WO2012063573A1 - フィルタ回路及びそれを備える双方向電力変換装置 - Google Patents
フィルタ回路及びそれを備える双方向電力変換装置 Download PDFInfo
- Publication number
- WO2012063573A1 WO2012063573A1 PCT/JP2011/072621 JP2011072621W WO2012063573A1 WO 2012063573 A1 WO2012063573 A1 WO 2012063573A1 JP 2011072621 W JP2011072621 W JP 2011072621W WO 2012063573 A1 WO2012063573 A1 WO 2012063573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- output terminal
- bidirectional
- terminal
- voltage input
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/126—Arrangements for reducing harmonics from ac input or output using passive filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/10—Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/81—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal arranged for operation in parallel
Definitions
- the present invention relates to a filter circuit and a bidirectional power conversion device including the filter circuit.
- a power converter that exchanges electrical energy in both directions is connected to a power converter that includes a converter that converts supplied power to DC power and an inverter that converts DC power to AC power, or two in reverse parallel connection.
- a matrix converter device configured using a bidirectional semiconductor switch that can be turned on and off independently for each direction.
- the current source inverter of Patent Document 1 includes a converter that converts alternating current to direct current and controls the magnitude of the direct current, a direct current reactor that is connected to the direct current output side of the converter and smoothes ripples of direct current, and a direct current reactor.
- a filter capacitor that absorbs harmonics is provided on the output side.
- the present invention is used in a power conversion device that exchanges electric energy bidirectionally such as a power running operation and a regenerative operation, or a discharge operation and a charging operation, and reduces conduction noise and harmonics regardless of the direction of movement of the electric energy.
- An object of the present invention is to provide a filter circuit and a bidirectional power conversion device including the filter circuit.
- two first capacitors connected in series, two single-phase AC reactors connected to one end of each of the two first capacitors, and the 2
- a first filter having a second capacitor having one end connected to a neutral point of the first capacitors, and a third capacitor connected between the other ends of the two single-phase AC reactors, and two common mode chokes
- a second filter having two fourth capacitors connected in series between one ends of the two common mode chokes, and the other end of the second capacitor is a neutral point of the two fourth capacitors.
- a filter circuit characterized by being connected to is applied.
- the bidirectional power converter includes the filter circuit and a bidirectional power converter having a DC voltage input / output terminal and an AC voltage input / output terminal, wherein the bidirectional power converter is the first power converter.
- a current source inverter capable of bi-directional power conversion using a capacitor as a smoothing capacitor, wherein the first filter is disposed between the AC voltage input / output terminal and a commercial power source or a load, and the second filter is A bidirectional power converter arranged between the DC voltage input / output terminal and the DC voltage source is applied.
- the bidirectional power converter further includes a control unit that PWM-controls the bidirectional power converter based on a voltage command signal, and the first filter is selectively connected to either the commercial power source or the load. And a bidirectional power conversion device that outputs the selection connection state signal to the control unit is applied to the first switch.
- the bidirectional power converter further detects a DC voltage of the DC voltage source and outputs a DC voltage signal to the control unit, and outputs a single-phase AC voltage signal to the control unit. And an AC voltage detector that controls the voltage command signal and the DC voltage signal to coincide with each other when the first switch connects the first filter to the commercial power source.
- the bidirectional power converter is PWM-controlled and the first switch connects the first filter to the load, the bidirectional power converter is configured so that the voltage command signal matches the single-phase AC voltage signal.
- a bidirectional power conversion device that performs PWM control of the power conversion unit is applied.
- the bidirectional power converter includes a DC reactor and a matrix converter circuit, the DC reactor having one end connected to a positive electrode side of the DC voltage input / output terminal, and the matrix converter circuit including the DC reactor.
- the first and fourth bidirectional switches with one end connected to the other end of the DC voltage
- the second and fifth bidirectional switches with one end connected to the positive electrode side of the DC voltage input / output terminal, and one end on the negative electrode side of the DC voltage input / output terminal.
- the other end of the first to third bidirectional switches is connected to the U terminal side of the AC voltage input / output terminal, and the fourth to sixth bidirectional switches.
- the bidirectional power converter connected to the V terminal side of the AC voltage input / output terminal is applied to the other end of the AC voltage input / output terminal.
- the bidirectional power converter includes a DC reactor and a matrix converter circuit, the DC reactor having one end connected to a positive electrode side of the DC voltage input / output terminal, and the matrix converter circuit including the DC reactor.
- First and third bidirectional switches having one end connected to the other end of the DC voltage
- second and fourth bidirectional switches having one end connected to the negative electrode side of the DC voltage input / output terminal.
- the other end of the switch is connected to the U terminal side of the AC voltage input / output terminal
- the other end of the third and fourth bidirectional switches is connected to the V terminal side of the AC voltage input / output terminal.
- a power converter may be applied.
- the bidirectional power converter further includes a second switch that selects a polarity of the DC voltage source and connects to a second filter
- the bidirectional power converter includes a DC reactor, a matrix converter circuit
- the DC reactor has one end connected to the positive electrode side of the DC voltage input / output terminal, the second switch outputs the polarity-selected state signal to the control unit
- the matrix converter circuit includes: One end is connected to the other end of the DC reactor, and one end is connected to the negative side of the DC voltage input / output terminal, and first and third one-way switches for converting power from the DC voltage input / output terminal side to the AC voltage input / output terminal side.
- a second and a four-way switch for converting power from the AC voltage input / output terminal side to the DC voltage input / output terminal side, and the first and second one-way switches.
- the other end is connected to the U terminal side of the AC voltage input / output terminal, and the other end of the third and fourth one-way switches is connected to the V terminal side of the AC voltage input / output terminal.
- the control unit when the second switch connects the DC voltage source to the second filter with a positive polarity and the load is connected, the control unit is configured such that the potential of the U terminal of the AC voltage input / output terminal is Above the potential at the V terminal, the first and second one-way switches are turned on, then the fourth one-way switch is turned on, and then the second one-way switch is turned off.
- the third and fourth one-way switches are turned on, and then the second one-way switch is turned on, Next, the fourth one-way switch is turned off, and the bidirectional power conversion unit is PWM-controlled to supply the electric energy of the DC voltage source to the load, and the second switch reverses the DC voltage source.
- the second and third one-way switches are turned on, and then the second One unidirectional switch is turned on, then the third unidirectional switch is turned off, the electric energy of the commercial power supply is supplied to the DC voltage source, and the potential of the U terminal of the AC voltage input / output terminal is V terminal If the potential is less than the potential, the first and fourth one-way switches are turned on, the third one-way switch is turned on, the first one-way switch is then turned off, and the electric energy of the commercial power supply is converted to the DC voltage.
- a bidirectional power conversion device that PWM-controls the bidirectional power conversion unit so as to supply to a power source is applied.
- the filter circuit since the filter circuit has the functions of both an input filter and an output filter, the bidirectional power converter equipped with this filter circuit has conduction noise and harmonics on the power source side, and conduction noise on the load side. Can be reduced.
- a bidirectional power converter 100 includes a DC voltage source 1, an input filter 2 (second filter), a bidirectional power converter 3, and an output filter. 4 (first filter), a DC voltage detector 5, an AC voltage detector 6, a switch 7 (first switch), a control unit 8, a commercial power source 9, and a load 10.
- the commercial power source is connected to the DC voltage source 1 side of the bidirectional power converter 3 via the input side and the switch 7 with reference to the time when electric energy is transferred from the DC voltage source 1 to the load 10. 9. Description will be made assuming that the load 10 side is the output side.
- the DC voltage source 1 uses a battery having a function as a DC voltage source.
- the input filter 2 is a second filter and includes a common mode choke L3 and a plurality of capacitors C4 connected in series.
- the common mode choke L3 is connected to each terminal of the DC voltage source 1 with the same polarity.
- the plurality of capacitors C4 connected in series are connected between the terminals of the DC voltage source 1. Further, the neutral point n of the capacitor C4 is connected via a capacitor C2 to a connection point (neutral point n ') of a plurality of series-connected capacitors C1 described later.
- the bidirectional power converter 3 includes a matrix converter circuit 31 and a DC reactor L1, and includes P and N terminals on the input side and U and V terminals on the output side. Further, the matrix converter circuit 31 has R, S, and T terminals on the input side, and the P terminal and S terminal, and the N terminal and T terminal are connected.
- the matrix converter circuit 31 is an IGBT (Insulated Gate) which is a semiconductor switching element. Bipolar transistors (S1 to S12) and diodes (D1 to D12), and two IGBTs acting as unidirectional switches are connected in antiparallel to form six bidirectional switches (hereinafter, each of the six first to first switches).
- one end of the first and fourth bidirectional switches is connected to the DC reactor L1 at the R terminal, and one end of the second and fifth bidirectional switches is connected to the DC power at the S terminal.
- the other ends of the first to third bidirectional switches are connected to a U terminal of an AC voltage input / output terminal (U, V), and the other ends of the fourth to sixth bidirectional switches are connected to an AC voltage input / output terminal (U , V) is connected to the V terminal.
- One end of the DC reactor L1 is connected to one end of the first and fourth bidirectional switches through one coil of the common mode choke L3 and the other end of the DC voltage source 1 via the R terminal.
- the matrix converter circuit 31 performs switching based on the gate signal from the control unit 8, and bi-directional electric energy between the DC voltage source 1 connected to the input side and the commercial power source 9 or the load 10 connected to the output side. Exchange (power conversion).
- the bidirectional power conversion unit 3 is configured in this way, and operates equivalent to a current source inverter having a boost function and capable of power regeneration.
- the output filter 4 is a first filter, and includes a plurality of capacitors C1, a capacitor C2, a capacitor C3, and two single-mode AC reactors L2 that are normal mode devices connected in series.
- both ends of a plurality of capacitors C1 connected in series are connected to terminals U and V, respectively, and both ends of the capacitor C3 are connected to terminals A and B of the switch 7, respectively.
- One of the single-phase AC reactors L2 is connected to the U terminal of the bidirectional power converter 3 and one end of the capacitor C3, and the other is connected to the V terminal and the other end of the capacitor C3.
- both terminals of the single-phase AC reactor L2 are input / output terminals, and the capacitor C1 and the matrix converter circuit 31 are connected in parallel on one end side.
- the common mode path acts as an inductance that is half the inductance of the single-phase AC reactor L2.
- the inductance of the mode choke L3 can be reduced, and the effect of reducing conduction noise can also be obtained.
- the plurality of capacitors C1 connected in series are connected in parallel between the output U and V terminals of the bidirectional power converter 3. Since the connection point (neutral point n ′) of the capacitor C1 is connected to the neutral point n of the capacitor C4 via the capacitor C2, the capacitor C1 functions as a smoothing capacitor for the bidirectional power conversion unit 3. It has the effect of reducing conduction noise and harmonics.
- the DC voltage detector 5 detects the voltage of the DC voltage source 1 and outputs it to the control unit 8 as a DC voltage signal Vdc.
- the AC voltage detector 6 detects the voltage across the capacitor C3 and outputs it to the control unit 8 as a single-phase AC voltage signal Vuv.
- the switch 7 includes terminals A, B, S1 to S4, selects and connects the commercial power supply 9 and the load 10, and outputs the selected state information to the control unit 8 as a switching signal SW1 (state signal). It has a function.
- the switch 7 switches the A terminal to S1 and the B terminal to S3 when selecting the commercial power supply 9, and switches the A terminal to S2 and the B terminal to S4 when selecting the load 10. This switching command to the switch 7 is given by a host device (not shown).
- the control unit 8 performs PWM control using the voltage command signal Vref, the DC voltage signal Vdc, the single-phase AC voltage signal Vuv, and the switching signal SW1, and outputs a gate signal to the bidirectional power conversion unit 3.
- the voltage command signal Vref a DC voltage command or a single-phase AC voltage command is given to the control unit 8 by a host device (not shown) in conjunction with the switching signal SW1.
- the switch 7 is switched by a command from the host device, and the state information is input to the control unit 8 as the switching signal SW1.
- the control unit 8 determines that the commercial power source 9 connected between the terminals S1 to S3 of the switch 7 is selected by the switching signal SW1, the DC voltage is set so that the voltage command signal Vref and the DC voltage signal Vdc match.
- the voltage command signal Vref and the single-phase AC voltage signal Vuv match.
- power conversion control is performed in the direction in which the DC voltage source 1 is discharged.
- the plurality of capacitors C4 connected in series in FIG. 1 are connected to the positive side of the common mode choke L3, but may be connected to the negative side.
- the common mode choke L3 may be omitted.
- the resonant frequency is affected by the stray capacitance formed in the DC voltage source 1 and the inductance of the common mode path, the same effect is obtained for reducing conduction noise and harmonics.
- the output filter 4 of the bidirectional power conversion device 100 uses the capacitor C1 for both smoothing and reduction of conduction noise and harmonics.
- the neutral points n and n ′ are connected via the capacitor C2, thereby reducing the impedance of the path bypassing the conduction noise.
- the output filter 4 reduces conduction noise and harmonics flowing out to the commercial power source 9 during charging in which the electrical energy moves from the commercial power source 9 to the DC voltage source 1, and the electrical energy is reduced to the DC voltage source.
- the conduction noise to the load 10 can be reduced.
- bidirectional power conversion device 100 according to the first embodiment of the present invention has been described above.
- a bidirectional power conversion device 200 according to a second embodiment of the present invention will be described with reference to FIG.
- the bidirectional power conversion device 200 according to the second embodiment differs from the bidirectional power conversion device 100 according to the first embodiment in that the bidirectional power conversion device 200 includes a bidirectional power conversion unit 3 ′ instead of the bidirectional power conversion unit 3. Others are configured similarly. Therefore, in the following, for convenience of explanation, overlapping explanation will be omitted as appropriate, and explanation will be made centering on differences from the first embodiment.
- the bidirectional power converter 3 ′ has a matrix converter circuit 32 and a DC reactor L1, and includes P and N terminals on the input side and U and V terminals on the output side. Further, the matrix converter circuit 32 includes R and S terminals on the input side, the P terminal and the R terminal are connected via a DC reactor L1, and the N terminal and the S terminal are directly connected.
- the matrix converter circuit 32 includes IGBTs (S1 to S8), which are semiconductor switching elements, and diodes (D1 to D8).
- each of the four switches is also referred to as first to fourth bidirectional switches
- one end of each of the first and third bidirectional switches is connected to the DC reactor L1 at the R terminal.
- One end of the switch is connected to the negative side (N) of the DC voltage input / output terminal (P, N) at the S terminal.
- the other ends of the first and second bidirectional switches are connected to the U terminal of an AC voltage input / output terminal (U, V), and the other ends of the third and fourth bidirectional switches are connected to an AC voltage input / output terminal (U , V) is connected to the V terminal.
- One end of the DC reactor L1 is connected to one end of the first and third bidirectional switches via one coil of the common mode choke L3, and the other end of the DC voltage source 1 is connected to the positive terminal and the S terminal.
- the matrix converter circuit 32 performs switching based on the gate signal from the control unit 8, and bi-directional electric energy between the DC voltage source 1 connected to the input side and the commercial power source 9 or the load 10 connected to the output side. Exchange (power conversion).
- the bidirectional power converter 200 operates equivalently to a current source inverter capable of power regeneration having a boost function, similar to the bidirectional power converter 100 according to the first embodiment. The same effect is produced.
- the bidirectional power converter 300 according to the third embodiment is different from the bidirectional power converter 100 according to the first embodiment in that it includes a bidirectional power converter 3 ′′ instead of the bidirectional power converter 3. Unlike this, the switch 11 (second switch) is additionally provided, but the rest is configured similarly. Therefore, in the following, for convenience of explanation, overlapping explanation will be omitted as appropriate, and explanation will be made centering on differences from the first embodiment.
- the bidirectional power conversion unit 3 ′′ includes a matrix converter circuit 33 and a DC reactor L1, and includes P and N terminals on the input side and U and V terminals on the output side. Further, the matrix converter circuit 33 has R and S terminals on the input side, the P terminal and the R terminal are connected via a DC reactor L1, and the N terminal and the S terminal are directly connected.
- the matrix converter circuit 33 is configured by bridge-connecting four unidirectional switches (hereinafter, each of the four is also referred to as first to fourth unidirectional switches) including IGBTs (S1 to S4) and diodes (D1 to D4).
- One end of the first and third one-way switches is connected to the DC reactor L1 at the R terminal, and one end of the second and fourth one-way switches is the negative terminal of the DC voltage input / output terminal (P, N) at the S terminal. Side (N).
- the other ends of the first and second one-way switches are connected to the U terminal of an AC voltage input / output terminal (U, V), and the other ends of the third and fourth one-way switches are connected to an AC voltage input / output terminal (U , V) is connected to the V terminal.
- the DC reactor L1 has one end connected to one coil of the common mode choke L3 at the P terminal and the other end connected to one end of the first and third one-way switches at the R terminal.
- the switch 11 includes terminals A, B, and S1 to S4.
- the switch 11 is provided between the DC voltage source 1 and the input filter 2.
- the polarity of the DC voltage source 1 is reversed and the polarity is selected and connected to the input filter 2. It has a function of outputting the polarity-selected state information to the control unit 8 as a switching signal SW2 (state signal).
- the switch 11 has a terminal A connected to the positive side of the DC voltage source 1 and a terminal B connected to the negative side.
- the A terminal is the S1, B terminal. Is connected to S3 with the reverse polarity, the A terminal is switched to S2 and the B terminal is switched to S4.
- This switching command to the switch 11 is given by a host device (not shown).
- the control unit 8 performs PWM control using the voltage command signal Vref, the DC voltage signal Vdc, the single-phase AC voltage signal Vuv, and the switching signals SW1 and SW2, and outputs a gate signal to the bidirectional power conversion unit 3 ''.
- the voltage command signal Vref a DC voltage command or a single-phase AC voltage command is given to the control unit 8 by a host device (not shown) in conjunction with the switching signals SW1 and SW2.
- the control unit 8 determines that the load 10 and the DC voltage source 1 are connected to each other in a positive polarity based on the switching signals SW1 and SW2 and the single-phase AC voltage signal Vuv (the potential of the U terminal VU ⁇ the potential VV of the V terminal). In this case, the electric energy of the DC voltage source 1 is supplied to the load 10 by the following operation.
- control unit 8 turns on the first and second one-way switches, the positive side of the DC voltage source 1 ⁇ DC reactor L1 ⁇ diode (D1) ⁇ IGBT (S1) ⁇ diode (D2) ⁇ IGBT (S2) ⁇ A current is passed through a path on the negative electrode side of the DC voltage source 1, and energy is accumulated in the DC reactor L1.
- the control unit 8 turns on the fourth one-way switch.
- the diode (D4) since the diode (D4) is in the reverse bias state, it does not conduct and the current path does not change.
- the control unit 8 turns off the second one-way switch, turns on the diode (D4), uses the DC reactor L1 as a current source, and uses the positive side of the DC voltage source 1 ⁇ DC reactor L1 ⁇ diode (D1) ⁇ IGBT (S1) ⁇ capacitor C1 and load 10 ⁇ diode (D4) ⁇ IGBT (S4) ⁇ current flows through a path on the negative electrode side of DC voltage source 1, and the electric energy of DC reactor L1 is released to capacitor C1 and load 10. The In this way, the electric energy of the DC voltage source 1 is supplied to the load 10.
- the third and fourth one-way switches are turned on, then the second one-way switch is turned on, and then the fourth one-way switch is turned off.
- the electric energy of the DC voltage source 1 is supplied to the load 10.
- control unit 8 connects the commercial power source 9 and the DC voltage source 1 in reverse polarity by the switching signals SW1 and SW2 and the single-phase AC voltage signal Vuv ((U terminal potential VU ⁇ V terminal potential VV)). Is determined, the second unidirectional switch is turned on, the first unidirectional switch is turned on, the third unidirectional switch is turned off, and the electric energy of the commercial power source 9 is supplied to the DC voltage source 1. To supply.
- the first and fourth one-way switches are turned on, then the third one-way switch is turned on, and then the first one-way switch is turned off. Then, the electric energy of the commercial power source 9 is supplied to the DC voltage source 1.
- the control unit 8 is controlled in synchronization with the switches 7 and 11. In both directions, the DC voltage source 1 is boosted to convert the single-phase AC voltage into the load 10, or the commercial power source 9 voltage is decreased to convert the DC voltage into the DC voltage source 1. Electric energy can be controlled.
- the bidirectional power conversion device 300 operates equivalently to a current source inverter capable of power regeneration having a boost function, similar to the bidirectional power conversion device 100 according to the first embodiment. The same effect is obtained.
- RB-IGBT Reverse Blocking-Insulated Gate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Ac-Ac Conversion (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
その電力変換装置の一例として、特許文献1に記載の電流形インバータが挙げられる。この特許文献1の電流形インバータは、交流を直流に変換すると同時に直流電流の大きさの制御を行うコンバータと、コンバータの直流出力側に接続され直流電流のリップルを平滑する直流リアクトルと、直流リアクトルに接続され直流を可変電圧、可変周波数の交流電圧に変換するインバータと、インバータの出力側に接続される負荷とより構成され、入力側に高調波を吸収するフィルタ交流リアクトル及びフィルタ・コンデンサを、出力側に高調波を吸収するフィルタ・コンデンサを備えている。
そこで、本発明は、力行動作と回生動作、あるいは放電動作と充電動作といった双方向に電気エネルギーをやりとりする電力変換装置に使用され、電気エネルギーの移動方向に関わらず、伝導ノイズ及び高調波を低減するフィルタ回路及びそれを備える双方向電力変換装置を提供することを目的とする。
まず、図1を参照しつつ、本発明の第1実施形態に係る双方向電力変換装置100の構成について説明する。
マトリクスコンバータ回路31は、半導体スイッチング素子であるIGBT(Insulated Gate
Bipolar Transistor)(S1乃至S12)とダイオード(D1乃至D12)を備え、片方向スイッチとして作用する各IGBTを2つ逆並列に接続して6つの双方向スイッチ(以下、6つのそれぞれを第1乃至6の双方向スイッチとも言う)として作用させていて、第1,4双方向スイッチの一端は、R端子で直流リアクトルL1に接続され、第2,5双方向スイッチの一端は、S端子で直流電圧入出力端子(P,N)の正極側(P)に接続され、第3,6双方向スイッチの一端は、T端子で直流電圧入出力端子(P,N)の負極側(N)に接続されている。また、第1乃至3双方向スイッチの他端は、交流電圧入出力端子(U,V)のU端子に接続され、第4乃至6双方向スイッチの他端は、交流電圧入出力端子(U,V)のV端子に接続されている。
マトリクスコンバータ回路31は、制御部8からのゲート信号に基づきスイッチングし、入力側に接続された直流電圧源1と出力側に接続された商用電源9若しくは負荷10との間で双方向に電気エネルギーをやりとり(電力変換)する。
単相交流リアクトルL2の1つは、双方向電力変換部3のU端子とコンデンサC3の一端に、他の1つはV端子とコンデンサC3の他端に接続されている。換言すると、単相交流リアクトルL2の両端子を入出力端子とし、一端側にコンデンサC1とマトリクスコンバータ回路31を並列接続した構成になっている。
直列接続された複数のコンデンサC1は、双方向電力変換部3の出力U、V端子間に並列に接続されている。コンデンサC1の接続点(中性点n’)は、コンデンサC2を介してコンデンサC4の中性点nに接続されているので、コンデンサC1により双方向電力変換部3の平滑用コンデンサとしての作用と、伝導ノイズ及び高調波を低減させる効果を得ている。
交流電圧検出器6は、コンデンサC3の両端の電圧を検出し、単相交流電圧信号Vuvとして制御部8へ出力する。
スイッチ7は、端子A,B、S1乃至S4を備え、商用電源9と負荷10を選択して接続し、その選択している状態情報を切替信号SW1(状態信号)として制御部8へ出力する機能を有する。スイッチ7は、商用電源9を選択する場合はA端子をS1、B端子をS3に、負荷10を選択する場合はA端子をS2、B端子をS4に切替える。このスイッチ7への切替指令は、図示していない上位装置によって与えられる。
このような構成で、上位装置からの指令により、スイッチ7が切替えられ、その状態情報が切替信号SW1として制御部8へ入力される。制御部8は、切替信号SW1によりスイッチ7の端子S1-S3間に接続された商用電源9が選択されていると判断すると、電圧指令信号Vrefと直流電圧信号Vdcが一致するように、直流電圧源1が充電される方向に電力変換制御し、スイッチ7の端子S2-S4間に接続された負荷10が選択されていると判断すると、電圧指令信号Vrefと単相交流電圧信号Vuvが一致するように、直流電圧源1が放電される方向に電力変換制御する。
この場合、直流電圧源1に形成される浮遊容量やコモンモード経路のインダクタンスによって共振周波数に影響があるが、伝導ノイズや高調波の低減に対して同様な効果がある。
このようにして出力フィルタ4は、電気エネルギーが商用電源9から直流電圧源1へ移動する充電の際には商用電源9側へ流出する伝導ノイズ及び高調波を低減させ、電気エネルギーが直流電圧源1から負荷10へ移動する放電の際には負荷10への伝導ノイズを低減させることができる。
以上、本発明の第1実施形態に係る双方向電力変換装置100について説明した。次に、図2を参照しつつ、本発明の第2実施形態に係る双方向電力変換装置200について説明する。
マトリクスコンバータ回路32は、半導体スイッチング素子であるIGBT(S1乃至S8)とダイオード(D1乃至D8)を備え、片方向スイッチとして作用する各IGBTを2つ逆並列に接続して4つの双方向スイッチ(以下、4つのそれぞれを第1乃至4の双方向スイッチとも言う)として作用させていて、第1,3双方向スイッチの一端は、R端子で直流リアクトルL1に接続され、第2,4双方向スイッチの一端は、S端子で直流電圧入出力端子(P,N)の負極側(N)に接続されている。また、第1,2双方向スイッチの他端は、交流電圧入出力端子(U,V)のU端子に接続され、第3,4双方向スイッチの他端は、交流電圧入出力端子(U,V)のV端子に接続されている。
マトリクスコンバータ回路32は、制御部8からのゲート信号に基づきスイッチングし、入力側に接続された直流電圧源1と出力側に接続された商用電源9若しくは負荷10との間で双方向に電気エネルギーをやりとり(電力変換)する。
次に、図3を参照しつつ、本発明の第3実施形態に係る双方向電力変換装置300について説明する。
マトリクスコンバータ回路33はIGBT(S1乃至S4)とダイオード(D1乃至D4)を備えた4つの片方向スイッチ(以下、4つのそれぞれを第1乃至4の片方向スイッチとも言う)をブリッジ接続して構成されていて、第1,3片方向スイッチの一端は、R端子で直流リアクトルL1に接続され、第2,4片方向スイッチの一端は、S端子で直流電圧入出力端子(P,N)の負極側(N)に接続されている。また、第1,2片方向スイッチの他端は、交流電圧入出力端子(U,V)のU端子に接続され、第3,4片方向スイッチの他端は、交流電圧入出力端子(U,V)のV端子に接続されている。
制御部8は、切替信号SW1及びSW2、及び単相交流電圧信号Vuvにより、負荷10、直流電圧源1は正極性に接続され、(U端子の電位VU≧V端子の電位VV)と判断される場合、下記の動作により、直流電圧源1の電気エネルギーを負荷10へ供給する。
つまり、制御部8は、第1,2片方向スイッチをオンとし、直流電圧源1の正極側→直流リアクトルL1→ダイオード(D1)→IGBT(S1)→ダイオード(D2)→IGBT(S2)→直流電圧源1の負極側という経路で電流を流し、直流リアクトルL1にエネルギーを蓄積させる。
次に、制御部8は、第2片方向スイッチをオフしてダイオード(D4)をオンとし、直流リアクトルL1を電流源として、直流電圧源1の正極側→直流リアクトルL1→ダイオード(D1)→IGBT(S1)→コンデンサC1及び負荷10→ダイオード(D4)→IGBT(S4)→直流電圧源1の負極側の経路で電流を流し、直流リアクトルL1の電気エネルギーはコンデンサC1及び負荷10に放出される。
このようにして、直流電圧源1の電気エネルギーは負荷10へ供給される。
Bipolar Transistor)を用いダイオードを省略しても良い。なお、RB-IGBTを双方向性スイッチに適用すると、IGBTでは必要とした逆耐圧保護用のダイオードを用いずに双方向のモジュールを構成できる。
2 入力フィルタ(第2フィルタ)
3,3’,3’’ 双方向電力変換部
4 出力フィルタ(第1フィルタ)
5 直流電圧検出器
6 交流電圧検出器
7,11 スイッチ
8 制御部
9 商用電源
10 負荷
31,32,33 マトリクスコンバータ回路
100,200,300 双方向電力変換装置
Claims (8)
- 直列接続した2つの第1コンデンサと、該2つの第1コンデンサのそれぞれの一端に接続した2つの単相交流リアクトルと、前記2つの第1コンデンサにおける中性点に一端を接続した第2コンデンサと、前記2つの単相交流リアクトルの他端間に接続した第3コンデンサと、を有した第1フィルタと、
2つのコモンモードチョークと、該2つのコモンモードチョークの一端間に直列接続した2つの第4コンデンサと、を有した第2フィルタと、を備え、
前記第2コンデンサの他端を前記2つの第4コンデンサにおける中性点に接続したことを特徴とするフィルタ回路。 - 請求項1に記載のフィルタ回路と、直流電圧入出力端子及び交流電圧入出力端子を有した双方向電力変換部と、を備えた双方向電力変換装置であって、
前記双方向電力変換部は、前記第1コンデンサを平滑用コンデンサとして使用する双方向に電力変換可能な電流形インバータであり、
前記第1フィルタは、前記交流電圧入出力端子と、商用電源若しくは負荷の間に配置され、
前記第2フィルタは、前記直流電圧入出力端子と直流電圧源の間に配置されていることを特徴とする双方向電力変換装置。 - 前記双方向電力変換装置は、更に、電圧指令信号に基づいて前記双方向電力変換部をPWM制御する制御部と、前記第1フィルタを前記商用電源若しくは前記負荷のいずれかに選択接続を可能とした第1スイッチと、を備え、
前記第1スイッチは、上記選択接続の状態信号を前記制御部に出力することを特徴とする請求項2に記載の双方向電力変換装置。 - 前記双方向電力変換装置は、更に、前記直流電圧源の直流電圧を検出して直流電圧信号を前記制御部に出力する直流電圧検出器と、単相交流電圧信号を前記制御部に出力する交流電圧検出器と、を備え、
前記制御部は、前記第1スイッチが前記第1フィルタを前記商用電源に接続の場合には、前記電圧指令信号と前記直流電圧信号とが一致するように前記双方向電力変換部をPWM制御し、
前記第1スイッチが前記第1フィルタを前記負荷に接続の場合には、前記電圧指令信号と前記単相交流電圧信号とが一致するように前記双方向電力変換部をPWM制御することを特徴とする請求項3に記載の双方向電力変換装置。 - 前記双方向電力変換部は、直流リアクトルと、マトリクスコンバータ回路と、を備え、
前記直流リアクトルは、前記直流電圧入出力端子の正極側に一端を接続され、
前記マトリクスコンバータ回路は、前記直流リアクトルの他端に一端を接続した第1,4双方向スイッチと、前記直流電圧入出力端子の正極側に一端を接続した第2,5双方向スイッチと、前記直流電圧入出力端子の負極側に一端を接続した第3,6双方向スイッチと、を有し、
前記第1乃至3双方向スイッチの他端は、前記交流電圧入出力端子のU端子側に接続され、
前記第4乃至6双方向スイッチの他端は、前記交流電圧入出力端子のV端子側に接続されていることを特徴とする請求項2乃至4のいずれか1項に記載の双方向電力変換装置。 - 前記双方向電力変換部は、直流リアクトルと、マトリクスコンバータ回路と、を備え、
前記直流リアクトルは、前記直流電圧入出力端子の正極側に一端を接続され、
前記マトリクスコンバータ回路は、前記直流リアクトルの他端に一端を接続した第1,3双方向スイッチと、前記直流電圧入出力端子の負極側に一端を接続した第2,4双方向スイッチと、を有し、
前記第1,2双方向スイッチの他端は、前記交流電圧入出力端子のU端子側に接続され、
前記第3,4双方向スイッチの他端は、前記交流電圧入出力端子のV端子側に接続されていることを特徴とする請求項2乃至4のいずれか1項に記載の双方向電力変換装置。 - 前記直流電圧源の極性選択をして第2フィルタに接続する第2スイッチを備え、
前記双方向電力変換部は、直流リアクトルと、マトリクスコンバータ回路と、を備え、
前記直流リアクトルは、前記直流電圧入出力端子の正極側に一端を接続され、
前記第2スイッチは、上記極性選択した状態信号を前記制御部に出力し、
前記マトリクスコンバータ回路は、前記直流リアクトルの他端に一端を接続され、前記直流電圧入出力端子側から前記交流電圧入出力端子側へ電力変換する第1,3片方向スイッチと、前記直流電圧入出力端子の負極側に一端を接続され、前記交流電圧入出力端子側から前記直流電圧入出力端子側へ電力変換する第2,4片方向スイッチと、を有し、
前記第1,2片方向スイッチの他端は、前記交流電圧入出力端子のU端子側に接続され、
前記第3,4片方向スイッチの他端は、前記交流電圧入出力端子のV端子側に接続されていることを特徴とする請求項2乃至4のいずれか1項に記載の双方向電力変換装置。 - 前記制御部は、前記第2スイッチが前記直流電圧源を正極性で前記第2フィルタに接続し、かつ前記負荷が接続の場合には、
前記交流電圧入出力端子のU端子の電位がV端子の電位以上では、前記第1,2片方向スイッチをオンとし、次に前記第4片方向スイッチをオンとし、次に前記第2片方向スイッチをオフとし、前記直流電圧源の電気エネルギーを前記負荷へ供給し、
前記交流電圧入出力端子のU端子の電位がV端子の電位未満では、前記第3,4片方向スイッチをオンとし、次に前記第2片方向スイッチをオンとし、次に前記第4片方向スイッチをオフとし、前記直流電圧源の電気エネルギーを前記負荷へ供給するように前記双方向電力変換部をPWM制御し、
前記第2スイッチが前記直流電圧源を逆極性で前記第2フィルタに接続し、かつ前記商用電源が接続の場合には、
前記交流電圧入出力端子のU端子の電位がV端子の電位以上では、前記第2,3片方向スイッチをオンとし、次に前記第1片方向スイッチをオンとし、次に前記第3片方向スイッチをオフとし、前記商用電源の電気エネルギーを前記直流電圧源へ供給し、前記交流電圧入出力端子のU端子の電位がV端子の電位未満では、前記第1,4片方向スイッチをオンとし、次に前記第3片方向スイッチをオンとし、次に前記第1片方向スイッチをオフとし、前記商用電源の電気エネルギーを前記直流電圧源へ供給するように前記双方向電力変換部をPWM制御することを特徴とする請求項7に記載の双方向電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11839244.8A EP2639950A1 (en) | 2010-11-09 | 2011-09-30 | Filter circuit, and bidirectional power conversion apparatus provided with same |
CN201180053410.7A CN103190061B (zh) | 2010-11-09 | 2011-09-30 | 滤波电路以及具备该滤波电路的双向电力变换装置 |
JP2012542848A JP5522265B2 (ja) | 2010-11-09 | 2011-09-30 | フィルタ回路及びそれを備える双方向電力変換装置 |
US13/890,317 US20130241290A1 (en) | 2010-11-09 | 2013-05-09 | Filter circuit and bidirectional power conversion apparatus including thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010250954 | 2010-11-09 | ||
JP2010-250954 | 2010-11-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/890,317 Continuation US20130241290A1 (en) | 2010-11-09 | 2013-05-09 | Filter circuit and bidirectional power conversion apparatus including thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012063573A1 true WO2012063573A1 (ja) | 2012-05-18 |
Family
ID=46050727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072621 WO2012063573A1 (ja) | 2010-11-09 | 2011-09-30 | フィルタ回路及びそれを備える双方向電力変換装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130241290A1 (ja) |
EP (1) | EP2639950A1 (ja) |
JP (1) | JP5522265B2 (ja) |
CN (1) | CN103190061B (ja) |
WO (1) | WO2012063573A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5263457B1 (ja) * | 2012-05-22 | 2013-08-14 | 株式会社安川電機 | 電力変換装置 |
WO2014013620A1 (ja) * | 2012-07-20 | 2014-01-23 | 株式会社安川電機 | 電力変換装置 |
US10411002B2 (en) | 2016-05-26 | 2019-09-10 | Panasonic Intellectual Property Management Co., Ltd. | Electric power conversion circuit including switches and bootstrap circuits, and electric power transmission system including electric power conversion circuit |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9800167B2 (en) * | 2014-02-07 | 2017-10-24 | Abb Schweiz Ag | Multi-phase AC/AC step-down converter for distribution systems |
GB2556914A (en) * | 2016-11-25 | 2018-06-13 | Dyson Technology Ltd | Battery system |
US10298113B2 (en) * | 2017-02-24 | 2019-05-21 | Htip Limited | Filter for a power network |
TWI692174B (zh) * | 2019-01-30 | 2020-04-21 | 廣達電腦股份有限公司 | 電池自動調節單元及電池自動平衡系統 |
JP7270139B2 (ja) * | 2019-08-21 | 2023-05-10 | パナソニックIpマネジメント株式会社 | Dc/dc変換装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984357A (ja) * | 1995-09-19 | 1997-03-28 | Yaskawa Electric Corp | Pwmインバータ用フィルタ回路 |
JP2755609B2 (ja) | 1988-08-27 | 1998-05-20 | 株式会社日立製作所 | 電流形インバータの制御装置 |
JP2010148333A (ja) * | 2008-12-22 | 2010-07-01 | Sinfonia Technology Co Ltd | 電力変換装置および電源システム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4667173A (en) * | 1985-08-29 | 1987-05-19 | Kabushiki Kaisha Toshiba | Line filter |
DE19736786A1 (de) * | 1997-08-23 | 1999-02-25 | Asea Brown Boveri | U-Umrichter |
US6218913B1 (en) * | 1998-02-18 | 2001-04-17 | Curtis Industries, A Division Of Powers Holatings, Inc. | Coaxial toroid EMI filter with discrete capacitors surrounding conductors |
JP3864327B2 (ja) * | 1998-10-30 | 2006-12-27 | 株式会社安川電機 | Pwmサイクロコンバータ |
JP4501144B2 (ja) * | 2000-04-28 | 2010-07-14 | サンケン電気株式会社 | Ac−dcコンバータ |
CN101001051B (zh) * | 2006-01-12 | 2010-10-20 | 力博特公司 | 无输出变压器的ups |
US7274576B1 (en) * | 2006-03-01 | 2007-09-25 | Rockwell Automation Technologies, Inc. | Power converter with reduced common mode voltage |
JP2008131756A (ja) * | 2006-11-21 | 2008-06-05 | Fuji Electric Holdings Co Ltd | 電力変換装置 |
CN101884158B (zh) * | 2008-03-04 | 2013-02-13 | 株式会社安川电机 | 输出滤波器及使用该滤波器的电力转换装置 |
WO2011002015A1 (ja) * | 2009-07-01 | 2011-01-06 | 株式会社安川電機 | モータドライブ装置 |
TWI454028B (zh) * | 2010-01-13 | 2014-09-21 | Toshiba Kk | System interconnection converter |
CN103825474B (zh) * | 2012-11-16 | 2016-08-31 | 台达电子工业股份有限公司 | 低共模噪声的电源变换装置及其应用系统 |
CN104065259B (zh) * | 2013-03-18 | 2016-08-03 | 台达电子工业股份有限公司 | 滤波装置、功率转换器及共模噪声抑制方法 |
-
2011
- 2011-09-30 JP JP2012542848A patent/JP5522265B2/ja not_active Expired - Fee Related
- 2011-09-30 WO PCT/JP2011/072621 patent/WO2012063573A1/ja active Application Filing
- 2011-09-30 EP EP11839244.8A patent/EP2639950A1/en not_active Withdrawn
- 2011-09-30 CN CN201180053410.7A patent/CN103190061B/zh not_active Expired - Fee Related
-
2013
- 2013-05-09 US US13/890,317 patent/US20130241290A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2755609B2 (ja) | 1988-08-27 | 1998-05-20 | 株式会社日立製作所 | 電流形インバータの制御装置 |
JPH0984357A (ja) * | 1995-09-19 | 1997-03-28 | Yaskawa Electric Corp | Pwmインバータ用フィルタ回路 |
JP2010148333A (ja) * | 2008-12-22 | 2010-07-01 | Sinfonia Technology Co Ltd | 電力変換装置および電源システム |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5263457B1 (ja) * | 2012-05-22 | 2013-08-14 | 株式会社安川電機 | 電力変換装置 |
WO2013175569A1 (ja) * | 2012-05-22 | 2013-11-28 | 株式会社安川電機 | 電力変換装置 |
CN104170226A (zh) * | 2012-05-22 | 2014-11-26 | 株式会社安川电机 | 电力转换装置 |
US9712079B2 (en) | 2012-05-22 | 2017-07-18 | Kabushiki Kaisha Yaskawa Denki | Electric power converter and control method for electric power converter |
WO2014013620A1 (ja) * | 2012-07-20 | 2014-01-23 | 株式会社安川電機 | 電力変換装置 |
CN104380588A (zh) * | 2012-07-20 | 2015-02-25 | 株式会社安川电机 | 电力转换装置 |
JPWO2014013620A1 (ja) * | 2012-07-20 | 2016-06-30 | 株式会社安川電機 | 電力変換装置 |
US10411002B2 (en) | 2016-05-26 | 2019-09-10 | Panasonic Intellectual Property Management Co., Ltd. | Electric power conversion circuit including switches and bootstrap circuits, and electric power transmission system including electric power conversion circuit |
Also Published As
Publication number | Publication date |
---|---|
EP2639950A1 (en) | 2013-09-18 |
JPWO2012063573A1 (ja) | 2014-05-12 |
JP5522265B2 (ja) | 2014-06-18 |
US20130241290A1 (en) | 2013-09-19 |
CN103190061A (zh) | 2013-07-03 |
CN103190061B (zh) | 2015-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522265B2 (ja) | フィルタ回路及びそれを備える双方向電力変換装置 | |
JP4910078B1 (ja) | Dc/dc変換器およびac/dc変換器 | |
JP5995139B2 (ja) | 双方向dc/dcコンバータ | |
JP5282855B2 (ja) | 交流−交流変換装置 | |
JP5049637B2 (ja) | Dc/dc電力変換装置 | |
US7626840B2 (en) | Parallel multiplex matrix converter | |
JP2022539464A (ja) | 車両及びそのエネルギー変換装置と動力システム | |
US20080304296A1 (en) | DC-DC and DC-AC power conversion system | |
WO2007109001A2 (en) | A bidirectional isolated dc/dc converter | |
KR101865246B1 (ko) | 전기자동차용 충방전 장치 | |
WO2011012689A2 (en) | A high-voltage frequency conversion device | |
US20150016167A1 (en) | Multilevel Converter | |
JP5548569B2 (ja) | 直流電源装置 | |
JP2014522231A (ja) | 結合インダクタンスを備えるインバータ | |
KR20140110037A (ko) | 전력 변환 장치 | |
JP6709965B2 (ja) | スナバ回路、及びそれを用いた電力変換システム | |
KR20140004968A (ko) | 병렬 운전형 풀 브리지 컨버터 구동 장치 | |
JP6467524B2 (ja) | 電力変換装置および鉄道車両 | |
US20170250618A1 (en) | Extremely-Sparse Parallel AC-Link Power Converter | |
JP6670438B2 (ja) | 電力変換装置 | |
WO2011058665A1 (ja) | 電力変換装置 | |
JP6314734B2 (ja) | 電力変換装置 | |
JP2015019545A (ja) | 電力変換装置 | |
US9018926B1 (en) | Soft-switched PFC converter | |
JP2002320390A (ja) | 蓄電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11839244 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012542848 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2011839244 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011839244 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |