WO2014013717A1 - 双ロール式鋳造装置の冷却ロール - Google Patents

双ロール式鋳造装置の冷却ロール Download PDF

Info

Publication number
WO2014013717A1
WO2014013717A1 PCT/JP2013/004332 JP2013004332W WO2014013717A1 WO 2014013717 A1 WO2014013717 A1 WO 2014013717A1 JP 2013004332 W JP2013004332 W JP 2013004332W WO 2014013717 A1 WO2014013717 A1 WO 2014013717A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
cooling
longitudinal direction
diameter
twin
Prior art date
Application number
PCT/JP2013/004332
Other languages
English (en)
French (fr)
Inventor
大塚 裕之
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to MX2015000826A priority Critical patent/MX2015000826A/es
Priority to EP13820089.4A priority patent/EP2875880A4/en
Publication of WO2014013717A1 publication Critical patent/WO2014013717A1/ja
Priority to IN10716DEN2014 priority patent/IN2014DN10716A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/0651Casting wheels

Definitions

  • the present invention relates to a cooling roll of a twin roll type casting apparatus.
  • the twin roll type casting apparatus includes a pair of cooling rolls (casting rolls) for producing a thin material (slab) having a constant width, the cooling rolls being parallel in parallel and having a predetermined distance between each other. (Roll gap) is formed, and a side weir is placed in contact with the roll end surfaces of both cooling rolls, and a molten metal reservoir is formed by the side weir and the upper outer peripheral surface of the cooling roll. Is forming.
  • the two cooling rolls are rotated in opposite directions so that the outer peripheral surfaces forming the roll gap move downward, and the molten metal is a molten metal from the tundish nozzle disposed on the upper part of the cooling roll to the molten metal reservoir. Supply.
  • the molten metal in the molten metal reservoir is led out as a thin plate from the roll gap while being cooled and solidified by a rotating cooling roll.
  • a thin plate having a constant width of about 1 mm to 6 mm and a width of about 1000 to 2000 mm, for example, is continuously manufactured.
  • the thin plate manufactured by the twin roll casting apparatus is usually formed into a thinner plate thickness by a rolling apparatus provided downstream.
  • the cooling roll of the twin roll type casting apparatus plays the role of a mold in casting, and in order to manufacture a thin plate by cooling the molten metal, a coolant (cooling water) is forced to flow inside the cooling roll. Although intense cooling is performed, the cooling roll at the time of casting is in contact with a high-temperature molten metal of, for example, 1600 ° C., and thus receives a large heat load (heat input), and thus the cooling roll is thermally deformed.
  • a coolant cooling water
  • the cold roll was processed in advance in the cold to give an initial roll profile.
  • the roll diameter of the cooling roll increases at the longitudinal end (position about 130 mm from the end face of the roll) with respect to the center in the longitudinal direction due to the thermal load during casting. It is known to have a convex shape called a dog bone.
  • Patent Document 1 As a twin roll type casting apparatus in which an initial roll profile is preliminarily applied to a cooling roll so that a thin plate has a target thickness profile, there is one disclosed in Patent Document 1.
  • a twin roll type casting apparatus of Patent Document 1 a pair of cooling rolls having the same shape and processed into the same initial roll profile are provided.
  • FIG. 1 (a) shows the shape of a conventional pair of cooling rolls provided in a twin roll type casting apparatus as in Patent Document 1, and the cooling rolls 1 and 2 are arranged in the longitudinal direction (FIG. 1).
  • the roll gap 3 formed between the rolls 1 and 2 has a large central gap in the longitudinal direction of the cooling rolls 1 and 2 and a small gap between the longitudinal ends. Therefore, according to the cooling rolls 1 and 2 in FIG.
  • a thin plate having a middle and high thickness profile in which the thickness in the center in the width direction is larger than the thickness in the width direction end corresponding to the shape of the roll gap 3 is manufactured.
  • the Such a thin plate having a medium-high plate thickness profile can improve line controllability for preventing the thin plate from meandering when rolled by a subsequent rolling apparatus.
  • the cooling rolls 1 and 2 are heated by the heat load from the molten metal (as described above).
  • a heat roll profile having a convex portion called a dog bone 4 whose roll diameter increases at a position around 130 mm from the roll end face as shown in FIG. .
  • the dogbone 4 is generated, the thin plate formed by the roll gap 3 of the cooling rolls 1 and 2 generates a plate thickness change portion in which the plate thickness is locally reduced by the dogbone 4.
  • a thin plate having a target thickness profile cannot be manufactured because of the thickness change portion.
  • a recess 5 having a depth and a shape for canceling the dog bone 4 is formed in advance at the location where the dog bone 4 is generated at the roll end of the cooling rolls 1 and 2 as shown in FIG. A new initial roll profile formed is applied.
  • the cooling rolls 1 and 2 are suitable for heat roll profile by thermal deformation as shown in FIG.
  • a roll gap 3 having a desired shape is formed, and a thin plate having a desired plate thickness profile can be manufactured by this roll gap 3.
  • the heat load (heat input) received by the cooling rolls 1 and 2 during casting is the temperature of the molten metal, the components of the molten metal, the humidity of the atmosphere including the molten metal reservoir, and the oxide on the surface of the cooling roll being cleaned with a brush. It is known that it largely fluctuates as a whole or locally depending on the state or the like.
  • Thick profile thin plates can be produced.
  • the roll gap 3 is positioned in the vicinity of the roll end surface around 50 mm from the roll end surface on the outer peripheral surface of the cooling rolls 1 and 2.
  • the roll end diameter-reducing portion 6 is generated in which the distance between the two increases rapidly toward the roll end surface.
  • FIG. 2 shows the roll longitudinal direction when casting is performed using the cooling rolls 1 and 2 having the initial roll profile so as to have the recess 5 for canceling the dog bone 4 shown in FIG.
  • FIG. 2 shows the case where the roll gap 3 at the center in the roll longitudinal direction is 1.6 mm.
  • A shows the roll gap 3 when the assumed heat input at the time of setting the initial roll profile is 12.5 MW, and when the heat input is 12.5 MW, the center in the longitudinal direction of the roll as shown in A
  • the roll gap 3 of about 1.6 mm gradually decreases toward the end of the roll. Therefore, a thin plate having a target plate thickness profile can be stably manufactured by the roll gap 3.
  • FIG. 2 B shows the case where the heat input is increased to 15.5 MW, and when the heat input is increased as in B, the roll gap of about 1.6 mm in the center in the roll longitudinal direction is the roll end. In the proximity of about 50 mm from the roll end face, an inflection point X at which the roll gap starts to increase is generated. For this reason, as shown in FIG. The roll end diameter-reducing portion 6 in which the gap of the roll gap 3 increases rapidly toward the roll end surface is generated.
  • the conventional cooling roll is premised on having a pair of cooling rolls 1 and 2 having the same shape, as shown in FIG. 1 (c). It is very difficult to form a recess 5 for suppressing the generation of the dog bone 4 at the end of the cooling rolls 1 and 2 and to carry out processing for eliminating the occurrence of the roll end reduced diameter portion 6. It is. That is, when the roll gap is 1.6 mm, the processing range of the cooling rolls 1 and 2 on one side is 0.8 mm, which is half of that, but it is necessary to avoid the outer peripheral surfaces of the cooling rolls 1 and 2 from contacting each other. Therefore, the processing range of one cooling roll is, for example, about 0.6 mm or less.
  • the present invention has been made in view of the above-described circumstances, and the object of the present invention is that even when the heat input of the cooling roll is increased from the normal time, a roll end reduced diameter portion does not occur at the roll end.
  • Another object of the present invention is to provide a cooling roll for a twin roll casting apparatus.
  • the present invention is a cooling roll of a twin roll type casting apparatus that derives a thin plate from a roll gap between the cooling rolls while receiving and cooling the molten metal supplied from the tundish at the upper part between the pair of cooling rolls,
  • One pair of cooling rolls is a medium-thick roll having a central diameter in the longitudinal direction larger than the diameter at the longitudinal end, and the other cooling roll in the pair has a central diameter in the longitudinal direction larger than the diameter at the longitudinal end.
  • a cooling roll of a twin roll type casting apparatus that forms a roll gap gradually approaching from the center in the longitudinal direction of the roll toward the end in the longitudinal direction between the middle thick roll and the middle thin roll. is there.
  • the medium-thickness roll and the medium-thinning roll approach each other more rapidly than the center in the longitudinal direction of the roll within a range of 15% from the roll end surface with respect to the length of the cooling roll. It is preferable that the quick approach portion is provided.
  • the rapid approach portion may be formed by increasing the increasing rate of the roll diameter at the end in the longitudinal direction as compared to the center in the longitudinal direction of the medium thin roll.
  • the rapid approach portion may be formed by reducing a decreasing rate of the roll diameter at the end portion in the longitudinal direction from the center in the longitudinal direction of the medium thickness roll.
  • the present invention even when the heat input to the cooling roll is increased than usual, it is possible to achieve an excellent effect of preventing the problem that the roll end reduced diameter portion is generated at the roll end portion.
  • (A) is a plan view showing the shape of a conventional pair of cooling rolls provided in a twin roll type casting apparatus
  • (b) is a plan view showing the shape of a dogbone generated during casting with the cooling roll of (a)
  • (C) is a plan view of a cooling roll formed with a recess for suppressing the occurrence of dogbone of (b)
  • (d) is a state in which the cooling roll of (c) has a suitable heat roll profile due to thermal deformation.
  • the top view to show, (e) is a top view which shows the state which produced the roll end reduced diameter part in the roll edge part at the time of the cooling roll of (c) increasing heat input.
  • FIG. 1 The longitudinal position of the roll and the roll gap when the heat input at the time of casting by the conventional cooling roll having a recess for canceling the dogbone shown in FIG. It is a diagram which shows the result of having calculated
  • (A) is a top view which shows one Example of the shape of the cooling roll provided with a pair
  • (b) is a top view which shows another Example of the shape of a cooling roll.
  • (A) is a top view which shows the other Example of the shape of a cooling roll
  • (b) is a top view which shows the further another Example of the shape of a cooling roll.
  • FIG. 3 (a) shows the results obtained by simulation of the relationship between the roll longitudinal direction position and the roll gap when the heat input during casting with the medium-thick roll and medium-thin roll is normal and when the heat input is increased.
  • FIG. It is the whole structure which shows an example of the twin roll type casting apparatus to which the cooling roll of this invention is applied.
  • FIG. 6 shows an example of a twin roll type casting apparatus to which the cooling roll of the present invention is applied.
  • the twin roll type casting apparatus 7 has two (pair) cooling rolls 100 and 200 (casting rolls) arranged horizontally.
  • the rolls 3 are arranged in parallel so that a predetermined amount of roll gap 3 is formed between them.
  • the side weirs 8 are arranged in contact with the roll end surfaces of both cooling rolls 100 and 200, A molten metal reservoir 9 is formed by the upper outer peripheral surfaces of the cooling rolls 100 and 200.
  • the tundish 10 is disposed above the cooling rolls 100 and 200, and the molten metal that is a molten metal in the tundish 10 is supplied from the slit-shaped nozzle 11 to the molten metal reservoir 9.
  • the molten metal in the molten metal reservoir 9 is led out as a thin plate 12 from the roll gap 3 while being cooled and solidified by cooling rolls 100 and 200 rotating in the opposite directions as indicated by arrows.
  • the thin plate 12 having a constant width dimension having a thickness of about 1 mm to 6 mm and a plate width of about 1000 to 2000 mm, for example, is continuously manufactured.
  • the thin plate 12 manufactured by the twin roll casting device 7 is guided to a four-stage rolling device 14 via a pinch roll 13 and formed into a thinner plate thickness, and then wound via a deflector roll 15. It is guided to the take-up machine 16 and wound up in a reel shape.
  • FIG. 3A is a plan view showing an example of the shape of the cooling rolls 100 and 200 provided in a pair, and one of the cooling rolls 100 and 200 has a longitudinal direction (FIG. 3).
  • the central diameter D1 of the barrel-shaped middle roll 100a is larger than the diameter D2 of the longitudinal end
  • the other cooling roll 200 has the longitudinal diameter D3 of the longitudinal end.
  • the drum-shaped medium thin roll 200a is smaller than the diameter D4 of the portion.
  • the middle-thick roll 100a has a curve with a radius R1 in the longitudinal direction in which the roll diameter gradually decreases from the center in the longitudinal direction of the roll toward the end in the longitudinal direction at a constant reduction rate.
  • the thin roll 200a has a curve with a radius R2 in the longitudinal direction in which the roll diameter gradually increases from the center in the longitudinal direction of the roll toward the end in the longitudinal direction at a constant increase rate.
  • the roll diameter of the thin roll 200a increases toward the longitudinal end of the roll, while the roll diameter of the roll 100a decreases toward the longitudinal end of the roll.
  • the rate is larger. That is, when the coordinate from the center in the roll longitudinal direction to the end along the roll central axis is the Z axis, the degree of decrease ⁇ r of the roll diameter r of the medium-thick roll 100a with respect to the increase ⁇ z of Z is expressed.
  • a reduction rate ( ⁇ r / ⁇ Z) the increase rate representing the degree of 'increment [delta] r of' roll diameter r in said narrowing roll 200a with respect to increment delta] z of Z ( ⁇ r '/ ⁇ z) is, ([delta] r / ⁇ z) ⁇ ( ⁇ r ′ / ⁇ z). Accordingly, the curvature of the arc of radius R2 formed with the center of the middle thin roll 200a recessed is larger than the curvature of the arc of radius R1 formed by protruding the center of the middle thickness roll 100a in the longitudinal direction.
  • the curvature radii R1 and R2 satisfy R1> R2.
  • the roll gap 3 formed between the middle-thick roll 100a and the middle-thin roll 200a has a shape in which the center in the longitudinal direction of the roll is wide and gradually narrows toward the end in the longitudinal direction.
  • a thin plate having a thick plate at the center in the width direction and a thin plate at the end in the width direction. 12 can be manufactured, and the line controllability for preventing meandering during rolling by the downstream rolling device 14 can be enhanced.
  • FIG.3 (b) is a top view which shows another Example of the shape of the said cooling roll 100,200 provided with a pair,
  • the longitudinal direction of the roll in the said medium thickness roll 100a and the said medium thickness roll 200a Shown is the case where the rate of change of the roll diameter at the center and the end in the longitudinal direction is larger than that in FIG. 3A (the radius of curvature of the arc is small like R3 and R4 and R3> R4). ing.
  • the medium-thick roll 100a and the medium-thin roll 200a are combined to provide the twin-roll casting apparatus 7 of FIG. 6, and the medium-thick roll 100a and the medium-thick roll 100a are combined.
  • the molten metal in the tundish 10 is supplied from the nozzle 11 to the molten metal reservoir 9 while rotating the thinning roll 200a as shown by the arrow.
  • the molten metal in the molten metal reservoir 9 is led out from the roll gap 3 as a thin plate 12 while being cooled and solidified by the medium thick roll 100a and the medium thin roll 200a.
  • the twin roll type casting apparatus 7 provided with the medium thick roll 100a and the medium thin roll 200a in combination, it is possible to achieve a good roll gap 3 in which the roll end reduced diameter portion 6 does not occur.
  • the thin plate 12 having the plate thickness profile can be stably manufactured.
  • FIG. 5 shows a case A in which the heat input of the medium thick roll 100a and the medium thin roll 200a in FIG. 3A is 12.5 MW, which is a normal value, and a case B in which the heat input is increased to 15.5 MW.
  • required the relationship between a roll longitudinal direction position (horizontal axis) and a roll gap (vertical axis) by simulation is shown.
  • the generation of the roll end reduced diameter portion 6 that has occurred in the past has been prevented because the change in the roll diameter at the roll end compared to the prior art is achieved by combining the middle thick roll 100a and the middle thin roll 200a. This is considered to be due to the fact that the thermal deformation at the end of the roll was suppressed due to the gentle and large change.
  • the medium-thick roll 100a and the above-described thick roll 100a are obtained so that the target roll gap 3 is obtained at the time of casting.
  • the generation of the dogbone 4 can be suppressed.
  • FIG. 4A is a plan view showing another embodiment of the shape of the cooling rolls 100, 200 provided in a pair, and in this embodiment, from the end face of the roll with respect to the length of the thinned roll 200a.
  • the roll diameter is rapidly increased at an increasing rate that is larger than the increasing rate at which the roll diameter at the center in the longitudinal direction of the roll gradually increases in the arc of radius R2 toward the longitudinal end.
  • the quick approach portion 17 that is rapidly brought close to the middle-thick roll 100a is formed at the roll end of the middle-thin roll 200a.
  • the roll diameter at the center in the longitudinal direction of the roll is long in the range of a distance H of 15% from the roll end face with respect to the length of the medium-thick roll 100a.
  • a sudden approaching portion 17 is formed at the roll end of the medium thinning roll 200a so as to rapidly approach the middle thick roll 100a.
  • the sudden approach portion 17 ′ that is rapidly brought close to the medium thin roll 200 a is formed at the roll end of the thick roll 100 a, the medium thick roll 100 a and the medium thin roll 200 a are rapidly formed at the roll end. Due to the shape in which the roll end portion comes close and the roll end portion approaches rapidly, the generation of the roll end reduced-diameter portion 6 shown in FIG. 1 (e) can be more reliably prevented.
  • the combination of the middle-thick roll 100a and the middle-thin roll 200a allows the processing of the concave portion 5 of FIG. 1 (e), it is possible to eliminate the need to carry out operations such as processing for eliminating the occurrence of the roll end reduced diameter portion 6 in a narrow range, and it is easy to use the middle-thick roll 100a and the middle-thin roll 200a.
  • a target roll gap can be achieved by a simple shape.
  • cooling roll of the twin roll casting apparatus of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the scope of the present invention.

Abstract

 ペアをなす一方の冷却ロールは長手方向中央の径が長手方向端部の径よりも大きい中太りロール100aであり、ペアをなす他方の冷却ロールは長手方向中央の径が長手方向端部の径よりも小さい中細りロール200aであり、中太りロール100aと中細りロール200aとの間に、ロールの長手方向中央から長手方向端部へ向かって漸次接近したロールギャップ3を形成する。

Description

双ロール式鋳造装置の冷却ロール
 本発明は、双ロール式鋳造装置の冷却ロールに関するものである。
 双ロール式鋳造装置は、一定幅の薄材(鋳片)を製造するための冷却ロール(鋳造ロール)をペアで備えており、該両冷却ロールは水平で平行且つ相互間に所定量の間隔(ロールギャップ)を形成するように配置されており、更に、両冷却ロールのロール端面にはサイド堰を当接させて配置しており、該サイド堰と前記冷却ロールの上部外周面により溶湯溜を形成している。そして、前記両冷却ロールはロールギャップを形成する外周面が下方へ移動するように互いに逆方向へ回転させ、前記冷却ロールの上部に配置したタンディッシュのノズルから前記溶湯溜に溶融金属である溶湯を供給している。従って、前記溶湯溜の溶湯は回転する冷却ロールにより冷却されて凝固しつつ前記ロールギャップから薄板となって導出される。双ロール式鋳造装置では、厚さが例えば1mm~6mm程度で板幅が例えば1000~2000mm程度の一定幅寸法の薄板を連続して製造している。又、前記双ロール式鋳造装置で製造される薄板は、通常、下流に備えられる圧延装置によって更に薄い板厚に成形される。
 前記双ロール式鋳造装置の冷却ロールは、鋳造における鋳型の役目を担っており、溶湯を冷却して薄板を製造するために、冷却ロールの内部には冷却材(冷却水)を強制流通させて強烈な冷却を行うようになっているが、鋳造時の冷却ロールは例えば1600℃の高温の溶湯と接することから大きな熱負荷(入熱)を受け、このために冷却ロールは熱変形を生じる。
 従って、ペアの冷却ロールの相互間に形成されるロールギャップがロール長手方向で均一になるように、冷間において予め冷却ロールを加工して初期ロールプロファイルを与えておくことが実施されたが、このような初期ロールプロファイルを与えた冷却ロールによっても、前記冷却ロールは、鋳造時の熱負荷によって長手方向中央に対して長手方向端部(ロール端面から130mm前後の位置)においてロール径が増加するドッグボーンと称される凸部形状を呈することが知られている。
 このため、近年では、前記ドッグボーンと称される熱変形をキャンセルして目的の板厚形状(板厚プロファイル)が薄板に賦与されるように、ドッグボーンを考慮した初期ロールプロファイルを予め冷却ロールに施しておくことが行われている。
 薄板が目的の板厚プロファイルになるように、冷却ロールに予め初期ロールプロファイルを施しておくようにした双ロール式鋳造装置としては特許文献1に示すものがある。特許文献1の双ロール式鋳造装置では、同一の初期ロールプロファイルに加工した同一形状の冷却ロールをペアで備えるようにしている。
特開平07-323353号公報
 図1(a)は、特許文献1のように双ロール式鋳造装置に備えられている従来のペアの冷却ロールの形状を示したもので、この冷却ロール1,2は、長手方向(図1(a)の左右方向)中央の径d1に対して、長手方向(図1の左右方向)端部の径d2が大きく加工された鼓形の初期ロールプロファイルを有しており、よって、この冷却ロール1,2間に形成されるロールギャップ3は、冷却ロール1,2の長手方向中央の間隔が大きく長手方向端部の間隔が小さくなっている。従って、図1(a)の冷却ロール1,2によれば、ロールギャップ3の形状に対応して幅方向中央の厚みが幅方向端部の厚みより大きい中高の板厚プロファイルの薄板が製造される。このような中高の板厚プロファイルの薄板は、後段の圧延装置で圧延する際に薄板が蛇行するのを防止するためのライン制御性を向上させることができる。
 しかし、図1(a)に示した鼓形の初期ロールプロファイルを有する冷却ロール1,2を用いて薄板を製造した場合には、前述したように冷却ロール1,2が溶湯からの熱負荷(入熱)を受けて熱変形するために、図1(b)に示すようにロール端面から130mm前後の位置においてロール径が増加するドッグボーン4と称される凸部を有するヒートロールプロファイルとなる。前記ドッグボーン4が生じると、前記冷却ロール1,2のロールギャップ3によって成形される薄板は、前記ドッグボーン4によって幅端部に板厚が局部的に減少した板厚変化部を生じ、この板厚変化部のために目的の板厚プロファイルの薄板を製造することができない。
 このため、前記冷却ロール1,2のロール端部における前記ドッグボーン4が発生する箇所に、図1(c)に示す如く、前記ドッグボーン4をキャンセルする深さ及び形状を有する凹部5を予め形成した新たな初期ロールプロファイルを施すことが行われている。
 このような凹部5を有する初期ロールプロファイルを施した冷却ロール1,2によれば、薄板の鋳造時に、冷却ロール1,2は図1(d)に示すように熱変形によって好適なヒートロールプロファイルとなり、目的の形状のロールギャップ3が形成されるので、このロールギャップ3によって目的の板厚プロファイルの薄板を製造することができる。
 しかし、鋳造時において前記冷却ロール1,2が受ける熱負荷(入熱)は、溶湯の温度、溶湯の成分、前記溶湯溜を含む雰囲気の湿度、ブラシにより清掃している冷却ロール表面の酸化物の状態等によって、全体的に或いは局所的に大きく変動することが知られている。
 従って、冷却ロール1,2への入熱が一般的な通常の値に保持されている状態では、図1(d)に示したように、好適なヒートロールプロファイルが得られることで目的の板厚プロファイルの薄板を製造することができる。
 しかし、前記入熱が通常より大きく増加した場合には、図1(e)に示すように、冷却ロール1,2の外周面におけるロール端面から50mm前後のロール端面の近接位置に、ロールギャップ3の間隔がロール端面に向かって急激に増加するロール端縮径部6を生じる。
 図2は、前記図1(c)に示した、ドッグボーン4をキャンセルする凹部5を備えるように初期ロールプロファイルを施した冷却ロール1,2を用いて鋳造を行った際における、ロール長手方向位置(横軸)とロールギャップ(縦軸)との関係をシミュレーションにより求めた結果を示している。尚、図2ではロール長手方向中央でのロールギャップ3を1.6mmとした場合を示している。
 図2において、Aは初期ロールプロファイル設定時の想定入熱が12.5MWの場合のロールギャップ3を示しており、入熱が12.5MWの場合には、Aに示すようにロール長手方向中央の約1.6mmのロールギャップ3は、ロール端部に向かって緩やかに減少している。従って、このロールギャップ3により、目的の板厚プロファイルの薄板を安定して製造することができる。
 一方、図2において、Bは入熱が15.5MWに増加した場合を示しており、Bのように入熱が増加した時には、ロール長手方向中央の約1.6mmのロールギャップは、ロール端部に向かって緩やかに減少するが、ロール端面から50mm前後の近接位置において、ロールギャップが増加に転じる変極点Xを生じ、このために、図1(e)に示したようにロール端部に、ロールギャップ3の間隔がロール端面に向かって急激に増加するロール端縮径部6を生じる。このようなロール端縮径部6が生じることにより、ニップ部(冷却ロール1,2の間隙の最狭部)で挟まれた材料の圧が急激に高まる現象によって、変極点Xからロール端縮径部6に向けて未凝固溶鋼が絞り出され、その結果、幅端部では凝固が不十分のままの薄板がロール部から導出され、表面が内部からの熱で復熱し、再溶融を起こして形状を乱し、幅端部で板厚が局所的に厚くなる部分が発生することから、目的の板厚プロファイルの薄板を安定して製造できなくなる。
 この問題に対処するため、前記ロール端縮径部6をキャンセルするように冷却ロール1,2を冷間において加工して新たな初期ロールプロファイルを冷却ロール1,2に施すことも考えられる。
 しかし、従来の冷却ロールは、図1(a)に示したように、同一の形状を有する、冷却ロール1,2をペアで備えることを前提としているために、図1(c)に示すようなドッグボーン4の発生を抑制するための凹部5を冷却ロール1,2の端部に形成する上に、前記ロール端縮径部6の発生を解消するための加工を施すことは非常に困難である。即ち、1.6mmのロールギャップであると、片側の冷却ロール1,2の加工範囲はその半分の0.8mmであるが、冷却ロール1,2の外周面は相互に接触することを避ける必要があるため一方の冷却ロールの加工範囲は例えば約0.6mm以下程度となる。このような僅かな加工代(削り代)の中で、しかもロール端部の狭い範囲において図1(b)のドッグボーン4抑制のための図1(c)に示す凹部5の加工と、図1(e)に示すロール端縮径部6の発生を解消するための加工を同時に実施することは大変困難である。
 このため、従来の冷却ロール1,2では、ロール端部において前記ロール端縮径部6が発生する問題を抑制することはできなかった。
 本発明は、上述の実情に鑑みてなしたもので、その目的とするところは、冷却ロールの入熱が通常時よりも増加した場合にも、ロール端部にロール端縮径部が生じないようにした双ロール式鋳造装置の冷却ロールを提供することにある。
 本発明は、タンディッシュから供給される溶湯をペアの冷却ロール間上部で受けて冷却しつつ該冷却ロール間のロールギャップから薄板を導出する双ロール式鋳造装置の冷却ロールであって、
  ペアをなす一方の冷却ロールは長手方向中央の径が長手方向端部の径よりも大きい中太りロールであり、ペアをなす他方の冷却ロールは長手方向中央の径が長手方向端部の径よりも小さい中細りロールであり、
  前記中太りロールと前記中細りロールとの間に、ロールの長手方向中央から長手方向端部へ向かって漸次接近したロールギャップを形成している双ロール式鋳造装置の冷却ロール、に係るものである。
 上記双ロール式鋳造装置の冷却ロールにおいて、前記冷却ロールの長さに対してロール端面から15%の範囲内に、前記中太りロールと前記中細りロールがロールの長手方向中央よりも急速に接近した急接近部を備えたことは好ましい。
 又、上記双ロール式鋳造装置の冷却ロールにおいて、前記中細りロールの長手方向中央よりも長手方向端部のロール径の増加率を大きくしたことで前記急接近部を形成してもよい。
 又、上記双ロール式鋳造装置の冷却ロールにおいて、前記中太りロールの長手方向中央よりも長手方向端部のロール径の減少率を小さくしたことで前記急接近部を形成してもよい。
 本発明によれば、冷却ロールへの入熱が通常時よりも増加した場合にも、ロール端部にロール端縮径部が生じる問題を防止できるという優れた効果を奏し得る。
(a)は双ロール式鋳造装置に備えている従来のペアの冷却ロールの形状を示す平面図、(b)は(a)の冷却ロールによる鋳造時に生じたドッグボーンの形状を示す平面図、(c)は(b)のドッグボーンの発生を抑制するための凹部を形成した冷却ロールの平面図、(d)は(c)の冷却ロールが熱変形によって好適なヒートロールプロファイルとなる状態を示す平面図、(e)は(c)の冷却ロールが入熱の増加時にロール端部にロール端縮径部を生じた状態を示す平面図である。 図1(c)に示したドッグボーンをキャンセルする凹部を備えた従来の冷却ロールによる鋳造時の入熱が通常の値の場合と入熱が増加した場合におけるロール長手方向位置とロールギャップとの関係をシミュレーションにより求めた結果を示す線図である。 (a)はペアで備えられる冷却ロールの形状の一実施例を示す平面図、(b)は冷却ロールの形状の別の実施例を示す平面図である。 (a)は冷却ロールの形状の他の実施例を示す平面図、(b)は冷却ロールの形状の更に他の実施例を示す平面図である。 図3(a)の中太りロールと中細りロールによる鋳造時の入熱が通常の値の場合と入熱が増加した場合におけるロール長手方向位置とロールギャップとの関係をシミュレーションにより求めた結果を示す線図である。 本発明の冷却ロールを適用する双ロール式鋳造装置の一例を示す全体構成である。
 以下、本発明の実施の形態を図示例と共に説明する。
 図6は本発明の冷却ロールを適用する双ロール式鋳造装置の一例を示すもので、双ロール式鋳造装置7は、2本(ペア)の冷却ロール100,200(鋳造ロール)を、水平で平行且つ相互間に所定量のロールギャップ3が形成されるように配置しており、更に、両冷却ロール100,200のロール端面にサイド堰8を当接配置することにより、該サイド堰8と前記冷却ロール100,200の上部外周面とにより溶湯溜9を形成している。
 前記冷却ロール100,200の上部にはタンディッシュ10が配置されており、該タンディッシュ10内の溶融金属である溶湯は、スリット状のノズル11から前記溶湯溜9に供給される。そして、前記溶湯溜9の溶湯は、矢印で示すように逆方向に回転する冷却ロール100,200により冷却されて凝固しつつ前記ロールギャップ3から薄板12となって導出される。双ロール式鋳造装置7では、厚さが例えば1mm~6mm程度で板幅が例えば1000~2000mm程度の一定幅寸法の薄板12を連続して製造している。又、前記双ロール式鋳造装置7で製造される薄板12は、ピンチロール13を介して4段の圧延装置14に導かれて更に薄い板厚に成形された後、デフレクタロール15を介して巻取機16に導かれてリール状に巻き取られる。
 図3(a)は、ペアで備えられる前記冷却ロール100,200の形状の一実施例を示す平面図であり、冷却ロール100,200のうちの一方の冷却ロール100は、長手方向(図3(a)では左右方向)の中央の径D1が長手方向端部の径D2よりも大きい樽形の中太りロール100aであり、他方の冷却ロール200は、長手方向中央の径D3が長手方向端部の径D4よりも小さい鼓形の中細りロール200aとしている。ここで、前記中太りロール100aはロール径がロールの長手方向中央から長手方向端部へ向かって漸次一定の減少率で減少した長手方向へ半径R1の曲線を有しており、又、前記中細りロール200aはロール径がロールの長手方向中央から長手方向端部へ向かって漸次一定の増加率で増加した長手方向へ半径R2の曲線を有している。
 このとき、前記中太りロール100aのロール径がロールの長手方向端部へ向かって減少する減少率に対して、前記中細りロール200aのロール径がロールの長手方向端部へ向かって増加する増加率の方が大きくなっている。即ち、ロール中心軸に沿ってロール長手方向中央から端部に向かう座標をZ軸としたとき、Zの増加量Δzに対して前記中太りロール100aのロール径rの減少量Δrの度合を表わす減少率(Δr/Δ)と、Zの増加量Δzに対して前記中細りロール200aのロール径r'の増加量Δr'の度合を表わす増加率(Δr'/Δz)は、(Δr/Δz)<(Δr'/Δz)の関係を有している。従って、前記中太りロール100aの長手方向中央が突出して形成される半径R1の円弧の曲率に対して、前記中細りロール200aの長手方向中央が凹んで形成される半径R2の円弧の曲率は大きくなっており、曲率半径R1、R2はR1>R2となっている。このため、前記中太りロール100aと前記中細りロール200aの間に形成されるロールギャップ3は、ロールの長手方向中央が広く、長手方向端部へ向かって漸次狭くなった形状を有している。このように、ロールの長手方向中央が広く、長手方向端部へ向かって漸次狭くなる形状のロールギャップ3によれば、幅方向中央の板厚が厚く、幅方向端部の板厚が薄い薄板12が製造されて、下流の圧延装置14により圧延する際の蛇行を防止するためのライン制御性を高めることができる。
 図3(b)は、ペアで備える前記冷却ロール100,200の形状の別の実施例を示す平面図であり、この実施例では前記中太りロール100aと前記中細りロール200aにおけるロールの長手方向中央と長手方向端部でのロール径の変化の割合を図3(a)に比して大きくした(円弧の曲率半径をR3,R4のように小さく、且つR3>R4とした)場合を示している。
 次に、上記実施例について説明する。
 図3(a)、(b)に示すように、前記中太りロール100aと前記中細りロール200aを組み合わせて図6の双ロール式鋳造装置7に備え、且つ、前記中太りロール100aと前記中細りロール200aを矢印のように回転しつつタンディッシュ10内の溶湯をノズル11から溶湯溜9に供給する。前記溶湯溜9の溶湯は、前記中太りロール100aと前記中細りロール200aにより冷却されて凝固しつつ前記ロールギャップ3から薄板12となって導出される。
 この時、図3(a)の前記中太りロール100aに備えた半径R1の円弧と前記中細りロール200aに備えた半径R2の円弧によって、又は、図3(b)の前記中太りロール100aに備えた半径R3の円弧と前記中細りロール200aに備えた半径R4の円弧によって、ロールの長手方向中央が広く、長手方向端部へ向かって漸次狭くなるロールギャップ3を形成したことにより、従来において冷却ロール1,2の入熱が増加した場合に発生していた図1(e)に示すロール端縮径部6の発生を防止することができた。このため、目的の板厚プロファイルの薄板12を製造することができた。このように、前記中太りロール100aと前記中細りロール200aを組み合わせて備えた双ロール式鋳造装置7によれば、ロール端縮径部6が発生しない良好なロールギャップ3を達成できるので、目的の板厚プロファイルの薄板12を安定して製造することができる。
 図5は、図3(a)の前記中太りロール100aと前記中細りロール200aの入熱が通常の値である12.5MWの場合Aと、入熱が15.5MWに増加した場合Bにおけるロール長手方向位置(横軸)とロールギャップ(縦軸)との関係をシミュレーションにより求めた結果を示している。
 図5によれば、Bのように入熱が増加した場合においても、ロール長手方向中央の約1.6mmのロールギャップは、ロール端部に向かって緩やかに減少した。即ち、図2に示したようにロール端面から50mm前後の近接位置においてロールギャップが増加に転じる変極点Xが発生する問題は防止され、従って、ロール端部に図1(e)に示すロール端縮径部6が発生する問題を防止できることが分かる。
 従来生じていたロール端縮径部6の発生が防止されたのは、前記中太りロール100aと前記中細りロール200aを組み合わせたことによって、ロール端部でのロール径の変化が従来と比較して緩やかにしかも大きく変化したことにより、ロール端部での熱変形が抑制されたことによると考えられる。
 又、図3の実施例において、図1(b)に示したドッグボーン4の発生が問題になる場合には、鋳造時に目的のロールギャップ3が得られるように、前記中太りロール100aと前記中細りロール200aの少なくともいずれか一方の外周面を予めドッグボーン4の発生がキャンセルされる凹形状に加工しておくことにより、ドッグボーン4の発生を抑制することができる。
 図4(a)は、ペアで備えられる前記冷却ロール100,200の形状の他の実施例を示す平面図であり、この実施例では、前記中細りロール200aの長さに対してロール端面から15%の距離Hの範囲内において、ロールの長手方向中央のロール径が長手方向端部へ向かって半径R2の円弧で漸次増加する増加率よりも更に大きい増加率で急速にロール径を増加させることにより、前記中太りロール100aに急速に接近させた急接近部17を前記中細りロール200aのロール端部に形成した場合を示している。
 一方、図4(b)に示す更に他の実施例は、前記中太りロール100aの長さに対してロール端面から15%の距離Hの範囲内において、ロールの長手方向中央のロール径が長手方向端部へ向かって半径R1の円弧で漸次減少する減少率よりも更に小さい減少率でロール径を減少させることにより、前記中細りロール200aに急速に接近させた急接近部17'を前記中太りロール100aのロール端部に形成した場合を示している。
 図4(a)では、前記中細りロール200aのロール端部に、前記中太りロール100aに急速に接近させた急接近部17を形成しており、又、図4(b)では、前記中太りロール100aのロール端部に、前記中細りロール200aに急速に接近させた急接近部17'を形成しているので、前記中太りロール100aと前記中細りロール200aはロール端部において急速に接近するようになり、このロール端部が急速に接近した形状によって、図1(e)に示すロール端縮径部6の発生を更に確実に防止することができる。
 上記した本発明の実施例によれば、前記中太りロール100aと前記中細りロール200aを組み合わせたことにより、従来のドッグボーン抑制のために行っている図1(c)の凹部5の加工や、図1(e)に示すロール端縮径部6の発生を解消するための加工といった作業を狭い範囲で実施する必要を無くすことができ、前記中太りロール100aと前記中細りロール200aの簡単な形状によって目標のロールギャップを達成することができる。
 尚、本発明の双ロール式鋳造装置の冷却ロールは、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 3  ロールギャップ
 7  双ロール式鋳造装置
 10  タンディッシュ
 12  薄板
 17  急接近部
 17' 急接近部
 100  冷却ロール
 200  冷却ロール
 100a 中太りロール
 200a 中細りロール
 D1  径
 D2  径
 D3  径
 D4  径

Claims (4)

  1.  タンディッシュから供給される溶湯をペアの冷却ロール間上部で受けて冷却しつつ該冷却ロール間のロールギャップから薄板を導出する双ロール式鋳造装置の冷却ロールであって、
      ペアをなす一方の冷却ロールは長手方向中央の径が長手方向端部の径よりも大きい中太りロールであり、ペアをなす他方の冷却ロールは長手方向中央の径が長手方向端部の径よりも小さい中細りロールであり、
      前記中太りロールと前記中細りロールとの間に、ロールの長手方向中央から長手方向端部へ向かって漸次接近したロールギャップを形成している双ロール式鋳造装置の冷却ロール。
  2.  前記冷却ロールの長さに対してロール端面から15%の範囲内に、前記中太りロールと前記中細りロールがロールの長手方向中央よりも急速に接近した急接近部を備えた請求項1に記載の双ロール式鋳造装置の冷却ロール。
  3.  前記中細りロールの長手方向中央よりも長手方向端部のロール径の増加率を大きくしたことで前記急接近部を形成した請求項2に記載の双ロール式鋳造装置の冷却ロール。
  4.  前記中太りロールの長手方向中央よりも長手方向端部のロール径の減少率を小さくしたことで前記急接近部を形成した請求項2に記載の双ロール式鋳造装置の冷却ロール。
PCT/JP2013/004332 2012-07-18 2013-07-16 双ロール式鋳造装置の冷却ロール WO2014013717A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2015000826A MX2015000826A (es) 2012-07-18 2013-07-16 Cilindros de fundicion en coquilla para una moldeadora de doble cilindro.
EP13820089.4A EP2875880A4 (en) 2012-07-18 2013-07-16 COOLING ROLLS FOR TWO ROLLER CASTING DEVICE
IN10716DEN2014 IN2014DN10716A (ja) 2012-07-18 2014-12-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012159360A JP2014018825A (ja) 2012-07-18 2012-07-18 双ロール式鋳造装置の冷却ロール
JP2012-159360 2012-07-18

Publications (1)

Publication Number Publication Date
WO2014013717A1 true WO2014013717A1 (ja) 2014-01-23

Family

ID=49948559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004332 WO2014013717A1 (ja) 2012-07-18 2013-07-16 双ロール式鋳造装置の冷却ロール

Country Status (5)

Country Link
EP (1) EP2875880A4 (ja)
JP (1) JP2014018825A (ja)
IN (1) IN2014DN10716A (ja)
MX (1) MX2015000826A (ja)
WO (1) WO2014013717A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664169A (zh) * 2021-08-23 2021-11-19 山东理工大学 一种用于双辊铸轧的负载静态变开度辊缝

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012265B2 (en) 2007-12-06 2018-07-03 Roller Bearing Company Of America, Inc. Corrosion resistant bearing material
US9561845B2 (en) 2007-12-06 2017-02-07 Roller Bearing Company Of America, Inc. Bearing installed on an aircraft structure
US10077808B2 (en) 2013-12-18 2018-09-18 Roller Bearing Company Of America, Inc. Roller profile for hourglass roller bearings in aircraft
US9890814B2 (en) 2014-06-03 2018-02-13 Roller Bearing Company Of America, Inc. Cage for hourglass roller bearings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323353A (ja) * 1994-03-24 1995-12-12 Danieli United Inc 鋳造装置および鋳造方法
JP2003010948A (ja) * 2001-06-28 2003-01-15 Nippon Steel Corp 薄帯鋳片及びその鋳造方法及び鋳造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015049A (ja) * 1983-07-06 1985-01-25 Hitachi Ltd 連続鋳造装置
JPS6448642A (en) * 1987-08-18 1989-02-23 Kobe Steel Ltd Twin roll type continuous casting equipment
FR2649340B1 (fr) * 1989-07-04 1994-03-11 Irsid Procede et dispositif de coulee continue entre cylindres de produits metalliques minces aptes au laminage a froid direct
AT402267B (de) * 1995-04-25 1997-03-25 Voest Alpine Ind Anlagen Verfahren zum herstellen eines stranges in form eines metallbandes sowie einrichtung zur durchführung des verfahrens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323353A (ja) * 1994-03-24 1995-12-12 Danieli United Inc 鋳造装置および鋳造方法
JP2003010948A (ja) * 2001-06-28 2003-01-15 Nippon Steel Corp 薄帯鋳片及びその鋳造方法及び鋳造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664169A (zh) * 2021-08-23 2021-11-19 山东理工大学 一种用于双辊铸轧的负载静态变开度辊缝

Also Published As

Publication number Publication date
EP2875880A1 (en) 2015-05-27
MX2015000826A (es) 2015-07-17
EP2875880A4 (en) 2016-04-13
JP2014018825A (ja) 2014-02-03
IN2014DN10716A (ja) 2015-09-04

Similar Documents

Publication Publication Date Title
WO2014013717A1 (ja) 双ロール式鋳造装置の冷却ロール
US5227251A (en) Thin continuous cast plate and process for manufacturing the same
JPH02224853A (ja) 双ロール式急冷薄帯製造用の冷却ロール
JP2018058106A (ja) 連続鋳造設備及び板クラウン制御方法
KR101403175B1 (ko) 표면품질이 우수한 쌍롤식 박판 주조방법
JPH0569625B2 (ja)
JP6620657B2 (ja) 鋳造ストリップ製造設備、及び、鋳造ストリップの製造方法
JP2010149156A (ja) ワークロールのロールクラウン予測計算方法
KR100829951B1 (ko) 마그네슘 주편 제조용 주조롤
JP4760403B2 (ja) サーマルクラウン制御装置、圧延機及びその圧延機を用いた金属帯の製造方法
JP7356016B2 (ja) 矩形断面鋼片の圧延方法、連続鋳造圧延設備及び圧延設備
JPH10249408A (ja) ステンレス鋼板の製造装置
JP5343957B2 (ja) 帯板製造設備とその方法
KR100770341B1 (ko) 쌍롤식 박판주조기용 주조롤 및 그 제조방법
JP5355266B2 (ja) 双ロール式連続鋳造機のロール温度制御装置及び運転方法
KR101353762B1 (ko) 쌍롤식 박판 주조공정에서의 표면 품질 제어방법
JPS63171255A (ja) 未凝固圧延方法
JP6848596B2 (ja) 双ドラム式連続鋳造設備における圧延設備及び圧延方法
JP6696410B2 (ja) 圧延設備及び圧延方法
JPS63171254A (ja) 未凝固圧延方法
JPH01218744A (ja) ツインドラム式連続鋳造機
JPH03169457A (ja) 薄鋳片連続鋳造機の短辺鋳型
JPS5849321B2 (ja) 金属スラブの幅圧延方法
JPS61108454A (ja) 冷却ロ−ル
JPS62187550A (ja) 双ロ−ル式急冷薄帯製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/000826

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013820089

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013820089

Country of ref document: EP