WO2014013620A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2014013620A1 WO2014013620A1 PCT/JP2012/068509 JP2012068509W WO2014013620A1 WO 2014013620 A1 WO2014013620 A1 WO 2014013620A1 JP 2012068509 W JP2012068509 W JP 2012068509W WO 2014013620 A1 WO2014013620 A1 WO 2014013620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bidirectional switch
- bidirectional
- power
- voltage
- reactor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the disclosed embodiment relates to a power conversion device.
- Such a power conversion device includes a plurality of switches, and performs power conversion by controlling on / off of these switches.
- One aspect of the embodiment is made in view of the above, and reduces the conduction loss by reducing the number of switches in the current path in the return mode, and the step-down mode in the conversion from DC to AC, or
- An object of the present invention is to provide a power converter capable of suppressing generation of a large pulse-like common mode voltage at a DC side terminal in a boost mode in conversion from AC to DC.
- a power conversion device includes a power conversion unit and a control unit.
- the power conversion unit includes a plurality of first bidirectional switches arranged between a plurality of DC side terminals connected to a DC power source or a DC load and a plurality of AC side terminals connected to an AC load or an AC power source. And a second bidirectional switch and a reactor disposed between the AC side terminals.
- the control unit controls the power conversion unit to perform power conversion between DC power and AC power.
- the control unit accumulates electric energy to the reactor in a return mode in power conversion by stepping down from the DC power to the AC power and / or in power conversion by boosting from the AC power to the DC power. In the energy storage mode, the second bidirectional switch is turned on.
- FIG. 1 is a diagram illustrating a configuration of a power conversion device according to the first embodiment.
- FIG. 2 is a diagram illustrating a configuration of the bidirectional switch.
- FIG. 3 is a diagram (part 1) for explaining the control operation of the control unit within one cycle of the single-phase AC voltage.
- FIG. 4 is a diagram (No. 2) for explaining the control operation of the control unit within one cycle of the single-phase AC voltage.
- FIG. 5A is a diagram illustrating a state of the bidirectional switch in the positive step-down mode.
- FIG. 5B is a diagram illustrating a state of the bidirectional switch in the positive step-down mode.
- FIG. 6A is a diagram illustrating a state of the bidirectional switch in the positive boost mode.
- FIG. 1 is a diagram illustrating a configuration of a power conversion device according to the first embodiment.
- FIG. 2 is a diagram illustrating a configuration of the bidirectional switch.
- FIG. 3 is a diagram (part 1) for explaining the control operation
- FIG. 6B is a diagram illustrating a state of the bidirectional switch in the positive boost mode.
- FIG. 7A is a diagram illustrating a state of the bidirectional switch in the negative step-down mode.
- FIG. 7B is a diagram illustrating a state of the bidirectional switch in the negative step-down mode.
- FIG. 8A is a diagram illustrating a state of the bidirectional switch in the negative boost mode.
- FIG. 8B is a diagram illustrating a state of the bidirectional switch in the negative boost mode.
- FIG. 9 is a diagram illustrating a configuration of a power conversion device according to the second embodiment.
- FIG. 10 is a diagram (No. 1) for describing the control operation of the control unit within one cycle of the single-phase AC voltage.
- FIG. 11 is a diagram (No.
- FIG. 12A is a diagram illustrating a state of the bidirectional switch in the positive step-down mode.
- FIG. 12B is a diagram illustrating a state of the bidirectional switch in the positive step-down mode.
- FIG. 13A is a diagram illustrating a state of the bidirectional switch in the positive boost mode.
- FIG. 13B is a diagram illustrating a state of the bidirectional switch in the positive boost mode.
- FIG. 14A is a diagram illustrating a state of the bidirectional switch in the negative step-down mode.
- FIG. 14B is a diagram illustrating a state of the bidirectional switch in the negative step-down mode.
- FIG. 15A is a diagram illustrating a state of the bidirectional switch in the negative boost mode.
- FIG. 15B is a diagram illustrating a state of the bidirectional switch in the negative boost mode.
- FIG. 1 is a diagram illustrating a configuration of a power conversion device according to the first embodiment
- FIG. 2 is a diagram illustrating a configuration of a bidirectional switch.
- the power conversion device 1 according to the first embodiment includes a DC power source 2a or a DC load 2b connected to DC side terminals T P and T N and an AC side connected to AC side terminals T R and T S.
- a load 3a or an AC power source 3b is connected.
- the DC side terminal TP is a DC side positive terminal
- the DC side terminal TN is a DC side negative terminal.
- the power converter 1 may include a DC power source 2a.
- the power conversion device 1 performs reversible power conversion between DC power and AC power, that is, power conversion between the DC power supply 2a / DC load 2b and the AC load 3a / AC power supply 3b reversibly. .
- the DC voltage Vb supplied from the DC power source 2a is converted into a single-phase AC voltage Vac and output to the AC load 3a.
- the single-phase AC voltage Vac supplied from the AC power supply 3b is converted into the DC voltage Vb and output to the DC load 2b.
- the DC power source 2a is, for example, a solar cell, a fuel cell, a storage battery, and the DC load 2b is, for example, an electric device or a storage battery.
- the AC load 3a is, for example, an electric device or a single-phase AC power source, and the AC power source 3b is, for example, a commercial single-phase AC power source.
- the typical single-phase AC voltage Vac is, for example, 100 V or 200 V, and the frequency thereof is, for example, 50 Hz or 60 Hz.
- the power conversion device 1 includes a power conversion unit 10, a control unit 20, an LC filter 31, an LCL filter 32, a DC voltage detection unit 33, an AC voltage detection unit 34, and a DC current detection unit 35.
- the power conversion unit 10 is connected to the DC side terminals T P and T N via the LC filter 31, and is connected to the AC side terminals T R and T S via the LCL filter 32.
- the power conversion unit 10 includes bidirectional switches SW1 to SW7, a reactor L1, and a capacitor C1.
- the bidirectional switches SW1 to SW6 are arranged between the DC side terminals T P and T N and the AC side terminals T R and T S.
- the bidirectional switch SW7 (corresponding to an example of a second bidirectional switch) is disposed between the AC side terminals T R and T S.
- the bidirectional switch SW1 is arranged between the DC terminal T P and AC-side terminal T R
- the bidirectional switch SW3 is provided between the AC terminal T R and the DC-side terminal T N Be placed. That is, the bidirectional switches SW1, SW3 is DC terminals T P, is connected in series between T N, it is connected to the AC terminals T R at the connection point N 1.
- Bidirectional switch SW2 is arranged between the DC terminal T P and AC-side terminal T S, the bidirectional switch SW4 is arranged between the AC-side terminal T S and the DC terminal T N. That is, the bidirectional switch SW2, SW4 is DC terminals T P, is connected in series between T N, it is connected to the AC terminals T S at the connection point N 2.
- Bidirectional switch SW5 is disposed through the reactor L1 between the DC-side terminal T P and AC-side terminal T R, the bidirectional switch SW6 is provided between the AC terminal T R and the DC-side terminal T N It arrange
- Reactor L1 has a function of suppressing current to capacitor C1 in a step-down mode described later, and functions as a constant current source for performing a step-up operation in a step-up mode described later.
- Bidirectional switch SW7 is AC terminal T R, it is disposed on the path between T S, reactor L1 and constituting the LCL filter 32 reactor L3, L4 via the AC terminal T R, connecting the T S .
- the bidirectional switch SW7 is turned on by the control unit 20 in the reflux mode as will be described later.
- the bidirectional switches SW1 to SW7 include, for example, as shown in FIG. 2, unidirectional switches 51 and 52 composed of reverse blocking IGBTs (Insulated Gate Bipolar Transistors). They are connected in parallel in opposite directions.
- IGBTs Insulated Gate Bipolar Transistors
- the control unit 20 performs both according to a power conversion direction instruction signal (not shown), a voltage detection result in the DC voltage detection unit 33 and the AC voltage detection unit 34, and a current detection result in the DC current detection unit 35.
- the direction switches SW1 to SW7 are controlled.
- a case where power is converted from the DC power source 2a to the AC load 3a will be described.
- Each of the bidirectional switches SW1 to SW7 is driven by PWM signals S1 to S7 output from the control unit 20.
- the PWM signals S1 to S7 serve as an on command to turn on the bidirectional switches SW1 to SW7 when they are at a high level.
- the control of the bidirectional switches SW1 to SW7 by the control unit 20 will be described in detail later.
- the bidirectional switches SW1 to SW7 can be configured to be in an on state when they are at a low level. In this case, the PWM signals S1 to S7 are on commands when at a low level.
- the LC filter 31 includes a reactor L2 and a capacitor C2, and is connected between the DC power supply 2a and the power conversion unit 10.
- the LC filter 31 removes high frequency components from the voltage output from the power conversion unit 10 to the DC power supply 2a.
- the capacitor C2 disposed between the power conversion unit 10 and the DC side terminals T P and T N functions as a smoothing capacitor.
- the LCL filter 32 includes reactors L3 and L4 connected in series and a capacitor C3 connected to a connection point of the reactors L3 and L4, and is connected between the power conversion unit 10 and the AC load 3a.
- the LCL filter 32 removes high frequency components from the AC voltage output from the power conversion unit 10 to the AC load 3a.
- the DC voltage detector 33 detects an instantaneous voltage value between the DC side terminals T P and T N. For example, the DC voltage detector 33 detects an instantaneous voltage value of the DC voltage Vb output from the DC power supply 2a. The detection result is notified from the DC voltage detection unit 33 to the control unit 20.
- the AC voltage detector 34 detects an instantaneous voltage value between the AC side terminals T R and T S. For example, the AC voltage detection unit 34 detects an instantaneous voltage value of the single-phase AC voltage Vac output from the power conversion unit 10 to the AC load 3a. The detection result is notified from the AC voltage detection unit 34 to the control unit 20.
- the DC current detection unit 35 is disposed between the DC terminal T N and the power conversion unit 10, detects a current flowing between the DC terminal T N and the power conversion unit 10.
- the DC current detection unit 35 is, for example, a current sensor that uses a Hall element that is a magnetoelectric conversion element.
- the arrangement of the DC current detection unit 35 is not limited to that shown in FIG. 1, and may be arranged between the DC side terminal TP and the power conversion unit 10.
- the power conversion device 1 configured in this way can perform reversible power conversion between direct current and alternating current.
- Control unit 20 controls power conversion unit 10 to convert power from DC voltage Vb to single-phase AC voltage Vac, and also converts power from single-phase AC voltage Vac to DC voltage Vb.
- the control unit 20 controls the bidirectional switches SW1 to SW7 to generate a DC voltage Vb supplied from the solar cell. It converts into the single phase alternating voltage Vac synchronized with a phase alternating current power supply, and outputs it to a single phase alternating current power supply.
- the on / off ratio is adjusted based on the DC voltage Vb of the solar cell detected by the DC voltage detector 33 and the voltage value of the single-phase AC voltage Vac detected by the AC voltage detector 34.
- the PWM control for the power conversion unit 10 is performed.
- the DC power source 2a is a secondary battery (storage battery) and the AC load 3a is a single-phase AC power source
- the single-phase AC voltage Vac supplied from the single-phase AC power source is converted into a DC voltage Vb.
- a charging current is passed through the secondary battery.
- the control unit 20 compares the current value detected by the DC current detection unit 35 with the current command, and adjusts the deviation amount based on a control signal generated by performing proportional integral (PI) control or the like.
- PI proportional integral
- the control unit 20 when power is converted from the DC voltage Vb to the single-phase AC voltage Vac, the control unit 20 includes the positive step-down mode, the positive step-up mode, the negative step-down mode, and the negative step within one cycle of the single-phase AC voltage Vac.
- the power conversion unit 10 is controlled in four control modes of the boost mode.
- FIG. 3 and 4 are diagrams for explaining the control operation of the control unit 20 within one cycle of the single-phase AC voltage Vac.
- FIG. 3 shows the relationship between the PWM signals S1 to S7 for driving the bidirectional switches SW1 to SW7, respectively, and each control mode.
- Ton1 a section in which a PWM signal S21 to be described later is on
- Toff1 an section in the off state
- Ton2 a section in which a PWM signal S22 to be described later is on
- Ton2 an section in which the PWM signal S22 is off is Toff2.
- each control mode in each control mode, the relationship between a transformation ratio MI1, a step-up switch ratio MI2, a PWM signal S21 and a PWM signal S22, which will be described later, and the PWM signals S1 to S7 (each bidirectional switch SW1 to SW7). Indicates the state. Note that period A is a positive step-down mode, period B is a positive step-up mode, period C is a negative step-down mode, and period D is a negative step-up mode.
- the PWM signal S21 is a PWM signal determined based on a transformation ratio MI1 represented by a ratio between the output voltage command Vac * and the DC voltage Vb of the DC power supply 2a.
- the transformation ratio MI1 is expressed as the following formula (1).
- a constant cycle time of the PWM control by the PWM signal S21 is Tc1, and an on time is Ton1.
- the PWM signal S22 is a PWM signal determined based on the boost switch ratio MI2.
- the boost switch ratio MI2 is expressed as the following formula (2).
- Tc2 the constant cycle time of the PWM control by the PWM signal S22
- Ton2 Ton2 / Tc2
- the output voltage command Vac * is a command generated by the control unit 20, and is expressed by the following formula (3) from the effective value Vo * of the single-phase AC voltage Vac and the frequency fo * of the single-phase AC voltage Vac.
- Vop * is a peak value command of the single-phase AC voltage Vac, and ⁇ o * is an angular frequency command.
- the boost switch ratio MI2 is limited so as not to be smaller than zero. As a result, when the transformation ratio MI1 is 1 or less, the boost switch ratio MI2 is fixed to zero.
- the transformation ratio MI1 and the step-up switch ratio MI2 are positive values by definition, but are shown as negative when the output voltage command Vac * is negative for convenience. Hereinafter, each control mode will be specifically described.
- the positive step-down mode First, the positive step-down mode will be described.
- the control unit 20 alternately turns on the bidirectional switches SW4 and SW5 and the bidirectional switch SW7 (see FIG. 3 and FIG. 4), thereby supplying the DC voltage Vb from the power conversion unit 10. Output.
- the PWM signals S4 and S5 for controlling the bidirectional switches SW4 and SW5 are the same as the PWM signal S21, and the PWM signal S7 for controlling the bidirectional switch SW7 is the PWM signal S21. Is an inverted signal.
- the high-frequency component is removed from the output from the power conversion unit 10 by the LCL filter 32 and is output to the AC load 3a.
- the DC voltage Vb is stepped down, and the positive voltage portion of the single-phase AC voltage Vac whose absolute value is equal to or less than the DC voltage Vb is output to the AC load 3a.
- 5A and 5B are diagrams showing states of the bidirectional switches SW1 to SW7 in the positive step-down mode.
- the control unit 20 In the positive boost mode, the control unit 20 always turns on the bidirectional switch SW5, and alternately turns on the bidirectional switch SW3 and the bidirectional switch SW4 (see FIGS. 3 and 4).
- the PWM signal S3 for controlling the bidirectional switch SW3 is the same as the above-described PWM signal S22, and the PWM signal S4 for controlling the bidirectional switch SW4 is an inverted signal of the above-described PWM signal S22. is there.
- the electrical energy released from the reactor L1 is smoothed by the capacitor C1 and output from the power converter 10.
- the DC voltage Vb is boosted, and the positive voltage portion of the single-phase AC voltage Vac whose absolute value is greater than the DC voltage Vb is output to the AC load 3a.
- 6A and 6B are diagrams showing states of the bidirectional switches SW1 to SW7 in the positive boost mode.
- control unit 20 always turns on the bidirectional switch SW5 and alternately turns on the bidirectional switch SW3 and the bidirectional switch SW4, thereby boosting the positive pulse voltage. Is output.
- the control unit 20 alternately turns on the bidirectional switches SW2 and SW6 and the bidirectional switch SW7 (see FIGS. 3 and 4) so that the DC voltage Vb is supplied from the power conversion unit 10. Output.
- the PWM signals S2 and S6 that control the bidirectional switches SW2 and SW6 are inverted signals of the above-described PWM signal S21, and the PWM signal S7 that controls the bidirectional switch SW7 is the above-described PWM signal. It is the same as S21.
- the high-frequency component is removed from the output from the power conversion unit 10 by the LCL filter 32 and is output to the AC load 3a.
- the DC voltage Vb is stepped down, and the negative voltage portion of the single-phase AC voltage Vac whose absolute value is equal to or less than the DC voltage Vb is output to the AC load 3a.
- 7A and 7B are diagrams showing states of the bidirectional switches SW1 to SW7 in the negative step-down mode.
- the control unit 20 always turns on the bidirectional switch SW6 and alternately turns on the bidirectional switch SW1 and the bidirectional switch SW2 (see FIGS. 3 and 4).
- the PWM signal S2 for controlling the bidirectional switch SW2 is the same as the above-described PWM signal S22, and the PWM signal S1 for controlling the bidirectional switch SW1 is an inverted signal of the above-described PWM signal S22. is there.
- the electrical energy released from the reactor L1 is smoothed by the capacitor C1 and output from the power converter 10.
- the DC voltage Vb is boosted, and the negative voltage portion of the single-phase AC voltage Vac whose absolute value is greater than the DC voltage Vb is output to the AC load 3a.
- 8A and 8B are diagrams showing states of the bidirectional switches SW1 to SW7 in the negative boost mode.
- control unit 20 always turns on the bidirectional switch SW6 and alternately turns on the bidirectional switch SW1 and the bidirectional switch SW2, thereby boosting the negative pulse voltage. Is output.
- the bidirectional switch that is turned on in the return mode is connected between the AC side terminals T R and T S.
- the bidirectional switch SW7 for performing conduction, conduction loss can be reduced.
- both are turned on in a mode for accumulating electric energy in the reactor L1 (hereinafter referred to as an energy accumulation mode) in the boost mode in the conversion from AC to DC.
- an energy accumulation mode a mode for accumulating electric energy in the reactor L1
- the bidirectional switch SW7 conduction loss can be reduced.
- the power converter according to the second embodiment differs from the power converter 1 according to the first embodiment in the configuration of the power converter and the control by the controller.
- parts different from those of the first embodiment will be mainly described, and common parts will be denoted by the same reference numerals and description thereof will be omitted as appropriate.
- FIG. 9 is a diagram illustrating a configuration of the power conversion device according to the second embodiment.
- the power conversion unit 10A of the power conversion device 1A according to the second embodiment includes reactors L11 and L12, bidirectional switches SW11 to SW16, and a capacitor C1.
- Each of the bidirectional switches SW11 to SW16 is driven by PWM signals S11 to S16 output from the control unit 20A.
- the PWM signals S11 to S16 serve as an on command to turn on the bidirectional switches SW11 to SW16 when they are at a high level.
- the bidirectional switches SW11 to SW16 can be configured to be turned on when they are at a low level. In this case, the PWM signals S11 to S16 are turned on when they are at a low level.
- Reactor L11, L12 are magnetically coupled to each other, the AC-side terminal T R, are connected to respective T S.
- the reactors L11 and L12 have a function of suppressing current to the capacitor C1 in the step-down mode described later, and function as a constant current source for performing a step-up operation in the step-up mode described later.
- the bidirectional switches SW11 to SW14 are arranged between the DC side terminals T P and T N and the AC side terminals T R and T S. Further, the bidirectional switches SW15 and SW16 (corresponding to an example of a second bidirectional switch) are arranged between the AC side terminals T R and T S.
- Bidirectional switch SW11 is disposed between the reactor L11 and a DC-side terminal T P via a (first corresponds to an example of the reactor) and the AC terminal T R, the bidirectional switch SW12 is DC terminal T N It is disposed between the AC terminal T R and. That is, the bidirectional switches SW11 and SW12 are connected in series between the DC side terminals T P and T N via the reactor L11.
- Bidirectional switch SW13 is disposed between the through reactor L12 (corresponding to an example of the second reactor) and the DC terminal T P and AC-side terminal T S, the bidirectional switch SW14 is DC terminal T N It is disposed between the AC terminal T S and. That is, the bidirectional switches SW13 and SW14 are connected in series between the DC side terminals T P and T N via the reactor L12.
- Bidirectional switch SW15 is AC terminal T R, are disposed on the path between T S, AC terminal T R via a reactor L12, connecting the T S.
- Bidirectional switch SW16 is AC terminal T R, are disposed on the path between T S, AC terminal T R via a reactor L11, connecting the T S.
- the bidirectional switches SW15 and SW16 are turned on by the control unit 20A in the reflux mode as will be described later.
- the bidirectional switches SW11 to SW16 include, for example, unidirectional switches 51 and 52 (see FIG. 2) configured by reverse blocking IGBTs, as with the bidirectional switches SW1 to SW7. 52 are connected in parallel in opposite directions.
- control unit 20A Similarly to the control unit 20, the control unit 20A generates the PWM signal S21 and the PWM signal S22, performs PWM control of the power conversion unit 10A, converts power from the DC voltage Vb to the single-phase AC voltage Vac, Power conversion is performed from the single-phase AC voltage Vac to the DC voltage Vb.
- 10 and 11 are diagrams corresponding to FIGS. 3 and 4 and are diagrams for explaining the control operation of the control unit 20A within one cycle of the single-phase AC voltage Vac.
- Control unit 20A like control unit 20, converts power from DC voltage Vb to single-phase AC voltage Vac, within one cycle of single-phase AC voltage Vac, positive step-down mode, positive step-up mode, negative
- the power converter 10A is controlled in four control modes: a step-down mode and a negative step-up mode.
- the positive step-down mode First, the positive step-down mode will be described.
- the control unit 20A always turns on the bidirectional switch SW14 and alternately turns on the bidirectional switch SW11 and the bidirectional switch SW16 (see FIGS. 10 and 11).
- a DC voltage Vb is output from the converter 10A.
- the PWM signal S11 for controlling the bidirectional switch SW11 is the same as the above-described PWM signal S21
- the PWM signal S16 for controlling the bidirectional switch SW16 is an inverted signal of the above-described PWM signal S21. is there.
- the high-frequency component is removed from the output from the power conversion unit 10A by the LCL filter 32 and output to the AC load 3a.
- the DC voltage Vb is stepped down, and the positive voltage portion of the single-phase AC voltage Vac whose absolute value is equal to or less than the DC voltage Vb is output to the AC load 3a.
- 12A and 12B are diagrams showing states of the bidirectional switches SW11 to SW16 in the positive step-down mode.
- the control unit 20A always turns on the bidirectional switch SW14 and turns on the bidirectional switch SW11 and the bidirectional switch SW13 alternately (see FIGS. 10 and 11).
- the PWM signal S13 for controlling the bidirectional switch SW13 is the same as the PWM signal S22, and the PWM signal S11 for controlling the bidirectional switch SW11 is an inverted signal of the PWM signal S22. is there.
- the electrical energy released from the reactor L11 is smoothed by the capacitor C1 and output from the power converter 10A.
- the DC voltage Vb is boosted, and the positive voltage portion of the single-phase AC voltage Vac whose absolute value is greater than the DC voltage Vb is output to the AC load 3a.
- 13A and 13B are diagrams showing states of the bidirectional switches SW11 to SW16 in the positive boost mode.
- the control unit 20A always turns on the bidirectional switch SW14 and alternately turns on the bidirectional switch SW11 and the bidirectional switch SW13, thereby boosting the positive pulse voltage. Is output.
- the positive step-up mode is always on state bidirectional switches SW14, DC terminals T N is connected to the AC terminal T S. Therefore, even in the positive boost mode, generation of a large pulse-like common mode voltage at the DC side terminals T P and T N can be suppressed.
- the negative step-down mode Next, the negative step-down mode will be described.
- the control unit 20A always turns on the bidirectional switch SW12 and alternately turns on the bidirectional switch SW13 and the bidirectional switch SW15 (see FIGS. 10 and 11).
- a DC voltage Vb is output from the converter 10A.
- the PWM signal S15 for controlling the bidirectional switch SW15 is the same as the above-described PWM signal S21
- the PWM signal S13 for controlling the bidirectional switch SW13 is an inverted signal of the above-described PWM signal S21. is there.
- the high-frequency component is removed from the output from the power conversion unit 10A by the LCL filter 32 and output to the AC load 3a.
- the DC voltage Vb is stepped down, and the negative voltage portion of the single-phase AC voltage Vac whose absolute value is equal to or less than the DC voltage Vb is output to the AC load 3a.
- 14A and 14B are diagrams showing states of the bidirectional switches SW11 to SW16 in the negative step-down mode.
- the control unit 20A always turns on the bidirectional switch SW12 and turns on the bidirectional switch SW11 and the bidirectional switch SW13 alternately (see FIGS. 10 and 11).
- the PWM signal S13 for controlling the bidirectional switch SW13 is the same as the above-described PWM signal S22, and the PWM signal S11 for controlling the bidirectional switch SW11 is an inverted signal of the above-described PWM signal S22. is there.
- the electrical energy released from the reactor L12 is smoothed by the capacitor C1 and output from the power converter 10A.
- the DC voltage Vb is boosted, and a negative voltage portion of the single-phase AC voltage Vac whose absolute value is greater than the DC voltage Vb is output to the AC load 3a.
- 15A and 15B are diagrams showing the states of the bidirectional switches SW11 to SW16 in the negative boost mode.
- the control unit 20A always turns on the bidirectional switch SW12 and alternately turns on the bidirectional switch SW11 and the bidirectional switch SW13, thereby boosting the negative pulse voltage. Is output.
- the negative step-up mode is always on state bidirectional switches SW12, DC terminals T N is connected to the AC terminals T R. Therefore, even in the negative boost mode, generation of a large pulse-like common mode voltage at the DC side terminals T P and T N can be suppressed.
- the bidirectional switches SW14 and SW16 are turned on in the energy accumulation mode in which electric energy is accumulated in the reactor L11 in the positive boost mode in the conversion from AC to DC.
- the bidirectional switches SW11 to SW13 are turned off.
- the bidirectional switches SW12 and SW16 are turned on and the bidirectional switches SW11, SW13, and SW14 are turned off. .
- it can suppress that a pulse-like large common mode voltage generate
- the bidirectional switch SW14 is turned off, and in the negative step-down mode, the bidirectional switch SW12 is turned off. It is also possible to prevent the potential fluctuation of. Also, for example, in the positive boost mode in the conversion from AC to DC, the bidirectional switch SW14 is turned off in the energy storage mode, and in the negative boost mode, the bidirectional switch SW12 is turned off in the energy storage mode. Thus, high-frequency potential fluctuations may be prevented from being applied to the DC power supply 2a during the energy storage mode. This also can suppress the generation of a large pulse-like common mode voltage at the DC side terminals T P and T N.
- the power converters 1 and 1A capable of step-up / step-down have been described as examples. However, even in a power converter that performs only step-down, the DC side terminal T is controlled by the same control as described above. The common mode voltages of P and TN can be stabilized.
- the DC load 2b is connected to the DC side terminals T P and T N of the power converters 1 and 1A, and the AC power source 3b is connected to the AC side terminals T R and T S , respectively. It is also possible to convert the alternating voltage to the direct current voltage Vb and output it to the direct current load 2b. Even in such a case, the common mode voltage can be stabilized by the same control as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
実施形態に係る電力変換装置は、電力変換部と、制御部とを備える。電力変換部は、複数の直流側端子と複数の交流側端子との間に配置される複数の第1の双方向スイッチと、交流側端子間に配置される第2の双方向スイッチおよびリアクトルとを有する。制御部は、直流電力から交流電力への降圧による電力変換における還流モード時、および/または、交流電力から直流電力への昇圧による電力変換におけるリアクトルへの電気エネルギーを蓄積するエネルギー蓄積モード時に、第2の双方向スイッチをオンにする。
Description
開示の実施形態は、電力変換装置に関する。
従来、直流電力と交流電力との間の電力変換を行う電力変換装置が知られている(例えば、特許文献1参照)。かかる電力変換装置は、複数のスイッチを備え、これらのスイッチをオン/オフ制御することによって電力変換を行う。
しかしながら、従来の電力変換装置では、還流モード時の電流経路上に複数個のスイッチが配置されるために、スイッチの数に応じた導通損失が発生する。また、直流から交流への変換における降圧モード、および、交流から直流への変換における昇圧モードにおいて、オン/オフ制御されるスイッチを介して交流側端子の一方が直流側の正極端子と負極端子に交互に接続され、直流側端子にパルス状の大きなコモンモード電圧が発生する。
実施形態の一態様は、上記に鑑みてなされたものであって、還流モード時の電流経路におけるスイッチ数を減らして導通損失を低減し、また、直流から交流への変換における降圧モード、または、交流から直流への変換における昇圧モードにおいて、直流側端子にパルス状の大きなコモンモード電圧の発生を抑制することができる電力変換装置を提供することを目的とする。
実施形態の一態様に係る電力変換装置は、電力変換部と、制御部とを備える。前記電力変換部は、直流電源または直流負荷に接続される複数の直流側端子と交流負荷または交流電源に接続される複数の交流側端子との間に配置される複数の第1の双方向スイッチと、前記交流側端子間に配置される第2の双方向スイッチおよびリアクトルとを有する。前記制御部は、前記電力変換部を制御して、直流電力と交流電力との間で電力変換を行う。前記制御部は、前記直流電力から前記交流電力への降圧による電力変換における還流モード時、および/または、前記交流電力から前記直流電力への昇圧による電力変換における前記リアクトルへの電気エネルギーを蓄積するエネルギー蓄積モード時に、前記第2の双方向スイッチをオンにする。
実施形態の一態様によれば、直流側端子にパルス状の大きなコモンモード電圧が発生することを抑制できる電力変換装置を提供することができる。
以下、添付図面を参照して、本願の開示する電力変換装置の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
(第1の実施形態)
図1は、第1の実施形態に係る電力変換装置の構成を示す図、図2は、双方向スイッチの構成を示す図である。図1に示すように、第1の実施形態に係る電力変換装置1は、直流側端子TP、TNに直流電源2aまたは直流負荷2bが接続され、交流側端子TR、TSに交流負荷3aまたは交流電源3bが接続される。直流側端子TPは、直流側の正極端子であり、直流側端子TNは、直流側の負極端子である。なお、電力変換装置1内に直流電源2aを含むこともできる。
図1は、第1の実施形態に係る電力変換装置の構成を示す図、図2は、双方向スイッチの構成を示す図である。図1に示すように、第1の実施形態に係る電力変換装置1は、直流側端子TP、TNに直流電源2aまたは直流負荷2bが接続され、交流側端子TR、TSに交流負荷3aまたは交流電源3bが接続される。直流側端子TPは、直流側の正極端子であり、直流側端子TNは、直流側の負極端子である。なお、電力変換装置1内に直流電源2aを含むこともできる。
電力変換装置1は、直流電力と交流電力との間での双方向の電力変換、すなわち、直流電源2a/直流負荷2bと交流負荷3a/交流電源3bとの間の電力変換を可逆的に行う。直流電源2aから交流負荷3aへ電力変換する場合には、直流電源2aから供給される直流電圧Vbを単相交流電圧Vacへ変換して、交流負荷3aへ出力する。交流電源3bから直流負荷2bへ電力変換する場合には、交流電源3bから供給される単相交流電圧Vacを直流電圧Vbへ変換して、直流負荷2bへ出力する。
直流電源2aは、例えば、太陽電池、燃料電池、蓄電池などであり、直流負荷2bは、例えば、電気機器や蓄電池などである。また、交流負荷3aは、例えば、電気機器や単相交流電源などであり、交流電源3bは、例えば、商用単相交流電源である。単相交流電圧Vacは、例えば、代表的なものは100Vまたは200Vであり、その周波数は、例えば、50Hzまたは60Hzである。
電力変換装置1は、電力変換部10と、制御部20と、LCフィルタ31と、LCLフィルタ32と、直流電圧検出部33と、交流電圧検出部34と、直流電流検出部35とを備える。
電力変換部10は、LCフィルタ31を介して、直流側端子TP、TNに接続され、LCLフィルタ32を介して交流側端子TR、TSに接続される。かかる電力変換部10は、双方向スイッチSW1~SW7と、リアクトルL1と、コンデンサC1とを備える。
図1に示すように、双方向スイッチSW1~SW6(第1の双方向スイッチの一例に相当)は、直流側端子TP、TNと交流側端子TR、TSとの間に配置される。また、双方向スイッチSW7(第2の双方向スイッチの一例に相当)は、交流側端子TR、TS間に配置される。
具体的には、双方向スイッチSW1は、直流側端子TPと交流側端子TRとの間に配置され、双方向スイッチSW3は、直流側端子TNと交流側端子TRとの間に配置される。すなわち、双方向スイッチSW1、SW3は、直流側端子TP、TN間に直列に接続され、その接続点N1で交流側端子TRに接続される。
双方向スイッチSW2は、直流側端子TPと交流側端子TSとの間に配置され、双方向スイッチSW4は、直流側端子TNと交流側端子TSとの間に配置される。すなわち、双方向スイッチSW2、SW4は、直流側端子TP、TN間に直列に接続され、その接続点N2で交流側端子TSに接続される。
双方向スイッチSW5は、直流側端子TPと交流側端子TRとの間にリアクトルL1を介して配置され、双方向スイッチSW6は、直流側端子TNと交流側端子TRとの間にリアクトルL1を介して配置される。すなわち、双方向スイッチSW5、SW6は、直流側端子TP、TN間に直列に接続され、その接続点N3でリアクトルL1を介して交流側端子TRに接続される。リアクトルL1は、後述する降圧モードでは、コンデンサC1への電流を抑制する機能を有し、また、後述する昇圧モードでは、昇圧動作を行うための定電流源として機能する。
双方向スイッチSW7は、交流側端子TR、TS間の経路上に配置され、リアクトルL1およびLCLフィルタ32を構成するリアクトルL3、L4を介して交流側端子TR、TS間を接続する。かかる双方向スイッチSW7は、後述するように還流モードで制御部20によってオンにされる。
双方向スイッチSW1~SW7は、例えば、図2に示すように、逆阻止型IGBT(Insulated Gate Bipolar Transistor)で構成される片方向スイッチ51、52を備えており、これら片方向スイッチ51、52は互いに逆方向に並列接続される。
制御部20は、図示していない電力変換の方向指示信号、直流電圧検出部33や交流電圧検出部34での電圧検出結果、および、直流電流検出部35での電流検出結果に応じて、双方向スイッチSW1~SW7の制御を行う。以下、直流電源2aから交流負荷3aへ電力変換する場合について説明する。
なお、交流負荷3a側から直流電源2a側への電力変換動作は、直流電流検出部35の電流検出結果の符号を逆にすれば、直流電源2aから交流負荷3aへ電力変換する場合の説明と同一であるため、その説明は省略する。また、交流電源3bと直流負荷2bとの間の電力変換も、直流電源2aと交流負荷3aとの間の電力変換と同様の動作である。
双方向スイッチSW1~SW7のそれぞれは、制御部20から出力されるPWM信号S1~S7によって駆動される。PWM信号S1~S7は、Highレベルのときに双方向スイッチSW1~SW7をオン状態にするオン指令となる。制御部20による双方向スイッチSW1~SW7の制御については、後で詳述する。なお、双方向スイッチSW1~SW7は、Lowレベルのときにオン状態となるように構成することもでき、この場合、PWM信号S1~S7は、Lowレベルのときにオン指令となる。
LCフィルタ31は、リアクトルL2とコンデンサC2とを有し、直流電源2aと電力変換部10との間に接続される。かかるLCフィルタ31によって電力変換部10から直流電源2aへ出力される電圧から高周波成分が除去される。なお、例えば、電力変換装置1において、交流側端子TR、TSに供給される単相交流電圧Vacを昇降圧して直流電圧Vbへ変換し、直流側端子TP、TNから出力する場合、電力変換部10と直流側端子TP、TNとの間に配置されたコンデンサC2が平滑用コンデンサとして機能する。
LCLフィルタ32は、直列に接続されたリアクトルL3、L4と、リアクトルL3、L4の接続点に接続されたコンデンサC3とを有し、電力変換部10と交流負荷3aとの間に接続される。かかるLCLフィルタ32によって電力変換部10から交流負荷3aへ出力される交流電圧から高周波成分が除去される。
直流電圧検出部33は、直流側端子TP、TN間の瞬時電圧値を検出する。例えば、直流電圧検出部33は、直流電源2aから出力される直流電圧Vbの瞬時電圧値を検出する。かかる検出結果は、直流電圧検出部33から制御部20へ通知される。
交流電圧検出部34は、交流側端子TR、TS間の瞬時電圧値を検出する。例えば、交流電圧検出部34は、電力変換部10から交流負荷3aへ出力される単相交流電圧Vacの瞬時電圧値を検出する。かかる検出結果は、交流電圧検出部34から制御部20へ通知される。
直流電流検出部35は、直流側端子TNと電力変換部10との間に配置され、直流側端子TNと電力変換部10との間に流れる電流を検出する。かかる直流電流検出部35は、例えば、磁電変換素子であるホール素子を利用した電流センサである。なお、直流電流検出部35の配置は、図1に示すものに限られず、直流側端子TPと電力変換部10との間に配置されるようにしてもよい。
このように構成された電力変換装置1は、直流と交流との電力変換を可逆的に行うことができる。制御部20は、電力変換部10を制御して、直流電圧Vbから単相交流電圧Vacへ電力変換し、また、単相交流電圧Vacから直流電圧Vbへ電力変換する。
例えば、直流電源2aが太陽電池であり、交流負荷3aが単相交流電源である場合、制御部20は、双方向スイッチSW1~SW7を制御して、太陽電池から供給される直流電圧Vbを単相交流電源と同期した単相交流電圧Vacへ変換して単相交流電源へ出力する。かかる制御では、直流電圧検出部33で検出された太陽電池の直流電圧Vbと、交流電圧検出部34で検出された単相交流電圧Vacの電圧値とに基づいて調整されたオン/オフ比率で、電力変換部10に対するPWM制御が行われる。
また、例えば、直流電源2aが二次電池(蓄電池)であり、交流負荷3aが単相交流電源である場合、単相交流電源から供給される単相交流電圧Vacを直流電圧Vbへ変換して二次電池に充電電流を流す。かかる制御では、制御部20において、直流電流検出部35で検出された電流値が電流指令と比較され、その偏差量に比例積分(PI)制御を施す等によって生成した制御信号に基づき調整されたオン/オフ比率で電力変換部10に対するPWM制御が行われる。
以下、直流電圧Vbから単相交流電圧Vacへ電力変換する場合の動作の一例について具体的に説明する。単相交流電圧Vacの振幅が直流電圧Vbよりも大きい場合、単相交流電圧Vacの1周期内で単相交流電圧Vacの瞬時電圧値の絶対値が直流電圧Vbよりも大きい場合と、小さい場合が存在する。直流電圧Vbが単相交流電圧Vacよりも小さい場合には、昇圧する必要があり、直流電圧Vbが単相交流電圧Vacよりも大きい場合には、降圧する必要がある。
そこで、制御部20は、直流電圧Vbから単相交流電圧Vacへ電力変換する場合、単相交流電圧Vacの1周期内において、正の降圧モード、正の昇圧モード、負の降圧モードおよび負の昇圧モードの4つの制御モードで電力変換部10を制御する。
図3および図4は、単相交流電圧Vacの1周期内での制御部20の制御動作を説明するための図である。図3では、双方向スイッチSW1~SW7をそれぞれ駆動するPWM信号S1~S7と、各制御モードとの関係が示される。なお、降圧モードでは、後述するPWM信号S21がオンの区間をTon1、オフの区間をToff1、昇圧モードでは、後述するPWM信号S22がオンの区間をTon2、オフの区間をToff2としている。
また、図4では、各制御モードにおいて、後述する変圧比率MI1、昇圧スイッチ比率MI2、PWM信号S21およびPWM信号S22の関係、並びに、各PWM信号S1~S7(各双方向スイッチSW1~SW7)の状態を示している。なお、期間Aは正の降圧モード、期間Bは正の昇圧モード、期間Cは負の降圧モード、期間Dは負の昇圧モードである。
PWM信号S21は、出力電圧指令Vac*と直流電源2aの直流電圧Vbとの比で表わされる変圧比率MI1に基づいて決められるPWM信号である。かかる変圧比率MI1は、下記式(1)のように表される。
MI1=Ton1/Tc1=|Vac*|/Vb・・・(1)
なお、ここで、PWM信号S21によるPWM制御の一定周期時間をTc1、オンしている時間をTon1としている。
MI1=Ton1/Tc1=|Vac*|/Vb・・・(1)
なお、ここで、PWM信号S21によるPWM制御の一定周期時間をTc1、オンしている時間をTon1としている。
また、PWM信号S22は、昇圧スイッチ比率MI2に基づいて決められるPWM信号である。かかる昇圧スイッチ比率MI2は、下記式(2)のように表される。
MI2=Ton2/Tc2=1-1/MI1・・・(2)
なお、ここで、PWM信号S22によるPWM制御の一定周期時間をTc2、オンしている時間をTon2としている。
MI2=Ton2/Tc2=1-1/MI1・・・(2)
なお、ここで、PWM信号S22によるPWM制御の一定周期時間をTc2、オンしている時間をTon2としている。
出力電圧指令Vac*は、制御部20によって生成される指令であり、単相交流電圧Vacの実効値Vo*と単相交流電圧Vacの周波数fo*とから下記式(3)で表される。
Vac*=Vop*cosωo*t=√2Vo*cos2πfo*t・・・(3)
Vop*は単相交流電圧Vacのピーク値指令、ωo*は角周波数指令である。
Vac*=Vop*cosωo*t=√2Vo*cos2πfo*t・・・(3)
Vop*は単相交流電圧Vacのピーク値指令、ωo*は角周波数指令である。
昇圧スイッチ比率MI2はゼロよりも小さくならないように制限される。この結果、変圧比率MI1が1以下であった場合、昇圧スイッチ比率MI2はゼロに固定される。変圧比率MI1、昇圧スイッチ比率MI2は定義上は正値であるが、便宜上、出力電圧指令Vac*が負の場合には負として図示している。以下、各制御モードについて具体的に説明する。
(正の降圧モード)
まず、正の降圧モードについて説明する。正の降圧モードでは、制御部20は、双方向スイッチSW4、SW5と双方向スイッチSW7とを交互にオン状態にする(図3および図4参照)ことで、電力変換部10から直流電圧Vbを出力させる。なお、かかる正の降圧モードでは、双方向スイッチSW4、SW5を制御するPWM信号S4、S5は上述のPWM信号S21と同一であり、双方向スイッチSW7を制御するPWM信号S7は上述のPWM信号S21の反転信号である。
まず、正の降圧モードについて説明する。正の降圧モードでは、制御部20は、双方向スイッチSW4、SW5と双方向スイッチSW7とを交互にオン状態にする(図3および図4参照)ことで、電力変換部10から直流電圧Vbを出力させる。なお、かかる正の降圧モードでは、双方向スイッチSW4、SW5を制御するPWM信号S4、S5は上述のPWM信号S21と同一であり、双方向スイッチSW7を制御するPWM信号S7は上述のPWM信号S21の反転信号である。
電力変換部10からの出力はLCLフィルタ32によって高周波成分が除去され交流負荷3aへ出力される。これにより、直流電圧Vbが降圧されて、単相交流電圧Vacのうち絶対値が直流電圧Vb以下の正電圧部分が交流負荷3aへ出力される。
ここで、正の降圧モードでの双方向スイッチSW1~SW7の状態について説明する。図5Aおよび図5Bは、正の降圧モードでの双方向スイッチSW1~SW7の状態を示す図である。
正の降圧モードでは、双方向スイッチSW4、SW5がオン状態で、双方向スイッチSW7がオフ状態の場合、図5Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW5、リアクトルL1、交流負荷3a、双方向スイッチSW4、直流電源2aの負極の経路で電流が流れる。
一方、双方向スイッチSW4、SW5がオフ状態で、双方向スイッチSW7がオン状態の場合、図5Bに示すスイッチ状態となる。そのため、双方向スイッチSW7の一端、リアクトルL1、交流負荷3a、双方向スイッチSW7の他端の経路で電流が流れる還流モードとなる。この時、電流が流れる双方向スイッチは1つとなり導通損失が低減できる。
(正の昇圧モード)
次に、正の昇圧モードについて説明する。正の昇圧モードでは、制御部20は、双方向スイッチSW5を常にオン状態にし、双方向スイッチSW3と双方向スイッチSW4とを交互にオン状態にする(図3および図4参照)。
次に、正の昇圧モードについて説明する。正の昇圧モードでは、制御部20は、双方向スイッチSW5を常にオン状態にし、双方向スイッチSW3と双方向スイッチSW4とを交互にオン状態にする(図3および図4参照)。
これにより、リアクトルL1に電気エネルギーを蓄積し、蓄積した電気エネルギーを放出する。なお、かかる正の昇圧モードでは、双方向スイッチSW3を制御するPWM信号S3は上述のPWM信号S22と同一であり、双方向スイッチSW4を制御するPWM信号S4は上述のPWM信号S22の反転信号である。
リアクトルL1から放出された電気エネルギーはコンデンサC1によって平滑されて電力変換部10から出力される。これにより、直流電圧Vbが昇圧されて、単相交流電圧Vacのうち絶対値が直流電圧Vbより大きい正電圧部分が交流負荷3aへ出力される。
ここで、正の昇圧モードでの双方向スイッチSW1~SW7の状態について説明する。図6Aおよび図6Bは、正の昇圧モードでの双方向スイッチSW1~SW7の状態を示す図である。
正の昇圧モードでは、双方向スイッチSW3、SW5がオン状態で双方向スイッチSW4がオフ状態の場合、図6Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW5、リアクトルL1、双方向スイッチSW3、直流電源2aの負極の経路で電流が流れる。これにより、リアクトルL1に電流エネルギーが蓄積される。
この状態から、双方向スイッチSW3がオフ状態になり、双方向スイッチSW4がオン状態になった場合、図6Bに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW5、リアクトルL1、交流負荷3a、双方向スイッチSW4、直流電源2aの負極の経路が形成され、リアクトルL1に蓄積された電気エネルギーが交流負荷3a側へ放出される。
このように、正の昇圧モードでは、制御部20は、双方向スイッチSW5を常にオン状態とし、双方向スイッチSW3と双方向スイッチSW4を交互にオン状態にすることで、昇圧した正のパルス電圧を出力する。
(負の降圧モード)
次に、負の降圧モードについて説明する。負の降圧モードでは、制御部20は、双方向スイッチSW2、SW6と双方向スイッチSW7とを交互にオン状態にする(図3および図4参照)ことで、電力変換部10から直流電圧Vbを出力させる。なお、かかる負の降圧モードでは、双方向スイッチSW2、SW6を制御するPWM信号S2、S6は上述のPWM信号S21の反転信号であり、双方向スイッチSW7を制御するPWM信号S7は上述のPWM信号S21と同一である。
次に、負の降圧モードについて説明する。負の降圧モードでは、制御部20は、双方向スイッチSW2、SW6と双方向スイッチSW7とを交互にオン状態にする(図3および図4参照)ことで、電力変換部10から直流電圧Vbを出力させる。なお、かかる負の降圧モードでは、双方向スイッチSW2、SW6を制御するPWM信号S2、S6は上述のPWM信号S21の反転信号であり、双方向スイッチSW7を制御するPWM信号S7は上述のPWM信号S21と同一である。
電力変換部10からの出力はLCLフィルタ32によって高周波成分が除去され交流負荷3aへ出力される。これにより、直流電圧Vbが降圧されて、単相交流電圧Vacのうち絶対値が直流電圧Vb以下の負電圧部分が交流負荷3aに出力される。
ここで、負の降圧モードでの双方向スイッチSW1~SW7の状態について説明する。図7Aおよび図7Bは、負の降圧モードでの双方向スイッチSW1~SW7の状態を示す図である。
負の降圧モードでは、双方向スイッチSW2、SW6がオン状態で双方向スイッチSW7がオフ状態の場合、図7Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW2、交流負荷3a、リアクトルL1、双方向スイッチSW6、直流電源2aの負極の経路で電流が流れる。
一方、双方向スイッチSW2、SW6がオフ状態で双方向スイッチSW7がオン状態の場合、図7Bに示すスイッチ状態となる。そのため、双方向スイッチSW7の一端、交流負荷3a、リアクトルL1、双方向スイッチSW7の他端の経路で電流が流れる還流モードとなる。この時、電流が流れる双方向スイッチは1つとなり導通損失が低減できる。
(負の昇圧モード)
次に、負の昇圧モードについて説明する。負の昇圧モードでは、制御部20は、双方向スイッチSW6を常にオン状態にし、双方向スイッチSW1と双方向スイッチSW2とを交互にオン状態にする(図3および図4参照)。
次に、負の昇圧モードについて説明する。負の昇圧モードでは、制御部20は、双方向スイッチSW6を常にオン状態にし、双方向スイッチSW1と双方向スイッチSW2とを交互にオン状態にする(図3および図4参照)。
これにより、リアクトルL1に電気エネルギーを蓄積し、蓄積した電気エネルギーを放出する。なお、かかる負の昇圧モードでは、双方向スイッチSW2を制御するPWM信号S2は上述のPWM信号S22と同一であり、双方向スイッチSW1を制御するPWM信号S1は上述のPWM信号S22の反転信号である。
リアクトルL1から放出された電気エネルギーはコンデンサC1によって平滑されて電力変換部10から出力される。これにより、直流電圧Vbが昇圧されて単相交流電圧Vacのうち絶対値が直流電圧Vbより大きい負電圧部分が交流負荷3aへ出力される。
ここで、負の昇圧モードでの双方向スイッチSW1~SW7の状態について説明する。図8Aおよび図8Bは、負の昇圧モードでの双方向スイッチSW1~SW7の状態を示す図である。
負の昇圧モードでは、双方向スイッチSW1、SW6がオン状態で双方向スイッチSW2がオフ状態の場合、図8Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW1、リアクトルL1、双方向スイッチSW6、直流電源2aの負極の経路で電流が流れる。これにより、リアクトルL1に電流エネルギーが蓄積される。
この状態から、双方向スイッチSW1がオフ状態になり、双方向スイッチSW2がオン状態になった場合、図8Bに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW2、交流負荷3a、リアクトルL1、双方向スイッチSW6、直流電源2aの負極の経路が形成され、リアクトルL1に蓄積された電気エネルギーが交流負荷3a側へ放出される。
このように、負の昇圧モードでは、制御部20は、双方向スイッチSW6を常にオン状態とし、双方向スイッチSW1と双方向スイッチSW2を交互にオン状態にすることで、昇圧した負のパルス電圧を出力する。
以上のように、第1の実施形態に係る電力変換装置1では、直流から交流への変換における降圧モードにおいて、還流モード時にオンにする双方向スイッチを交流側端子TR、TS間の接続を行う双方向スイッチSW7とすることで、導通損失を低減できる。
また、第1の実施形態に係る電力変換装置1では、交流から直流への変換における昇圧モードにおいて、リアクトルL1に電気エネルギーを蓄積するモード(以下、エネルギー蓄積モードと記載する)時にオンにする双方向スイッチを、双方向スイッチSW7とすることで、導通損失を低減できる。
(第2の実施形態)
次に、第2の実施形態に係る電力変換装置について説明する。第2の実施形態に係る電力変換装置は、第1の実施形態に係る電力変換装置1に対して電力変換部の構成および制御部による制御が異なる。以下においては、第1の実施形態と異なる部分を主として説明し、共通する部分については同一符号を付し適宜説明を省略する。
次に、第2の実施形態に係る電力変換装置について説明する。第2の実施形態に係る電力変換装置は、第1の実施形態に係る電力変換装置1に対して電力変換部の構成および制御部による制御が異なる。以下においては、第1の実施形態と異なる部分を主として説明し、共通する部分については同一符号を付し適宜説明を省略する。
図9は、第2の実施形態に係る電力変換装置の構成を示す図である。図9に示すように、第2の実施形態に係る電力変換装置1Aの電力変換部10Aは、リアクトルL11、L12と、双方向スイッチSW11~SW16と、コンデンサC1とを備える。
双方向スイッチSW11~SW16のそれぞれは、制御部20Aから出力されるPWM信号S11~S16によって駆動される。PWM信号S11~S16は、Highレベルのときに双方向スイッチSW11~SW16をオン状態にするオン指令となる。なお、双方向スイッチSW11~SW16は、Lowレベルのときにオン状態となるように構成することもでき、この場合、PWM信号S11~S16は、Lowレベルのときにオン指令となる。
リアクトルL11、L12は、互いに磁気結合され、交流側端子TR、TSのそれぞれに接続される。かかるリアクトルL11、L12は、後述する降圧モードでは、コンデンサC1への電流を抑制する機能を有し、また、後述する昇圧モードでは、昇圧動作を行うための定電流源として機能する。
双方向スイッチSW11~SW14(第1の双方向スイッチの一例に相当)は、直流側端子TP、TNと交流側端子TR、TSとの間に配置される。また、双方向スイッチSW15、SW16(第2の双方向スイッチの一例に相当)は、交流側端子TR、TS間に配置される。
双方向スイッチSW11は、リアクトルL11(第1のリアクトルの一例に相当)を介して直流側端子TPと交流側端子TRとの間に配置され、双方向スイッチSW12は、直流側端子TNと交流側端子TRとの間に配置される。すなわち、双方向スイッチSW11、SW12は、直流側端子TP、TN間にリアクトルL11を介して直列に接続される。
双方向スイッチSW13は、リアクトルL12(第2のリアクトルの一例に相当)を介して直流側端子TPと交流側端子TSとの間に配置され、双方向スイッチSW14は、直流側端子TNと交流側端子TSとの間に配置される。すなわち、双方向スイッチSW13、SW14は、直流側端子TP、TN間にリアクトルL12を介して直列に接続される。
双方向スイッチSW15は、交流側端子TR、TS間の経路上に配置され、リアクトルL12を介して交流側端子TR、TS間を接続する。双方向スイッチSW16は、交流側端子TR、TS間の経路上に配置され、リアクトルL11を介して交流側端子TR、TS間を接続する。かかる双方向スイッチSW15、SW16は、後述するように還流モードで制御部20Aによってオンにされる。
双方向スイッチSW11~SW16は、例えば、双方向スイッチSW1~SW7と同様に、逆阻止型IGBTで構成される片方向スイッチ51、52(図2参照)を備えており、これら片方向スイッチ51、52は互いに逆方向に並列接続される。
制御部20Aは、制御部20と同様に、PWM信号S21およびPWM信号S22を生成し、電力変換部10AのPWM制御を行って、直流電圧Vbから単相交流電圧Vacへ電力変換し、また、単相交流電圧Vacから直流電圧Vbへ電力変換する。
以下、第1の実施形態と同様に、直流電源2aから交流負荷3aへ電力変換する場合について説明する。なお、図10および図11は、図3および図4に対応する図であり、単相交流電圧Vacの1周期内での制御部20Aの制御動作を説明するための図である。
制御部20Aは、制御部20と同様に、直流電圧Vbから単相交流電圧Vacへ電力変換する場合、単相交流電圧Vacの1周期内において、正の降圧モード、正の昇圧モード、負の降圧モードおよび負の昇圧モードの4つの制御モードで電力変換部10Aを制御する。
(正の降圧モード)
まず、正の降圧モードについて説明する。正の降圧モードでは、制御部20Aは、双方向スイッチSW14を常にオン状態にし、双方向スイッチSW11と双方向スイッチSW16とを交互にオン状態にする(図10および図11参照)ことで、電力変換部10Aから直流電圧Vbを出力させる。なお、かかる正の降圧モードでは、双方向スイッチSW11を制御するPWM信号S11は上述のPWM信号S21と同一であり、双方向スイッチSW16を制御するPWM信号S16は上述のPWM信号S21の反転信号である。
まず、正の降圧モードについて説明する。正の降圧モードでは、制御部20Aは、双方向スイッチSW14を常にオン状態にし、双方向スイッチSW11と双方向スイッチSW16とを交互にオン状態にする(図10および図11参照)ことで、電力変換部10Aから直流電圧Vbを出力させる。なお、かかる正の降圧モードでは、双方向スイッチSW11を制御するPWM信号S11は上述のPWM信号S21と同一であり、双方向スイッチSW16を制御するPWM信号S16は上述のPWM信号S21の反転信号である。
電力変換部10Aからの出力はLCLフィルタ32によって高周波成分が除去され交流負荷3aへ出力される。これにより、直流電圧Vbが降圧されて、単相交流電圧Vacのうち絶対値が直流電圧Vb以下の正電圧部分が交流負荷3aへ出力される。
ここで、正の降圧モードでの双方向スイッチSW11~SW16の状態について説明する。図12Aおよび図12Bは、正の降圧モードでの双方向スイッチSW11~SW16の状態を示す図である。
正の降圧モードでは、双方向スイッチSW11、SW14がオン状態で、双方向スイッチSW16がオフ状態の場合、図12Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW11、リアクトルL11、交流負荷3a、双方向スイッチSW14、直流電源2aの負極の経路で電流が流れる。
一方、双方向スイッチSW11がオフ状態で、双方向スイッチSW14、SW16がオン状態の場合、図12Bに示すスイッチ状態となる。そのため、双方向スイッチSW16の一端、リアクトルL11、交流負荷3a、双方向スイッチSW16の他端の経路で電流が流れる還流モードとなる。この時、電流が流れる双方向スイッチは1つとなり導通損失が低減できる。
また、還流モードにおいて、双方向スイッチSW14が常にオン状態であり、直流側端子TNは交流側端子TSに接続される。そのため、正の降圧モードでは、パルス状の大きなコモンモード電圧が直流側端子TP、TNに発生することを抑制できる。
(正の昇圧モード)
次に、正の昇圧モードについて説明する。正の昇圧モードでは、制御部20Aは、双方向スイッチSW14を常にオン状態にし、双方向スイッチSW11と双方向スイッチSW13とを交互にオン状態にする(図10および図11参照)。
次に、正の昇圧モードについて説明する。正の昇圧モードでは、制御部20Aは、双方向スイッチSW14を常にオン状態にし、双方向スイッチSW11と双方向スイッチSW13とを交互にオン状態にする(図10および図11参照)。
これにより、リアクトルL12に電気エネルギーを蓄積し、かかる電気エネルギーをリアクトルL12に磁気的に結合されたリアクトルL11から放出する。なお、かかる正の昇圧モードでは、双方向スイッチSW13を制御するPWM信号S13は上述のPWM信号S22と同一であり、双方向スイッチSW11を制御するPWM信号S11は上述のPWM信号S22の反転信号である。
リアクトルL11から放出された電気エネルギーはコンデンサC1によって平滑されて電力変換部10Aから出力される。これにより、直流電圧Vbが昇圧されて、単相交流電圧Vacのうち絶対値が直流電圧Vbより大きい正電圧部分が交流負荷3aへ出力される。
ここで、正の昇圧モードでの双方向スイッチSW11~SW16の状態について説明する。図13Aおよび図13Bは、正の昇圧モードでの双方向スイッチSW11~SW16の状態を示す図である。
正の昇圧モードでは、双方向スイッチSW13、SW14がオン状態で双方向スイッチSW11がオフ状態の場合、図13Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW13、リアクトルL12、双方向スイッチSW14、直流電源2aの負極の経路で電流が流れる。これにより、リアクトルL12に電流エネルギーが蓄積される。
この状態から、双方向スイッチSW13がオフ状態になり、双方向スイッチSW11がオン状態になった場合、図13Bに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW11、リアクトルL11、交流負荷3a、双方向スイッチSW14、直流電源2aの負極の経路が形成され、リアクトルL12に蓄積された電気エネルギーがリアクトルL11から交流負荷3a側へ放出される。
このように、正の昇圧モードでは、制御部20Aは、双方向スイッチSW14を常にオン状態とし、双方向スイッチSW11と双方向スイッチSW13を交互にオン状態にすることで、昇圧した正のパルス電圧を出力する。正の昇圧モードでは、双方向スイッチSW14が常にオン状態であり、直流側端子TNは交流側端子TSに接続される。そのため、正の昇圧モードにおいても、パルス状の大きなコモンモード電圧が直流側端子TP、TNに発生することを抑制できる。
(負の降圧モード)
次に、負の降圧モードについて説明する。負の降圧モードでは、制御部20Aは、双方向スイッチSW12を常にオン状態にし、双方向スイッチSW13と双方向スイッチSW15とを交互にオン状態にする(図10および図11参照)ことで、電力変換部10Aから直流電圧Vbを出力させる。なお、かかる負の降圧モードでは、双方向スイッチSW15を制御するPWM信号S15は上述のPWM信号S21と同一であり、双方向スイッチSW13を制御するPWM信号S13は上述のPWM信号S21の反転信号である。
次に、負の降圧モードについて説明する。負の降圧モードでは、制御部20Aは、双方向スイッチSW12を常にオン状態にし、双方向スイッチSW13と双方向スイッチSW15とを交互にオン状態にする(図10および図11参照)ことで、電力変換部10Aから直流電圧Vbを出力させる。なお、かかる負の降圧モードでは、双方向スイッチSW15を制御するPWM信号S15は上述のPWM信号S21と同一であり、双方向スイッチSW13を制御するPWM信号S13は上述のPWM信号S21の反転信号である。
電力変換部10Aからの出力はLCLフィルタ32によって高周波成分が除去され交流負荷3aへ出力される。これにより、直流電圧Vbが降圧されて、単相交流電圧Vacのうち絶対値が直流電圧Vb以下の負電圧部分が交流負荷3aへ出力される。
ここで、負の降圧モードでの双方向スイッチSW11~SW16の状態について説明する。図14Aおよび図14Bは、負の降圧モードでの双方向スイッチSW11~SW16の状態を示す図である。
負の降圧モードでは、双方向スイッチSW12、SW13がオン状態で、双方向スイッチSW15がオフ状態の場合、図14Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW13、リアクトルL12、交流負荷3a、双方向スイッチSW12、直流電源2aの負極の経路で電流が流れる。
一方、双方向スイッチSW13がオフ状態で、双方向スイッチSW12、SW15がオン状態の場合、図14Bに示すスイッチ状態となる。そのため、双方向スイッチSW15の一端、リアクトルL12、交流負荷3a、双方向スイッチSW15の他端の経路で電流が流れる還流モードとなる。この時、電流が流れる双方向スイッチは1つとなり導通損失が低減できる。
また、還流モードにおいて、双方向スイッチSW12が常にオン状態であり、直流側端子TNは交流側端子TRに接続される。そのため、負の降圧モードでは、パルス状の大きなコモンモード電圧が直流側端子TP、TNに発生することを抑制できる。
(負の昇圧モード)
次に、負の昇圧モードについて説明する。負の昇圧モードでは、制御部20Aは、双方向スイッチSW12を常にオン状態にし、双方向スイッチSW11と双方向スイッチSW13とを交互にオン状態にする(図10および図11参照)。
次に、負の昇圧モードについて説明する。負の昇圧モードでは、制御部20Aは、双方向スイッチSW12を常にオン状態にし、双方向スイッチSW11と双方向スイッチSW13とを交互にオン状態にする(図10および図11参照)。
これにより、リアクトルL11に電気エネルギーを蓄積し、かかる電気エネルギーをリアクトルL11に磁気的に結合されたリアクトルL12から放出する。なお、かかる負の昇圧モードでは、双方向スイッチSW13を制御するPWM信号S13は上述のPWM信号S22と同一であり、双方向スイッチSW11を制御するPWM信号S11は上述のPWM信号S22の反転信号である。
リアクトルL12から放出された電気エネルギーはコンデンサC1によって平滑されて電力変換部10Aから出力される。これにより、直流電圧Vbが昇圧されて、単相交流電圧Vacのうち絶対値が直流電圧Vbより大きい負電圧部分が交流負荷3aへ出力される。
ここで、負の昇圧モードでの双方向スイッチSW11~SW16の状態について説明する。図15Aおよび図15Bは、負の昇圧モードでの双方向スイッチSW11~SW16の状態を示す図である。
負の昇圧モードでは、双方向スイッチSW11、SW12がオン状態で双方向スイッチSW13がオフ状態の場合、図15Aに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW11、リアクトルL11、双方向スイッチSW12、直流電源2aの負極の経路で電流が流れる。これにより、リアクトルL11に電流エネルギーが蓄積される。
この状態から、双方向スイッチSW11がオフ状態になり、双方向スイッチSW13がオン状態になった場合、図15Bに示すスイッチ状態となる。そのため、直流電源2aの正極、双方向スイッチSW13、リアクトルL12、交流負荷3a、双方向スイッチSW12、直流電源2aの負極の経路が形成され、リアクトルL11に蓄積された電気エネルギーがリアクトルL12から交流負荷3a側へ放出される。
このように、負の昇圧モードでは、制御部20Aは、双方向スイッチSW12を常にオン状態とし、双方向スイッチSW11と双方向スイッチSW13を交互にオン状態にすることで、昇圧した負のパルス電圧を出力する。負の昇圧モードでは、双方向スイッチSW12が常にオン状態であり、直流側端子TNは交流側端子TRに接続される。そのため、負の昇圧モードにおいても、パルス状の大きなコモンモード電圧が直流側端子TP、TNに発生することを抑制できる。
また、第2の実施形態に係る電力変換装置1Aでは、交流から直流への変換における正の昇圧モードにおいて、リアクトルL11に電気エネルギーを蓄積するエネルギー蓄積モード時に、双方向スイッチSW14、SW16をオンし、双方向スイッチSW11~SW13をオフにする。また、交流から直流への変換における負の昇圧モードにおいて、リアクトルL12に電気エネルギーを蓄積するエネルギー蓄積モード時に、双方向スイッチSW12、SW16をオンにし、双方向スイッチSW11、SW13、SW14をオフにする。これにより、エネルギー蓄積モード時に、パルス状の大きなコモンモード電圧が直流側端子TP、TNに発生することを抑制できる。
なお、例えば、直流から交流への変換における正の降圧モードにおいて、双方向スイッチSW14をオフにし、負の降圧モードにおいて、双方向スイッチSW12をオフにすることで、還流モード時に直流電源2aへ高周波の電位変動が加わることを防止してもよい。また、例えば、交流から直流への変換における正の昇圧モードにおいて、エネルギー蓄積モード時に、双方向スイッチSW14をオフにし、負の昇圧モードにおいて、エネルギー蓄積モード時に、双方向スイッチSW12をオフにすることで、エネルギー蓄積モード時に直流電源2aへ高周波の電位変動が加わることを防止してもよい。これによっても直流側端子TP、TNにパルス状の大きなコモンモード電圧が発生することを抑制できる。
上述した第1および第2の実施形態では、昇降圧可能な電力変換装置1、1Aを例に挙げて説明したが、降圧のみを行う電力変換装置でも、上記と同様の制御によって直流側端子TP、TNのコモンモード電圧を安定させることができる。
また、上述したように電力変換装置1、1Aの直流側端子TP、TNに直流負荷2bを、交流側端子TR、TSに交流電源3bをそれぞれ接続し、交流電源3bから供給される交流電圧を直流電圧Vbに変換して直流負荷2bへ出力することもできる。そして、このような場合でも、上記と同様の制御によってコモンモード電圧を安定させることができる。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1、1A 電力変換装置
2a 直流電源
2b 直流負荷
3a 交流負荷
3b 交流電源
10、10A 電力変換部
20、20A 制御部
30 直流電圧検出部
31 LCフィルタ
32 LCLフィルタ
33 直流電圧検出部
34 交流電圧検出部
35 直流電流検出部
L1~L4、L11、L12 リアクトル
SW1~SW7、SW11~SW16 双方向スイッチ
2a 直流電源
2b 直流負荷
3a 交流負荷
3b 交流電源
10、10A 電力変換部
20、20A 制御部
30 直流電圧検出部
31 LCフィルタ
32 LCLフィルタ
33 直流電圧検出部
34 交流電圧検出部
35 直流電流検出部
L1~L4、L11、L12 リアクトル
SW1~SW7、SW11~SW16 双方向スイッチ
Claims (8)
- 直流電源または直流負荷に接続される複数の直流側端子と交流負荷または交流電源に接続される複数の交流側端子との間に配置される複数の第1の双方向スイッチと、前記交流側端子間に配置される第2の双方向スイッチおよびリアクトルとを有する電力変換部と、
前記電力変換部を制御して、直流電力と交流電力との間で電力変換を行う制御部と、を備え、
前記制御部は、
前記直流電力から前記交流電力への降圧による電力変換における還流モード時、および/または、前記交流電力から前記直流電力への昇圧による電力変換における前記リアクトルへの電気エネルギーを蓄積するエネルギー蓄積モード時に、前記第2の双方向スイッチをオンにする
ことを特徴とする電力変換装置。 - 前記制御部は、
前記還流モード時および/または前記エネルギー蓄積モード時に、前記複数の第1の双方向スイッチをすべてオフにする
ことを特徴とする請求項1に記載の電力変換装置。 - 前記制御部は、
前記還流モード時および/または前記エネルギー蓄積モード時に、前記複数の第1の双方向スイッチのうち一つの第1の双方向スイッチを除いた第1の双方向スイッチをすべてオフにする
ことを特徴とする請求項1に記載の電力変換装置。 - 前記複数の第1の双方向スイッチは、
前記直流側端子間に直列に接続され、その接続点で前記交流側端子の一方に接続される2つの双方向スイッチと、
前記直流側端子間に直列に接続され、その接続点で前記リアクトルを介して前記交流側端子の一方に接続される2つの双方向スイッチと、
前記直流側端子間に直列に接続され、その接続点で前記交流側端子の他方に接続される2つの双方向スイッチと、を含み、
前記第2の双方向スイッチは、
前記リアクトルを介して前記交流側端子間に接続される
ことを特徴とする請求項1または2に記載の電力変換装置。 - 前記リアクトルとして、互いに磁気結合され、前記複数の交流側端子のそれぞれに一端が接続される第1および第2のリアクトルを有し、
前記第1の双方向スイッチは、
前記直流側端子間に前記第1のリアクトルを介して直列に接続される2つの双方向スイッチと、
前記直流側端子間に前記第2のリアクトルを介して直列に接続される2つの双方向スイッチと、を含み、
前記第2の双方向スイッチは、
前記直流側端子間に前記第1のリアクトルを介して前記交流側端子間に接続される双方向スイッチと、
前記直流側端子間に前記第2のリアクトルを介して前記交流側端子間に接続される双方向スイッチと、を含む、
ことを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。 - 前記交流側端子間に接続されたコンデンサを備え、
前記制御部は、
前記第1の双方向スイッチおよび前記第2の双方向スイッチを制御して、前記直流側端子から供給される直流電圧を昇降圧して交流電圧を生成し、当該交流電圧を前記交流側端子から出力する
ことを特徴とする請求項4または5に記載の電力変換装置。 - 前記直流側端子間に接続されたコンデンサを備え、
前記制御部は、
前記第1の双方向スイッチおよび前記第2の双方向スイッチを制御して、前記交流側端子から供給される交流電圧を昇降圧して直流電圧を生成し、当該直流電圧を前記直流側端子から出力する
ことを特徴とする請求項1~6のいずれか1項に記載の電力変換装置。 - 前記制御部は、
前記電力変換部を制御して、前記直流電源または前記直流負荷と、前記交流負荷または前記交流電源との間で双方向に電力変換する
ことを特徴とする請求項1~7のいずれか1項に記載の電力変換装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280074215.7A CN104380588A (zh) | 2012-07-20 | 2012-07-20 | 电力转换装置 |
EP12881373.0A EP2876801A1 (en) | 2012-07-20 | 2012-07-20 | Power conversion device |
PCT/JP2012/068509 WO2014013620A1 (ja) | 2012-07-20 | 2012-07-20 | 電力変換装置 |
JP2014525673A JPWO2014013620A1 (ja) | 2012-07-20 | 2012-07-20 | 電力変換装置 |
US14/596,221 US20150124503A1 (en) | 2012-07-20 | 2015-01-14 | Power converter and power conversion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/068509 WO2014013620A1 (ja) | 2012-07-20 | 2012-07-20 | 電力変換装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/596,221 Continuation US20150124503A1 (en) | 2012-07-20 | 2015-01-14 | Power converter and power conversion method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014013620A1 true WO2014013620A1 (ja) | 2014-01-23 |
Family
ID=49948471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/068509 WO2014013620A1 (ja) | 2012-07-20 | 2012-07-20 | 電力変換装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150124503A1 (ja) |
EP (1) | EP2876801A1 (ja) |
JP (1) | JPWO2014013620A1 (ja) |
CN (1) | CN104380588A (ja) |
WO (1) | WO2014013620A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3472858B1 (en) | 2016-06-15 | 2022-01-12 | Watlow Electric Manufacturing Company | Power converter for a thermal system |
US11811318B2 (en) * | 2020-11-03 | 2023-11-07 | Solaredge Technologies Ltd. | Method and apparatus for power conversion |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011041457A (ja) | 2009-07-14 | 2011-02-24 | Yaskawa Electric Corp | 直流−交流電力変換装置およびその電力変換回路 |
JP2011259621A (ja) * | 2010-06-09 | 2011-12-22 | Kyushu Electric Power Co Inc | 電源回路 |
JP2012080753A (ja) * | 2010-05-11 | 2012-04-19 | Meidensha Corp | 電力変換装置 |
WO2012063573A1 (ja) * | 2010-11-09 | 2012-05-18 | 株式会社安川電機 | フィルタ回路及びそれを備える双方向電力変換装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101728945B (zh) * | 2008-10-17 | 2012-09-05 | 盈正豫顺电子股份有限公司 | 具有中性点的双向直流/直流电压转换装置 |
JP5126300B2 (ja) * | 2010-06-22 | 2013-01-23 | 株式会社安川電機 | 直流−交流電力変換装置 |
US8462528B2 (en) * | 2010-07-19 | 2013-06-11 | GM Global Technology Operations LLC | Systems and methods for reducing transient voltage spikes in matrix converters |
JP2012044824A (ja) * | 2010-08-23 | 2012-03-01 | Fuji Electric Co Ltd | 電力変換装置 |
-
2012
- 2012-07-20 WO PCT/JP2012/068509 patent/WO2014013620A1/ja active Application Filing
- 2012-07-20 JP JP2014525673A patent/JPWO2014013620A1/ja not_active Ceased
- 2012-07-20 EP EP12881373.0A patent/EP2876801A1/en not_active Withdrawn
- 2012-07-20 CN CN201280074215.7A patent/CN104380588A/zh active Pending
-
2015
- 2015-01-14 US US14/596,221 patent/US20150124503A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011041457A (ja) | 2009-07-14 | 2011-02-24 | Yaskawa Electric Corp | 直流−交流電力変換装置およびその電力変換回路 |
JP2012080753A (ja) * | 2010-05-11 | 2012-04-19 | Meidensha Corp | 電力変換装置 |
JP2011259621A (ja) * | 2010-06-09 | 2011-12-22 | Kyushu Electric Power Co Inc | 電源回路 |
WO2012063573A1 (ja) * | 2010-11-09 | 2012-05-18 | 株式会社安川電機 | フィルタ回路及びそれを備える双方向電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2876801A1 (en) | 2015-05-27 |
JPWO2014013620A1 (ja) | 2016-06-30 |
US20150124503A1 (en) | 2015-05-07 |
CN104380588A (zh) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5282731B2 (ja) | 電力変換装置 | |
JP5263457B1 (ja) | 電力変換装置 | |
JP6552739B2 (ja) | 並列電源装置 | |
WO2015163035A1 (ja) | 電源装置 | |
JP6048928B2 (ja) | 電力変換装置 | |
US8929098B2 (en) | DC-DC converter | |
JP5547603B2 (ja) | 電源装置 | |
JP6160547B2 (ja) | 電力変換装置及び電力変換方法 | |
JP2015204639A (ja) | 電力変換装置及びその制御方法 | |
WO2019216180A1 (ja) | 直流変電システム | |
WO2013186996A1 (ja) | 電力変換装置 | |
JP6065753B2 (ja) | Dc/dcコンバータおよびバッテリ充放電装置 | |
KR101572873B1 (ko) | 전기에너지 저장 시스템의 양방향 인버터 | |
JP5323426B2 (ja) | 電力変換装置 | |
JP2014197945A (ja) | 電力変換装置およびそれを備えたモータ駆動装置 | |
WO2014013620A1 (ja) | 電力変換装置 | |
JP4878645B2 (ja) | 電力変換装置 | |
JP5321282B2 (ja) | 電力制御装置 | |
Pandey et al. | Bridgeless PFC converter based EV charger | |
JP5862480B2 (ja) | 無停電電源装置 | |
JP5817225B2 (ja) | 電力変換装置 | |
JP2011188600A (ja) | 充電システム | |
JP5920055B2 (ja) | 交直電力変換装置、及びこの交直電力変換装置を備えた無停電電源装置 | |
WO2020183775A1 (ja) | 電力変換装置 | |
JP5444925B2 (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12881373 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014525673 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012881373 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |