WO2014020706A1 - 銅合金線及び銅合金線の製造方法 - Google Patents
銅合金線及び銅合金線の製造方法 Download PDFInfo
- Publication number
- WO2014020706A1 WO2014020706A1 PCT/JP2012/069491 JP2012069491W WO2014020706A1 WO 2014020706 A1 WO2014020706 A1 WO 2014020706A1 JP 2012069491 W JP2012069491 W JP 2012069491W WO 2014020706 A1 WO2014020706 A1 WO 2014020706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- copper alloy
- alloy wire
- precipitates
- copper
- Prior art date
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000002244 precipitate Substances 0.000 claims abstract description 66
- 238000010438 heat treatment Methods 0.000 claims abstract description 47
- 239000002245 particle Substances 0.000 claims abstract description 35
- 230000032683 aging Effects 0.000 claims abstract description 34
- 238000005482 strain hardening Methods 0.000 claims abstract description 26
- 238000001556 precipitation Methods 0.000 claims abstract description 10
- 229910052718 tin Inorganic materials 0.000 claims abstract description 9
- 239000010949 copper Substances 0.000 claims description 56
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 238000005728 strengthening Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 59
- 229910052802 copper Inorganic materials 0.000 description 52
- 238000005452 bending Methods 0.000 description 32
- 238000009749 continuous casting Methods 0.000 description 24
- 238000005096 rolling process Methods 0.000 description 18
- 239000011159 matrix material Substances 0.000 description 12
- 239000004020 conductor Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 8
- 229910052726 zirconium Inorganic materials 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910017526 Cu-Cr-Zr Inorganic materials 0.000 description 1
- 229910017810 Cu—Cr—Zr Inorganic materials 0.000 description 1
- 229910017824 Cu—Fe—P Inorganic materials 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the present invention relates to a copper alloy wire excellent in conductivity and repeated bending characteristics, and suitable for wiring cables such as a robot arm portion, a portable terminal, and a PC hinge portion, and a method of manufacturing the copper alloy wire.
- the wiring cable used in the above-described robot arm, mobile terminal, PC hinge, etc. is repeatedly subjected to bending, twisting, and the like, and therefore is not easily broken even when repeatedly bending is applied ( Hereinafter, repeated bending characteristics are required. Moreover, since it supplies electricity, high electroconductivity is also requested
- copper wire made of tough pitch copper having good conductivity is widely used, but its strength is low and repeated bending characteristics are insufficient.
- a copper alloy wire made of a solid solution strengthened copper alloy such as Sn-containing copper shown in Patent Document 1 and In-containing copper shown in Patent Document 2 is used.
- these solid solution strengthened copper alloys described in Patent Documents 1 and 2 since the strength is high, repeated bending characteristics are improved as compared with tough pitch copper.
- the bending resistance test which is an evaluation index of repeated bending characteristics
- the number of repeated bending until rupture under the same conditions is about 1.3 to 2.5 times that of tough pitch copper.
- the above-described copper alloy wire is required to have further improved repeated bending characteristics.
- a copper alloy wire with improved bending resistance for example, a copper alloy wire made of a precipitation strengthening type alloy such as a Cu—Fe—P alloy shown in Patent Documents 3 and 4 and a Cu—Cr—Zr alloy shown in Patent Document 5 Has been proposed.
- a precipitation strengthening type alloy such as a Cu—Fe—P alloy shown in Patent Documents 3 and 4 and a Cu—Cr—Zr alloy shown in Patent Document 5
- These precipitation-strengthening-type copper alloys can obtain repeated bending characteristics superior to those of a solid-solution-strengthening-type copper alloy by uniformly dispersing precipitates in the copper matrix.
- the extra fine wire with a diameter of 0.08 mm or less is generally used with a single wire.
- the conductivity and strength are improved by precipitating and dispersing precipitates by aging heat treatment.
- precipitates having a small particle size are sheared by dislocations generated during cold working and re-dissolved in the copper matrix, resulting in a decrease in conductivity. It has been pointed out that.
- the present invention has been made in view of the above-described circumstances, and is excellent in conductivity and repeated bending characteristics, and is repeatedly subjected to bending, twisting, etc., such as a robot arm, a mobile terminal, and a PC hinge.
- An object of the present invention is to provide a copper alloy wire suitable for a wiring cable used in a region and a method for producing the copper alloy wire.
- a copper alloy wire according to the present invention is made of a precipitation strengthened copper alloy containing Co, P and Sn, and is a precipitate observed by observation of a cross-sectional structure immediately after performing an aging heat treatment.
- the number of precipitates having an average particle size of 15 nm or more and a particle size of 5 nm or more was 80% or more of the total observed precipitates, and was cold worked after the aging heat treatment. It is characterized by.
- the copper alloy wire according to the present invention described above is made of a precipitation-strengthened copper alloy containing Co, P and Sn, and the average particle size of the precipitate observed by observation of the cross-sectional structure immediately after the aging heat treatment is 15 nm. Since the number of precipitates having a particle size of 5 nm or more is 80% or more of the total observed precipitates, the number of precipitates having a small particle size made of a compound containing Co and P is small. Therefore, the re-dissolution of precipitates in the subsequent cold working can be suppressed, and the electrical conductivity can be ensured.
- a precipitate made of a compound containing Co and P having a particle size of less than 5 nm deposited by aging heat treatment is sheared by dislocation and further subdivided during the cold working after the aging heat treatment, and finally the copper matrix. It will re-dissolve inside. Therefore, in the state after aging heat treatment and before cold working, the number of precipitates having a particle size of less than 5 nm is set to be less than 20% of the total observed precipitates, thereby suppressing re-solution of precipitates. It becomes possible.
- the average particle diameter of the precipitate made of the compound containing Co and P is 15 nm or more, the precipitate is sufficiently precipitated, the conductivity can be improved, and the strength and repeated bending characteristics can be improved. Can be improved.
- the composition of the precipitation-strengthened copper alloy is Co: 0.12% by mass to 0.40% by mass, P: 0.040% by mass to 0.16% by mass, Sn: 0.005% by mass It is preferable that the content is 0.70% by mass or less and the balance is Cu and inevitable impurities.
- the copper alloy wire having this configuration precipitates made of a compound containing Co and P are dispersed in the copper matrix, and the strength and conductivity can be improved.
- Co and P are below the lower limit, the number of precipitates is insufficient, and the strength and repeated bending characteristics cannot be sufficiently improved.
- Co and P exceed the upper limit values there are many elements that do not contribute to the improvement of strength, which may cause a decrease in conductivity.
- Sn is an element having an effect of improving strength by solid solution in a copper matrix.
- the effect of promoting the precipitation of precipitates containing Co and P as main components, and the heat resistance and corrosion resistance can be improved.
- the Sn content needs to be 0.005 mass% or more.
- the Sn content is preferably 0.70% by mass or less.
- the said precipitation strengthening type copper alloy contains Ni; 0.01 mass% or more and 0.15 mass% or less further. Since the copper alloy wire having this configuration contains Ni within the above-described range, the coarsening of crystal grains can be suppressed, and the strength and repeated bending characteristics can be further improved.
- the precipitation-strengthened copper alloy further contains Zn: 0.002% by mass to 0.5% by mass, Mg: 0.002% by mass to 0.25% by mass, Ag: 0.002% by mass to 0% It is preferable that any one or more of 25% by mass or less and Zr: 0.001% by mass or more and 0.1% by mass or less are included.
- Zn, Mg, Ag, and Zr are contained in the above-mentioned range, so that these elements form a compound with sulfur (S).
- S sulfur
- the method for producing a copper alloy wire according to the present invention is a method for producing a copper alloy wire made of a precipitation strengthened copper alloy containing Co, P and Sn, and is implemented after an aging heat treatment step and this aging heat treatment step.
- a cold working step, and the average particle size of precipitates observed by cross-sectional structure observation immediately after performing the aging heat treatment step is 15 nm or more, and the number of precipitates having a particle size of 5 nm or more, It is characterized by being 80% or more of the total precipitates observed.
- an aging heat treatment step and a cold working step performed after the aging heat treatment step, and a cross-sectional structure immediately after the aging heat treatment step is carried out Since the average particle size of the precipitates observed by observation is 15 nm or more, and the number of precipitates having a particle size of 5 nm or more is 80% or more of the entire precipitates observed, in the cold working step, It is possible to suppress the precipitation of the solid solution again, and it is possible to manufacture a copper alloy wire excellent in conductivity.
- the heat treatment temperature is preferably 400 ° C. or lower.
- this final heat treatment step may be performed in the state of a copper alloy wire (single wire), or may be performed in the state of a stranded wire after the above-described stranded wire processing step.
- the present invention has excellent conductivity and repeated bending characteristics, and is suitable for a wiring cable used in a portion where bending or twisting is repeatedly applied, such as a robot arm part, a portable terminal and a PC hinge part.
- a copper alloy wire and a method for producing a copper alloy wire can be provided.
- the copper alloy wire according to the present embodiment is used as a strand of a wiring cable such as an arm portion of a robot.
- the wiring cable for the robot includes a cable conductor formed by twisting a plurality of copper alloy wires, and an insulating coating that covers the outer periphery of the cable conductor.
- the copper alloy wire according to the present embodiment is Co: 0.12% by mass or more and 0.40% by mass or less, P: 0.040% by mass or more and 0.16% by mass or less, Sn: 0.005% by mass. It is composed of a copper alloy having a composition that includes 0.70% by mass or less and the balance being Cu and inevitable impurities.
- Ni 0.01 mass% or more and 0.15 mass% or less may be included.
- Zn 0.002% by mass to 0.5% by mass
- Mg 0.002% by mass to 0.25% by mass
- Zr Any one or two or more of 0.001% by mass or more and 0.1% by mass or less may be included. The reason why the content of each element is set within the above range will be described below.
- Co and P are elements that form precipitates dispersed in the copper matrix.
- the Co content is less than 0.12 mass% and the P content is less than 0.04 mass%, the number of precipitates is insufficient, and the strength and repeated bending characteristics are sufficiently improved. You may not be able to.
- the Co content exceeds 0.40% by mass and the P content exceeds 0.16% by mass, there are many elements that do not contribute to the improvement of the strength, resulting in a decrease in conductivity. There is a risk of inviting. For this reason, it is desirable to set the Co content within the range of 0.12 mass% to 0.40 mass% and the P content within the range of 0.040 mass% to 0.16 mass%.
- (Sn) Sn is an element having an action of improving strength by being dissolved in a copper matrix. In addition, it has an effect of promoting precipitation of precipitates containing Co and P as main components and an effect of improving heat resistance and corrosion resistance.
- content of Sn is less than 0.005 mass%, there exists a possibility that the effect mentioned above may not be achieved reliably.
- Sn content exceeds 0.70% by mass, the conductivity may not be ensured. For this reason, it is desirable to set the content of Sn within the range of 0.005 mass% to 0.70 mass%.
- Ni is an element that can replace a part of Co and has an effect of suppressing coarsening of crystal grains.
- the content of Ni is less than 0.01% by mass, the above-described functions and effects may not be reliably achieved.
- the Ni content exceeds 0.15% by mass, the conductivity may not be ensured. For this reason, when it contains Ni, it is preferable to make content of Ni into the range of 0.01 mass% or more and 0.15 mass% or less.
- Zn, Mg, Ag, Zr Elements such as Zn, Mg, Ag, and Zr are elements having an effect of generating a compound with sulfur (S) and suppressing the solid solution of sulfur (S) in the copper matrix.
- the content of elements such as Zn, Mg, Ag, and Zr is less than the above lower limit value, the effect of suppressing the solid solution of sulfur (S) in the copper matrix is sufficiently successful. I can't let you.
- the content of elements such as Zn, Mg, Ag, and Zr is larger than the above-described upper limit values, the conductivity may not be ensured. For this reason, when elements, such as Zn, Mg, Ag, and Zr, are contained, it is preferable to be in the above-mentioned range.
- tissue observation immediately after implementing the aging heat treatment process S03 mentioned later is 15 nm or more, and particle diameter is 5 nm or more.
- the number of precipitates is 80% or more of the total precipitates observed, and after this aging heat treatment step S03, it is assumed that it was manufactured by cold working (secondary cold working step S04). Yes.
- the observation of the precipitate was performed as follows. Observation was performed with a transmission electron microscope at magnifications of 150,000 and 750,000 times, the area of the precipitate was calculated, and the equivalent circle diameter was calculated as the particle diameter.
- the precipitates having a particle size of 11 to 100 nm at a magnification of 150,000 times and the precipitates having a particle size of 1 to 10 nm at a magnification of 750,000 times were measured. Since observations at a magnification of 750,000 cannot clearly discriminate precipitates less than 1 nm, the total number of precipitates observed is the number of precipitates having a particle size of 1 nm or more. Observation with a transmission electron microscope was performed with a visual field area of about 4 ⁇ 10 5 nm 2 when the magnification was 150,000 times and with a visual field area of about 2 ⁇ 10 4 nm 2 when the magnification was 750,000 times.
- FIG. 1 shows a flow chart of a copper alloy wire manufacturing method and a cable conductor manufacturing method according to an embodiment of the present invention.
- the copper roughing wire 50 made of the copper alloy is continuously produced by a continuous casting and rolling method (continuous casting and rolling step S01).
- the continuous casting and rolling step S01 for example, the continuous casting and rolling equipment shown in FIG. 2 is used.
- the continuous casting rolling equipment shown in FIG. 1 has a melting furnace A, a holding furnace B, a casting rod C, a belt wheel type continuous casting machine D, a continuous rolling device E, and a coiler F.
- the continuous casting rolling equipment shown in FIG. 1 is a melting furnace A, a holding furnace B, a casting rod C, a belt wheel type continuous casting machine D, a continuous rolling device E, and a coiler F.
- a shaft furnace having a cylindrical furnace body is used as the melting furnace A.
- a plurality of burners (not shown) are arranged in a multistage shape in the vertical direction at the lower part of the furnace body.
- the electrolytic copper which is a raw material is inserted from the upper part of a furnace main body, is melt
- the holding furnace B is for temporarily storing the molten copper produced in the melting furnace A while holding it at a predetermined temperature and sending a certain amount of the molten copper to the casting iron C.
- the cast iron C is for transferring the molten copper sent from the holding furnace B to the tundish 11 disposed above the belt wheel type continuous casting machine D.
- the cast iron C is sealed with, for example, an inert gas such as Ar or a reducing gas.
- the cast iron C is provided with degassing means (not shown) for stirring the molten copper with an inert gas to remove oxygen and the like in the molten metal.
- the tundish 11 is a storage tank provided for continuously supplying molten copper to the belt wheel type continuous casting machine D.
- a pouring nozzle 12 is disposed at the end of the tundish 11 in the flow direction of the molten copper, and the molten copper in the tundish 11 passes to the belt wheel continuous casting machine D via the pouring nozzle 12. It is set as the structure supplied.
- an alloy element addition means (not shown) is provided in the casting iron C and the tundish 11, and the above-mentioned elements (Co, P, Sn, etc.) are added to the molten copper. It is configured.
- the belt wheel type continuous casting machine D includes a cast wheel 13 having a groove formed on the outer peripheral surface thereof, and an endless belt 14 that is circulated so as to contact a part of the outer peripheral surface of the cast wheel 13. .
- molten copper is injected into the space formed between the groove and the endless belt 14 via the pouring nozzle 12, and the molten copper is cooled and solidified.
- the rod-shaped cast copper material 21 is continuously cast.
- a continuous rolling device E is connected to the downstream side of the belt wheel type continuous casting machine D.
- the continuous rolling apparatus E continuously rolls the cast copper material 21 produced from the belt wheel type continuous casting machine D to produce a copper roughing wire 50 having a predetermined outer diameter.
- the copper roughing wire 50 produced from the continuous rolling device E is wound around the coiler F via the cleaning / cooling device 15 and the flaw detector 16.
- the outer diameter of the copper roughing wire 50 produced by the above-mentioned continuous casting and rolling equipment is, for example, 8 mm or more and 40 mm or less, and is 8 mm in this embodiment.
- the cast copper material 21 is held at a relatively high temperature of, for example, 800 ° C. to 1000 ° C., so that many elements such as Co and P are dissolved in the copper matrix. become.
- cold working is performed on the copper roughing wire 50 produced by the continuous casting and rolling step S01 (primary cold working step S02).
- primary cold working step S02 a plurality of steps are performed to obtain a copper wire having an outer diameter of 0.1 mm or more and 8.0 mm or less.
- the copper wire has an outer diameter of 0.9 mm.
- an aging heat treatment is performed on the copper wire after the primary cold working step S02 (aging heat treatment step S03).
- aging heat treatment step S03 a precipitate made of a compound containing Co and P as main components is precipitated.
- the heat treatment temperature is 400 ° C. or more and 600 ° C. or less
- the holding time is 0.5 hours or more and 6.0 hours or less.
- second cold working step S04 cold working is performed on the copper wire after the aging heat treatment step S03 to obtain a copper alloy wire having a predetermined cross-sectional shape.
- this secondary cold working step S04 a plurality of steps are performed to obtain a copper alloy wire having an outer diameter of 0.015 mm to 0.2 mm.
- the copper alloy wire of the present embodiment has an outer diameter of 0.08 mm.
- a cable conductor is formed by twisting a plurality (40 in the present embodiment) of the copper alloy wires obtained as described above (twisted wire processing step S05).
- the twist pitch in the stranded wire processing step S05 is set to 4 mm or more and 24 mm or less.
- maintained for 30 to 300 minutes under the temperature of 100 degreeC or more and 400 degrees C or less is performed with respect to the cable conductor obtained by the strand wire processing process S05 (for the purpose of distortion removal) ( Final heat treatment step S06).
- various means such as a heat treatment using a tubular furnace that allows the wire to pass therethrough and an electric annealing can be used in addition to the batch-type heat treatment.
- the average particle size of precipitates observed by cross-sectional structure observation immediately after performing the aging heat treatment step S03 is 15 nm or more, and the grains Since the number of precipitates having a diameter of 5 nm or more is 80% or more of the entire observed precipitates, the number of precipitates having a small particle size is small, and in the subsequent secondary cold working step S04, the precipitates It is possible to suppress re-dissolution and to produce a copper alloy wire excellent in conductivity.
- the average particle size of the precipitates is 15 nm or more, the precipitates are sufficiently precipitated, the conductivity can be improved, and the strength and repeated bending characteristics can be improved. Therefore, it can be used as a wiring cable in a portion where bending or twisting of a robot arm or the like is repeatedly loaded.
- the composition of the copper alloy wire is Co: 0.12 mass% or more and 0.40 mass% or less, P: 0.040 mass% or more and 0.16 mass% or less, Sn: 0.005 mass% Since the content is 0.70% by mass or less and the balance is Cu and unavoidable impurities, precipitates made of a compound of Co and P are dispersed in the copper matrix, and the strength, conductivity Can be improved. Moreover, since Sn is contained in the range of 0.005 mass% or more and 0.70 mass% or less, the strength can be further improved by solid solution strengthening, and the strength and repeated bending characteristics can be improved. Can do. Moreover, heat resistance and corrosion resistance are also improved.
- Ni is further contained in an amount of 0.01% by mass or more and 0.15% by mass or less, coarsening of crystal grains can be suppressed, and strength and repeated bending characteristics can be further improved.
- Zn; 0.002 mass% or more and 0.5 mass% or less, Mg; 0.002 mass% or more and 0.25 mass% or less, Ag; 0.002 mass% or more and 0.25 mass% %, Zr: 0.001% by mass or more and 0.1% by mass or less, and any one or more of Zn, Mg, Ag, and Zr are contained in sulfur (S) and a compound.
- a twisted wire processing step S05 in which a plurality of copper alloy wires are twisted to form a cable conductor, and the cable conductor is heat treated for strain relief.
- the final heat treatment step S06 so that the strain accumulated in the secondary cold working step S04 and the stranded wire working step S05 can be released by the final heat treatment step S06, and bendability, elongation, etc. Can be improved.
- the heat treatment temperature is set in the range of 100 ° C. or more and 400 ° C. or less, so there is no possibility that the copper alloy wires are in close contact with each other.
- the copper rough drawing wire 50 is produced by the continuous casting and rolling step S01, the copper rough drawing wire 50 can be produced efficiently. Further, for example, since it is held at a high temperature of 800 to 1000 ° C. for a certain period of time, elements such as Co and P are dissolved in the copper matrix, and it is necessary to perform a solution treatment separately. There is no.
- the copper alloy wire constituting the wiring cable for the robot has been described.
- the present invention is not limited to this, and may be a wiring cable used for a portable terminal, a hinge portion of a PC, or the like. .
- this embodiment demonstrated as what manufactures a copper rough drawing wire by a continuous casting rolling process, it is not limited to this, A cylindrical ingot (billet) is produced and this ingot is extruded. -You may produce a rough copper wire by cold working. However, when a copper roughing wire is produced by an extrusion method, it is necessary to perform a solution treatment separately. Furthermore, even if it is a case where it manufactures by a continuous casting rolling process, you may implement a solution treatment with respect to a copper rough drawing wire.
- the continuous casting and rolling process is described as being performed using the belt wheel type casting machine shown in FIG. 2, but the present invention is not limited to this, and other continuous casting methods are adopted. Also good.
- Examples of the present invention and comparative examples Using a continuous casting and rolling facility equipped with a belt wheel type continuous casting machine, a copper roughing wire (diameter 8 mm) made of a copper alloy having the composition shown in Table 1 was produced.
- the copper rough wire was subjected to primary cold working to a diameter of 0.9 mm, and then subjected to aging heat treatment under the conditions shown in Table 1. Thereafter, secondary cold working was performed to obtain a diameter of 0.08 mm, and a final heat treatment was performed under the conditions shown in Table 1.
- the electrical conductivity was measured using the copper alloy wires (outer diameter 0.08 mm) of the present invention example, comparative example, and conventional example after the final heat treatment.
- the conductivity was measured by a double bridge method in accordance with JIS H 0505. The evaluation results are shown in Table 2.
- Inventive Example 1-19 the number of precipitates having an average particle size of 15 nm or more and a particle size of 5 nm or more observed by cross-sectional structure observation immediately after aging heat treatment was observed. It is confirmed that it is 80% or more of the entire precipitate. Flexibility is superior to Conventional Examples 1 and 2, and conductivity is 70% IACS or higher. In contrast, Comparative Example 1-3 in which the number of precipitates having a particle size of 5 nm or more was less than 80% of the total precipitates observed (in Comparative Examples 2 and 3, the average particle size of the precipitates was At less than 15 nm, the flexibility and conductivity are poor. From the above, according to the present invention example, it was confirmed that a copper alloy wire excellent in conductivity and repeated bending characteristics can be obtained.
- the present invention has excellent conductivity and repeated bending characteristics, and is a copper alloy suitable for a wiring cable used in a portion where bending or twisting is repeatedly applied, such as a robot arm part, a portable terminal and a PC hinge part.
- the present invention relates to a method for manufacturing a wire and a copper alloy wire.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
ここで、通常、通電のための配線ケーブルにおいては、導電性が良好なタフピッチ銅からなる銅線が広く使用されているが、強度が低く、繰り返し曲げ特性が不十分であった。
しかし、最近では、ロボットのアーム部、携帯端末及びPCの小型化及び薄肉化等に伴い、上述の銅合金線には、さらなる繰り返し曲げ特性の向上が求められている。
これらの析出強化型銅合金は、銅の母相中に析出物を均一に分散させることにより、固溶強化型銅合金よりも優れた繰り返し曲げ特性を得ることが可能である。
上述のように、析出強化型銅合金においては、時効熱処理によって析出物を析出・分散させることにより、導電率及び強度が向上することになる。
ここで、時効熱処理後に冷間加工を実施した場合には、粒径の小さな析出物は、冷間加工時に発生する転位によってせん断され、銅の母相中に再固溶し、導電率が低下してしまうことが指摘されている。特に、上述のように、直径0.08mm以下の極細線の場合には、時効熱処理後の冷間加工の加工率が高く、導電率の低下が顕著であって、所望の導電率を確保することができないおそれがあった。
すなわち、時効熱処理によって析出した粒径5nm未満のCo及びPを含む化合物からなる析出物は、時効熱処理後の冷間加工時に、転位によってせん断されてさらに細分化され、最終的には銅の母中に再固溶してしまう。そこで、時効熱処理後で冷間加工前状態において、粒径5nm未満の析出物の個数を、観察される析出物全体の20%未満とすることで、析出物の再固溶を抑制することが可能となるのである。
また、Co及びPを含む化合物からなる析出物の平均粒径が15nm以上とされているので、析出物が十分に析出されており、導電性を向上させることができるとともに、強度及び繰り返し曲げ特性の向上を図ることが可能となる。
この構成の銅合金線においては、銅の母相中にCo及びPを含む化合物からなる析出物が分散されることになり、強度、導電率の向上を図ることが可能となる。
なお、Co及びPが下限値を下回ると析出物の個数が不足し、強度及び繰り返し曲げ特性を充分に向上させることができない。一方、Co及びPが上限値を超えると、強度の向上に寄与しない元素が多く存在してしまい、導電率の低下等を招くおそれがある。このため、Co及びPは、上述の範囲内に設定することが望ましい。
また、Snは、銅の母相中に固溶することによって強度を向上させる作用を有する元素である。また、CoとPとを主成分とする析出物の析出を促進させる効果や、耐熱性、耐食性の向上を図ることもできる。このような作用効果を確実に奏功せしめるためには、Snの含有量を0.005質量%以上とする必要がある。また、Snが過剰に添加された場合には導電率の低下を招くため、Snの含有量は0.70質量%以下とすることが望ましい。
この構成の銅合金線においては、Niを上述の範囲内で含有しているので、結晶粒の粗大化を抑制でき、強度及び繰り返し曲げ特性をさらに向上させることができる。
この構成の銅合金線においては、Zn,Mg,Ag,Zrのいずれか1種または2種以上を上述の範囲で含有しているので、これらの元素が硫黄(S)と化合物を形成することにより、銅の母相中に硫黄(S)が固溶することを抑制でき、強度等の機械的特性の劣化を抑制することができる。
また、冷間加工工程によって得られた銅合金線に対して、歪み取りのための最終熱処理工程を実施してもよい。この最終熱処理工程においては、熱処理温度を400℃以下とすることが好ましい。さらに、この最終熱処理工程は、銅合金線(単線)の状態で実施してもよいし、上述の撚り線加工工程の後に撚り線の状態で実施してもよい。
本実施形態である銅合金線は、ロボットのアーム部等の配線ケーブルの素線として用いられるものである。
このロボット用の配線ケーブルは、複数の銅合金線が撚り合わされてなるケーブル導体と、このケーブル導体の外周を被覆する絶縁被覆と、を備えている。
なお、この銅合金においては、さらにNi;0.01質量%以上0.15質量%以下を含んでいてもよい。また、さらにZn;0.002質量%以上0.5質量%以下、Mg;0.002質量%以上0.25質量%以下、Ag;0.002質量%以上0.25質量%以下、Zr;0.001質量%以上0.1質量%以下のうち、いずれか1種または2種以上を含んでいてもよい。
以下に、各元素の含有量を上述の範囲内に設定した理由について説明する。
CoとPは、銅の母相中に分散する析出物を形成する元素である。
ここで、Coの含有量が0.12質量%未満及びPの含有量が0.04質量%未満の場合には、析出物の個数が不足し、強度及び繰り返し曲げ特性を充分に向上させることができないおそれがある。一方、Coの含有量が0.40質量%超え及びPの含有量が0.16質量%超えの場合には、強度の向上に寄与しない元素が多く存在してしまい、導電率の低下等を招くおそれがある。
このため、Coの含有量を0.12質量%以上0.40質量%以下、Pの含有量を0.040質量%以上0.16質量%以下の範囲内に設定することが望ましい。
Snは、銅の母相中に固溶することによって強度を向上させる作用を有する元素である。また、CoとPとを主成分とする析出物の析出を促進させる効果や、耐熱性、耐食性を向上させる作用も有する。
ここで、Snの含有量が0.005質量%未満の場合には、上述した作用効果を確実に奏功せしめることができないおそれがある。一方、Snの含有量が0.70質量%を超える場合には、導電率を確保できなくなるおそれがある。
このため、Snの含有量を0.005質量%以上0.70質量%以下の範囲内に設定することが望ましい。
Niは、Coの一部を代替することができ、結晶粒の粗大化を抑制する作用効果を有する元素である。
ここで、Niの含有量が0.01質量%未満の場合には、上述した作用効果を確実に奏功せしめることができないおそれがある。一方、Niの含有量が0.15質量%を超える場合には、導電率を確保できなくなるおそれがある。
このため、Niを含有する場合には、Niの含有量を0.01質量%以上0.15質量%以下の範囲内とすることが好ましい。
Zn,Mg,Ag,Zrといった元素は、硫黄(S)と化合物を生成し、銅の母相中への硫黄(S)の固溶を抑制する作用効果を有する元素である。
ここで、Zn,Mg,Ag,Zrといった元素の含有量がそれぞれ上述の下限値より少ない場合には、銅の母相中への硫黄(S)の固溶を抑制する作用効果を十分に奏功せしめることができない。一方、Zn,Mg,Ag,Zrといった元素の含有量がそれぞれ上述の上限値より多い場合には、導電率を確保できなくなるおそれがある。
このため、Zn,Mg,Ag,Zrといった元素を含有する場合には、それぞれ上述の範囲内とすることが好ましい。
ここで、析出物の観察は、次のようにして実施した。透過型電子顕微鏡によって倍率15万倍および75万倍で観察し、当該析出物の面積を算出してその円相当径を粒径として算出した。なお、倍率15万倍で11~100nmの粒径の析出物を、倍率75万倍で1~10nmの粒径の析出物を測定した。倍率75万倍での観察では1nm未満の析出物は明確に判別できないことから、観察される析出物全体の個数は粒径1nm以上の析出物の個数となる。また、透過型電子顕微鏡による観察は、倍率15万倍の場合は視野面積約4×105nm2 、倍率75万倍の場合は視野面積約2×104nm2 で実施した。
まず、上記銅合金からなる銅荒引線50を連続鋳造圧延法によって連続的に製出する(連続鋳造圧延工程S01)。この連続鋳造圧延工程S01においては、例えば図2に示す連続鋳造圧延設備が用いられる。
この連続圧延装置Eから製出された銅荒引線50は、洗浄冷却装置15及び探傷器16を介してコイラーFに巻き取られる。
ここで、上述の連続鋳造圧延設備によって製出される銅荒引線50の外径は、例えば8mm以上40mm以下とされており、本実施形態では8mmとされている。
そして、この連続鋳造圧延工程S01では、鋳造銅材21が、例えば800℃から1000℃の比較的高温で保持されることから、Co、Pといった元素が銅の母相中に多く固溶することになる。
ここで、時効熱処理工程S03では、熱処理温度が400℃以上600℃以下、保持時間が0.5時間以上6.0時間以下の条件で実施される。
この2次冷間加工工程S04においては、複数段の加工が実施され、外径0.015mm以上0.2mm以下の範囲内の銅合金線とする。本実施形態の銅合金線は、外径0.08mmとされている。
この最終熱処理工程S06は、バッチ式の熱処理の他に、線材を通過させる管状炉を使った熱処理、通電焼鈍等の各種手段を用いることができる。
また、析出物の平均粒径が15nm以上とされているので、析出物が十分に析出されており、導電性を向上させることができるとともに、強度及び繰り返し曲げ特性の向上を図ることができる。
よって、ロボットのアーム部等の曲げやひねり等が繰り返し負荷される部位における配線ケーブルとして使用することが可能となる。
また、本実施形態では、さらにZn;0.002質量%以上0.5質量%以下、Mg;0.002質量%以上0.25質量%以下、Ag;0.002質量%以上0.25質量%以下、Zr;0.001質量%以上0.1質量%以下のうち、いずれか1種または2種以上を含んでいるので、Zn,Mg,Ag,Zrといった元素が硫黄(S)と化合物を形成することにより、銅の母相中に硫黄(S)が固溶することを抑制でき、銅合金線の強度等の機械的特性の劣化を抑制することができる。
例えば、本実施形態では、ロボット用の配線ケーブルを構成する銅合金線として説明したが、これに限定されることはなく、携帯端末及びPCのヒンジ部等に用いられる配線ケーブルであってもよい。
また、本実施形態では、連続鋳造圧延工程を図2に示すベルトホイール式鋳造機を用いて実施するものとして説明したが、これに限定されることはなく、他の連続鋳造法を採用してもよい。
ベルトホイール式連続鋳造機を備えた連続鋳造圧延設備を用いて、表1に示す組成の銅合金からなる銅荒引線(直径8mm)を製出した。この銅荒引線に対して、1次冷間加工を実施して直径0.9mmとした後に、表1記載の条件で時効熱処理を施した。その後、2次冷間加工を実施して直径0.08mmとし、表1記載の条件で最終熱処理を施した。
従来例1として、外径0.08mmのタフピッチ銅の軟質銅を準備した。
従来例2として、外径0.08mmのSn入り銅の硬質銅を準備した。
従来例3として、外径0.08mmのSn入り銅の軟質銅を準備した。
本発明例について、時効熱処理後の銅線材を用いて析出物の観察を行った。析出物の観察は、透過型電子顕微鏡(機種名:TEM:日立製作所製、H-800、HF-2000、HF-2200および日本電子製 JEM-2010F)の透過電子像を用いて各析出物の面積から相当粒径を算出した。なお、倍率は15万倍、75万倍とし、それぞれ測定視野約4×105nm2、約2×104nm2 で、観察を実施した。そして、析出物の平均粒径、及び、観察される析出物のうち粒径5nm以上の析出物の割合を算出した。結果を表2に示す。
本発明例、比較例、従来例の銅合金線(外径0.08mm)を用いて、屈曲性を評価した。屈曲性試験は、図3に示す屈曲試験方法を用いて、曲げ部61のRを5mm、荷重(錘62)を20gとし、180°曲げを行って元の位置まで戻った回数を2回とし、破断が発生するまで曲げを繰り返した。評価結果を表2に示す。
最終熱処理後の本発明例、比較例、従来例の銅合金線(外径0.08mm)を用いて、導電率を測定した。導電率は、JIS H 0505に準拠して、ダブルブリッジ法によって測定した。評価結果を表2に示す。
これに対して、粒径5nm以上の析出物の個数が、観察される析出物全体の80%未満とされた比較例1-3(比較例2,3においては、析出物の平均粒径が15nm未満)においては、屈曲性及び導電率が悪い。
以上のことから、本発明例によれば、導電率、及び、繰り返し曲げ特性に優れた銅合金線を得られることが確認された。
Claims (5)
- Co,P及びSnを含有する析出強化型銅合金からなり、
時効熱処理を実施した直後の断面組織観察により観察される析出物の平均粒径が15nm以上であり、かつ、粒径5nm以上の析出物の個数が、観察される析出物全体の80%以上とされており、
当該時効熱処理の後、冷間加工されたことを特徴とする銅合金線。 - 前記析出強化型銅合金の組成が、Co;0.12質量%以上0.40質量%以下、P;0.040質量%以上0.16質量%以下、Sn;0.005質量%以上0.70質量%以下を含み、残部がCu及び不可避不純物とされていることを特徴とする請求項1に記載の銅合金線。
- 前記析出強化型銅合金は、さらにNi;0.01質量%以上0.15質量%以下を含むことを特徴とする請求項2に記載の銅合金線。
- 前記析出強化型銅合金は、さらにZn;0.002質量%以上0.5質量%以下、Mg;0.002質量%以上0.25質量%以下、Ag;0.002質量%以上0.25質量%以下、Zr;0.001質量%以上0.1質量%以下のうち、いずれか1種または2種以上を含むことを特徴とする請求項2または請求項3に記載の銅合金線。
- Co,P及びSnを含有する析出強化型銅合金からなる銅合金線の製造方法であって、
時効熱処理工程と、この時効熱処理工程の後に実施される冷間加工工程と、を有し、
前記時効熱処理工程を実施した直後の断面組織観察により観察される析出物の平均粒径を15nm以上とし、かつ、粒径5nm以上の析出物の個数を、観察される析出物全体の80%以上とすることを特徴とする銅合金線の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12882376.2A EP2881475A4 (en) | 2012-07-31 | 2012-07-31 | COPPER ALLOY WIRE AND METHOD FOR MANUFACTURING COPPER ALLOY WIRE |
PCT/JP2012/069491 WO2014020706A1 (ja) | 2012-07-31 | 2012-07-31 | 銅合金線及び銅合金線の製造方法 |
CN201280074006.2A CN104379782A (zh) | 2012-07-31 | 2012-07-31 | 铜合金线及铜合金线的制造方法 |
US14/413,581 US20150136281A1 (en) | 2012-07-31 | 2012-07-31 | Copper alloy wire and copper alloy wire manufacturing method |
KR1020157002251A KR101939555B1 (ko) | 2012-07-31 | 2012-07-31 | 구리 합금선 및 구리 합금선의 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/069491 WO2014020706A1 (ja) | 2012-07-31 | 2012-07-31 | 銅合金線及び銅合金線の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014020706A1 true WO2014020706A1 (ja) | 2014-02-06 |
Family
ID=50027436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069491 WO2014020706A1 (ja) | 2012-07-31 | 2012-07-31 | 銅合金線及び銅合金線の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150136281A1 (ja) |
EP (1) | EP2881475A4 (ja) |
KR (1) | KR101939555B1 (ja) |
CN (1) | CN104379782A (ja) |
WO (1) | WO2014020706A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014020707A1 (ja) * | 2012-07-31 | 2014-02-06 | 三菱電線工業株式会社 | 銅合金トロリ線及び銅合金トロリ線の製造方法 |
JP5773015B2 (ja) * | 2013-05-24 | 2015-09-02 | 三菱マテリアル株式会社 | 銅合金線 |
JP6946765B2 (ja) * | 2016-06-23 | 2021-10-06 | 三菱マテリアル株式会社 | 銅合金、銅合金鋳塊及び銅合金溶体化材 |
JP6310538B1 (ja) * | 2016-12-14 | 2018-04-11 | 古河電気工業株式会社 | 銅合金線棒材およびその製造方法 |
CN116024424A (zh) * | 2022-12-30 | 2023-04-28 | 诺克威新材料(江苏)有限公司 | 一种减缓铜及铜合金极细线老化的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164835A (ja) | 1984-09-04 | 1986-04-03 | Nippon Mining Co Ltd | 耐熱高力高導電性銅合金 |
JPS62214146A (ja) | 1986-03-17 | 1987-09-19 | Nippon Mining Co Ltd | 耐屈曲高力高導電性銅合金 |
JPH0956632A (ja) | 1995-08-22 | 1997-03-04 | Sekisui Chem Co Ltd | 掛け具の取付方法 |
JP3348501B2 (ja) | 1993-12-27 | 2002-11-20 | 日立電線株式会社 | 耐屈曲性銅合金 |
WO2009107586A1 (ja) * | 2008-02-26 | 2009-09-03 | 三菱伸銅株式会社 | 高強度高導電銅棒線材 |
JP2010212164A (ja) * | 2009-03-11 | 2010-09-24 | Mitsubishi Shindoh Co Ltd | 電線導体の製造方法、電線導体、絶縁電線及びワイヤーハーネス |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6053994A (en) | 1997-09-12 | 2000-04-25 | Fisk Alloy Wire, Inc. | Copper alloy wire and cable and method for preparing same |
EP1630240B1 (en) * | 2003-03-03 | 2008-11-12 | Mitsubishi Shindoh Co., Ltd. | Heat-resisting copper alloy materials |
KR20150040254A (ko) * | 2012-07-31 | 2015-04-14 | 미쓰비시 마테리알 가부시키가이샤 | 구리 합금선 및 구리 합금선의 제조 방법 |
WO2014020707A1 (ja) * | 2012-07-31 | 2014-02-06 | 三菱電線工業株式会社 | 銅合金トロリ線及び銅合金トロリ線の製造方法 |
-
2012
- 2012-07-31 KR KR1020157002251A patent/KR101939555B1/ko active IP Right Grant
- 2012-07-31 US US14/413,581 patent/US20150136281A1/en not_active Abandoned
- 2012-07-31 CN CN201280074006.2A patent/CN104379782A/zh active Pending
- 2012-07-31 EP EP12882376.2A patent/EP2881475A4/en not_active Withdrawn
- 2012-07-31 WO PCT/JP2012/069491 patent/WO2014020706A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164835A (ja) | 1984-09-04 | 1986-04-03 | Nippon Mining Co Ltd | 耐熱高力高導電性銅合金 |
JPS62214146A (ja) | 1986-03-17 | 1987-09-19 | Nippon Mining Co Ltd | 耐屈曲高力高導電性銅合金 |
JP3348501B2 (ja) | 1993-12-27 | 2002-11-20 | 日立電線株式会社 | 耐屈曲性銅合金 |
JPH0956632A (ja) | 1995-08-22 | 1997-03-04 | Sekisui Chem Co Ltd | 掛け具の取付方法 |
WO2009107586A1 (ja) * | 2008-02-26 | 2009-09-03 | 三菱伸銅株式会社 | 高強度高導電銅棒線材 |
JP2010212164A (ja) * | 2009-03-11 | 2010-09-24 | Mitsubishi Shindoh Co Ltd | 電線導体の製造方法、電線導体、絶縁電線及びワイヤーハーネス |
Non-Patent Citations (1)
Title |
---|
See also references of EP2881475A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2881475A4 (en) | 2016-07-06 |
EP2881475A1 (en) | 2015-06-10 |
CN104379782A (zh) | 2015-02-25 |
KR20150034211A (ko) | 2015-04-02 |
KR101939555B1 (ko) | 2019-01-17 |
US20150136281A1 (en) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6782168B2 (ja) | アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネス、ならびにアルミニウム合金線材の製造方法 | |
JP5607853B1 (ja) | アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネスおよびアルミニウム合金線材の製造方法 | |
JP5713230B2 (ja) | Cu−Ag合金線及びCu−Ag合金線の製造方法 | |
JP5354815B2 (ja) | 電線又はケーブル | |
JP5380117B2 (ja) | 電線導体の製造方法、電線導体、絶縁電線及びワイヤーハーネス | |
US9997276B2 (en) | Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, and wire harness, and method of manufacturing aluminum alloy wire rod | |
JP6147167B2 (ja) | アルミニウム合金導体、アルミニウム合金撚線、被覆電線およびワイヤーハーネス | |
WO2014020706A1 (ja) | 銅合金線及び銅合金線の製造方法 | |
KR20130059412A (ko) | 전자 재료용 Cu-Co-Si 계 합금 | |
WO2014020701A1 (ja) | 銅合金線及び銅合金線の製造方法 | |
JP6027807B2 (ja) | 銅合金トロリ線及び銅合金トロリ線の製造方法 | |
JP2006307307A (ja) | ロボット可動部用配線ケーブル | |
JP7503240B2 (ja) | 被覆電線、端子付き電線、銅合金線、銅合金撚線、及び銅合金線の製造方法 | |
JP6329118B2 (ja) | アルミニウム合金電線及びワイヤーハーネス | |
JP5376396B2 (ja) | ワイヤーハーネス用電線導体 | |
JP6131542B2 (ja) | 銅合金線及び銅合金線の製造方法、撚り線 | |
JP6131543B2 (ja) | 銅合金線及び銅合金線の製造方法、撚り線 | |
WO2014020707A1 (ja) | 銅合金トロリ線及び銅合金トロリ線の製造方法 | |
JP6635732B2 (ja) | アルミニウム合金導電線の製造方法、アルミニウム合金導電線、これを用いた電線及びワイヤハーネス | |
JP5510879B2 (ja) | 電線用導体、および電線 | |
JP6853872B2 (ja) | アルミニウム合金導電線の製造方法、アルミニウム合金導電線、これを用いた電線及びワイヤハーネス | |
JP2020050901A (ja) | アルミニウム合金電線の製造方法、アルミニウム合金電線及びワイヤーハーネス | |
JP2010095777A (ja) | 銅合金導体及びそれを用いたトロリー線、ケーブル、並びに銅合金導体の製造方法 | |
JP2018083973A (ja) | 銅合金部材の製造方法 | |
JP5074773B2 (ja) | 銅合金およびその製造方法ならびに銅合金を用いた電線・ケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12882376 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14413581 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157002251 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012882376 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012882376 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |