WO2014010691A1 - 光断層画像の取得方法 - Google Patents

光断層画像の取得方法 Download PDF

Info

Publication number
WO2014010691A1
WO2014010691A1 PCT/JP2013/069023 JP2013069023W WO2014010691A1 WO 2014010691 A1 WO2014010691 A1 WO 2014010691A1 JP 2013069023 W JP2013069023 W JP 2013069023W WO 2014010691 A1 WO2014010691 A1 WO 2014010691A1
Authority
WO
WIPO (PCT)
Prior art keywords
tomographic image
optical tomographic
light
inspection object
interference
Prior art date
Application number
PCT/JP2013/069023
Other languages
English (en)
French (fr)
Inventor
充遥 平野
長谷川 健美
伊知郎 祖川
田中 正人
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/414,051 priority Critical patent/US20150173607A1/en
Publication of WO2014010691A1 publication Critical patent/WO2014010691A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Definitions

  • the present invention relates to an optical tomographic image acquisition method.
  • Optical tomographic image acquisition technology based on optical coherence tomography (OCT) can measure the reflection amount distribution in the depth direction of an inspection object using light interference.
  • OCT optical coherence tomography
  • An optical tomographic image acquisition apparatus based on OCT bifurcates light output from a light source unit into first branched light and second branched light.
  • the reflected light that is generated interferes with the diffusely reflected light that is generated on the inspection object when the inspection object is irradiated with the second branched light.
  • an acquisition apparatus detects the power of the said interference light by a detection part, and obtains the reflection information distribution (1-dimensional optical tomographic image) of the depth direction of a test object by analyzing this detection result.
  • a two-dimensional or three-dimensional optical tomographic image of the inspection object can be acquired by scanning the light irradiation position on the inspection object.
  • TD-OCT Time-domain OCT
  • the fact that the amplitude of the interference light is large and the amplitude of the interference light is large only when there is no optical path length difference between the light from the light source unit to the detection unit is utilized.
  • this TD-OCT it is possible to obtain the reflection information of the position in the depth direction of the inspection object according to the position of the reflector. Therefore, by detecting the interference light amplitude while moving the reflector, A reflection information distribution in the depth direction can be obtained.
  • TD-OCT in order to obtain the reflection information distribution in the depth direction of the inspection object, it is necessary to mechanically move the reflector, so that it takes time to acquire an optical tomographic image of the inspection object. long.
  • FD-OCT Freourier-domain OCT
  • the power of the light output from the light source unit is P 0
  • inspection When the depth direction position of the object is represented by z, the reflectance at the object to be inspected is represented by R s , and the reflectance at the reflector is represented by R m , the intensity P (k) of the interference signal for light of wave number k Is represented by the following equation.
  • P (k) P 0/ 4 ⁇ R s + R m +2 (R s R m) 1/2 cos (2kz) ⁇
  • the intensity P (k) of the interference signal for light of wave number k is an amplitude proportional to the half power of the reflectance R s at the inspection object, and the depth of the inspection object. It vibrates with a period according to the direction position z. Therefore, when the spectrum of the interference signal detected by the detection unit is Fourier transformed with the wavenumber axis 2k, the result is the reflectance R s (that is, the reflectance distribution in the depth direction) at the position z in the depth direction of the inspection object. ).
  • FD-OCT takes advantage of this.
  • FD-OCT when light is irradiated to an inspection object, if the light penetrates into the inspection object and diffuse reflection occurs at each position along the optical axis, it is detected by the detection unit. Interference signals appear in the form of overlapping signals for each position inside the inspection object. When such an interference signal is Fourier-transformed, the reflection distribution in the depth direction of the inspection object is directly obtained.
  • a spectroscope is used as a detection unit. Since FD-OCT does not need to mechanically move the reflector, it takes less time to acquire an optical tomographic image of the inspection object than TD-OCT.
  • Such an optical tomographic image acquisition technique based on OCT acquires an intensity distribution of diffuse reflected light generated at each position of an inspection object as an optical tomographic image. Diffuse reflected light generated in places other than objects may also reach the detection unit and contribute to interference.
  • the optical tomographic image acquired at this time is obtained by superimposing a pseudo peak derived from diffuse reflected light generated at a place other than the inspection object on the true optical tomographic image. If the pseudo peak is superimposed on the true optical tomographic image of the inspection object, a true optical tomographic image of the inspection object cannot be obtained.
  • Patent Documents 1 to 3 The inventions intended to eliminate such problems are disclosed in Patent Documents 1 to 3.
  • the inventions disclosed in Patent Documents 1 and 2 attempt to suppress the generation of pseudo peaks by improving the optical system so as to suppress the generation of diffuse reflection light at places other than the inspection object.
  • the invention disclosed in Patent Document 3 intends to suppress the generation of a pseudo peak by improving the optical system so that diffusely reflected light generated at a place other than the inspection object is scattered light. .
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an optical tomographic image acquisition method capable of easily obtaining a true optical tomographic image of an inspection object.
  • an optical tomographic image acquisition method comprising bifurcating light output from a light source unit into first branched light and second branched light, and irradiating the first branched light on the reflector. Is obtained by causing the reflected light generated in step 1 and the diffuse reflected light generated when the second branch light is applied to the examination region to interfere with each other, and obtaining an optical tomographic image based on the result of Fourier transform of the interference light spectrum. (1) a first step of acquiring a first optical tomographic image based on a result of Fourier transform of the interference light spectrum when the inspection object is arranged in the inspection region; and (2) an inspection object is arranged in the inspection region.
  • a third step of acquiring a tomographic image Provided.
  • an optical tomographic image acquisition method in which light output from a light source is bifurcated into first branched light and second branched light. Is obtained by causing the reflected light generated in step 1 and the diffuse reflected light generated when the second branch light is applied to the examination region to interfere with each other, and obtaining an optical tomographic image based on the result of Fourier transform of the interference light spectrum.
  • the irradiation position of the second branch light to the inspection object is scanned, and the first light is emitted at each irradiation position at the time of the scanning.
  • a tomographic image is acquired, and in the third step, based on the first optical tomographic image at each irradiation position acquired in the first step and the second optical tomographic image acquired in the second step, It is preferable to acquire a two-dimensional or three-dimensional optical tomographic image.
  • the method for acquiring an optical tomographic image of the present invention can easily obtain a true optical tomographic image of an inspection object.
  • FIG. 1 is a diagram illustrating a configuration of an optical tomographic image acquisition apparatus 1.
  • the optical tomographic image acquisition apparatus 1 acquires an optical tomographic image of an inspection object 2 based on FD-OCT, and includes a light source unit 10, an interference unit 20, a reference unit 30, a measurement unit 40, and a detection unit 50.
  • the analyzing unit 60 and the display unit 70 are provided.
  • the light source unit 10 outputs light having a band.
  • the spatial resolution in the depth direction of the inspection object 2 is inversely proportional to the bandwidth of light and also depends on the spectral shape. Therefore, the light source unit 10 is preferably capable of outputting light having a broadband and a spectrum with high flatness.
  • the light source unit 10 preferably outputs broadband light having an intensity of ⁇ 30 dBm / nm or more in a continuous wavelength band having a bandwidth of 10 nm or more.
  • an ASE light source that includes a glass doped with a rare earth element as an optical amplification medium and can output broadband spontaneous emission (ASE) light
  • An SC light source capable of outputting expanded supercontinuum (SC) light, a light source including a super luminescent diode (SLD), and the like are preferably used.
  • the light source unit 10 may have a total bandwidth of 10 nm by temporally sweeping the wavelength as in the case of a tunable laser light source, or each wavelength band output from each of a plurality of light sources. By using this light, the total bandwidth may be 10 nm.
  • Interference unit 20 includes a first branch light L 1 and the second branch light L 2 to 2 branches the light output from the light source unit 10.
  • the interference unit 20 irradiates the reflector 31 with the first branched light L 1 , inputs the reflected light L 3 from the reflector 31 associated with the irradiation, and irradiates the inspection object 2 with the second branched light L 2.
  • the diffuse reflected light L 4 from the inspection object 2 accompanying the irradiation is input, the reflected light L 3 and the diffuse reflected light L 4 are caused to interfere with each other, and the interference light L 5 is output to the detection unit 50.
  • the reference unit 30 includes an optical system between the interference unit 20 and the reflector 31, guides the first branched light L 1 from the interference unit 20 to the reflector 31, and interferes with the reflected light L 3 from the reflector 31. Guide to section 20.
  • the measurement unit 40 includes an optical system between the interference unit 20 and the inspection object 2, guides the second branched light L 2 from the interference unit 20 to the inspection object 2, and diffused reflected light from the inspection object 2.
  • L 4 is guided to the interference unit 20.
  • the scanning unit 41 is provided for scanning a second irradiation position of the branched light L 2 to the inspection object 2.
  • the detection unit 50 detects the spectrum of the interference light L 5 output from the interference unit 20.
  • the analysis unit 60 performs a Fourier transform on the interference light spectrum detected by the detection unit 50, and acquires an optical tomographic image based on the result of the Fourier transform.
  • the analyzing unit 60 obtains an optical tomographic image at each irradiation position upon the scanning, 2-D or A three-dimensional optical tomographic image can be acquired.
  • the display unit 70 displays the optical tomographic image acquired by the analysis unit 60.
  • the optical tomographic image acquisition method of the present embodiment can acquire an optical tomographic image of the inspection object 2 using such an optical tomographic image acquisition apparatus 1.
  • the light output from the light source unit 10 is a first branched light L 1 and the second branch light L 2 is bifurcated by the interference portion 20, these first branch
  • the light L 1 and the second branched light L 2 are output from the interference unit 20.
  • the first branched light L 1 output from the interference unit 20 is irradiated to the reflector 31 through the reference unit 30.
  • the reflected light L 3 generated by irradiating the reflector 31 with the first branched light L 1 reaches the interference unit 20 via the reference unit 30.
  • the second branched light L 2 output from the interference unit 20 is irradiated through the measurement unit 40 to the inspection region where the inspection object 2 is arranged.
  • the diffusely reflected light L 4 generated by the irradiation of the second branched light L 2 to the inspection region reaches the interference unit 20 through the measurement unit 40.
  • the reflected light L 3 from the reference unit 30 and the diffusely reflected light L 4 from the measuring unit 40 interfere with each other in the interference unit 20.
  • the spectrum of the interference light L 5 is detected by the detection unit 50. Then, the interference light spectrum is Fourier transformed by the analysis unit 60, and an optical tomographic image is acquired based on the result of the Fourier transformation.
  • FIG. 2 is a diagram illustrating an optical tomographic image acquisition method.
  • the reflected light L 3 generated by irradiating the reflector 31 with the first branched light L 1 output from the interference unit 20 and the second branched light L 2 output from the interference unit 20 are irradiated to the inspection object 2.
  • the interference light 20 interferes with the diffusely reflected light L 4 generated in this way.
  • Spectra S of the interference light L 5 output from the interference unit 20 is obtained by the detection unit 50, an optical tomographic image I 1 is acquired based on a result of the Fourier transform of the interference light spectrum S by the analysis section 60.
  • the optical tomographic image I 1 acquired at this time is a true optical tomographic image A of the inspection object 2 derived from the diffuse reflection light generated at the inspection object 2 and the diffuse reflection generated at a place other than the inspection object 2. It includes pseudo peaks B 1 and B 2 derived from light. Diffuse reflected light generated at a place other than the inspection object 2 is, for example, reflected from the light source cover 11 on the front surface of the light source unit 10, reflected from the front end surface of the light source unit 10, the interference unit 20, the reference unit 30, or the measurement unit. Including reflection at the surface or interface of the optical element constituting 40, and also including multiple reflection.
  • the pseudo peak B 2 is superimposed on the true optical tomographic image A of the inspection object 2.
  • the optical tomographic image acquisition method of the present embodiment can acquire the true optical tomographic image A of the inspection object 2 by removing the pseudo peak B 2 from the optical tomographic image I 1 , and further the pseudo peak. B 1 can also be removed.
  • FIG. 3 is a diagram illustrating an optical tomographic image acquisition method according to the first embodiment.
  • the optical tomographic image acquisition method of the first embodiment acquires the true optical tomographic image A of the inspection object 2 through the following first to third steps.
  • the first optical tomographic image I 1 is acquired based on the result of Fourier transform of the interference light spectrum S when the inspection object 2 is arranged in the inspection region.
  • a second step the second for obtaining an optical tomographic image I 2 on the basis of the result of the Fourier transform of the interference light spectrum when no place inspection object 2 into the examination region.
  • the execution order of the first step and the second step is arbitrary, but the measurement is performed under a common condition (excluding the presence or absence of the inspection object 2) using a common device.
  • the second optical tomographic image I 2 acquired in the second step does not include the true optical tomographic image A of the inspection object 2 derived from the diffuse reflected light generated by the inspection object 2, but other than the inspection object 2.
  • the pseudo peaks B 1 and B 2 derived from the diffusely reflected light generated at Accordingly, in a third step, to obtain the true optical tomographic image A of the inspection object 2 from the difference between the first optical tomographic image I 1 and the second optical tomographic image I 2.
  • the optical tomographic image obtained in this way does not include the pseudo peaks B 1 and B 2 .
  • FIG. 4 is a diagram illustrating an optical tomographic image acquisition method according to the second embodiment.
  • the optical tomographic image acquisition method of the second embodiment acquires the true optical tomographic image A of the inspection object 2 through the following first to third steps.
  • the first optical tomographic image I 1 is acquired based on the result of Fourier transform of the interference light spectrum S when the inspection object 2 is arranged in the inspection region.
  • the light shielding plate 3 is disposed at a position before the position where the inspection object 2 is disposed in the inspection region, and the second optical tomographic image I is based on the result of Fourier transform of the interference light spectrum at this time. 2 is acquired.
  • the execution order of the first step and the second step is arbitrary, the measurement is performed under a common condition (excluding the presence or absence of the light shielding plate 3) using a common apparatus. Further, in the second step, the arrangement of the inspection object 2 is arbitrary.
  • the second optical tomographic image I 2 acquired in the second step does not include the true optical tomographic image A of the inspection object 2 derived from the diffuse reflected light generated on the inspection object 2, but other than the inspection object 2.
  • 2 includes pseudo peaks B 1 and B 2 derived from diffusely reflected light generated at the location, and includes a peak C derived from diffusely reflected light generated at the light shielding plate 3.
  • the difference in the third step the first optical tomographic image I 1, the image I 2A including a distant pseudo peak B 2 from the position where the light blocking plate 3 of the second optical tomographic image I 2 is arranged From this, a true optical tomographic image A of the inspection object 2 is acquired.
  • optical tomographic image obtained does not include a pseudo peak B 2.
  • the image I 2A so contains no pseudo peak B 1, a pseudo peak B 1 is left in the optical tomographic image obtained from the difference.
  • this pseudo peak B 1 is not superimposed on the true optical tomographic image A of the inspection object 2, there is no problem.
  • an image I 2A far from the position where the light shielding plate 3 is disposed and including the pseudo peak B 2 and an image in the first optical tomographic image I 1 by synthesizing the image I 1A including a pseudo peak B 1 a region other than the region of the I 2A, creating an optical tomographic image I 3.
  • an optical tomographic image I 3 is equivalent to subtracting the image I 2A from the first optical tomographic image I 1 and further subtracting the image I 1A .
  • the optical tomographic image obtained in this way does not include the pseudo peaks B 1 and B 2 .
  • the first step by scanning a second irradiation position of the branched light L 2 to the inspection object 2, first at each irradiation position upon the scanning
  • the first optical tomographic image I 1 is acquired
  • the third step the first optical tomographic image I 1 at each irradiation position acquired in the first step, and the second optical tomographic image I 2 acquired in the second step
  • the two-dimensional or three-dimensional optical tomographic image A of the inspection object 2 may be acquired based on the above.
  • 2 to 4 schematically show two-dimensional optical tomographic images.
  • the optical tomographic image acquisition methods of the first and second embodiments can easily obtain the true optical tomographic image A of the inspection object 2.
  • the present invention can be applied to an optical tomographic image acquisition method.
  • SYMBOLS 1 Optical tomographic image acquisition apparatus, 2 ... Inspection object, 3 ... Light-shielding plate, 10 ... Light source part, 20 ... Interference part, 30 ... Reference part, 31 ... Reflector, 40 ... Measurement part, 41 ... Scanning part, 50 ... detection unit, 60 ... analysis unit, 70 ... display unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 光断層画像の取得方法は、光源部10から出力された光を2分岐して第1分岐光Lおよび第2分岐光Lとし、第1分岐光Lを反射体31に照射して該反射体31で生じる反射光Lと、第2分岐光Lを検査領域に照射したときに生じる拡散反射光Lとを互いに干渉させ、当該干渉光スペクトルのフーリエ変換の結果に基づいて光断層画像を取得する方法である。この取得方法は、(1)検査領域に検査対象物2を配置したときの第1光断層画像を取得する第1ステップと、(2)検査領域に検査対象物2を配置しないときの第2光断層画像を取得する第2ステップと、(3)第1光断層画像と第2光断層画像との差から検査対象物2の光断層画像を取得する第3ステップと、を備える。

Description

光断層画像の取得方法
 本発明は、光断層画像の取得方法に関するものである。
 光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)に拠る光断層画像の取得技術は、光の干渉を用いて検査対象物の深さ方向の反射量分布を測定することができる。この光断層画像の取得技術は、高い空間分解能で検査対象物の内部の構造を画像化することができることから、近年では生体計測に応用されている。
 OCTに拠る光断層画像の取得装置は、光源部から出力される光を2分岐して第1分岐光および第2分岐光とし、第1分岐光を反射体に照射したときに該反射体で生じる反射光と、第2分岐光を検査対象物に照射したときに該検査対象物で生じる拡散反射光とを干渉させる。そして、取得装置は、当該干渉光のパワーを検出部により検出し、この検出結果を解析することで検査対象物の深さ方向の反射情報分布(1次元の光断層画像)を得る。さらに、検査対象物への光照射位置を走査することで、検査対象物の2次元または3次元の光断層画像を取得することができる。
 OCTのうちTD‐OCT(Time‐domain OCT)は、コヒーレンス長が短い光を出力する光源部を用いたときに、光源部から検出部までの両光の光路長差がある場合には干渉光の振幅が小さく、光源部から検出部までの両光の光路長差がない場合にのみ干渉光の振幅が大きくなることを利用する。このTD‐OCTでは、反射体の位置に応じた検査対象物の深さ方向位置の反射情報を得ることができるので、反射体を移動させながら干渉光振幅を検出することにより、検査対象物の深さ方向の反射情報分布を得ることができる。ただし、TD‐OCTでは、検査対象物の深さ方向の反射情報分布を得るために、機械的に反射体を移動させることが必要であるので、検査対象物の光断層画像を取得する時間が長い。
 一方、OCTのうちFD‐OCT(Fourier‐domain OCT)は、干渉信号の波長依存性を利用するものであって、TD‐OCTと比べると検査対象物の光断層画像を取得する時間が短い。光源部から出力される光を第1分岐光と第2分岐光とに等分した場合、光源部から出力される光のパワーをP、光の波数をk(=2π/λ)、検査対象物の深さ方向位置をz、検査対象物での反射率をR、反射体での反射率をRで表したとき、波数kの光についての干渉信号の強度P(k)は、以下の式で表される。
  P(k)=P/4{R+R+2(R)1/2cos(2kz)}
 この式から判るように、波数kの光についての干渉信号の強度P(k)は、検査対象物での反射率Rの2分の1乗に比例する振幅で、検査対象物の深さ方向位置zに応じた周期で振動する。したがって、検出部により検出される干渉信号のスペクトルを波数軸2kでフーリエ変換すると、その結果は、検査対象物の深さ方向位置zでの反射率R(すなわち、深さ方向の反射率分布)を表すものとなる。FD‐OCTは、このことを利用する。
 すなわち、FD‐OCTでは、検査対象物に対して光を照射したときに、その光が検査対象物の内部まで浸透し光軸に沿った各位置で拡散反射が生じると、検出部により検出される干渉信号は、検査対象物の内部の各位置についての信号が重なり合った形で現れる。このような干渉信号をフーリエ変換すると、検査対象物の深さ方向の反射分布が直接求められる。FD‐OCTでは、スペクトルを測定する必要があるので、検出部として分光器を用いる。FD‐OCTは、機械的に反射体を移動させる必要がないので、TD‐OCTと比べると検査対象物の光断層画像を取得する時間が短い。
特開2004-223269号公報 特開2012-085844号公報 特開2010-014668号公報
 このようなOCTに拠る光断層画像の取得技術は、検査対象物の各位置で生じる拡散反射光の強度分布を光断層画像として取得するものであるが、装置や測定上の都合に因り検査対象物以外の所で生じた拡散反射光も検出部に到達して干渉に寄与する場合がある。このときに取得される光断層画像は、検査対象物以外の所で生じた拡散反射光に由来する疑似ピークが真の光断層画像に重畳されたものとなる。検査対象物の真の光断層画像に疑似ピークが重畳していると、検査対象物の真の光断層画像を得ることができない。
 このような問題点を解消することを意図した発明が特許文献1~3に開示されている。特許文献1,2に開示された発明は、検査対象物以外の所での拡散反射光の発生を抑制するよう光学系を改善することにより、疑似ピークの発生を抑制しようとするものである。また、特許文献3に開示された発明は、検査対象物以外の所で生じた拡散反射光を散乱光とするよう光学系を改善することにより、疑似ピークの発生を抑制しようとするものである。
 しかし、これらの文献に開示された発明のように光学系を改善することにより疑似ピークの発生を抑制しようとしても、装置構成上、充分に疑似ピークの発生を抑制することは困難であり、検査対象物の真の光断層画像を得ることも困難である。
 本発明は、上記問題点を解消する為になされたものであり、検査対象物の真の光断層画像を容易に得ることができる光断層画像の取得方法を提供することを目的とする。
 第1の発明の光断層画像の取得方法は、光源部から出力された光を2分岐して第1分岐光および第2分岐光とし、第1分岐光を反射体に照射して該反射体で生じる反射光と、第2分岐光を検査領域に照射したときに生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルのフーリエ変換の結果に基づいて光断層画像を取得する方法であって、(1)検査領域に検査対象物を配置したときの干渉光スペクトルのフーリエ変換の結果に基づいて第1光断層画像を取得する第1ステップと、(2)検査領域に検査対象物を配置しないときの干渉光スペクトルのフーリエ変換の結果に基づいて第2光断層画像を取得する第2ステップと、(3)第1光断層画像と第2光断層画像との差から検査対象物の光断層画像を取得する第3ステップと、を備える。
 第2の発明の光断層画像の取得方法は、光源部から出力された光を2分岐して第1分岐光および第2分岐光とし、第1分岐光を反射体に照射して該反射体で生じる反射光と、第2分岐光を検査領域に照射したときに生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルのフーリエ変換の結果に基づいて光断層画像を取得する方法であって、(1)検査領域に検査対象物を配置したときの干渉光スペクトルのフーリエ変換の結果に基づいて第1光断層画像を取得する第1ステップと、(2)検査領域に検査対象物が配置される位置より手前の位置に遮光板を配置したときの干渉光スペクトルのフーリエ変換の結果に基づいて第2光断層画像を取得する第2ステップと、(3)第1光断層画像と、第2光断層画像のうち遮光板が配置された位置より遠方の画像との差から、検査対象物の光断層画像を取得する第3ステップと、を備える。
 第1または第2の発明の光断層画像の取得方法は、第1ステップにおいて、検査対象物への第2分岐光の照射位置を走査して、その走査の際の各照射位置において第1光断層画像を取得し、第3ステップにおいて、第1ステップで取得された各照射位置における第1光断層画像と、第2ステップで取得された第2光断層画像とに基づいて、検査対象物の2次元または3次元の光断層画像を取得するのが好適である。
 本発明の光断層画像の取得方法は、検査対象物の真の光断層画像を容易に得ることができる。
光断層画像の取得装置1の構成を示す図である。 光断層画像の取得方法を説明する図である。 第1実施形態の光断層画像の取得方法を説明する図である。 第2実施形態の光断層画像の取得方法を説明する図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、光断層画像の取得装置1の構成を示す図である。光断層画像の取得装置1は、FD‐OCTに拠って検査対象物2の光断層画像を取得するものであって、光源部10、干渉部20、参照部30、測定部40、検出部50、解析部60および表示部70を備える。
 光源部10は、帯域を有する光を出力する。OCTでは、検査対象物2の深さ方向の空間分解能は光の帯域幅に反比例し、スペクトル形状にも依存する。したがって、光源部10として、広帯域かつ平坦度の高いスペクトルを有した光を出力することができるものが好ましい。光源部10は、帯域幅10nm以上の連続した波長帯域において強度-30dBm/nm以上である広帯域光を出力するのが好適である。
 光源部10として、例えば、希土類元素が添加されたガラスを光増幅媒体として備え広帯域の自然放出(ASE:Amplified Spontaneous Emission)光を出力することができるASE光源、光導波路における非線形光学現象によって帯域が拡大されたスーパーコンティニウム(SC:Supercontinuum)光を出力することができるSC光源、スーパールミネッセントダイオード(SLD:Super Luminescence Diode)を含む光源、等が好適に用いられる。また、光源部10は、波長可変レーザ光源のように時間的に波長を掃引することで全体の帯域幅が10nmとなるものであってもよいし、複数の光源それぞれから出力される各波長帯域の光を用いることで全体の帯域幅が10nmとなるものであってもよい。
 干渉部20は、光源部10から出力される光を2分岐して第1分岐光Lおよび第2分岐光Lとする。干渉部20は、第1分岐光Lを反射体31に照射するとともに当該照射に伴う反射体31からの反射光Lを入力し、第2分岐光Lを検査対象物2に照射するとともに当該照射に伴う検査対象物2からの拡散反射光Lを入力し、これら反射光Lと拡散反射光Lとを互いに干渉させて当該干渉光Lを検出部50へ出力する。
 参照部30は、干渉部20と反射体31との間の光学系を含み、干渉部20からの第1分岐光Lを反射体31へ導き、反射体31からの反射光Lを干渉部20へ導く。測定部40は、干渉部20と検査対象物2との間の光学系を含み、干渉部20からの第2分岐光Lを検査対象物2へ導き、検査対象物2からの拡散反射光Lを干渉部20へ導く。また、検査対象物2への第2分岐光Lの照射位置を走査する走査部41が設けられている。
 検出部50は、干渉部20から出力される干渉光Lのスペクトルを検出する。解析部60は、検出部50により検出された干渉光スペクトルをフーリエ変換し、そのフーリエ変換の結果に基づいて光断層画像を取得する。走査部41により検査対象物2への第2分岐光Lの照射位置を走査することで、解析部60は、その走査の際の各照射位置において光断層画像を取得して、2次元または3次元の光断層画像を取得することができる。表示部70は、解析部60により取得された光断層画像を表示する。
 本実施形態の光断層画像取得方法は、このような光断層画像の取得装置1を用いて、検査対象物2の光断層画像を取得することができる。本実施形態の光断層画像の取得方法では、光源部10から出力された光は、干渉部20により2分岐されて第1分岐光Lおよび第2分岐光Lとされ、これら第1分岐光Lおよび第2分岐光Lが干渉部20から出力される。干渉部20から出力された第1分岐光Lは、参照部30を経て反射体31に照射される。第1分岐光Lが反射体31に照射されて生じた反射光Lは、参照部30を経て干渉部20に到達する。干渉部20から出力された第2分岐光Lは、測定部40を経て、検査対象物2が配置される検査領域に照射される。その検査領域への第2分岐光Lの照射により生じた拡散反射光Lは、測定部40を経て干渉部20に到達する。参照部30からの反射光Lと測定部40からの拡散反射光Lとは、干渉部20において干渉する。その干渉光Lのスペクトルが検出部50により検出される。そして、解析部60により、干渉光スペクトルがフーリエ変換され、そのフーリエ変換の結果に基づいて光断層画像が取得される。
 図2は、光断層画像の取得方法を説明する図である。干渉部20から出力された第1分岐光Lが反射体31に照射されて生じた反射光Lと、干渉部20から出力された第2分岐光Lが検査対象物2に照射されて生じた拡散反射光Lとは、干渉部20において干渉する。干渉部20から出力された干渉光LのスペクトルSが検出部50により得られ、解析部60により干渉光スペクトルSのフーリエ変換の結果に基づいて光断層画像Iが取得される。
 このとき取得される光断層画像Iは、検査対象物2で生じた拡散反射光に由来する検査対象物2の真の光断層画像Aと、検査対象物2以外の所で生じた拡散反射光に由来する疑似ピークB,Bとを含む。検査対象物2以外の所で生じる拡散反射光は、例えば、光源部10の前面にある光源カバー11からの反射、光源部10の前端面からの反射、干渉部20,参照部30または測定部40を構成する光学素子の表面または界面での反射を含み、更に多重反射をも含む。
 検査対象物2以外の所で生じた拡散反射光に由来する疑似ピークB,Bのうち疑似ピークBは検査対象物2の真の光断層画像Aに重畳している。本実施形態の光断層画像の取得方法は、光断層画像Iから疑似ピークBを除去して検査対象物2の真の光断層画像Aを取得することができるものであり、さらに疑似ピークBをも除去することができる。
 図3は、第1実施形態の光断層画像の取得方法を説明する図である。第1実施形態の光断層画像の取得方法は、以下のような第1~第3のステップを経て、検査対象物2の真の光断層画像Aを取得する。第1ステップにおいて、図2を用いて説明したとおり、検査領域に検査対象物2を配置したときの干渉光スペクトルSのフーリエ変換の結果に基づいて第1光断層画像Iを取得する。
 第2ステップにおいて、検査領域に検査対象物2を配置しないときの干渉光スペクトルのフーリエ変換の結果に基づいて第2光断層画像Iを取得する。第1ステップおよび第2ステップは、実行順序は任意であるが、共通の装置を用いて共通の条件(検査対象物2の有無の点を除く。)で測定が行われる。
 第2ステップで取得される第2光断層画像Iは、検査対象物2で生じた拡散反射光に由来する検査対象物2の真の光断層画像Aを含まないが、検査対象物2以外の所で生じた拡散反射光に由来する疑似ピークB,Bを含む。そこで、第3ステップにおいて、第1光断層画像Iと第2光断層画像Iとの差から検査対象物2の真の光断層画像Aを取得する。これにより得られる光断層画像は疑似ピークB,Bを含まない。
 図4は、第2実施形態の光断層画像の取得方法を説明する図である。第2実施形態の光断層画像の取得方法は、以下のような第1~第3のステップを経て、検査対象物2の真の光断層画像Aを取得する。第1ステップにおいて、図2を用いて説明したとおり、検査領域に検査対象物2を配置したときの干渉光スペクトルSのフーリエ変換の結果に基づいて第1光断層画像Iを取得する。
 第2ステップにおいて、検査領域に検査対象物2が配置される位置より手前の位置に遮光板3を配置して、このときの干渉光スペクトルのフーリエ変換の結果に基づいて第2光断層画像Iを取得する。第1ステップおよび第2ステップは、実行順序は任意であるが、共通の装置を用いて共通の条件(遮光板3の有無の点を除く。)で測定が行われる。また、第2ステップにおいては、検査対象物2の配置は任意である。
 第2ステップにおいて取得される第2光断層画像Iは、検査対象物2で生じた拡散反射光に由来する検査対象物2の真の光断層画像Aを含まないが、検査対象物2以外の所で生じた拡散反射光に由来する疑似ピークB,Bを含み、また、遮光板3で生じた拡散反射光に由来するピークCを含む。
 そこで、第3ステップにおいて、第1光断層画像Iと、第2光断層画像Iのうち遮光板3が配置された位置より遠方であって疑似ピークBを含む画像I2Aとの差から、検査対象物2の真の光断層画像Aを取得する。これにより得られる光断層画像は疑似ピークBを含まない。一方、画像I2Aは疑似ピークBを含ないので、差から得られた光断層画像には疑似ピークBが残る。しかし、この疑似ピークBは検査対象物2の真の光断層画像Aに重畳していていないので、問題はない。
 または、第3ステップにおいて、第2光断層画像Iのうち遮光板3が配置された位置より遠方であって疑似ピークBを含む画像I2Aと、第1光断層画像Iのうち画像I2Aの領域以外の領域であって疑似ピークBを含む画像I1Aとを合成して、光断層画像Iを作成する。そして、第1光断層画像Iと光断層画像Iとの差から検査対象物2の真の光断層画像Aを取得する。これは、第1光断層画像Iから画像I2Aを差し引き、更に画像I1Aを差し引くことと同等である。これにより得られる光断層画像は疑似ピークB,Bを含まない。
 また、第1および第2の実施形態の何れにおいても、第1ステップにおいて、検査対象物2への第2分岐光Lの照射位置を走査して、その走査の際の各照射位置において第1光断層画像Iを取得し、第3ステップにおいて、第1ステップで取得された各照射位置における第1光断層画像Iと、第2ステップで取得された第2光断層画像Iとに基づいて、検査対象物2の2次元または3次元の光断層画像Aを取得することとしてもよい。第2ステップでは第2分岐光Lの照射位置の走査は必要ない。なお、図2~図4では2次元の光断層画像が模式的に示されていた。
 以上のように、第1および第2の実施形態の光断層画像の取得方法は、検査対象物2の真の光断層画像Aを容易に得ることができる。
 本発明は、光断層画像の取得方法に適用することができる。
 1…光断層画像の取得装置、2…検査対象物、3…遮光板、10…光源部、20…干渉部、30…参照部、31…反射体、40…測定部、41…走査部、50…検出部、60…解析部、70…表示部。

Claims (3)

  1.  光源部から出力された光を2分岐して第1分岐光および第2分岐光とし、前記第1分岐光を反射体に照射して該反射体で生じる反射光と、前記第2分岐光を検査領域に照射したときに生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルのフーリエ変換の結果に基づいて光断層画像を取得する方法であって、
     前記検査領域に検査対象物を配置したときの前記干渉光スペクトルのフーリエ変換の結果に基づいて第1光断層画像を取得する第1ステップと、
     前記検査領域に前記検査対象物を配置しないときの前記干渉光スペクトルのフーリエ変換の結果に基づいて第2光断層画像を取得する第2ステップと、
     前記第1光断層画像と前記第2光断層画像との差から前記検査対象物の光断層画像を取得する第3ステップと、
     を備える、光断層画像の取得方法。
  2.  光源部から出力された光を2分岐して第1分岐光および第2分岐光とし、前記第1分岐光を反射体に照射して該反射体で生じる反射光と、前記第2分岐光を検査領域に照射したときに生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルのフーリエ変換の結果に基づいて光断層画像を取得する方法であって、
     前記検査領域に検査対象物を配置したときの前記干渉光スペクトルのフーリエ変換の結果に基づいて第1光断層画像を取得する第1ステップと、
     前記検査領域に前記検査対象物が配置される位置より手前の位置に遮光板を配置したときの前記干渉光スペクトルのフーリエ変換の結果に基づいて第2光断層画像を取得する第2ステップと、
     前記第1光断層画像と、前記第2光断層画像のうち前記遮光板が配置された位置より遠方の画像との差から、前記検査対象物の光断層画像を取得する第3ステップと、
     を備える、光断層画像の取得方法。
  3.  前記第1ステップにおいて、前記検査対象物への前記第2分岐光の照射位置を走査して、その走査の際の各照射位置において前記第1光断層画像を取得し、
     前記第3ステップにおいて、前記第1ステップで取得された各照射位置における前記第1光断層画像と、前記第2ステップで取得された前記第2光断層画像とに基づいて、前記検査対象物の2次元または3次元の光断層画像を取得する、
     請求項1または2に記載の光断層画像の取得方法。
     
PCT/JP2013/069023 2012-07-11 2013-07-11 光断層画像の取得方法 WO2014010691A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/414,051 US20150173607A1 (en) 2012-07-11 2013-07-11 Method for acquiring optical tomographic image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012155795A JP2014016318A (ja) 2012-07-11 2012-07-11 光断層画像取得方法
JP2012-155795 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014010691A1 true WO2014010691A1 (ja) 2014-01-16

Family

ID=49916132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069023 WO2014010691A1 (ja) 2012-07-11 2013-07-11 光断層画像の取得方法

Country Status (3)

Country Link
US (1) US20150173607A1 (ja)
JP (1) JP2014016318A (ja)
WO (1) WO2014010691A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075585A (ja) * 2014-10-07 2016-05-12 キヤノン株式会社 撮像装置、断層画像のノイズ低減方法、及びプログラム
EP3572765A1 (de) 2018-05-23 2019-11-27 Haag-Streit Ag Oct-system und oct-verfahren

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243965A (ja) * 1994-03-01 1995-09-19 Fuji Photo Film Co Ltd 光散乱媒体の吸光情報検出方法
JPH09297091A (ja) * 1996-05-08 1997-11-18 Mitsubishi Heavy Ind Ltd レーザ光強度分布補正装置
JPH11337475A (ja) * 1997-11-13 1999-12-10 Seitai Hikari Joho Kenkyusho:Kk 光計測装置
JP2003042941A (ja) * 2001-08-02 2003-02-13 Toyo Commun Equip Co Ltd 光量測定装置
JP2004223269A (ja) * 1999-02-04 2004-08-12 Univ Hospital Of Cleveland 光走査プローブ装置
JP2008224473A (ja) * 2007-03-14 2008-09-25 Fujifilm Corp 断層画像処理方法および装置ならびにプログラム
JP2009098043A (ja) * 2007-10-18 2009-05-07 Nippon Soda Co Ltd 試料測定装置及び試料測定方法
JP2010014668A (ja) * 2008-07-07 2010-01-21 Fujifilm Corp 光断層画像化装置、光プローブ
JP2011069716A (ja) * 2009-09-25 2011-04-07 Fujifilm Corp 計測データの補正方法、光断層計測装置及びプログラム
JP2012085844A (ja) * 2010-10-20 2012-05-10 Panasonic Corp カバーと、それを装着した光断層画像取得装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123372A (ja) * 1997-07-02 1999-01-29 Res Dev Corp Of Japan 光波コヒーレンス映像方法及びその装置
CN101405562B (zh) * 2006-01-19 2011-01-26 光视有限公司 傅立叶域光学相干断层摄影成像仪
DE102008063225A1 (de) * 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry
JP5242473B2 (ja) * 2009-03-23 2013-07-24 株式会社ニデック 眼科撮影装置、及び眼科撮影装置のキャリブレーション方法
JP2012110521A (ja) * 2010-11-25 2012-06-14 Hoya Corp Octシステム
US9433353B2 (en) * 2011-06-23 2016-09-06 Nidek Co., Ltd. Optical coherence tomography apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243965A (ja) * 1994-03-01 1995-09-19 Fuji Photo Film Co Ltd 光散乱媒体の吸光情報検出方法
JPH09297091A (ja) * 1996-05-08 1997-11-18 Mitsubishi Heavy Ind Ltd レーザ光強度分布補正装置
JPH11337475A (ja) * 1997-11-13 1999-12-10 Seitai Hikari Joho Kenkyusho:Kk 光計測装置
JP2004223269A (ja) * 1999-02-04 2004-08-12 Univ Hospital Of Cleveland 光走査プローブ装置
JP2003042941A (ja) * 2001-08-02 2003-02-13 Toyo Commun Equip Co Ltd 光量測定装置
JP2008224473A (ja) * 2007-03-14 2008-09-25 Fujifilm Corp 断層画像処理方法および装置ならびにプログラム
JP2009098043A (ja) * 2007-10-18 2009-05-07 Nippon Soda Co Ltd 試料測定装置及び試料測定方法
JP2010014668A (ja) * 2008-07-07 2010-01-21 Fujifilm Corp 光断層画像化装置、光プローブ
JP2011069716A (ja) * 2009-09-25 2011-04-07 Fujifilm Corp 計測データの補正方法、光断層計測装置及びプログラム
JP2012085844A (ja) * 2010-10-20 2012-05-10 Panasonic Corp カバーと、それを装着した光断層画像取得装置

Also Published As

Publication number Publication date
US20150173607A1 (en) 2015-06-25
JP2014016318A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
US9689745B2 (en) Multiple window processing schemes for spectroscopic optical coherence tomography (OCT) and fourier domain low coherence interferometry
USRE46412E1 (en) Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
JP5371315B2 (ja) 光干渉断層撮像方法および光干渉断層撮像装置
US7859679B2 (en) System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging
US7348563B2 (en) Tomography imaging apparatus
US20150168126A1 (en) System and method for optical coherence tomography
JP5557397B2 (ja) 半透明物質の画像化の方法および装置
JP3688608B2 (ja) 分光機能を備えた光干渉断層画像計測装置
US9600444B2 (en) Method for generating information signal
WO2014010691A1 (ja) 光断層画像の取得方法
JP6214020B2 (ja) 光断層イメージング法、その装置およびプログラム
US20230102868A1 (en) Optical coherence tomography (oct) apparatus and method for controlling an opticalcoherence tomography apparatus
TWI465686B (zh) 平衡偵測光譜域光學同調斷層掃描系統
JP5664564B2 (ja) 光断層画像取得方法
WO2021192047A1 (ja) 光干渉断層撮像装置、撮像方法、及び、撮像プログラムが格納された非一時的なコンピュータ可読媒体
JP2013057549A (ja) 光断層画像取得方法
Rao et al. Signal processing of spectral domain optical coherence tomography
JP2014092438A (ja) 光学的測定方法
US20180073978A1 (en) Signal processing apparatus, optical tomographic measurement apparatus, and signal processing method
Zhu et al. Interferometric light scattering techniques for measuring nuclear morphology and detecting dysplasia
JP2015094651A (ja) 光学的測定方法
JP2010025943A (ja) 断層映像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414051

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816276

Country of ref document: EP

Kind code of ref document: A1