WO2014017499A1 - 人工燐鉱石の製造方法 - Google Patents

人工燐鉱石の製造方法 Download PDF

Info

Publication number
WO2014017499A1
WO2014017499A1 PCT/JP2013/069942 JP2013069942W WO2014017499A1 WO 2014017499 A1 WO2014017499 A1 WO 2014017499A1 JP 2013069942 W JP2013069942 W JP 2013069942W WO 2014017499 A1 WO2014017499 A1 WO 2014017499A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
iron
raw material
slag
molten iron
Prior art date
Application number
PCT/JP2013/069942
Other languages
English (en)
French (fr)
Inventor
高郁 山本
勝淑 裏田
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to EP13823852.2A priority Critical patent/EP2878574A4/en
Publication of WO2014017499A1 publication Critical patent/WO2014017499A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method for producing artificial phosphate rock that can be used as a substitute for natural phosphate rock. More specifically, the present invention relates to a method for producing artificial phosphate rock that can be reused as resources by effectively using industrial by-products and industrial waste.
  • phosphorus (P) is an essential element that constitutes a living body and plays an important function in acquiring energy necessary for maintaining life activity. For this reason, phosphorus is also called “the element of life” and is widely used as, for example, chemical fertilizers, etching solutions, steel additives, and the like.
  • phosphoric acid synthesized from a phosphate ore by a wet method is often used as a raw material.
  • phosphoric acid is obtained by decomposing the phosphate ore with sulfuric acid, separating the produced calcium sulfate to produce dilute phosphoric acid, and then concentrating it to a high concentration.
  • Phosphoric acid is used as an etching solution for semiconductors and metal aluminum.
  • phosphoric acid synthesized from a phosphate ore by a dry method is often used as a raw material.
  • phosphoric acid is obtained by reducing phosphate ore in an electric furnace, burning the produced yellow phosphorus to diphosphorus pentoxide, and hydrating it.
  • phosphorous iron (ferrophosphole) obtained from phosphate ore is used.
  • phosphorous iron phosphorite, silica, coke and scrap iron are charged into an electric furnace and melted.
  • phosphorous oxide (P 2 O 5 ) contained in the phosphate ore is reduced with carbon contained in the coke. .
  • the phosphorous iron produced in this way usually contains, by mass%, P: 20 to 28% and Si: about 4%, with the balance being Fe and impurities.
  • phosphorus is widely used, but the phosphorus ore used as a phosphorus source (raw material) when phosphorus is used is being depleted. For this reason, it is indispensable not only for industry but also for agriculture and other industries to recover phosphorus from industrial byproducts and sludge containing phosphorus, or to artificially produce phosphorus ore.
  • Patent Document 1 proposes a method for separating and recovering phosphorus from dephosphorization slag generated by hot metal dephosphorization treatment in steelmaking refining.
  • the MnO content of the dephosphorization slag is adjusted to 5 to 12% by the hot metal dephosphorization treatment.
  • a separation accelerator is added to perform a smelting reduction treatment.
  • Phosphorus is gasified and separated by smelting reduction, and the gasified phosphorus is collected in a non-oxidizing atmosphere and cooled and recovered as yellow phosphorus, or the gasified phosphorus is oxidized and burned with air.
  • Phosphorus oxide is dissolved in water and recovered as phosphoric acid (H 3 PO 4 ).
  • Patent Document 2 proposes a method of recovering iron and phosphorus from slag containing phosphorus generated by steel refining.
  • the basicity of the phosphorus-containing slag is adjusted to 1.7 to 2.1, and the oxidation of iron and phosphorus contained in the phosphorus-containing slag whose basicity is adjusted.
  • the product is reduced with a reducing agent to obtain phosphorus-containing molten iron.
  • the reduced slag and phosphorus-containing molten iron are allowed to cool to powder the slag.
  • the basicity is a ratio of CaO and SiO 2 content, and can be calculated by dividing the CaO content (mass%) by the SiO 2 content (mass%).
  • the slag obtained by the reduction treatment is pulverized by adjusting the basicity of the raw material phosphorus-containing slag to 1.7 to 2.1. Therefore, powdery slag and massive phosphorus-containing iron can be easily separated. Further, if the carbon concentration of the generated phosphorus-containing molten iron is 3% by mass or more, the liquidus temperature of the molten iron becomes 1300 ° C. or less, and therefore the separation of phosphorus-containing molten iron and slag is promoted. .
  • the obtained phosphorus-containing iron is considered to be difficult to use as an iron source due to its high phosphorus concentration, and the phosphorus-containing iron is further dephosphorized to absorb and concentrate phosphorus. Separated into CaO flux and iron with reduced phosphorus concentration. Iron with reduced phosphorus concentration can be used as an iron source, and CaO-based flux enriched with phosphorus can be used as a substitute for natural phosphate ore.
  • the iron and phosphorus recovery method proposed in Patent Document 2 pulverizes the slag obtained by the reduction treatment and separates it from the phosphorus-containing iron, so that the basicity of the raw material phosphorus-containing slag is 1.7 to Since the adjustment to 2.1, the fluidity of the molten slag and phosphorus-containing molten iron is lowered, making handling difficult. Moreover, when this inventor examined, when the carbon concentration of the phosphorus containing molten iron to produce
  • the iron and phosphorus recovery method proposed in Patent Document 2 does not assume that phosphorus-containing iron obtained by reduction treatment is used as a phosphorus source, and it is necessary to further dephosphorize the phosphorus-containing iron. .
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a method for producing artificial phosphate rock that can be reused as resources by effectively using industrial by-products and industrial waste.
  • the present inventors examined a method for recovering phosphorus from dephosphorization slag generated by dephosphorization treatment in steelmaking refining.
  • the dephosphorization slag has a phosphorus content of approximately 2.0 to 3.5% by mass and a generated amount of approximately 30 to 40 kg / thm.
  • iron production is about 100 million tons / year in Japan and about 1.5 billion tons / year worldwide. Therefore, the phosphorus contained in dephosphorized slag is about 100,000 tons in Japan and about 1.5 million in the world. Tons. Therefore, if a method for recovering phosphorus from dephosphorization slag can be realized, it can be established industrially.
  • the inventors of the present invention charged an iron raw material together with dephosphorization slag into a carbon material packed bed type melting furnace, and heated the iron raw material with combustion of the carbon material. It has been found that when melted, phosphorus contained as oxides in the dephosphorized slag is reduced and concentrated to molten iron. When the molten iron is discharged into phosphorus-containing iron, it has been found that phosphorus can be used as a substitute for natural phosphate ore because phosphorus is concentrated.
  • the present inventors conducted various tests and conducted extensive studies. As a result, even in a submerged arc furnace, an iron raw material was charged into the furnace together with dephosphorization slag and charcoal to melt phosphorus. It has been found that if the concentrated molten iron is discharged into phosphorus-containing iron, it can be used as a substitute for natural phosphate ore, as in the case of using a carbonized packed bed melting furnace.
  • the present invention has been completed on the basis of the above knowledge, and the gist thereof is the following (1) and (2) methods for producing artificial phosphate rock.
  • Phosphorus-containing iron obtained by charging an iron raw material together with a phosphorus raw material, a silicon raw material and a carbonaceous material into a melting furnace and melting it, and discharging the molten iron enriched with phosphorus is used as an artificial phosphate ore.
  • the method for producing an artificial phosphate ore of the present invention is included in a phosphorus raw material by charging an iron raw material together with a phosphorus raw material into a melting furnace and melting it to obtain phosphorus-containing iron from molten iron enriched in phosphorus. Phosphorus can be recovered. Since this phosphorus-containing iron has an increased content due to concentration of phosphorus, it can be used as a substitute for natural phosphate ore, that is, as artificial phosphate ore. If dephosphorized slag or sewage sludge is used as a phosphorus raw material and iron scrap is used as an iron raw material, phosphorus-containing iron that can be reused as a resource can be obtained by effectively using industrial by-products and industrial waste.
  • FIG. 1 is a diagram showing a process flow that can be employed in the method for producing artificial phosphate rock according to the present invention.
  • dephosphorization slag generated in steelmaking refining is used as a phosphorus raw material in the production of phosphorus-containing iron.
  • ores composed mainly of iron sources and coke, which is a reducing material are alternately fed from the top of the blast furnace 11 and stacked in layers. Ore and coke are heated by the gas (heated air) that is blown from the tuyere while gradually descending from the top of the furnace, and the ore is softened and melted while being reduced to form molten iron. Discharged from.
  • the discharged hot metal usually contains phosphorus at about 0.1% by mass.
  • the phosphorus content of hot metal is reduced by dephosphorization.
  • phosphorus in hot metal is oxidized by blowing high-pressure oxygen in a state where massive quicklime, limestone, or the like is added to the hot metal as a dephosphorizing agent together with iron scrap. Shift to slag.
  • the phosphorus content of the hot metal discharged from the dephosphorization furnace 12 is reduced to about 0.01% by mass, while phosphorus is contained in the dephosphorization slag 13 at about 2.0 to 3.5% by mass. .
  • the dephosphorized hot metal is finished into steel products by applying decarburization, refining, casting, rolling, etc.
  • Steel products are collected as steel scrap 16 (industrial waste) after being used in various fields.
  • iron scrap (iron material) 16 is loaded into a carbon material packed bed melting furnace 17 together with dephosphorization slag (phosphorus material) 13, silica (silicon material) 14 and coke (carbon material) 15. To melt. Thereby, molten slag is generated together with the molten iron in the lower part of the melting furnace 17, and phosphorus contained in the dephosphorized slag 13 is transferred to the molten iron and concentrated. Molten iron enriched with phosphorus is discharged from the bottom of the melting furnace 17 to obtain phosphorus-containing iron 18. Further, the molten slag is discharged from the lower part of the melting furnace 17 to obtain the slag 19.
  • the method for producing an artificial phosphate ore of the present invention that can employ such a process flow is a molten iron in which an iron raw material is charged together with a phosphorus raw material, a silicon raw material, and a carbonaceous material in a melting furnace and melted to concentrate phosphorus. It is characterized in that the phosphorus-containing iron obtained by discharging is made into artificial phosphate ore.
  • regulated the manufacturing method of the artificial phosphate rock of this invention as mentioned above are demonstrated.
  • Phosphorus raw material is an industrial waste or industrial byproduct containing phosphorus.
  • dephosphorized slag, sewage sludge, or the like can be used.
  • the method for producing the artificial phosphate ore according to the present invention provides dephosphorization as a phosphorus raw material from the viewpoint of stably securing the phosphorus raw material. Slag is preferably used.
  • Iron scrap and crude steel can be used as the iron raw material, but from the viewpoint of reusing resources, it is preferable to use iron scrap that is industrial waste.
  • the silicon raw material is charged into the melting furnace.
  • a silicon raw material for example, silica stone, silica sand, waste glass, silicon scrap, and SiC scrap can be used.
  • the silicon scrap is a chip containing silicon and includes a sludge. Specifically, it corresponds to chips generated when a silicon wafer for solar panels is processed by chemical mechanical polishing or the like, and chips generated when a liquid crystal display is manufactured or a silicon wafer of a semiconductor device is processed.
  • SiC is used for devices such as transistors in harsh environments, but the chips generated when these devices are made are SiC waste. From the viewpoint of reusing industrial waste, it is preferable to use waste glass, silicon waste, or SiC waste as the silicon raw material.
  • Carbonaceous material is a solid material mainly composed of carbon for reacting with a combustion-supporting gas fed from the tuyere.
  • the carbon material for example, coke, charcoal, biomass, RDF, waste wood, waste pulp, and pulverized coal can be used.
  • RDF is an abbreviation of “Refuse Delivered Fuel” and means a carbon material derived from waste.
  • the carbonaceous material may contain a non-solid carbon material such as coal tar or pitch as long as it can be used in a melting furnace, and may contain coal.
  • These phosphorus raw materials, iron raw materials, silicon raw materials, and carbonaceous materials may be used singly or in combination of a plurality of types at a predetermined ratio.
  • a carbon-filled bed type melting furnace or a submerged arc furnace can be used as a melting furnace in order to recover phosphorus contained in a phosphorus raw material.
  • the carbon material packed bed melting furnace is a cylindrical furnace having an open top, and a pouring gate is provided at the bottom or in the vicinity thereof at a predetermined height from the furnace bottom (hereinafter referred to as “first”). It is also referred to as a “region”.)
  • first It is also referred to as a “region”.
  • a tuyere with an entrance is provided.
  • a melting furnace specifically, a converter type cylindrical furnace shown in FIG. 2 of an embodiment described later or a blast furnace type cylindrical furnace can be used.
  • the melting furnace is not particularly limited in terms of shape and size, and may be a furnace having a capacity of about 10 t or a large capacity furnace exceeding 200 t.
  • a typical deposition format in the second region is a format in which a mixed material composed of a phosphorus material, an iron material, and a silicon material, and a carbon material are alternately laminated.
  • the carbonaceous material is mainly combusted while feeding a fluid containing a combustion-supporting gas from the tuyere.
  • the combustion-supporting gas is a gas containing oxygen molecules.
  • the carbon material partially reacts with oxygen molecules to generate carbon monoxide gas.
  • the phosphorus raw material, the iron raw material, and the silicon raw material are heated and melted by the combustion heat of the carbonaceous material, thereby generating molten iron and molten slag.
  • the produced molten iron and molten slag are dropped, forming a molten iron phase 27 at the bottom of the melting furnace and forming a molten slag phase on the molten iron phase 27.
  • the phosphorus oxide contained in the phosphorus raw material is dissolved in the molten iron after being reduced by a reduction reaction with the carbonaceous material and carbon monoxide gas, so that the phosphorus contained in the phosphorus raw material is transferred to the molten iron. Thicken. If molten iron is discharged from the melting furnace, iron enriched with phosphorus (phosphorus-containing iron) can be obtained.
  • phosphorus contained in a phosphorus raw material is concentrated into molten iron to be recovered as phosphorus-containing iron.
  • the obtained phosphorus-containing iron is used as a substitute for natural phosphate ore, that is, artificial phosphate ore.
  • Artificial phosphate ore can be used as an alternative to natural phosphate ore, for example, when producing phosphate iron or when synthesizing phosphoric acid by a wet or dry process.
  • the artificial phosphate ore produced by the production method of the present invention can be used to produce phosphorous iron and synthesize phosphoric acid using existing equipment and processes, and thus the recovered phosphorus can be reused for various purposes.
  • the method for producing an artificial phosphate ore according to the present invention makes the phosphate-containing iron an artificial phosphate ore without dephosphorization, it is possible to reduce the cost required for the production of the artificial phosphate ore and improve the production efficiency. .
  • slag can be obtained. Since the obtained slag has phosphorus removed, it can be used as a slagging agent for a blast furnace or the like. It can also be used as a roadbed material.
  • the phosphorus concentration of the phosphorus-containing iron varies depending on the saturation concentration of phosphorus in the molten iron and the blending of the phosphorus raw material, the iron raw material, and the carbonaceous material.
  • Non-Patent Document 2 Regarding the relationship between the carbon concentration of molten iron and the saturation concentration of phosphorus, as disclosed in Non-Patent Document 2, the saturation concentration of phosphorus decreases as the carbon concentration of molten iron increases.
  • the method for producing artificial phosphate ore according to the present invention increases the saturation concentration of phosphorus in molten iron to obtain phosphorus-containing iron having a phosphorus concentration of 5% by mass or more.
  • the following is preferable.
  • the carbon concentration of molten iron is more preferably 2% by mass or less.
  • the carbon concentration of the molten iron may be adjusted, for example, by changing the carbon material packed bed height or the carbon material particle size. Specifically, the carbon concentration of the molten iron is reduced by reducing the height of the carbonized material packed bed or by increasing the particle size of the carbonaceous material, thereby reducing the chance of contact between the carbonaceous material and the molten iron. To do. On the other hand, by increasing the height of the carbon material packed bed or by reducing the particle size of the carbon material, the chance of contact between the carbon material and the molten iron increases, so the carbon concentration of the molten iron increases.
  • Table 1 shows the standard of the iron raw material, the phosphorus raw material and the carbonaceous material, and the phosphorus concentration of the obtained phosphorus-containing iron.
  • the guideline shown in Table 1 is a guideline in the case of using iron scrap shown in examples described later as iron raw materials, dephosphorization slag shown in examples described later as phosphorus raw materials, and coke shown in the examples described later as charcoal materials. .
  • molten iron enriched with phosphorus is discharged from a melting furnace to obtain phosphorus-containing iron. By doing so, it may be made phosphorus-containing iron having a desired particle size.
  • the phosphorus-containing iron of the present invention is easily crushed because phosphorus is contained in a saturated concentration with respect to the carbon concentration or in a state close to the saturated concentration.
  • the discharged molten slag may be slag having a desired particle size by appropriately cooling, crushing and sizing.
  • the basicity (CaO / SiO 2 ) of the molten slag is preferably set to 0.6 to 1.6.
  • the basicity of the molten slag can be adjusted by changing the amount of silicon raw material charged into the melting furnace.
  • the flowability of the molten slag is improved, so that the separation of the molten iron and the molten slag is promoted and the discharge from the melting furnace is facilitated. Stable operation can be realized.
  • the molten slag discharged from the melting furnace can be uniformly granulated, and a process for adjusting the particle size of the granulated slag becomes unnecessary.
  • an iron raw material is charged together with a phosphorus raw material, a silicon raw material, and a carbonaceous material, melted, and molten iron enriched with phosphorus is discharged to discharge phosphorus-containing iron.
  • FIG. 2 is a cross-sectional view conceptually showing the structure and usage state of the carbonaceous material packed bed melting furnace used in the examples.
  • the carbon material packed bed type melting furnace 21 shown in the figure is a converter type cylindrical furnace, and the furnace gas discharge and raw material charging opening 22 is provided in the upper part of the furnace, and the combustion supporting gas is provided in the lower part of the furnace wall.
  • the dimensions of the melting furnace 21 were a diameter of 1.5 m, a height from the furnace bottom to the furnace port of 3.8 m, and an internal volume of 6.0 m 3 .
  • the melting furnace 21 is provided with four primary tuyere 23 on the side wall at a height of 0.8 m from the furnace bottom at 90 ° intervals, and the secondary tuyere 24 is 1.2 m from the furnace bottom.
  • the four side walls were provided at 90 ° intervals.
  • the melting furnace 21 was provided with a tapping outlet at the center of the furnace bottom, and with one discharge outlet 0.73 m above the furnace bottom.
  • an iron raw material was charged together with a phosphorus raw material, a silicon raw material, and a carbonaceous material and melted.
  • Dephosphorized slag is used as a phosphorus raw material, and the representative composition of the dephosphorized slag is, by mass, CaO: 50%, SiO 2 : 18%, Fe: 10%, P 2 O 5 : 7% (P: 3%).
  • waste glass was used as the silicon raw material, and the representative composition of the waste glass was SiO 2 : 80%, B 2 O 5 : 10% and Al 2 O 3 : 3% by mass.
  • Coke and pulverized coal are used as the carbon material, and the chemical composition of coke and pulverized coal is shown in Table 2.
  • Iron scrap was used as an iron raw material, and the iron scrap had an iron purity of 99% by mass, a bulk density of 3500 kg / m 3 , and a maximum dimension of 0.4 m.
  • the coke packed bed 25 When charging the iron raw material together with such a phosphorus raw material, silicon raw material and carbonaceous material, the coke packed bed 25 was formed at a predetermined height from the furnace bottom.
  • the coke packed bed 25 is composed only of coke, and the layer height is set to a position below the secondary tuyere and close to the secondary tuyere, so that the primary tuyere is included in the coke packed bed.
  • the coke packed bed 25 had a bed height from the furnace bottom of about 1.13 m.
  • a laminated filling layer 26 was formed by alternately laminating a mixed raw material made of a phosphorus raw material, an iron raw material and a silicon raw material, and a carbonaceous material made of a carbonaceous material.
  • the height of the uppermost part of the stacked packed layer 26 formed in this way was about 3.3 m from the furnace bottom.
  • the composition of the charged raw materials was 500 kg of iron scrap, 70 kg of coke, 85 kg of RDF, 600 kg of waste glass, and 3850 kg of dephosphorized slag per ton of molten iron obtained.
  • the oxygen blown from the primary tuyere and the secondary tuyere as the combustion supporting gas was a ratio of 362 Nm 3 per ton of molten iron obtained.
  • pulverized coal was supplied with oxygen from the primary tuyere at a rate of 250 kg per ton of molten iron obtained.
  • Blast furnace 12 Dephosphorization furnace 13: Dephosphorization slag (phosphorus raw material) 14: Silica (silicon raw material) 15: Coke (charcoal) 16: Iron scrap (iron raw material) 17: Carbon material packed bed type melting furnace 18: Phosphorus iron (artificial phosphate rock) 19: Slag 21: Carbon material packed bed melting furnace 22: Opening 23: Primary tuyere 24: Secondary tuyere 25: Coke packed bed 26: Laminated packed bed 27: Molten iron phase 28: Molten slag phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture Of Iron (AREA)
  • Treatment Of Sludge (AREA)

Abstract

 天然の燐鉱石の代替として利用可能な人工燐鉱石を、産業副産物や産業廃棄物を有効に活用しつつ製造する方法を提供する。溶解炉21内に燐原料、珪素原料および炭材とともに鉄原料を装入して溶融し、燐を濃化させた溶融鉄27を排出することにより得られる燐含有鉄を人工燐鉱石とすることを特徴とする人工燐鉱石の製造方法である。この場合、溶融鉄27の燐の飽和濃度を増加させて燐濃度が5質量%以上である燐含有鉄を得るため、溶融鉄27の炭素濃度を3質量%以下とするのが好ましい。得られた人工燐鉱石は、燐鉄を製造する際や、湿式法または乾式法によって燐酸を合成する際に燐鉱石の代替として利用できる。

Description

人工燐鉱石の製造方法
 本発明は、天然の燐鉱石の代替として利用可能な人工燐鉱石の製造方法に関する。更に詳しくは、産業副産物や産業廃棄物を有効に活用して資源として再利用可能な人工燐鉱石を製造する方法に関する。
 非特許文献1に記載されるように、燐(P)は生体を構成するとともに、生命活動の維持に必要なエネルギー獲得における重要な機能を担う必須元素である。このため、燐は「いのちの元素」とも呼ばれ、例えば、化学肥料やエッチング液、鉄鋼添加材等として広く利用されている。
 燐を化学肥料として利用する場合、湿式法により燐鉱石から合成した燐酸が原料として多用される。湿式法による燐酸の合成は、燐鉱石を硫酸で分解し、生成する硫酸カルシウムを分離してまず希薄な燐酸を製造し、次いで高濃度まで濃縮することにより、燐酸を得る。
 また、燐酸は、半導体や金属アルミニウムのエッチング液等に用いられ、この場合は乾式法によって燐鉱石から合成された燐酸が原料として多用される。乾式法による燐酸の合成は、燐鉱石を電気炉で還元し、生成する黄燐を燃焼させて五酸化二燐とし、これを水和することで燐酸を得る。
 燐を鉄鋼添加材として利用する場合、燐鉱石から得られる燐鉄(フェロホスホル)が用いられる。燐鉄の製造では、電気炉に燐鉱石、珪石、コークスおよび屑鉄を装入して溶融し、その過程で燐鉱石に含まれる燐酸化物(P25)をコークスに含まれる炭素で還元する。これにより、生成する溶融燐鉄を排出すれば、燐鉄を得ることができる。このようにして製造された燐鉄は、通常、質量%でP:20~28%およびSi:約4%含み、残部がFeおよび不純物からなる。
 このように燐は広く利用されているが、燐を利用する際に燐源(原料)となる燐鉱石は枯渇しつつある。このため、燐を含む産業副産物や汚泥から、燐を回収すること、あるいは、人工的に燐鉱石を製造することは、工業に限らず、農業やその他産業のためにも必要不可欠である。
 産業副産物に含まれる燐を回収する方法に関し、従来から種々の提案がなされている。特許文献1では、製鋼精錬における溶銑脱燐処理で発生した脱燐スラグから燐を分離回収する方法が提案さている。特許文献1に提案される燐の分離回収方法では、溶銑脱燐処理で脱燐スラグのMnO含有量が5~12%となるように調整し、その脱燐スラグに炭素質還元剤とともに燐の分離促進剤を添加して溶融還元処理する。溶融還元処理によって燐をガス化させて分離し、ガス化した燐を非酸化性雰囲気下で捕集するとともに冷却して黄燐として回収する、または、ガス化した燐を空気で酸化燃焼させて五酸化燐とし、これを水に溶解させて燐酸(H3PO4)として回収する。
 また、特許文献2には、製鋼精錬で発生した燐を含有するスラグから鉄および燐を回収する方法が提案されている。特許文献2に提案される鉄および燐の回収方法では、燐含有スラグの塩基度を1.7~2.1に調整し、塩基度が調整された燐含有スラグに含まれる鉄および燐の酸化物を還元剤で還元処理して燐含有溶融鉄とする。続いて、還元処理したスラグおよび燐含有溶融鉄を放冷してスラグを粉化させる。ここで、塩基度は、CaOとSiO2との含有率の比であり、CaOの含有率(質量%)をSiO2の含有率(質量%)で除することにより算出できる。
 このような特許文献2に提案される鉄および燐の回収方法は、原料の燐含有スラグの塩基度を1.7~2.1に調整することにより還元処理で得られるスラグが粉化することから、粉状のスラグと塊状の燐含有鉄とを容易に分離できるとしている。また、生成する燐含有溶融鉄の炭素濃度を3質量%以上とすれば、溶銑の液相線温度が1300℃以下になることから、燐含有溶融鉄とスラグとの分離が促進されるとしている。
 特許文献2では、得られた燐含有鉄は、燐濃度が高いことから、鉄源として利用困難であるとし、燐含有鉄にさらに脱燐処理を施すことにより、燐を吸収させて濃縮させたCaO系フラックスと燐濃度を低減した鉄とに分離する。燐濃度を低減した鉄は鉄源として利用でき、燐を濃縮させたCaO系フラックスは天然の燐鉱石の代替として利用できるとしている。
大竹 久夫,他4名,「リン資源枯渇危機とはなにか」,大阪大学出版会,2011 P. Villars,他2名,「Handbook of ternary alloy phase diagrams」,ASM International,1995
特公平5-22643号公報 特開2011-74441号公報
 前述の通り、燐の原料である燐鉱石は枯渇しつつあるので、燐を含む産業副産物や汚泥から燐を回収して人工的に燐鉱石を製造することが望まれている。
 前記特許文献1に提案される燐の分離回収方法は、脱燐スラグのMnO含有量を5~12%調整するためにMn鉱石を添加するが、Mn鉱石も枯渇しつつあることから、工業的に成立させるには問題がある。
 また、前記特許文献2に提案される鉄および燐の回収方法は、還元処理で得られるスラグを粉化させて燐含有鉄と分離するため、原料の燐含有スラグの塩基度を1.7~2.1に調整することから、溶融スラグおよび燐含有溶融鉄の流動性が低下して取り扱いが困難になる。また、本発明者が検討したところ、生成する燐含有溶融鉄の炭素濃度を3質量%以上とすると、還元処理で得られる燐含有鉄の燐含有量が低下する。特許文献2に提案される鉄および燐の回収方法は、還元処理で得られる燐含有鉄を燐源として利用することを想定しておらず、燐含有鉄にさらに脱燐処理を施す必要がある。
 本発明は、このような状況に鑑みてなされたものであり、産業副産物や産業廃棄物を有効に活用して資源として再利用可能な人工燐鉱石の製造方法を提供することを目的としている。
 本発明者らは、上記課題を解決するため、製鋼精錬の脱燐処理で発生した脱燐スラグから燐を回収する方法を検討した。ここで、脱燐スラグは、燐含有量が概2.0~3.5質量%であり、発生量が概30~40kg/thmである。一方、鉄の生産量は、日本で約1億トン/年、世界で約15億トン/年であるので、脱燐スラグに含まれる燐は、日本で約10万トン、世界で約150万トンとなる。したがって、脱燐スラグから燐を回収する方法を実現できれば、工業的に成立し得る。
 本発明者らは、種々の試験を行い、鋭意検討を重ねた結果、炭材充填層型溶解炉内に脱燐スラグとともに鉄原料を装入し、鉄原料を炭材の燃焼に伴って加熱して溶融すると、脱燐スラグに酸化物として含まれる燐が還元されて溶融鉄に濃化することを知見した。その溶融鉄を排出して燐含有鉄とすると、燐が濃化していることから、天然の燐鉱石の代替品として利用できることを知見した。
 さらに、本発明者らは、種々の試験を行い、鋭意検討を重ねた結果、サブマージドアーク炉においても、炉内に脱燐スラグおよび炭材とともに鉄原料を装入して溶融し、燐を濃化させた溶融鉄を排出して燐含有鉄とすると、炭材充填層型溶解炉を用いる場合と同様に、天然の燐鉱石の代替品として利用できることを知見した。
 本発明は、上記の知見に基づいて完成したものであり、下記(1)および(2)の人工燐鉱石の製造方法を要旨としている。
(1)溶解炉内に燐原料、珪素原料および炭材とともに鉄原料を装入して溶融し、燐を濃化させた溶融鉄を排出することにより得られる燐含有鉄を人工燐鉱石とすることを特徴とする人工燐鉱石の製造方法。
(2)前記溶融鉄の炭素濃度を3質量%以下とすることを特徴とする上記(1)に記載の人工燐鉱石の製造方法。
 本発明の人工燐鉱石の製造方法は、溶解炉内に燐原料とともに鉄原料を装入して溶融し、燐を濃化させた溶融鉄から燐含有鉄を得ることにより、燐原料に含まれる燐を回収できる。この燐含有鉄は、燐の濃化によりその含有量が増加していることから、天然の燐鉱石の代替品として、すなわち、人工燐鉱石として利用できる。燐原料として脱燐スラグや下水汚泥を用いるとともに鉄原料として鉄スクラップを用いれば、産業副産物や産業廃棄物を有効に活用して資源として再利用可能な燐含有鉄を得ることができる。
本発明の人工燐鉱石の製造方法で採用できるプロセスフローを示す図である。 実施例で用いた炭材充填層型溶解炉の構造および使用状態を概念的に示す断面図である。
 本発明の燐含有鉄の人工燐鉱石の製造方法について、下記図1に示すプロセスフローを参照しながら説明する。
 図1は、本発明の人工燐鉱石の製造方法で採用できるプロセスフローを示す図である。同図に示すプロセスフローでは、製鋼精錬で発生する脱燐スラグを、燐含有鉄の製造における燐原料とする。
 製鋼精錬では、高炉11に、主に鉄源で構成される鉱石類と還元材であるコークスとが、交互に炉頂から投入されて層状に積み重ねられる。鉱石類およびコークスは、炉頂から徐々に炉内を降下しながら、羽口から吹き込まれ上昇するガス(加熱空気)により加熱され、鉱石類は還元されながら軟化、溶融して溶銑となり、炉下部から排出される。排出された溶銑には、通常、燐が0.1質量%程度で含まれる。
 溶銑に含まれる燐が固溶すると、得られる鉄鋼製品の高温延性や耐食性、溶接性等の特性を著しく悪化させるおそれがあるので、製鋼精錬では、脱燐処理で溶銑の燐含有量を低減する。同図に示すプロセスフローでは、脱燐炉12において、溶銑に鉄スクラップとともに脱燐剤として塊状の生石灰や石灰石等を添加した状態で、高圧の酸素を吹き込むことにより、溶銑中の燐を酸化してスラグへ移行させる。これにより、脱燐炉12から排出される溶銑の燐含有量が0.01質量%程度に低減される一方、脱燐スラグ13に燐が概2.0~3.5質量%程度で含まれる。
 脱燐処理された溶銑は、脱炭や精錬、鋳造、圧延等の処理を施すことにより鉄鋼製品に仕上げられる。鉄鋼製品は、様々な分野で使用された後、鉄スクラップ16(産業廃棄物)として回収される。
 同図に示すプロセスフローでは、脱燐スラグ(燐原料)13、珪石(珪素原料)14およびコークス(炭材)15とともに、鉄スクラップ(鉄原料)16を炭材充填層型溶解炉17に装入して溶融する。これにより、溶解炉17の下部に溶融鉄とともに溶融スラグが生成し、その溶融鉄に脱燐スラグ13に含まれる燐が移行して濃化する。燐を濃化させた溶融鉄を溶解炉17の炉底から排出して燐含有鉄18を得る。また、溶融スラグを溶解炉17の下部から排出してスラグ19を得る。
 このようなプロセスフローを採用できる本発明の人工燐鉱石の製造方法は、溶解炉内に燐原料、珪素原料および炭材とともに鉄原料を装入して溶融し、燐を濃化させた溶融鉄を排出することにより得られる燐含有鉄を人工燐鉱石とすることを特徴とする。以下に、本発明の人工燐鉱石の製造方法を上記のように規定した理由および好ましい態様について説明する。
 燐原料は、燐を含有する産業廃棄物または産業副産物であり、具体的には、脱燐スラグや下水汚泥等を用いることができる。前述の通り、脱燐スラグは、燐含有量が十分であるとともに発生量が多いので、本発明の人工燐鉱石の製造方法は、燐原料を安定して確保する観点から、燐原料として脱燐スラグを用いるのが好ましい。
 鉄原料として、鉄スクラップや粗鋼を用いることができるが、資源を再利用する観点から、産業廃棄物である鉄スクラップを用いるのが好ましい。
 溶融鉄とともに生成する溶融スラグの塩基度を調整するために珪素原料を溶解炉内に装入する。珪素原料として、例えば、珪石や珪砂、廃ガラス、シリコン屑、SiC屑を用いることができる。ここで、シリコン屑は、シリコンを含有する切り屑であり、スラッジ状のものを含む。具体的には、ソーラーパネル用シリコンウェーハを化学機械研磨等によって加工する際に発生する切り屑や、液晶ディスプレイの製造時や半導体デバイスのシリコンウェーハの加工時に発生する切り屑が該当する。SiCは、厳しい環境におけるトランジスタ等のデバイスに使用されるが、それらデバイスを作成する際に発生する切り屑がSiC屑である。産業廃棄物を再利用する観点から、珪素原料として、廃ガラスまたはシリコン屑、SiC屑を用いるのが好ましい。
 炭材とは、羽口から送入される支燃性ガスと反応を行うためのものであって、炭素を主成分とする固体材料である。炭材として、例えば、コークスや木炭、バイオマス、RDF、廃木材、廃パルプ、微粉炭を用いることができる。ここで、「RDF」とは、「Refuse Derived Fuel」の略であり、廃棄物に由来する炭材を意味する。炭材は、溶解炉で使用可能な範囲であれば、非固体の炭素材料、例えばコールタールやピッチを含んでいてもよく、石炭を含んでもよい。
 これらの燐原料、鉄原料、珪素原料および炭材は、いずれも一種を単独で使用してもよく、複数種を所定の割合で配合して使用してもよい。
 本発明の人工燐鉱石の製造方法は、燐原料に含まれる燐を回収するため、溶解炉として炭材充填層型溶解炉またはサブマージドアーク炉を使用することができる。炭材充填層型溶解炉は、基本構造として、上端が開口された筒状の炉であって、底部またはその近傍に出湯口を、炉底から所定の高さの領域(以下「第一の領域」ともいう。)に送入口が設けられた羽口を備える。このような溶解炉として、具体的には、後述する実施例の図2で示す転炉形式の筒型炉や、高炉形式の筒型炉を用いることができる。溶解炉は、形状や大きさについて特に制限はなく、10t程度の容量の炉でもよいし、200tを超える大容量の炉でもよい。
 上記第一の領域に炭材を充填し、その第一の領域の上に所定の高さを有する領域(以下「第二の領域」ともいう。)に燐原料、鉄原料および珪素原料を堆積させ、必要に応じてさらに炭材を堆積させる。第二の領域での典型的な堆積形式は、燐原料、鉄原料および珪素原料からなる混合原料と、炭材とを交互に積層させる形式である。
 このように溶解炉内に装入された燐原料、鉄原料、珪素原料および炭材のうちで主に炭材を、羽口から支燃性ガスを含む流体を送入しつつ燃焼させる。ここで、支燃性ガスとは、酸素分子を含む気体である。堆積した炭材の存在下では、炭材は酸素分子と部分酸化反応して一酸化炭素ガスを生成する。炭材の燃焼熱によって燐原料、鉄原料および珪素原料が加熱されて溶融することにより、溶融鉄および溶融スラグが生成する。生成した溶融鉄および溶融スラグは滴下し、溶解炉の底部に溶融鉄相27を形成するとともに溶融鉄相27の上に溶融スラグ相を形成する。
 その過程で燐原料に含まれる燐の酸化物が炭材や一酸化炭素ガスとの還元反応によって還元された後で溶融鉄に溶解するので、燐原料に含まれる燐が溶融鉄に移行して濃化する。溶解炉から溶融鉄を排出すれば、燐が濃化した鉄(燐含有鉄)を得ることができる。
 このように本発明の人工燐鉱石の製造方法は、燐原料に含まれる燐を溶融鉄に濃化させることにより、燐含有鉄として回収する。得られた燐含有鉄を、天然の燐鉱石の代替、すなわち、人工燐鉱石とする。人工燐鉱石は、例えば、燐鉄を製造する際や、湿式法または乾式法によって燐酸を合成する際に天然の燐鉱石の代替として利用できる。このように本発明の製造方法による人工燐鉱石は、既存の設備およびプロセスを用いて燐鉄の製造や燐酸の合成が可能であるので、回収された燐を様々な用途に再利用できる。
 また、本発明の人工燐鉱石の製造方法は、燐含有鉄を脱燐処理を施すことなく人工燐鉱石とすることから、人工燐鉱石の製造に要するコストを削減できるとともに、製造効率を向上できる。
 一方、溶解炉から溶融スラグを排出すればスラグを得ることができ、得られるスラグは、燐が除去されていることから、高炉等の造滓剤として利用できる。また、路盤材としても利用できる。
 本発明の人工燐鉱石の製造方法は、得られた燐含有鉄を人工燐鉱石することから、燐含有鉄の燐濃度を可能な限り増加させるのが好ましい。燐含有鉄の燐濃度は、溶融鉄における燐の飽和濃度、並びに、燐原料、鉄原料および炭材の配合によって変化する。
 溶融鉄における炭素濃度と燐の飽和濃度との関係については、非特許文献2に開示されるように、溶融鉄の炭素濃度が増加するほど、燐の飽和濃度が減少する。
 このため、本発明の人工燐鉱石の製造方法は、溶融鉄の燐の飽和濃度を増加させて燐濃度が5質量%以上である燐含有鉄を得るため、溶融鉄の炭素濃度を3質量%以下とするのが好ましい。また、溶融鉄の燐の飽和濃度をより増加させて燐濃度が10質量%以上である燐含有鉄を得るため、溶融鉄の炭素濃度を2質量%以下とするのがより好ましい。
 溶融鉄の炭素濃度は、例えば、炭材充填層高さや炭材粒径を変更することにより調整すればよい。具体的には、炭材充填層高さを減少させることにより、または、炭材粒径を大きくすることにより、炭材と溶融鉄が接触する機会が減ることから、溶融鉄の炭素濃度が減少する。一方、炭材充填層高さを増加させることにより、または、炭材粒径を小さくすることにより、炭材と溶融鉄が接触する機会が増えることから、溶融鉄の炭素濃度が増加する。
 一方、炭素濃度を調整して溶融鉄の飽和濃度を増加させても、燐原料、鉄原料および炭材の配合によっては、燐が不足したり、燐の酸化物が還元されなかったりして燐含有鉄の燐濃度が減少する。鉄原料、燐原料および炭材の配合、並びに、得られる燐含有鉄の燐濃度についての目安を表1に示す。表1に示す目安は、鉄原料として後述する実施例に示す鉄スクラップ、燐原料として後述する実施例に示す脱燐スラグ、炭材として後述する実施例に示すコークスをそれぞれ用いる場合の目安である。
Figure JPOXMLDOC01-appb-T000001
 本発明の人工燐鉱石の製造方法は、溶解炉から燐を濃化させた溶融鉄を排出して燐含有鉄を得るが、排出した溶融鉄は、適宜鋳込み冷却した後、破砕、整粒することにより所望の粒度の燐含有鉄とすればよい。本発明の燐含有鉄は、燐が炭素濃度に対する飽和濃度若しくは飽和濃度に近い状態で含まれるので、破砕しやすい。同様に、排出した溶融スラグも、適宜冷却した後、破砕、整粒することにより所望の粒度のスラグとすればよい。
 本発明の人工燐鉱石の製造方法は、溶融スラグの塩基度(CaO/SiO2)を0.6~1.6にするのが好ましい。溶融スラグの塩基度は、溶解炉内に装入する珪素原料の量を変更することにより調整できる。溶融スラグの塩基度を0.6~1.6とすると、溶融スラグの流動性が良好となることから、溶融鉄と溶融スラグとの分離が促進されるとともに溶解炉からの排出が容易となり、安定した操業が実現できる。また、溶融スラグの塩基度を0.6~1.6とすると、溶解炉から排出した溶融スラグを均一に水砕でき、水砕スラグの粒度を調整する処理が不要となる。
 本発明の人工燐鉱石の製造方法による効果を検証するため、燐原料、珪素原料および炭材とともに鉄原料を装入して溶融し、燐を濃化させた溶融鉄を排出して燐含有鉄を得る試験を行った。
 図2は、実施例で用いた炭材充填層型溶解炉の構造および使用状態を概念的に示す断面図である。同図に示す炭材充填層型溶解炉21は、転炉形式の筒型炉であり、炉上部に炉内ガスの排出と原料装入用の開口部22、炉壁下部に支燃性ガスと燃料とを吹き込む一次羽口23、その上部炉壁に支燃性ガスを吹き込む二次羽口24、炉底に溶融鉄を排出するための出湯口(図示なし)と、出湯口より上方にスラグを排出するための排滓口(図示なし)とを備える。
 溶解炉21の寸法は、直径1.5m、炉底から炉口までの高さが3.8m、内容積が6.0m3であった。溶解炉21には、一次羽口23を炉底からの高さが0.8m位置の側壁に90゜間隔で4本設け、二次羽口24を炉底からの高さが1.2m位置の側壁に90゜間隔で4本設けた。また、溶解炉21には、出湯口を炉底中央部に設け、排滓口を炉底から0.73m上に1個設けた。
 このような溶解炉21に燐原料、珪素原料および炭材とともに鉄原料を装入して溶融した。燐原料として脱燐スラグを用い、その脱燐スラグの代表組成は質量%でCaO:50%、SiO2:18%、T.Fe:10%、P25:7%(Pなら3%)であった。また、珪素原料として廃ガラスを用い、その廃ガラスの代表組成は質量%でSiO2:80%、B25:10%、Al23:3%であった。炭材としてコークスおよび微粉炭を用い、コークスおよび微粉炭の化学組成を表2に示す。鉄原料として鉄スクラップを用い、その鉄スクラップは、鉄純度が99質量%、かさ密度が3500kg/m3、最大寸法0.4mであった。
Figure JPOXMLDOC01-appb-T000002
 このような燐原料、珪素原料および炭材とともに鉄原料を装入するに際し、炉底から所定の高さでコークス充填層25を形成した。コークス充填層25はコークスのみからなり、その層高を二次羽口以下、かつ、二次羽口に近い位置とし、一次羽口がコークス充填層に含まれるように配慮した。具体的には、コークス充填層25は、炉底からの層高を約1.13mとした。コークス充填層25の上に燐原料、鉄原料および珪素原料からなる混合原料と、炭材からなる炭材とを交互に積層することにより、積層状充填層26を形成した。このように形成した積層状充填層26の最上部の高さは炉底から約3.3mとした。
 装入した原料の配合は、得られる溶融鉄1tあたり鉄スクラップが500kg、コークスが70kg、RDFが85kg、廃ガラスが600kg、脱燐スラグが3850kgであった。一次羽口および二次羽口から支燃性ガスとして吹き込んだ酸素は、得られる溶融鉄1tあたり362Nm3の割合であった。また、微粉炭は、得られる溶融鉄1tあたり250kgの割合となるように一次羽口から酸素とともに供給した。
 このような条件でチャージごとに、鉄スクラップ等を約108分間かけて加熱すると、炉内に約1400℃の溶融鉄が約1.07t、スラグが約4.1t生成した。出湯口から溶融鉄を排出して水砕することにより燐含有鉄を得て、その燐含有鉄の化学組成は、質量%でC:2%およびP:10%を含有し、残部がFeおよび不純物であった。一方、排滓口からスラグを排出して水砕することによりたスラグを得て、そのスラグの代表組成は、質量%でCaO:46%、SiO2:30%(CaO/SiO2=1.53)およびAl23:5%であり、スラグのP25濃度は0質量%であった。
 したがって、本発明の人工燐鉱石の製造方法によって燐原料に含まれる燐を回収できることが明らかになった。また、産業副産物や産業廃棄物を有効に活用して資源として再利用可能な燐含有鉄を得ることができた。
 11:高炉
 12:脱燐炉
 13:脱燐スラグ(燐原料)
 14:珪石(珪素原料)
 15:コークス(炭材)
 16:鉄スクラップ(鉄原料)
 17:炭材充填層型溶解炉
 18:燐含有鉄(人工燐鉱石)
 19:スラグ
 21:炭材充填層型溶解炉
 22:開口部
 23:一次羽口
 24:二次羽口
 25:コークス充填層
 26:積層状充填層
 27:溶融鉄相
 28:溶融スラグ相

Claims (2)

  1.  溶解炉内に燐原料、珪素原料および炭材とともに鉄原料を装入して溶融し、燐を濃化させた溶融鉄を排出することにより得られる燐含有鉄を人工燐鉱石とすることを特徴とする人工燐鉱石の製造方法。
  2.  前記溶融鉄の炭素濃度を3質量%以下とすることを特徴とする請求項1に記載の人工燐鉱石の製造方法。
PCT/JP2013/069942 2012-07-25 2013-07-23 人工燐鉱石の製造方法 WO2014017499A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13823852.2A EP2878574A4 (en) 2012-07-25 2013-07-23 METHOD FOR MANUFACTURING SYNTHETIC PHOSPHORITE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165174A JP5907834B2 (ja) 2012-07-25 2012-07-25 人工燐鉱石の製造方法
JP2012-165174 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017499A1 true WO2014017499A1 (ja) 2014-01-30

Family

ID=49997308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069942 WO2014017499A1 (ja) 2012-07-25 2013-07-23 人工燐鉱石の製造方法

Country Status (3)

Country Link
EP (1) EP2878574A4 (ja)
JP (1) JP5907834B2 (ja)
WO (1) WO2014017499A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464491B2 (ja) * 2016-09-15 2019-02-06 株式会社北匠 リンの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201753A (ja) * 1985-03-04 1986-09-06 Nippon Chem Ind Co Ltd:The 高純度リン鉄およびその製造法
JPS6357738A (ja) * 1986-08-27 1988-03-12 Nippon Chem Ind Co Ltd:The 高純度リン鉄の製造方法
JPH0522643B2 (ja) 1985-03-19 1993-03-30 Shinnippon Seitetsu Kk
JPH073345A (ja) * 1993-06-16 1995-01-06 Nippon Steel Corp 製鋼スラグからの有価成分の回収方法
JPH07316621A (ja) * 1994-05-18 1995-12-05 Sumitomo Metal Ind Ltd 精錬スラグの処理方法
JP2001198546A (ja) * 2000-01-19 2001-07-24 Sanki Eng Co Ltd 下水汚泥又は下水汚泥焼却灰からの燐回収方法
JP2011074441A (ja) 2009-09-30 2011-04-14 Jfe Steel Corp 製鋼スラグからの鉄及び燐の回収方法
JP2012001797A (ja) * 2010-06-21 2012-01-05 Jfe Steel Corp 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料
JP2012072018A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 燐の分離方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734167B2 (ja) * 2006-05-08 2011-07-27 新日本製鐵株式会社 製鋼スラグの処理方法
JP5573024B2 (ja) * 2009-06-26 2014-08-20 新日鐵住金株式会社 製鋼スラグの処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201753A (ja) * 1985-03-04 1986-09-06 Nippon Chem Ind Co Ltd:The 高純度リン鉄およびその製造法
JPH0522643B2 (ja) 1985-03-19 1993-03-30 Shinnippon Seitetsu Kk
JPS6357738A (ja) * 1986-08-27 1988-03-12 Nippon Chem Ind Co Ltd:The 高純度リン鉄の製造方法
JPH073345A (ja) * 1993-06-16 1995-01-06 Nippon Steel Corp 製鋼スラグからの有価成分の回収方法
JPH07316621A (ja) * 1994-05-18 1995-12-05 Sumitomo Metal Ind Ltd 精錬スラグの処理方法
JP2001198546A (ja) * 2000-01-19 2001-07-24 Sanki Eng Co Ltd 下水汚泥又は下水汚泥焼却灰からの燐回収方法
JP2011074441A (ja) 2009-09-30 2011-04-14 Jfe Steel Corp 製鋼スラグからの鉄及び燐の回収方法
JP2012001797A (ja) * 2010-06-21 2012-01-05 Jfe Steel Corp 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料
JP2012072018A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 燐の分離方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HISAO OTAKE ET AL.: "What is depletion crisis of phosphorus resource", 2011, OSAKA UNIVERSITY PRESS
P. VILLARS ET AL.: "Handbook of ternary alloy phase diagrams", 1995, ASM INTERNATIONAL
See also references of EP2878574A4

Also Published As

Publication number Publication date
JP5907834B2 (ja) 2016-04-26
EP2878574A1 (en) 2015-06-03
JP2014024695A (ja) 2014-02-06
EP2878574A4 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105969981B (zh) 一种钒钛磁铁矿综合利用的工艺
CN100469932C (zh) 一种v2o5直接合金化炼钢工艺
US20120006449A1 (en) Method for producing metallic iron
CN101871050B (zh) 消除硫化铜精矿火法冶炼过程产生磁性氧化铁炉结的方法
CN110612269B (zh) 用于生产商业级硅的方法
JP5935770B2 (ja) 燐酸資源原料の製造方法及び燐酸質肥料
CN102367518A (zh) 制备锰硅合金的方法
AU2012397402B2 (en) Reduced-iron production method and production device
CN102041400B (zh) 一种利用低品位锰铁矿生产高锰硅合金的设备和工艺方法
CN102344981A (zh) 含硼铁精矿铁硼分离直接还原工艺
CN102191348B (zh) 一种氧化球团法生产高品位镍及不锈钢的工艺方法和装置
US4014682A (en) Process for the production of elemental phosphorus and iron from phosphate rock
JP5907834B2 (ja) 人工燐鉱石の製造方法
US20150329929A1 (en) An Efficient Process in the Production of Iron and Steel from Iron Ore
JP2011246760A (ja) フェロモリブデンの製造方法およびフェロモリブデン
JP6464491B2 (ja) リンの製造方法
CN102181776A (zh) 一种还原球团法生产高品位镍及不锈钢的工艺方法和装置
CN106467936B (zh) 一种硅钙铁合金的制备方法
US20200048092A1 (en) Process for recovering phosphorous from phosphoritic materials
US1441573A (en) Manufacture of phosphorus
JP2017053017A (ja) 燐含有鉄の製造方法及び、肥料の製造方法
KR101319027B1 (ko) 동제련 슬래그를 이용한 용선 제조방법
CN101545039A (zh) 利用铜冶炼弃渣电炉整体脱氧还原生产硅铁的方法
JPH0522643B2 (ja)
RU1785520C (ru) Способ переработки фосфатных шлаков

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823852

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013823852

Country of ref document: EP