WO2014013770A1 - シンチレータパネル及び放射線検出器 - Google Patents

シンチレータパネル及び放射線検出器 Download PDF

Info

Publication number
WO2014013770A1
WO2014013770A1 PCT/JP2013/061491 JP2013061491W WO2014013770A1 WO 2014013770 A1 WO2014013770 A1 WO 2014013770A1 JP 2013061491 W JP2013061491 W JP 2013061491W WO 2014013770 A1 WO2014013770 A1 WO 2014013770A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic resin
resin layer
glass substrate
scintillator
scintillator panel
Prior art date
Application number
PCT/JP2013/061491
Other languages
English (en)
French (fr)
Inventor
秀典 上西
宗功 式田
楠山 泰
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201380038611.9A priority Critical patent/CN104488038B/zh
Priority to US14/414,986 priority patent/US9535170B2/en
Priority to EP13820264.3A priority patent/EP2876648B1/en
Priority to KR1020147034258A priority patent/KR20150032938A/ko
Publication of WO2014013770A1 publication Critical patent/WO2014013770A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/20189Damping or insulation against damage, e.g. caused by heat or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/10Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a protective film
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/12Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing

Definitions

  • the present invention relates to a scintillator panel and a radiation detector.
  • Patent Document 1 As a conventional scintillator panel, for example, there is one described in Patent Document 1.
  • a 0.05 mm glass substrate is used as a support for the scintillator layer.
  • a cushioning material that relieves the force from the outside of the housing and a highly rigid member that is stiffer than the scintillator layer are disposed between the housing and the scintillator layer.
  • a graphite substrate coated with a polyimide resin film or a polyparaxylylene film is used as a support. Furthermore, in the scintillator panel described in Patent Document 3, the entire surface of the substrate made of amorphous carbon or the like is covered with an intermediate film such as a polyparaxylylene film.
  • a scintillator panel that is applied to a solid state detector such as a thin film transistor (TFT) panel is required to have flexibility that can satisfy the shape following property of the solid state detector. Further, if there is a difference between the thermal expansion coefficient of the TFT panel and the thermal expansion coefficient of the scintillator panel substrate, fine scratches on the scintillator panel substrate or abnormal growth portions that occur when the scintillator layer 13 is formed by vapor deposition. As a result, the scratches generated between the TFT panel and the TFT panel may move with respect to the light-receiving surface due to heat during operation, which may cause a problem of troublesome calibration.
  • TFT thin film transistor
  • an ultrathin glass having a thickness of 150 ⁇ m or less as the substrate of the scintillator panel.
  • the edge part (edge part) of glass is brittle with respect to an impact, and generation
  • the present invention has been made to solve the above problems, and provides a scintillator panel that can ensure flexibility while preventing chipping and cracking of a glass substrate, and a radiation detector using the scintillator panel. For the purpose.
  • a scintillator panel is a first organic resin formed so as to cover a glass substrate having a thickness of 150 ⁇ m or less having radiation transparency, and one side and a side of the glass substrate.
  • a second organic resin layer formed so as to cover the layer, the other surface side and the side surface side of the glass substrate on which the first organic resin layer is formed, the first organic resin layer, and the second organic resin
  • the first organic resin layer is formed so as to cover the one surface side and the side surface side of the glass substrate, and the other surface side and the side surface side of the glass substrate on which the first organic resin layer is formed.
  • a second organic resin layer is formed so as to cover the surface.
  • the first organic resin layer preferably contains a white pigment
  • the second organic resin layer preferably contains a black pigment.
  • the first organic resin layer can be provided with a light reflection function to obtain radiation characteristics according to the application.
  • the second organic resin layer can have a light absorption function to prevent light leakage and increase the resolution.
  • the white pigment may be selected from titanium dioxide, yttrium oxide, zinc oxide, and aluminum oxide
  • the black pigment may be selected from carbon black or iron trioxide.
  • the scintillator panel according to the present invention includes a glass substrate having a thickness of 150 ⁇ m or less having radiation transparency, a first organic resin layer formed to cover the other surface side and the side surface side of the glass substrate, A second organic resin layer, a first organic resin layer, and a second organic resin layer formed so as to cover one side and the side of the glass substrate on which one organic resin layer was formed were formed.
  • the 1st organic resin layer is formed so that the other surface side and side surface side of a glass substrate may be covered, and the one surface side and side surface side in which the 1st organic resin layer was formed, A second organic resin layer is formed so as to cover the surface.
  • the glass substrate is reinforced by the double organic resin layer, and the occurrence of chipping and cracks at the edge portion can be effectively suppressed.
  • the entire surface is covered with the first organic resin layer and the second organic resin layer, so that the warpage of the glass substrate can be suppressed.
  • the first organic resin layer preferably contains a black pigment
  • the second organic resin layer preferably contains a white pigment.
  • the first organic resin layer can have a light absorption function to prevent light leakage and increase the resolution.
  • the second organic resin layer can be provided with a light reflecting function to obtain radiation characteristics according to the application.
  • the white pigment may be selected from titanium dioxide, yttrium oxide, zinc oxide, and aluminum oxide
  • the black pigment may be selected from carbon black or iron trioxide.
  • a radiation detector according to the present invention is characterized by comprising the above scintillator panel and a light receiving element arranged to face the scintillator layer on which the protective layer is formed.
  • a glass substrate having a thickness of 150 ⁇ m or less serves as a support for the scintillator panel, excellent radiation transparency and flexibility can be obtained, and the problem of thermal expansion coefficient can be alleviated.
  • the glass substrate is reinforced by the organic resin layer, it is possible to effectively suppress the occurrence of chipping and cracks at the edge portion.
  • the entire surface is covered with the first organic resin layer and the second organic resin layer, so that the warpage of the glass substrate can be suppressed.
  • FIG. 1 is a cross-sectional view showing the configuration of the radiation detector according to the first embodiment of the present invention.
  • the radiation detector 1A is configured by fixing a light receiving element 3 to a scintillator panel 2A.
  • the light receiving element 3 is, for example, a TFT panel in which a photodiode (PD) and a thin film transistor (TFT) are arranged on a glass substrate.
  • PD photodiode
  • TFT thin film transistor
  • the light receiving element 3 is attached to one side of the scintillator panel 2 such that the light receiving surface 3a faces a scintillator layer 13 (to be described later) in the scintillator panel 2.
  • an image sensor such as a CCD is a fiber optical plate (FOP: an optical device in which optical fibers of several microns are bundled, for example, J5734 manufactured by Hamamatsu Photonics). What was connected via can also be used.
  • FOP fiber optical plate
  • the scintillator panel 2 includes a glass substrate 11 serving as a support, an organic resin layer (first organic resin layer) 12 and an organic resin layer (second organic resin layer) 15 that protect the glass substrate 11, and incident radiation. Is formed by a scintillator layer 13 that converts the light into visible light and a moisture-resistant protective layer 14 that protects the scintillator layer 13 from moisture.
  • the glass substrate 11 is an extremely thin substrate having a thickness of 150 ⁇ m or less, preferably 100 ⁇ m or less, for example. Since the thickness of the glass substrate 11 is extremely thin, sufficient radiation transparency and flexibility can be obtained, and the followability of the scintillator panel 2 when being attached to the light receiving surface 3a of the light receiving element 3 is improved. It is secured.
  • the organic resin layer 12 and the organic resin layer 15 are formed by applying, for example, a silicon resin, a urethane resin, an epoxy resin, a fluorine resin, or the like by spin coating.
  • the thickness of the organic resin layer 12 and the organic resin layer 15 is, for example, about 100 ⁇ m.
  • the organic resin layer 12 is formed so as to cover the one surface 11 a side and the side surface 11 c side of the glass substrate 11.
  • the organic resin layer 15 is formed so as to cover the other surface 11b side and the side surface 11c side of the glass substrate 11 on which the organic resin layer 12 is formed.
  • the glass substrate 11 is covered with the organic resin layer 12 on the one surface side 11a, the organic resin layer 15 on the other surface side 11b, and the organic resin layer 12 and the organic resin layer 15 in this order from the inner side surface 11c. It is in a state of being covered twice.
  • the organic resin layer 12 contains a white pigment such as titanium dioxide, yttrium oxide, zinc oxide, or aluminum oxide.
  • the organic resin layer 15 contains a black pigment such as carbon black or iron trioxide. Is contained.
  • the scintillator layer 13 is formed by, for example, growing and depositing CsI columnar crystals doped with Tl by a vapor deposition method, so that the organic resin layer 12 and the organic resin layer 15 are formed on the one surface 11a side (the organic resin layer 12 (Above).
  • the thickness of the scintillator layer 13 is, for example, 250 ⁇ m.
  • the scintillator layer 13 is highly hygroscopic and may be deliquescent by moisture in the air if left exposed. For this reason, the scintillator layer 13 requires a moisture-resistant protective layer 14.
  • the protective layer 14 is formed so as to cover the scintillator layer 13 together with the glass substrate 11 on which the organic resin layer 12 is formed, for example, by growing polyparaxylylene or the like using a vapor deposition method such as a CVD method. Yes.
  • the thickness of the protective layer 14 is, for example, about 10 ⁇ m.
  • the radiation incident from the glass substrate 11 side is converted into light in the scintillator layer 13 and detected by the light receiving element 3.
  • the glass substrate 11 having a thickness of 150 ⁇ m or less serves as a support, whereby excellent radiation transparency and flexibility are obtained.
  • the glass substrate 11 Since the glass substrate 11 has sufficient flexibility, it is possible to satisfy the shape followability when the scintillator panel 2A is attached to the light receiving surface 3a of the light receiving element 3.
  • the thermal expansion coefficient of the light receiving surface 3a and the thermal expansion coefficient of the glass substrate 11 of the scintillator panel 2A can be matched. For this reason, fine scratches on the glass substrate 11 and scratches that occur between the TFT panel due to abnormal growth portions that occur when the scintillator layer 13 is formed by evaporation move to the light receiving surface 3a due to heat during operation. It is possible to prevent the trouble of calibration from being complicated.
  • the organic resin layer 12 is formed so as to cover the one surface 11a side and the side surface 11c side of the glass substrate 11, and the other surface 11b side and side surfaces of the glass substrate 11 on which the organic resin layer 12 is formed.
  • An organic resin layer 15 is formed so as to cover the 11c side.
  • the glass substrate 11 is reinforced by the organic resin layers 12 and 15, and the generation
  • the side surface 11c of the glass substrate 11 is double-covered by the organic resin layers 12 and 15, whereby stray light from the side surface 11c can be prevented and the entire surface is covered by the organic resin layer 12 and the organic resin layer 15. As a result, the warpage of the glass substrate 11 can be suppressed.
  • the organic resin layer 12 and the organic resin layer 15 are formed so as to cover the entire surface of the glass substrate 11, so as to have a surface energy and surface roughness suitable for forming the scintillator layer 13, It is also possible to adjust the surface state of the glass substrate 11.
  • the organic resin layer 12 contains a white pigment
  • the organic resin layer 15 contains a black pigment.
  • the scintillator panel 2A can obtain radiation characteristics according to various uses such as mammography and chest X-ray imaging. Further, by providing the organic resin layer 15 with a light absorption function, light leakage can be prevented and the resolution can be increased.
  • FIG. 2 is a cross-sectional view showing a configuration of a radiation detector according to the second exemplary embodiment of the present invention. As shown in the figure, the radiation detector 1B according to the second embodiment is different from the first embodiment in the location of the organic resin layer 12 and the organic resin layer 15 in the scintillator panel 2B.
  • the organic resin layer 12 is formed so as to cover the other surface 11b side and the side surface 11c side of the glass substrate 11.
  • the organic resin layer 15 is formed so as to cover the one surface 11a side and the side surface 11c side of the glass substrate 11 on which the organic resin layer 12 is formed.
  • the glass substrate 11 has one surface side 11a covered with the organic resin layer 15, the other surface side 11b covered with the organic resin layer 12, and the side surface side 11c in order of the organic resin layer 12 and the organic resin layer 15 from the inside. It is in a state of being covered twice.
  • the organic resin layer 12 contains a black pigment such as carbon black or iron tetroxide
  • the organic resin layer 15 contains a white pigment such as titanium dioxide, yttrium oxide, zinc oxide, or aluminum oxide. Is contained.
  • the glass substrate 11 is reinforced by the organic resin layers 12 and 15 as in the above-described embodiment, so that the occurrence of chipping and cracks at the edge portion can be suppressed.
  • the organic resin layers 12 and 15 are formed on the entire surface, so that the warpage of the glass substrate 11 can be suppressed. Furthermore, since the organic resin layer 12 containing a black pigment is located inside the side surface 11c of the glass substrate 11, stray light from the side surface 11c can be more effectively prevented.
  • SYMBOLS 1A, 1B Radiation detector, 2A, 2B ... Scintillator panel, 3 ... Light receiving element, 11 ... Glass substrate, 11a ... One side, 11b ... Other side, 11c ... Side surface, 12 ... Organic resin layer (1st organic resin layer) ), 13 ... scintillator layer, 14 ... protective layer, 15 ... organic resin layer (second organic resin layer).

Landscapes

  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

 シンチレータパネル(2A)では、厚さ150μm以下のガラス基板(11)が支持体となっていることにより、優れた放射線透過性及び可撓性が得られ、熱膨張係数の問題も緩和できる。また、このシンチレータパネル(2A)では、ガラス基板(11)の一面(11a)側と側面(11c)側とを覆うように有機樹脂層(12)が形成され、有機樹脂層(12)が形成されたガラス基板11の他面(11b)側と側面(11c)側とを覆うように有機樹脂層(15)が形成されている。これにより、エッジ部分の欠けやクラックの発生を効果的に抑制できる。また、ガラス基板(11)の側面(11c)からの迷光を効果的に防止できるほか、有機樹脂層(12),(15)で表面全体が覆われる結果、ガラス基板(11)の反りの抑制が可能となる。

Description

シンチレータパネル及び放射線検出器
 本発明は、シンチレータパネル及び放射線検出器に関する。
 従来のシンチレータパネルとして、例えば特許文献1に記載のものがある。この従来の構成では、シンチレータ層の支持体として0.05mmのガラス基板が用いられている。また、筐体の外部からの力を緩和する緩衝材と、シンチレータ層よりも剛性の高い高剛性部材とが筐体とシンチレータ層との間に配置されている。
 また、特許文献2に記載のシンチレータパネルでは、ポリイミド系樹脂膜又はポリパラキシリレン膜で被覆されたグラファイト基板が支持体として用いられている。さらに、特許文献3に記載のシンチレータパネルでは、アモルファスカーボンなどからなる基板の全面がポリパラキシリレン膜などの中間膜で覆われている。
特開2006-58124号公報 国際公開WO2009/028275号パンフレット 特開2007-279051号公報
 例えば薄膜トランジスタ(TFT)パネルといった固体検出器に適用するシンチレータパネルでは、固体検出器に対する形状の追従性を満足し得る可撓性が要求される。また、TFTパネルの熱膨張係数とシンチレータパネルの基板の熱膨張係数との間に差があると、シンチレータパネルの基板上の細かい傷や、シンチレータ層13を蒸着によって形成する場合に生じる異常成長部によってTFTパネルとの間に生じる傷が、動作時の熱によって受光面に対して移動し、キャリブレーションの手間が煩雑になるという問題が生じるおそれがある。
 このような可撓性の問題や熱膨張係数の問題を解決するためには、例えば厚さが150μm以下の極薄ガラスをシンチレータパネルの基板として用いることが考えられる。しかしながら、極薄ガラスを用いる場合、ガラスの端部(エッジ部分)が衝撃に対して脆く、欠けやクラックの発生が問題となる。
 本発明は、上記課題の解決のためになされたものであり、ガラス基板の欠けやクラックの発生を防止しつつ、可撓性を確保できるシンチレータパネル、及びこれを用いた放射線検出器を提供することを目的とする。
 上記課題の解決のため、本発明に係るシンチレータパネルは、放射線透過性を有する厚さ150μm以下のガラス基板と、ガラス基板の一面側と側面側とを覆うように形成された第1の有機樹脂層と、第1の有機樹脂層が形成されたガラス基板の他面側と側面側とを覆うように形成された第2の有機樹脂層と、第1の有機樹脂層及び第2の有機樹脂層が形成されたガラス基板の一面側に形成されたシンチレータ層と、第1の有機樹脂層及び第2の有機樹脂層が形成されたガラス基板と共にシンチレータ層を覆うように形成された耐湿性の保護層と、を備えたことを特徴としている。
 このシンチレータパネルでは、厚さ150μm以下のガラス基板が支持体となっていることにより、優れた放射線透過性及び可撓性が得られ、熱膨張係数の問題も緩和できる。また、このシンチレータパネルでは、ガラス基板の一面側と側面側とを覆うように第1の有機樹脂層が形成され、第1の有機樹脂層が形成されたガラス基板の他面側と側面側とを覆うように第2の有機樹脂層が形成されている。これにより、ガラス基板が有機樹脂層によって補強され、エッジ部分の欠けやクラックの発生を効果的に抑制できる。また、ガラス基板の側面からの迷光を防止できるほか、第1の有機樹脂層と第2の有機樹脂層とで表面全体が覆われる結果、ガラス基板の反りの抑制が可能となる。
 また、第1の有機樹脂層は、白色顔料を含有し、第2の有機樹脂層は、黒色顔料を含有していることが好ましい。この場合、第1の有機樹脂層に光反射機能を持たせて用途に応じた放射線特性を得ることができる。また、第2の有機樹脂層に光吸収機能を持たせて光の漏れを防止し、解像度を高めることができる。
 また、上記白色顔料は、二酸化チタン、酸化イットリウム、酸化亜鉛、及び酸化アルミニウムから選択され、上記黒色顔料は、カーボンブラック又は四三酸化鉄から選択されてもよい。
 また、本発明に係るシンチレータパネルは、放射線透過性を有する厚さ150μm以下のガラス基板と、ガラス基板の他面側と側面側とを覆うように形成された第1の有機樹脂層と、第1の有機樹脂層が形成されたガラス基板の一面側と側面側とを覆うように形成された第2の有機樹脂層と、第1の有機樹脂層及び第2の有機樹脂層が形成されたガラス基板の一面側に形成されたシンチレータ層と、第1の有機樹脂層及び第2の有機樹脂層が形成されたガラス基板と共にシンチレータ層を覆うように形成された耐湿性の保護層と、を備えたことを特徴としている。
 このシンチレータパネルでは、厚さ150μm以下のガラス基板が支持体となっていることにより、優れた放射線透過性及び可撓性が得られ、熱膨張係数の問題も緩和できる。また、このシンチレータパネルでは、ガラス基板の他面側と側面側とを覆うように第1の有機樹脂層が形成され、第1の有機樹脂層が形成されたガラス基板の一面側と側面側とを覆うように第2の有機樹脂層が形成されている。これにより、ガラス基板が2重の有機樹脂層によって補強され、エッジ部分の欠けやクラックの発生を効果的に抑制できる。また、ガラス基板の側面からの迷光を防止できるほか、第1の有機樹脂層と第2の有機樹脂層とで表面全体が覆われる結果、ガラス基板の反りの抑制が可能となる。
 また、第1の有機樹脂層は、黒色顔料を含有し、第2の有機樹脂層は、白色顔料を含有していることが好ましい。この場合、第1の有機樹脂層に光吸収機能を持たせて光の漏れを防止し、解像度を高めることができる。また、第2の有機樹脂層に光反射機能を持たせて用途に応じた放射線特性を得ることができる。
 また、上記白色顔料は、二酸化チタン、酸化イットリウム、酸化亜鉛、及び酸化アルミニウムから選択され、上記黒色顔料は、カーボンブラック又は四三酸化鉄から選択されてもよい。
 また、本発明に係る放射線検出器は、上記のシンチレータパネルと、保護層が形成されたシンチレータ層に対向して配置された受光素子と、を備えたことを特徴としている。
 この放射線検出器では、厚さ150μm以下のガラス基板がシンチレータパネルの支持体となっていることにより、優れた放射線透過性及び可撓性が得られ、熱膨張係数の問題も緩和できる。また、この放射線検出器では、ガラス基板が有機樹脂層によって補強されているので、エッジ部分の欠けやクラックの発生を効果的に抑制できる。また、ガラス基板の側面からの迷光を防止できるほか、第1の有機樹脂層と第2の有機樹脂層とで表面全体が覆われる結果、ガラス基板の反りの抑制が可能となる。
 本発明によれば、ガラス基板の欠けやクラックの発生を防止しつつ、可撓性を確保できる。
本発明の第1実施形態に係る放射線検出器の構成を示す断面図である。 本発明の第2実施形態に係る放射線検出器の構成を示す断面図である。
 以下、図面を参照しながら、本発明に係るシンチレータパネル及び放射線検出器の好適な実施形態について詳細に説明する。
[第1実施形態]
 図1は、本発明の第1実施形態に係る放射線検出器の構成を示す断面図である。同図に示すように、放射線検出器1Aは、シンチレータパネル2Aに受光素子3を固定することによって構成されている。受光素子3は、例えばガラス基板上にフォトダイオード(PD)と薄膜トランジスタ(TFT)とを配列してなるTFTパネルである。
 受光素子3は、シンチレータパネル2における後述のシンチレータ層13に対して受光面3aが対向するようにして、シンチレータパネル2の一面側に貼り付けられている。なお、受光素子3としては、TFTパネルのほか、CCDなどのイメージセンサをファイバオプティクプレート(FOP:数ミクロンの光ファイバを束にした光学デバイスであり、例えば浜松ホトニクス社製J5734が挙げられる)を介して接続したものを用いることもできる。
 シンチレータパネル2は、支持体となるガラス基板11と、ガラス基板11を保護する有機樹脂層(第1の有機樹脂層)12及び有機樹脂層(第2の有機樹脂層)15と、入射した放射線を可視光に変換するシンチレータ層13と、シンチレータ層13を湿気から保護する耐湿性の保護層14とによって構成されている。
 ガラス基板11は、例えば厚さが150μm以下、好ましくは100μm以下の極薄の基板である。ガラス基板11の厚さが極薄となっていることにより、十分な放射線透過性及び可撓性が得られ、受光素子3の受光面3aに貼り付けを行う際のシンチレータパネル2の追従性が確保されている。
 有機樹脂層12及び有機樹脂層15は、例えばシリコン系樹脂、ウレタン系樹脂、エポキシ系樹脂、フッ素系樹脂などをスピンコートによって塗布することによって形成されている。有機樹脂層12及び有機樹脂層15の厚さは、例えば100μm程度となっている。
 有機樹脂層12は、ガラス基板11の一面11a側と側面11c側とを覆うように形成されている。一方、有機樹脂層15は、有機樹脂層12が形成されたガラス基板11の他面11b側と側面11c側とを覆うように形成されている。これにより、ガラス基板11は、一面側11aが有機樹脂層12で覆われ、他面側11bが有機樹脂層15で覆われ、側面側11cが内側から有機樹脂層12・有機樹脂層15の順で2重に覆われた状態となっている。また、有機樹脂層12には、例えば二酸化チタン、酸化イットリウム、酸化亜鉛、酸化アルミニウムなどの白色顔料が含有されており、有機樹脂層15には、例えばカーボンブラック、四三酸化鉄などの黒色顔料が含有されている。
 シンチレータ層13は、例えばTlをドープしたCsIの柱状結晶を蒸着法によって成長及び堆積させることにより、有機樹脂層12及び有機樹脂層15が形成されたガラス基板11の一面11a側(有機樹脂層12上)に形成されている。シンチレータ層13の厚さは、例えば250μmとなっている。シンチレータ層13は、吸湿性が高く、露出したままにしておくと空気中の湿気によって潮解してしまうおそれがある。このため、シンチレータ層13には、耐湿性の保護層14が必要となっている。
 保護層14は、例えばポリパラキシリレンなどをCVD法などの気相堆積法を用いて成長させることにより、有機樹脂層12が形成されたガラス基板11と共にシンチレータ層13を覆うように形成されている。保護層14の厚さは、例えば10μm程度となっている。
 以上のような構成を有する放射線検出器1Aでは、ガラス基板11側から入射した放射線がシンチレータ層13において光に変換され、受光素子3によって検出される。シンチレータパネル2Aでは、厚さ150μm以下のガラス基板11が支持体となっていることにより、優れた放射線透過性及び可撓性が得られる。
 ガラス基板11が十分な可撓性を有することにより、シンチレータパネル2Aを受光素子3の受光面3aに貼り付ける際の形状の追従性を満足できる。また、受光素子3としてTFTパネルを用い、受光面3aがガラス製のパネルである場合、受光面3aの熱膨張係数とシンチレータパネル2Aのガラス基板11の熱膨張係数とを一致させることができる。このため、ガラス基板11上の細かい傷や、シンチレータ層13を蒸着によって形成する場合に生じる異常成長部によってTFTパネルとの間に生じる傷が、動作時の熱によって受光面3aに対して移動してしまうことを防止でき、キャリブレーションの手間が煩雑になることも回避できる。
 また、このシンチレータパネル2Aでは、ガラス基板11の一面11a側と側面11c側とを覆うように有機樹脂層12が形成され、有機樹脂層12が形成されたガラス基板11の他面11b側と側面11c側とを覆うように有機樹脂層15が形成されている。これにより、ガラス基板11が有機樹脂層12,15によって補強され、エッジ部分の欠けやクラックの発生を効果的に抑制できる。また、ガラス基板11の側面11cが有機樹脂層12,15によって二重に覆われることにより、側面11cからの迷光を防止できるほか、有機樹脂層12と有機樹脂層15とで表面全体が覆われる結果、ガラス基板11の反りの抑制が可能となる。
 また、ガラス基板11の表面全体を覆うように有機樹脂層12と有機樹脂層15とが形成されていることで、シンチレータ層13を形成する際に好適な表面エネルギー及び表面粗さとなるように、ガラス基板11の表面状態を調整することも可能となる。
 また、シンチレータパネル2Aでは、有機樹脂層12は、白色顔料を含有し、有機樹脂層15は、黒色顔料を含有している。この場合、有機樹脂層12に光反射機能を持たせることで、シンチレータパネル2Aにおいて、マンモグラフィや胸部X線撮影といった各種の用途に応じた放射線特性を得ることができる。また、有機樹脂層15に光吸収機能を持たせることで、光の漏れを防止し、解像度を高めることができる。
[第2実施形態]
 図2は、本発明の第2実施形態に係る放射線検出器の構成を示す断面図である。同図に示すように、第2実施形態に係る放射線検出器1Bは、シンチレータパネル2Bにおいて、有機樹脂層12及び有機樹脂層15の配置箇所が第1実施形態と異なっている。
 より具体的には、有機樹脂層12は、ガラス基板11の他面11b側と側面11c側とを覆うように形成されている。一方、有機樹脂層15は、有機樹脂層12が形成されたガラス基板11の一面11a側と側面11c側とを覆うように形成されている。これにより、ガラス基板11は、一面側11aが有機樹脂層15で覆われ、他面側11bが有機樹脂層12で覆われ、側面側11cが内側から有機樹脂層12・有機樹脂層15の順で2重に覆われた状態となっている。また、有機樹脂層12には、例えばカーボンブラック、四三酸化鉄などの黒色顔料が含有されており、有機樹脂層15には、例えば二酸化チタン、酸化イットリウム、酸化亜鉛、酸化アルミニウムなどの白色顔料が含有されている。
 このような構成においても、上記実施形態と同様に、有機樹脂層12,15によってガラス基板11が補強されているので、エッジ部分の欠けやクラックの発生を抑制できる。また、ガラス基板11の側面11cからの迷光を防止できるほか、表面全体に有機樹脂層12,15が形成されることで、ガラス基板11の反りの抑制が可能となる。さらに、ガラス基板11の側面11cにおいて、黒色顔料を含有する有機樹脂層12が内側に位置するため、側面11cからの迷光をより効果的に防止できる。
 1A,1B…放射線検出器、2A,2B…シンチレータパネル、3…受光素子、11…ガラス基板、11a…一面、11b…他面、11c…側面、12…有機樹脂層(第1の有機樹脂層)、13…シンチレータ層、14…保護層、15…有機樹脂層(第2の有機樹脂層)。

Claims (7)

  1.  放射線透過性を有する厚さ150μm以下のガラス基板と、
     前記ガラス基板の一面側と側面側とを覆うように形成された第1の有機樹脂層と、
     前記第1の有機樹脂層が形成された前記ガラス基板の他面側と側面側とを覆うように形成された第2の有機樹脂層と、
     前記第1の有機樹脂層及び前記第2の有機樹脂層が形成された前記ガラス基板の前記一面側に形成されたシンチレータ層と、
     前記第1の有機樹脂層及び前記第2の有機樹脂層が形成された前記ガラス基板と共に前記シンチレータ層を覆うように形成された耐湿性の保護層と、を備えたことを特徴とするシンチレータパネル。
  2.  前記第1の有機樹脂層は、白色顔料を含有し、前記第2の有機樹脂層は、黒色顔料を含有していることを特徴とする請求項1記載のシンチレータパネル。
  3.  前記白色顔料は、二酸化チタン、酸化イットリウム、酸化亜鉛、及び酸化アルミニウムから選択され、前記黒色顔料は、カーボンブラック又は四三酸化鉄から選択されることを特徴とする請求項2記載のシンチレータパネル。
  4.  放射線透過性を有する厚さ150μm以下のガラス基板と、
     前記ガラス基板の他面側と側面側とを覆うように形成された第1の有機樹脂層と、
     前記第1の有機樹脂層が形成された前記ガラス基板の一面側と側面側とを覆うように形成された第2の有機樹脂層と、
     前記第1の有機樹脂層及び前記第2の有機樹脂層が形成された前記ガラス基板の前記一面側に形成されたシンチレータ層と、
     前記第1の有機樹脂層及び前記第2の有機樹脂層が形成された前記ガラス基板と共に前記シンチレータ層を覆うように形成された耐湿性の保護層と、を備えたことを特徴とするシンチレータパネル。
  5.  前記第1の有機樹脂層は、黒色顔料を含有し、前記第2の有機樹脂層は、白色顔料を含有していることを特徴とする請求項4記載のシンチレータパネル。
  6.  前記白色顔料は、二酸化チタン、酸化イットリウム、酸化亜鉛、及び酸化アルミニウムから選択され、前記黒色顔料は、カーボンブラック又は四三酸化鉄から選択されることを特徴とする請求項5記載のシンチレータパネル。
  7.  請求項1~6のいずれか一項に記載のシンチレータパネルと、
     前記保護層が形成された前記シンチレータ層に対向して配置された受光素子と、を備えたことを特徴とする放射線検出器。
PCT/JP2013/061491 2012-07-20 2013-04-18 シンチレータパネル及び放射線検出器 WO2014013770A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380038611.9A CN104488038B (zh) 2012-07-20 2013-04-18 闪烁器面板及放射线检测器
US14/414,986 US9535170B2 (en) 2012-07-20 2013-04-18 Scintillator panel and radiation detector
EP13820264.3A EP2876648B1 (en) 2012-07-20 2013-04-18 Scintillator panel and radiation detector
KR1020147034258A KR20150032938A (ko) 2012-07-20 2013-04-18 신틸레이터 패널 및 방사선 검출기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012161766A JP5922518B2 (ja) 2012-07-20 2012-07-20 シンチレータパネル及び放射線検出器
JP2012-161766 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014013770A1 true WO2014013770A1 (ja) 2014-01-23

Family

ID=49948607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061491 WO2014013770A1 (ja) 2012-07-20 2013-04-18 シンチレータパネル及び放射線検出器

Country Status (7)

Country Link
US (1) US9535170B2 (ja)
EP (1) EP2876648B1 (ja)
JP (1) JP5922518B2 (ja)
KR (1) KR20150032938A (ja)
CN (1) CN104488038B (ja)
TW (1) TWI607229B (ja)
WO (1) WO2014013770A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581701B2 (en) * 2014-12-16 2017-02-28 Carestream Health, Inc. Impact protection for wireless digital detector glass panel
US9939295B2 (en) 2014-12-16 2018-04-10 Carestream Health, Inc. Impact protection for wireless digital detector glass panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319458B2 (ja) * 2014-10-30 2018-05-09 株式会社島津製作所 放射線検出器
JP6487263B2 (ja) * 2015-04-20 2019-03-20 浜松ホトニクス株式会社 放射線検出器及びその製造方法
JP6504997B2 (ja) * 2015-11-05 2019-04-24 浜松ホトニクス株式会社 放射線像変換パネル、放射線像変換パネルの製造方法、放射線イメージセンサ及び放射線イメージセンサの製造方法
JOP20190254A1 (ar) 2017-04-27 2019-10-27 Pharma Mar Sa مركبات مضادة للأورام
JP6701288B2 (ja) * 2018-09-06 2020-05-27 キヤノン株式会社 シンチレータプレート、放射線検出装置および放射線検出システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262671A (ja) * 2002-03-07 2003-09-19 Hamamatsu Photonics Kk シンチレータパネルおよびその製造方法
JP2006058124A (ja) 2004-08-19 2006-03-02 Canon Inc カセッテ型x線画像撮影装置
JP2007279051A (ja) 2001-01-30 2007-10-25 Hamamatsu Photonics Kk シンチレータパネル及び放射線イメージセンサ
WO2008117821A1 (ja) * 2007-03-27 2008-10-02 Kabushiki Kaisha Toshiba シンチレータパネル及び放射線検出器
WO2009028275A1 (ja) 2007-08-28 2009-03-05 Konica Minolta Medical & Graphic, Inc. シンチレータパネル

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855035A (en) * 1972-06-22 1974-12-17 Varian Associates Image intensifier plate and method and compositions for manufacturing same
WO1999066349A1 (fr) * 1998-06-18 1999-12-23 Hamamatsu Photonics K.K. Panneau de scintillateur, capteur d'image radiologique et procede de fabrication
WO1999066348A1 (fr) * 1998-06-18 1999-12-23 Hamamatsu Photonics K.K. Panneau de scintillateur, capteur d'image radiologique et procede de production
DE69913185T2 (de) * 1998-06-18 2004-08-26 Hamamatsu Photonics K.K., Hamamatsu Verfahren zur abscheidung eines organischen films
US7034306B2 (en) * 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
CN1163762C (zh) * 1998-06-18 2004-08-25 浜松光子学株式会社 闪烁体面板和放射线图象传感器
JP3789646B2 (ja) * 1998-06-19 2006-06-28 浜松ホトニクス株式会社 放射線イメージセンサ
JP4886245B2 (ja) * 2005-08-26 2012-02-29 株式会社東芝 放射線検出器
CN101331408A (zh) 2006-04-04 2008-12-24 株式会社岛津制作所 放射线检测器
US7361901B1 (en) * 2006-06-02 2008-04-22 Radiation Monitoring Devices, Inc. Scintillator detector fabrication
US7465932B1 (en) * 2007-06-15 2008-12-16 Hamamatsu Photonics K.K. Radiation image conversion panel, scintillator panel, and radiation image sensor
US7468514B1 (en) * 2007-06-15 2008-12-23 Hamamatsu Photonics K.K. Radiation image conversion panel, scintillator panel, and radiation image sensor
US8669526B2 (en) * 2008-10-28 2014-03-11 Konica Minolta Medical & Graphic, Inc. Scintillator panel, radiation detector, and method for manufacturing the same
FR2948379B1 (fr) * 2009-07-21 2011-08-19 Saint Gobain Cristaux Et Detecteurs Scintillateur en halogenure de terre rare revetu d'un absorbeur ou reflecteur de lumiere
JP2011128085A (ja) * 2009-12-18 2011-06-30 Canon Inc 放射線撮像装置、放射線撮像システム及び放射線撮像装置の製造方法
CN102305937B (zh) * 2011-05-25 2013-08-14 上海奕瑞光电子科技有限公司 闪烁体封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279051A (ja) 2001-01-30 2007-10-25 Hamamatsu Photonics Kk シンチレータパネル及び放射線イメージセンサ
JP2003262671A (ja) * 2002-03-07 2003-09-19 Hamamatsu Photonics Kk シンチレータパネルおよびその製造方法
JP2006058124A (ja) 2004-08-19 2006-03-02 Canon Inc カセッテ型x線画像撮影装置
WO2008117821A1 (ja) * 2007-03-27 2008-10-02 Kabushiki Kaisha Toshiba シンチレータパネル及び放射線検出器
WO2009028275A1 (ja) 2007-08-28 2009-03-05 Konica Minolta Medical & Graphic, Inc. シンチレータパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2876648A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581701B2 (en) * 2014-12-16 2017-02-28 Carestream Health, Inc. Impact protection for wireless digital detector glass panel
US9939295B2 (en) 2014-12-16 2018-04-10 Carestream Health, Inc. Impact protection for wireless digital detector glass panel

Also Published As

Publication number Publication date
JP5922518B2 (ja) 2016-05-24
US20150204985A1 (en) 2015-07-23
CN104488038B (zh) 2018-02-13
TWI607229B (zh) 2017-12-01
TW201409062A (zh) 2014-03-01
US9535170B2 (en) 2017-01-03
EP2876648A1 (en) 2015-05-27
CN104488038A (zh) 2015-04-01
EP2876648A4 (en) 2016-03-16
JP2014021003A (ja) 2014-02-03
EP2876648B1 (en) 2017-08-23
KR20150032938A (ko) 2015-03-31

Similar Documents

Publication Publication Date Title
WO2014013770A1 (ja) シンチレータパネル及び放射線検出器
JP5597354B2 (ja) シンチレータパネル及び放射線検出器
USRE39806E1 (en) Scintillator panel, radiation image sensor, and methods of making the same
US9568614B2 (en) Radiation detection apparatus, method of manufacturing the same, and imaging system
JP5686993B2 (ja) シンチレータパネル及び放射線イメージセンサ
WO2012026187A1 (ja) 放射線検出器
US20090065705A1 (en) Scintillator plate
JP2012047486A (ja) 放射線検出器
WO2014013772A1 (ja) シンチレータパネル及び放射線検出器
JP2007271504A (ja) シンチレータパネル、平面検出器および撮影装置
WO2014013771A1 (ja) シンチレータパネル及び放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820264

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013820264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013820264

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147034258

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE