図1に示す処理部12は、プロセッサ12Aに相当し、記憶部14は、主記憶装置14Aに相当する。
 記憶媒体900には、図1に示した気象データベース800、気象解析プログラム901、数値流体解析プログラム903、設計温度算定プログラム905、風配図生成プログラム907、及び配置図生成プログラム909をデータとして記憶してもよい。これらのデータ800~909は、図1にしめすように記憶部12に格納される。
 気象再現装置90は、ネットワーク40を介して、外部のサーバ200や、コンピュータ210、220に接続してもよい。コンピュータ210及び外部サーバ200は、気象再現装置90と同じ構成要素を有してもよい。例えば、サーバ200にある気象データベース800を、ネットワーク40を介して受信することができる。また、図1に示したプログラムのうち、システム負荷の高い気象シミュレーションに係る気象解析プログラム901のみを、気象再現装置90に格納し、他のプログラムをコンピュータ210、220の何れかに格納し、そこで実行させてもよい。また、上記説明においては、コンピュータというハードウェアに限定したが、気象再現装置90はデータセンタの仮想サーバであってもよい。その場合、データセンタの記憶部にプログラム901~909を格納し、データセンタの処理部で、それらを実行し、データセンターからクライアントコンピュータにデータを出力するというハードウェア形態であってもよい。外部サーバ200は、気象データベースを有していてもよい。その場合、気象再現装置90は、外部サーバ200から広域気象データを取得する。
 4.空気利用装置
 図3Aは、空気利用装置の一例を示す図である。図3Aに示す空気利用装置100は、屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源、動力源、及び反応物の何れかとして利用する。空気利用装置100は、必ずしも必須の構成要素ではないが、空気を吸い込む吸込み部101、吸込み部で吸込まれた空気を用いて熱交換、反応、及び動力回収の何れかをする操作部102、熱交換、反応、及び動力回収の何れかの操作により放出されるガスを吐き出す排出部103を備える。
 図3Bは、空気利用装置の具体例を示す図である。図3Bには、空気利用装置の例として、エアフィンクーラ100Aと、ガスタービン100Bとを示す。ガスタービン100Bは、吸込み部101Bと、操作部102B、排出部(煙突)103Bを有する。吸込み部101Bで吸気した空気を用いて、操作部102Bで可燃性ガスを燃焼し、タービンを回転させて駆動力を生じさせ、圧縮機110Aを回転する。排気ガスは、煙突103Bから排気させる。圧縮機110Aにより圧縮されたガスは、エアフィンクーラ100Aに供給される。なお、図示した操作部102Bは、酸化改質反応を反応器であってもよい。
 エアフィンクーラ100Aは、下部にある吸込み部101A(図示せず)から吸気した空気で、圧縮機110により加熱された吐出ガスを、熱交換器102Aで冷却し、上部にある排出部103A(図示せず)に放出する。エアフィンクーラ100Aにより冷却された圧縮ガスは、冷却装置120で、減圧膨張に伴う温度低下し、被冷却媒体を冷却する。減圧し、加熱したガスは、再度、圧縮機110Aに戻される。一実施形態によれば、被冷却媒体は、例えば、メタン、エタン等の炭化水素ガスであり、冷却装置120で冷却することで、液化する。
 なお、上記において、空気利用装置は、エアフィンクーラと、ガスタービンの何れかで説明したが、空気利用装置は、エアフィンクーラと、ガスタービンとを備える、炭化水素ガスを液化する液化プラントであってもよい。また、以下では、エアフィンクーラ、ガスタービン、及び、液化プラントの例で、気象再現方法、又は、気象再現装置の実施例を説明するが、本発明の一実施て形態は、気象再現方法、又は、気象再現装置によって設計された配置図に基づくエアフィンクーラ、ガスタービン、及び、液化プラントを含む。
 図3Cは、空気利用装置の別な具体例を示す図である。空気利用装置の例として、風力発電機100Cが示される。風力発電機100Cのプロペラは、吸込み部101Cと、排出部103Cに相当し、原動機は、操作部102Cに相当する。
 5.空気利用装置近辺の気象情報の再現
 図4は、広域気象情報の一例を示す図である。図4に示す広域気象情報A100には、空気利用装置100が配置される領域が示される。1100は、海岸線を示す。湾岸線1100の紙面に向かい左側が、海であり、右側が陸である。図5は、狭域気象情報の一例の一例を示す図である。図5には、気象シミュレーションの対象となる領域が示され、領域は、気象シミュレーションを行うために、複数の領域A1~A15に区画され、それぞれが計算グリッドに対応する。例えば、グリッド解像度が9kmの場合、計算領域は549km×549kmであり、グリッド解像度が3kmの場合、計算領域は93km×93kmであり、グリッド解像度が1kmの場合、計算領域は549km×549kmである。よって、これら領域A1~A15は、東西方向及び南北方向に1~9kmの距離間隔で、格子状に評価地点が設定される。
 図5に示すように、空気利用装置100が配置されており、その領域の温度又は風向を得るために、処理部12は、広域気象情報A100を気象解析モデルに従う気象情報の微分方程式を解いて、狭域気象情報A1~A16を生成する。
 図6は、気象場情報の一例を示す図である。処理部12は、図6に示す狭域気象情報A16に対して、数値流体解析を行い、狭域気象情報より狭い領域の気象場情報を算定する。領域A15を算出した後、領域A15の気象場情報を初期値として、流体力学モデル(CFDモデル)を用いて空気利用装置100周辺の詳細気象場情報を求めてもよい。この場合、気象シミュレーションのグリッド解像度(例えば、1km)よりずっと小さく0.5m刻みで求めることができる。
 空気利用装置100が配置される目的領域A15における気象場情報は、流体力学モデルを用いて求められることができるので、建造物の形状などを考慮に入れた緻密なデータを得ることができる。流体力学モデルの一例としては、例えば、K・ε、LES、DNSなどが挙げられる。
 本実施形態に係る計算装置は、目的とする領域の気象場情報のみ詳細なデータを得ればよいので、領域A2から領域A15までの全てをCFDモデル解析する必要はない。そのため、CFDモデル解析による膨大な計算時間を要することなく、目的とする領域のみCFD解析することで、精度の向上と、処理時間の短縮が可能になる。
 図6の320は、排出ガスの再循環流れを示す。CFD解析により、気象シミュレーションでは明らかにならなかった、空気利用装置が吐き出した温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定して、明らかにすることができる。これにより、再循環流れにより、後述する温度データに対して温度マージンをどの程度とればよいのか判断することができる。また、再循環の流れがわかり、それにより、適切な空気利用装置の配置場所を得ることができる。
 また、例えば、図5のA3に、飛行場等があり、必要な温度データや、風向データの観測データが利用可能である場合、それらのデータを入力値として、第1狭域気象情報のセットを再算定してもよい。これにより、利用可能な現地のデータを用いて気象シミュレーションの精度を上げることができる。
 さらに、空気利用装置が配置される領域A16が、整地、土地利用、設備設置の何れかにより、気象情報の地形と異なる場合がある。このような場合でも、空気利用装置の配置により、整地、土地利用、設備設置の何れかを反映した地形情報に基づいて、第1狭域気象情報のセットを再算定してもよい。これにより、空気利用装置が建設された後の気象条件を正確にシミュレーションすることができる。
 6.空気利用装置近辺の温度累積分布
 図7Aは、狭域気象情報より得られた温度データと、風速データの一例を示す図である。狭域気象情報は、例えば、3年間の時間にわたり得られるが、図7では例として2009年のデータを示す。
 図7Bは、狭域気象情報の温度データから得られる温度の累積分布であり、図7Cは、狭域気象情報の温度データから得られる温度の超過確率分布である。処理部12が、これらのデータを生成する。例えば、温度の累積分布図の累積確率50%以上となる温度に、温度マージン2℃を加えた温度、又は、温度の超過確率分布の50未満の温度に、温度マージン2℃を加えた温度が、温度利用装置100を設計するための設計温度となる。
 図8は、液化された炭化水素ガスの量と、設計温度の関係の一例を示す図である。温度利用装置100の設計温度は、所定の性能を満たすための温度である。そのため、設計温度以上の温度となった場合、温度利用装置100は急激にその性能が下げる傾向にある。例えば、図3の例において、エアフィンクーラ100Aが、図8に示す設計温度で設計された場合、外気温が設計温度を超える温度となると、液化炭化水素ガスの量が急激に下がるため、所定の性能を満たせなくなる。本実施形態に係る気象再現装置によれば、正確に実際の温度をシミュレートするので、実測データがない環境において空気利用装置100を設計する場合でも、外気温を再現し、設計温度を得ることで、所望の性能を有する空気利用装置の設計が可能になる。
 7.空気利用装置近辺の風配図
 図9は、狭域気象情報の風向データから得られる風配図である。風配図とは、ある地点のある期間における、各方位の風向および風速の頻度を表した図である。周囲方向に延びるほど、累積頻度が高い。また、そのときの風速も、網掛け表示などにより示される。この時得られる最も累積頻度が高い風向きを主風向という。図9では、主風向は、300で示される。方位記号310は、主風向300に対応する。以下に説明する図では、方位記号の南(S)が、主風向であることを示す。
 このように生成された設計温度又は主風向に基づいて、図3に示す空気利用装置は生成される。
 8.空気利用装置を配置した配置図と、それによる空気利用装置
 図10A及び図10Bは、主風向とエアフィンクーラの関係を示す図である。図10Aに示すエアフィンクーラ100A-1、100A-2は、主風向300に対して、風上にあるエアフィンクーラ100A-1の排出部により排出したガスを、風下にあるエアフィンクーラ100A-2の吸込み部が吸い込むように配置される。このように配置される場合、エアフィンクーラ100A-2は、熱い排出ガスを冷却ガスとして利用するため、所望の熱交換が行えなくなり、図8に示したように、所定の性能を満たせなくなる。
 図そのため、生成した風配図において最も累積頻度が高くなる風向に対して風下に、排気を吸気するようにエアフィンクーラを配置しないことで、上記不具合を回避すなる。すなわち、算定した風向に基づいて、エアフィンクーラを、風上にある排出部により排出したガスを、風下にある吸込み部が吸い込まないように、配置図上に配置する。
 図10Bに示すエアフィンクーラ100A-1、100A-2は、主風向300に対して、風上にあるエアフィンクーラ100A-1の排出部により排出したガスを、風下にあるエアフィンクーラ100A-2の吸込み部が吸い込まないように配置される。このように配置される場合、エアフィンクーラ100A-2は、所定の性能を満たすことができる。処理部14は、主風向を算定後に、主風向に対して、エアフィンクーラ100A-1の排出部により排出したガスを、風下にあるエアフィンクーラ100A-2の吸込み部が吸い込まないように配置した配置図データ400Aを生成し、出力する。
 図11A及び図11Bは、主風向とガスタービンの関係を示す図である。図11Aに示すガスタービン100B-1、100B-2は、主風向300に対して、風上にあるガスタービン100B-1の排出部により排出したガスを、風下にあるガスタービン100B-2の吸込み部が吸い込むように配置される。このように配置される場合、ガスタービン100B-2は、熱い排出ガスを吸込みガスとして利用する可能性が高くなり、所望の出力が得られなくなる。
 そのため、生成した風配図において最も累積頻度が高くなる風向に対して風下に、排気を吸気するようにガスタービンを配置しないことで、上記不具合を回避する。すなわち、算定した風向に基づいて、ガスタービンを、風上にある排出部により排出したガスを、風下にある吸込み部が吸い込まないように、配置図上に配置する。
 図11Bに示すガスタービン100B-1、100B-2は、主風向300に対して、風上にあるガスタービン100B-1の排出部により排出したガスを、風下にあるガスタービン100B-2の吸込み部が吸い込まないように配置される。このように配置される場合、ガスタービン100B-2は、所定の性能を満たすことができる。処理部14は、主風向を算定後に、主風向に対して、ガスタービン100B-1の排出部により排出したガスを、風下にあるガスタービン100B-2の吸込み部が吸い込まないように配置した配置図データ400Bを生成し、出力する。
 図12A及び図12Bは、主風向とガスタービン及びエアフィンクーラを備える液化プラントの関係を示す図である。図12Aに示す液化プラント100C-1、100C-2は、それぞれ、エアフィンクーラ100A-1、100A-2の排気ガスを、ガスタービン100B-1、100B-2を吸込む構成となっている。さらに、図12Aに示す液化プラント100C-1、100C-2は、主風向300に対して、風上にある液化プラント100C-1の排出部により排出したガスを、風下にある液化プラント100C-1の吸込み部が吸い込むように配置される。このように配置される場合、液化プラント100C-1は、熱い排出ガスを吸込みガスとして利用する可能性が高くなり、所望の性能が得られなくなる。
 そのため、生成した風配図において最も累積頻度が高くなる風向に対して風下に、排気を吸気するように液化プラントを配置しないことで、上記不具合を回避する。すなわち、算定した風向に基づいて、液化プラントを、風上にある排出部により排出したガスを、風下にある吸込み部が吸い込まないように、配置図上に配置する。
 図11Bに示す液化プラント100C-1、100C-2は、主風向300に対して、風上にある液化プラント100C-1の排出部により排出したガスを、風下にある液化プラント100C-2の吸込み部が吸い込まないように配置される。このように配置される場合、液化プラント100C-2は、所定の性能を満たすことができる。処理部14は、主風向を算定後に、主風向に対して、ガスタービン100B-1の排出部により排出したガスを、風下にある液化プラント100C-2の吸込み部が吸い込まないように配置した配置図データ400Cを生成し、出力する。
 このように生成された配置図データ400A、400B、及び400Cのそれぞれに基づいて、エアフィンクーラ、ガスタービン、及び、液化プラントが製造又は建設される。これにより、当該実施形態に基づく空気利用装置は、所望の性能を満たすことができる。
 9.温度解析設計のフローチャート
 図13は、温度解析設計のフローチャートの一例を示す図である。気象再現装置90の処理部14は、気象解析プログラムを実行して、時刻及び領域に関係付けられ、少なくとも温度データを含む複数の気象情報を含む気象データベースから、空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを選択する処理を行う(S101)。
 気象再現装置90の処理部14は、気象解析プログラムを実行して、気象情報のセットの各々を入力データとして、気象解析モデルに従う気象情報の微分方程式を解いて、前記気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成する処理を行う(S102)。
 気象再現装置90の処理部14は、気象解析プログラムを実行して、第1狭域気象情報のセットのうち、配置場所を含む領域を対象とする第2狭域気象情報のセットを選択する処理を実行する(S103)。処理部14は、設計温度算定プログラムを実行して、空気利用装置の設計温度を算定するために、前記第2狭域気象情報のセットに含まれる温度データを用いて、ある期間における温度の累積頻度分布又は温度の超過確率分布を生成する処理を行う(S104)。
 生成処理(S104)は、気象場情報から、少なくとも50%を超える累積頻度となる温度を算定すること、気象場情報から、少なくとも50%より小さい超過確率となる温度を算定すること、及び、前記50%を超える累積頻度となる温度又は前記50%より小さい超過確率となる温度に対して、温度マージンを加える、の何れか1つの工程により設計温度を算定してもよい。
 気象再現装置90の処理部14は、数値流体解析プログラムを実行して、第2狭域気象情報を、3次元の流体力学式で演算して、気象場情報を算出し、前記空気利用装置が吐き出した温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定する(S105)。これにより、再循環の流れに基づいて、気象シュミレーションで得た温度に対する温度マージンを決定することができる。
 10.風向解析設計のフローチャート
 図14は、温度解析設計のフローチャートの一例を示す図である。図示するステップS201~S203は、図13のS101~S103に相当する。気象再現装置90の処理部14は、風配図生成プログラムを実行して、空気利用装置の配置方向を決定するために、第2狭域気象情報のセットに含まれる風向データを用いて、最も累積頻度が高くなる風向を算定する処理を行う(S204)。さらに、気象再現装置90の処理部14は、配置図生成プログラムを実行して、算定した風向に基づいて、空気利用装置を、風上にある空気利用装置の吐出排出部により排出したガスを、風下にある前記空気利用装置の吸込み部が吸い込まないように、前記領域に前記空気利用装置を配置する配置図を生成する。
 ステップ(S204)の後に、処理部14は、数値流体解析プログラムを実行して、前記第2狭域気象情報を、3次元の流体力学式で演算して、前記第2狭域気象情報より狭い領域の気象場情報を算定し、前記気象場情報を用いて、前記空気利用装置が吐き出して温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定する(S205)。これにより、再循環の流れに基づいて、最適な、温度利用装置の配置を決定できる。
 以上説明した実施形態は典型例として挙げたに過ぎず、その各実施形態の構成要素の組合せ、変形及びバリエーションは当業者にとって明らかであり、当業者であれば本発明の原理及び請求の範囲に記載した発明の範囲を逸脱することなく上述の実施形態の種々の変形を行えることは明らかである。

Claims (15)

  1.  屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源、動力源、及び反応物の何れかとして利用する空気利用装置を設計するために、気象シミュレーションにより気象を再現する気象再現方法であって、
     時刻及び領域に関係付けられ、少なくとも風向データを含む複数の気象情報から、前記空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを選択し、
     前記気象情報のセットの各々を入力データとして、気象シミュレーションのための気象解析モデルに従う前記気象情報の微分方程式を解いて、前記気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成し、
     前記第1狭域気象情報のセットのうち、前記配置場所を含む領域を対象とする第2狭域気象情報のセットを選択し、
     前記空気利用装置の配置方向を決定するために、前記第2狭域気象情報のセットに含まれる風向データを用いて、最も累積頻度が高くなる風向を算定することを特徴とする気象再現方法。
  2.  前記算定した風向に基づいて、風上にある前記空気利用装置の排出部により排出したガスを、風下にある前記空気利用装置の吸込み部が吸い込まないように、前記領域に前記空気利用装置を配置する配置図を生成する請求項1に記載の気象再現方法。
  3.  前記第1狭域気象情報のセット生成ステップは、前記気象情報が対象とする領域の風向、風速、温度の少なくとも1つを含む観測データを用いて、前記第1狭域気象情報のセットを再算定すること、をさらに備える請求項1又は2に記載の気象再現方法。
  4.  前記第2狭域気象情報を、3次元の流体力学式で演算して、前記第2狭域気象情報より狭い領域の気象場情報を算定し、
     前記気象場情報を用いて、前記空気利用装置が吐き出して温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定することを含む、請求項1~3の何れか1項に記載の気象再現方法。
  5.  前記空気利用装置が配置される領域が、整地、土地利用、設備設置の何れかにより、前記気象情報の地形と異なる場合、前記整地、土地利用、設備設置の何れかを反映した地形情報に基づいて、前記第1狭域気象情報のセットを再算定することをさらに備える請求項1~4の何れか1項に記載の気象再現方法。
  6.  前記第1、及び第2狭域気象情報は、3次元のデータであり、風向、風速、乱流エネルギー、日射、気圧、雨量、湿度、及び温度を少なくとも1つ含む、請求項1~5の何れか1項に記載の気象再現方法。
  7.  屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源、動力源、及び反応物の何れかとして利用する空気利用装置を設計するために、気象シミュレーションにより気象を再現する気象再現装置であって、
     時刻及び領域に関係付けられ、少なくとも風向データを含む複数の気象情報から取得した前記空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを格納する記憶部と、
      前記気象情報のセットを選択し、
      前記気象情報のセットの各々を入力データとして、気象シミュレーションのための気象解析モデルに従う前記気象情報の微分方程式を解いて、前記気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成し、
      前記第1狭域気象情報のセットのうち、前記配置場所を含む領域を対象とする第2気象情報のセットを選択し、
      前記第2気象情報のセットに含まれる風向データを用いて、前記空気利用装置の配置方向を決定するために、最も累積頻度が高くなる風向を算定する処理部と、
     を備える気象再現装置。
  8.  前記処理部は、前記算定した風向に基づいて、風上にある前記空気利用装置の吐出部により排出したガスを、風下にある前記空気利用装置の吸込み部が吸い込まないように、前記領域に前記空気利用装置を配置する配置図を生成する請求項7に記載の気象再現装置。
  9.  前記処理部は、前記第1狭域気象情報のセット生成ステップは、前記気象情報が対象とする領域の風向、風速、温度の少なくとも1つを含む観測データを用いて、前記第1狭域気象情報のセットを再算定する、請求項7又は8に記載の気象再現装置。
  10.  前記処理部は、前記第2狭域気象情報を、3次元の流体力学式で演算して、前記気象データより狭い領域の気象場情報を算定し、
     前記気象場情報を用いて、前記空気利用装置が吐き出して温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定することを含む、請求項7~9の何れか1項に記載の気象再現装置。
  11.  前記空気利用装置が配置される領域が、整地、土地利用、設備設置の何れかにより、前記気象情報の地形と異なる場合、前記整地、土地利用、設備設置の何れかを反映した地形情報に基づいて、前記第1狭域気象情報のセットを再算定することをさらに備える請求項7~10の何れか1項に記載の気象再現装置。
  12.  前記第1、及び第2狭域気象情報は、3次元のデータであり、風向、風速、乱流エネルギー、日射、気圧、雨量、湿度、及び温度を少なくとも1つ含む、請求項7~11の何れか1項に記載の気象再現装置。
  13.  屋外に配置されて、周囲の気象条件により影響を受けるとともに、空気を熱源、動力源、及び反応物の何れかとして利用する空気利用装置であって、
     前記空気を吸い込む吸込み部、
     前記吸込み部で吸込まれた空気を用いて熱交換、反応、及び動力回収の何れかをする操作部、
     前記熱交換、反応、及び動力回収の何れかの操作により放出されるガスを吐き出す排出部を備え、
     時刻及び領域に関係付けられ、少なくとも風向データを含む複数の気象情報から、前記空気利用装置が配置される配置場所を含む領域、及び、ある期間を通した複数の時刻に関係づけられる気象情報のセットを選択し、
     前記気象情報のセットの各々を入力データとして、気象シミュレーションのための気象解析モデルに従う前記気象情報の微分方程式を解いて、前記気象情報の領域より狭い領域に関係づけられる第1狭域気象情報のセットを生成し、
     前記第1狭域気象情報のセットのうち、前記配置場所を含む領域を対象とする第2狭域気象情報のセットを選択し、
     前記第2狭域気象情報のセットに含まれる風向データを用いて、最も累積頻度が高くなる風向として算定した算定風向に基づいて、前記領域に配置されることを特徴とする空気利用装置。
  14.  前記第2狭域気象情報のセットに含まれる風向データにおける風上にある前記排出部により排出したガスを、前記第2狭域気象情報のセットに含まれる風向データにおける風下にある前記吸込み部が吸い込まないように、配置される請求項13に記載の空気利用装置。
  15.  前記第2狭域気象情報を、3次元の流体力学式で演算して、前記第2狭域気象情報より狭い領域の気象場情報を算定し、前記気象場情報を用いて、前記空気利用装置が吐き出して温められた空気が、前記空気利用装置の吸込み部に再循環する流れを算定し、
     前記再循環が生じないように、前記領域に配置される請求項13又は14に記載の空気利用装置。
PCT/JP2012/076318 2012-07-31 2012-10-11 気象再現方法、気象再現装置、及び空気利用装置 WO2014020778A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2012386701A AU2012386701B2 (en) 2012-07-31 2012-10-11 Weather predicting method, weather predicting apparatus, and air utilizing apparatus
US14/395,816 US20150120193A1 (en) 2012-07-31 2012-10-11 Weather predicting method, water predicting apparatus, and air utilizing apparatus
RU2014145538/28A RU2584918C1 (ru) 2012-07-31 2012-10-11 Способ прогнозирования погоды, устройство прогнозирования погоды и устройство использования воздуха
JP2014527938A JP6084224B2 (ja) 2012-07-31 2012-10-11 気象再現方法及び気象再現装置
CA2872957A CA2872957C (en) 2012-07-31 2012-10-11 Weather predicting method, weather predicting apparatus, and air utililzing apparatus
AP2014008038A AP2014008038A0 (en) 2012-07-31 2012-10-11 Weather predicting method, weather predicting apparatus, and air utilizing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012170656 2012-07-31
JP2012-170656 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014020778A1 true WO2014020778A1 (ja) 2014-02-06

Family

ID=50027499

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/076318 WO2014020778A1 (ja) 2012-07-31 2012-10-11 気象再現方法、気象再現装置、及び空気利用装置
PCT/JP2013/070400 WO2014021236A1 (ja) 2012-07-31 2013-07-28 気象再現方法、気象再現装置及び空気利用装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070400 WO2014021236A1 (ja) 2012-07-31 2013-07-28 気象再現方法、気象再現装置及び空気利用装置

Country Status (7)

Country Link
US (2) US20150120193A1 (ja)
JP (2) JP6084224B2 (ja)
AP (2) AP2014008038A0 (ja)
AU (2) AU2012386701B2 (ja)
CA (2) CA2872957C (ja)
RU (2) RU2584918C1 (ja)
WO (2) WO2014020778A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098787A (ja) * 2014-11-26 2016-05-30 株式会社東芝 ウィンドファーム、風力発電システム
US9753184B2 (en) 2012-07-31 2017-09-05 Jgc Corporation Weather predicting method, weather predicting apparatus, and air utilizing apparatus
CN107273995A (zh) * 2016-04-08 2017-10-20 株式会社日立制作所 空气质量预报方法
WO2019097728A1 (ja) * 2017-11-20 2019-05-23 日揮株式会社 天然ガス液化装置の運転方法
WO2020240696A1 (ja) * 2019-05-28 2020-12-03 日揮グローバル株式会社 製造プラントの稼働解析方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017421A1 (ja) * 2017-07-19 2019-01-24 千代田化工建設株式会社 Lng生産量予測システム
CN111075661B (zh) * 2019-12-25 2021-11-09 明阳智慧能源集团股份公司 基于温度变化趋势判断风电机组主轴轴承健康状况的方法
CN114636417B (zh) * 2022-05-23 2022-09-02 珠海翔翼航空技术有限公司 基于图像识别的飞行器迫降路径规划方法、系统和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127149A (ja) * 1995-10-30 1997-05-16 Fujita Corp 風観測システム
JP2000145614A (ja) * 1998-11-06 2000-05-26 Tohoku Electric Power Co Inc 風力発電機設置位置決定方法及び風力発電量予測方法
JP2000346402A (ja) * 1999-06-01 2000-12-15 Osaka Gas Co Ltd ヒートポンプ式室外機の集合設置構造
JP2002276537A (ja) * 2001-03-22 2002-09-25 Kenji Yashita 風力発電事業方式
JP2004019583A (ja) * 2002-06-18 2004-01-22 Tohoku Electric Power Co Inc 風力発電における発電出力予測方法、発電出力予測装置及び発電出力予測システム
JP2005010082A (ja) * 2003-06-20 2005-01-13 Kansai Electric Power Co Inc:The 風関係特定装置、風予測装置、風予測方法、風関係特定プログラム、風予測プログラム、風関係特定プログラムを記録したコンピュータ読取可能な記録媒体、および風予測プログラムを記録したコンピュータ読取可能な記録媒体
JP2009138523A (ja) * 2007-12-03 2009-06-25 Mitsubishi Electric Corp 風力発電出力予測方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE408481B (sv) * 1976-12-23 1979-06-11 Lonnroth Jonas Forfarande for att i en segelfarkost kunna avlesa dels vindriktningen, dels en och samma, av vindriktningen beroende geografiska bering vid kryss for olika bogar samt kompassanordning for utforande av forfarandet
ES493713A0 (es) * 1980-07-24 1982-12-01 Central Energetic Ciclonic Sistema para la obtencion de energia mediante flujos simili-lares a los que conforman un ciclon o un anticiclon natural
US4646564A (en) * 1984-02-19 1987-03-03 Mitsubishi Jukogyo Kabushiki Kaisha Method for testing gas diffusion and apparatus for same
US6529890B1 (en) * 1998-08-19 2003-03-04 Ensys, Inc. Method for representing synoptic climatology information in a class-object-attribute hierarchy and an expert system for obtaining synoptic climatology information
JP2002024324A (ja) * 2000-07-06 2002-01-25 Misawa Homes Co Ltd 住宅街環境シミュレーション装置
US20030126155A1 (en) * 2001-12-28 2003-07-03 Parker Daniel J. Method and apparatus for generating a weather index
JP4209354B2 (ja) 2004-03-29 2009-01-14 三菱重工業株式会社 拡散物質の拡散状況予測方法及び拡散状況予測システム
US7245039B2 (en) * 2004-12-10 2007-07-17 Duhamel Robert A Apparatus and method for generating hydrogen gas through the use of wind power
US7996192B2 (en) * 2005-05-28 2011-08-09 Dblive Corporation Method and apparatus for generating an environmental element prediction for a point of interest
US8704397B2 (en) * 2005-06-09 2014-04-22 Yehuda Roseman System for producing electricity from jetstreams and tower therefor
JP4513785B2 (ja) * 2006-06-21 2010-07-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20090056413A1 (en) 2007-09-05 2009-03-05 General Electric Company Method And System For Predicting Gas Turbine Emissions Utilizing Meteorological Data
US8406162B2 (en) * 2008-05-16 2013-03-26 La Crosse Technology, Ltd. Method and apparatus of transmitting, receiving, displaying and playing weather data
US8781801B2 (en) * 2007-10-29 2014-07-15 Japan Agency For Marine-Earth Science And Technology Meteorological phenomena simulation device and method
JP2009294969A (ja) * 2008-06-06 2009-12-17 Mitsubishi Electric Corp 需要予測方法および需要予測装置
US8381544B2 (en) * 2008-07-18 2013-02-26 Kellogg Brown & Root Llc Method for liquefaction of natural gas
JP2010060443A (ja) * 2008-09-04 2010-03-18 Japan Weather Association 気象予測装置、方法及びプログラム
US8010300B1 (en) * 2008-11-24 2011-08-30 Itt Manufacturing Enterprises, Inc. Determination of gas flux using airborne dial lidar
JP5174949B2 (ja) * 2009-02-24 2013-04-03 三菱電機株式会社 同時給排形換気扇
KR20100106174A (ko) * 2009-03-23 2010-10-01 주식회사 서부에너지기술 학교 및 공공기관의 기반시설을 이용한 국지기상정보 제공방법 및 그 시스템
US8441138B2 (en) * 2009-05-07 2013-05-14 Vestas Wind Systems A/S Wind turbine
JP2011190951A (ja) * 2010-03-12 2011-09-29 Tokyo Electric Power Co Inc:The 冷排気による気温変化量の予測方法および予測装置
JP2011214450A (ja) * 2010-03-31 2011-10-27 Kobe Steel Ltd 冷却ファン装置および作業機械
AU2011239541B2 (en) * 2010-04-16 2014-08-28 C-Lock Inc. Method and system for monitoring and reducing ruminant methane production
US20110318167A1 (en) * 2010-06-23 2011-12-29 Miller R Scott Crossflow wind turbine
JP5582887B2 (ja) * 2010-06-28 2014-09-03 三菱重工業株式会社 気流場データ生成装置、気流場データ生成方法、及び気流場データ生成プログラム
JP2013531244A (ja) * 2010-06-28 2013-08-01 グリーン ビジョン システムズ リミテッド ハイパースペクトルイメージングおよび分析による、領域の全体にわたる汚染外気粒子状物質のリアルタイム監視、パラメータプロファイリングおよび調節
US9069103B2 (en) * 2010-12-17 2015-06-30 Microsoft Technology Licensing, Llc Localized weather prediction through utilization of cameras
JP2012088042A (ja) * 2011-12-16 2012-05-10 Daikin Industries Ltd 空調制御装置
US9261073B2 (en) * 2012-04-29 2016-02-16 LGT Advanced Technology Limited Wind energy system and method for using same
CN103514341A (zh) * 2012-06-14 2014-01-15 华锐风电科技(集团)股份有限公司 基于数值天气预报和计算流体动力学的风资源评估方法
RU2584918C1 (ru) 2012-07-31 2016-05-20 ДжейДжиСи КОРПОРЕЙШН Способ прогнозирования погоды, устройство прогнозирования погоды и устройство использования воздуха
CN104481570B (zh) * 2014-11-29 2016-09-14 彝良驰宏矿业有限公司 一种井下独头巷道通风系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127149A (ja) * 1995-10-30 1997-05-16 Fujita Corp 風観測システム
JP2000145614A (ja) * 1998-11-06 2000-05-26 Tohoku Electric Power Co Inc 風力発電機設置位置決定方法及び風力発電量予測方法
JP2000346402A (ja) * 1999-06-01 2000-12-15 Osaka Gas Co Ltd ヒートポンプ式室外機の集合設置構造
JP2002276537A (ja) * 2001-03-22 2002-09-25 Kenji Yashita 風力発電事業方式
JP2004019583A (ja) * 2002-06-18 2004-01-22 Tohoku Electric Power Co Inc 風力発電における発電出力予測方法、発電出力予測装置及び発電出力予測システム
JP2005010082A (ja) * 2003-06-20 2005-01-13 Kansai Electric Power Co Inc:The 風関係特定装置、風予測装置、風予測方法、風関係特定プログラム、風予測プログラム、風関係特定プログラムを記録したコンピュータ読取可能な記録媒体、および風予測プログラムを記録したコンピュータ読取可能な記録媒体
JP2009138523A (ja) * 2007-12-03 2009-06-25 Mitsubishi Electric Corp 風力発電出力予測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYOICHI TANIKAWA: "Development of the Wind Simulation Model by LOCALS and Examination of Some Studies", NAGARE, vol. 22, no. 5, October 2003 (2003-10-01), pages 405 - 415 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9753184B2 (en) 2012-07-31 2017-09-05 Jgc Corporation Weather predicting method, weather predicting apparatus, and air utilizing apparatus
JP2016098787A (ja) * 2014-11-26 2016-05-30 株式会社東芝 ウィンドファーム、風力発電システム
CN107273995A (zh) * 2016-04-08 2017-10-20 株式会社日立制作所 空气质量预报方法
WO2019097728A1 (ja) * 2017-11-20 2019-05-23 日揮株式会社 天然ガス液化装置の運転方法
WO2020240696A1 (ja) * 2019-05-28 2020-12-03 日揮グローバル株式会社 製造プラントの稼働解析方法

Also Published As

Publication number Publication date
RU2584918C1 (ru) 2016-05-20
AU2012386701A1 (en) 2014-12-04
AP2014008041A0 (en) 2014-10-31
AU2013297556A1 (en) 2014-12-04
US20150120193A1 (en) 2015-04-30
US9753184B2 (en) 2017-09-05
JPWO2014020778A1 (ja) 2016-07-11
AP2014008038A0 (en) 2014-10-31
JPWO2014021236A1 (ja) 2016-07-21
WO2014021236A1 (ja) 2014-02-06
US20150066370A1 (en) 2015-03-05
CA2870668C (en) 2017-05-30
CA2872957C (en) 2017-07-18
CA2872957A1 (en) 2014-02-06
AU2013297556B2 (en) 2015-08-27
JP6192644B2 (ja) 2017-09-06
CA2870668A1 (en) 2014-02-06
AU2012386701B2 (en) 2015-10-08
JP6084224B2 (ja) 2017-02-22
RU2581741C1 (ru) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6084224B2 (ja) 気象再現方法及び気象再現装置
Albani et al. Wind energy potential and power law indexes assessment for selected near-coastal sites in Malaysia
Gagliano et al. Assessment of micro-wind turbines performance in the urban environments: an aided methodology through geographical information systems
Tammelin et al. Production of the Finnish wind atlas
Zadra et al. The next Canadian regional climate model
Bilal et al. Wind over complex terrain–Microscale modelling with two types of mesoscale winds at Nygårdsfjell
JP5020106B2 (ja) 風力発電量予測システム、方法及びプログラム
WO2014103332A1 (ja) 液化ガス製造設備
You et al. Present and projected degree days in China from observation, reanalysis and simulations
Albornoz et al. Review of atmospheric stability estimations for wind power applications
Susini et al. Climate change impact on the offshore wind energy over the North Sea and the Irish Sea
Jin et al. Integration of atmospheric stability in wind resource assessment through multi-scale coupling method
Tominaga CFD Prediction for Wind Power Generation by a Small Vertical Axis Wind Turbine: A Case Study for a University Campus
Melani et al. A critical analysis of the uncertainty in the production estimation of wind parks in complex terrains
Cao et al. Preliminary assessment of the wind power resource around the thousand-meter scale megatall building
Floors et al. Using observed and modelled heat fluxes for improved extrapolation of wind distributions
Wang et al. Summer Extreme Dust Activity in the Taklimakan Desert Regulated by the South Asian High
Dey et al. Evaluation and Validation of Microscale Atmospheric Modeling With Offline Weather Research and Forecasting Model to Parallelized Large-Eddy Simulation Model Forcing Conditions
Baur et al. Change in Wind Renewable Energy Potential under Stratospheric Aerosol Injections
Mortensen et al. Meso-and Micro-scale Modelling in China: Wind atlas analysis for 12 meteorological stations in NE China (Dongbei)
Van Thin et al. Study to evaluate the effect of terrain surface on performance of a wind farm in Ninh Thuan province, Vietnam
Fossem Wind resource assessment using weather research and forecasting model. A case study of the wind resources at Havøygavlen wind farm
Morris A SPATIAL DECISION SUPPORT SYSTEM EVALUATING ENERGY AND RESOURCES FOR WIND TURBINE DEVELOPMENT
Sireesha et al. Statistical analysis of wind power density using different mixture probability distribution functions in coastal region of Andhra Pradesh
Jin et al. Wind turbine ice detection using AEP loss method: A case study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527938

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14395816

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2872957

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014145538

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012386701

Country of ref document: AU

Date of ref document: 20121011

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882134

Country of ref document: EP

Kind code of ref document: A1