USRE46412E1 - Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography - Google Patents

Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography Download PDF

Info

Publication number
USRE46412E1
USRE46412E1 US14/184,537 US201414184537A USRE46412E US RE46412 E1 USRE46412 E1 US RE46412E1 US 201414184537 A US201414184537 A US 201414184537A US RE46412 E USRE46412 E US RE46412E
Authority
US
United States
Prior art keywords
electro
sample
magnetic
arrangement
radiations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/184,537
Inventor
Adrien Desjardins
Benjamin J. Vakoc
Guillermo J. Tearney
Brett Eugene Bouma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38234475&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE46412(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to US14/184,537 priority Critical patent/USRE46412E1/en
Assigned to THE GENERAL HOSPITAL CORPORATION reassignment THE GENERAL HOSPITAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOUMA, BRETT EUGENE, DESJARDINS, ADRIEN E., TEARNEY, GUILLERMO J., VAKOC, BENJAMIN J.
Application granted granted Critical
Publication of USRE46412E1 publication Critical patent/USRE46412E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02043Imaging of the Fourier or pupil or back focal plane, i.e. angle resolved imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02087Combining two or more images of the same region
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4714Continuous plural angles

Definitions

  • the present invention relates to methods and systems for performing angle-resolved Fourier-domain optical coherence tomography, and more particularly to measuring spatially-resolved angular backscattering distributions from transparent and turbid samples using Fourier-domain optical coherence tomography techniques.
  • Optical coherence tomography enables cross-sectional images of biological samples to be obtained with resolution on a scale of several microns to tens of microns, thus allowing for detailed imaging of a tissue microstructure. It has been demonstrated that Fourier-domain OCT (“FD-OCT”) can provide a significantly improved sensitivity over the time-domain OCT, which enables high-speed imaging.
  • FD-OCT has been implemented in two configurations, e.g., spectral-domain OCT (“SD-OCT”) and optical frequency domain imaging (“OFDI”), as described in at least one of International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov.
  • FD-OCT has been shown to have significant potential as a tool for identifying morphological changes in many clinical contexts, including cardiovascular, gastrointestinal, and retinal imaging.
  • OCM optical coherence microscopy
  • FIG. 1 An example of one such OCM system is shown in FIG. 1 , as described in E. Beaurepaire et al., “Full-field optical coherence microscopy,” Optics Letters 23(4): 244-246, 1998.
  • An acquisition of light backscattered from different angles can be implemented using a technique of angular compounding, which may reduce speckle. Speckle generally manifests itself as a checkered pattern within scattering regions of the image, and makes it more difficult to discern subtle reflectance differences in the tissue reflectance.
  • a method and system for acquiring backscattered light at different incident angles in the context of OCT enabling angular compounding employs path length encoding.
  • the example of such system is shown in FIG. 2 , as described in N. Iftimia et al., “Speckle reduction in optical coherence tomography by ‘path length encoded’ angular compounding,” Journal Of Biomedical Optics 8(2): 260-263, 2003.
  • an optical glass can be placed in the imaging beam path, splitting the incident field into two or more beamlets. This optical glass causes a portion of the incident beam (beamlet 2 ) to experience a greater path length delay than beamlet 1 .
  • beamlet 2 illuminates the sample at a different angle than beamlet 1 .
  • Another method and system translates a right angle prism, directing light from the sample arm to different positions on the focusing lens.
  • An example of such system is shown in FIG. 3 , as described in M. Bashkansky et al., “Statistics and reduction of speckle in optical coherence tomography,” Optics Letters 25(8): 545-547, 2000.
  • a backscattered light at a narrow angular range centered at 180 degrees is generally collected, but the angle of incidence of the incident beam with respect to the sample normal varies with the position of the prism.
  • Such method and system likely do not provide for (or even allow) a measurement of angular backscattering distributions.
  • the speed at which the images can be acquired may be limited by the speed at which the prism can be translated in an oscillatory manner.
  • detection of the OCT signals with four detectors can be performed simultaneously, which enables angular compounding for the speckle reduction.
  • An example of such system is shown in FIG. 4 , as described in J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Physics In Medicine And Biology 42(7): 1427-1439, 1997.
  • the reference beam in this system is generally not larger than the incident beam.
  • this system may not be conducive to measurements of the angular backscattering distributions.
  • each detector element receives the light backscattered at a different angle
  • the solid angle subtended by the light collected for a given detector element is contained entirely within that subtended by the incident beam.
  • the detection in this system is performed in the time domain.
  • the angular distributions of backscattered light generally contain information regarding the size distributions of the scattering particles within the tissue.
  • the ability to derive robust contrast between tissues with subtle differences in reflectance properties may (in certain circumstances) utilize the measurements of the angular distributions of the backscattered light.
  • Depth-resolved angular backscattering measurements using the low-coherence interferometry have been designed for the light-scattering measurements with high angular resolution, as shown in the arrangements of FIGS. 5(a) and 5(b) , as described in A.
  • light from a low-coherence source is divided into two arms of a modified Michelson interferometer, one beam being incident on the sample (or a sample arm) and another being incident on a mirror (or a reference arm).
  • a lens placed in the reference arm can be translated in a direction parallel to the mirror face in order to provide the selectivity for different backscattering angles in the former arm.
  • Measurements of interfered light are generally made in either the time domain (using the arrangement shown in FIGS. 5(a) and 5(b) ) or the frequency domain (using the arrangement shown in FIGS. 6(a) and 6(b) ).
  • exemplary embodiments of systems, apparatus and methods according to the present invention are provided for measuring spatially-resolved angular backscattering distributions from transparent and turbid samples using Fourier-domain optical coherence tomography principles.
  • systems and methods for utilizing the backscattering distributions are provided for performing speckle reduction and for generating image contrast.
  • apparatus and method are provided.
  • at least one first electro-magnetic radiation can be received and at least one second electro-magnetic radiation within a solid angle may be forwarded to a sample.
  • the second electro-magnetic radiation may be associated with the first electro-magnetic radiation.
  • a plurality of third electro-magnetic radiations can be received from the sample which is associated with the second electro-magnetic radiation, and at least one portion of the third electro-magnetic radiation is provided outside a periphery of the solid angle.
  • Signals associated with each of the third electro-magnetic radiations can be simultaneously detected, with the signals being associated with information for the sample at a plurality of depths thereof. The depths can be determined using at least one of the third electro-magnetic radiations without a need to utilize another one of the third electro-magnetic radiations.
  • an interference can be detected (e.g., using at least one third arrangement) between the two of the third radiations and at least one fourth radiation associated with the first radiation, and information associated with the sample can be obtained as a function of the depths within the sample based on the interference.
  • Data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample can be provided as a function of the signals (e.g., using at least one third arrangement).
  • At least one image of at least one portion of the sample can be generated (e.g., using at least one third arrangement) as a function of the signals.
  • the data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample can also be provided as a function of the signals.
  • the data can be contrast data associated with the image (e.g., using at least one third arrangement).
  • Data associated with scattering characteristics of at least one portion of the sample can also be provided as a function of a combination of the signals. Further, the depths may be determined using a single one of the third electro-magnetic radiations.
  • apparatus and method can provided which facilitate the production of data associated with at least one sample.
  • first information associated with signals for a plurality of electro-magnetic radiations provided from the at least one sample can be received.
  • At least first one of the electro-magnetic radiations may be provided along a first axis
  • at least second one of the electro-magnetic radiations can be provided along second axis which is different from the first axis.
  • Data for each of the signals within at least one portion of the first information may include data for a plurality of depths within the sample.
  • Second information associated with contrast data of at least one portion of an image for the at least one sample can be produced as a function of the first information.
  • At least one first electro-magnetic radiation can be received, and at least one second electro-magnetic radiation within a solid angle can be forwarded to a sample.
  • the second electro-magnetic radiation may be associated with the first electro-magnetic radiation.
  • At least two of a plurality of third electro-magnetic radiations may be simultaneously received from the sample which is associated with the second electro-magnetic radiation, and at least one portion of the third electro-magnetic radiations may be provided outside a periphery of the solid angle.
  • An interference between the at least two of the third radiations and at least one fourth radiation associated with the first radiation may be detected.
  • Information associated with the sample can be obtained as a function of at least one depth within the sample based on the interference.
  • FIG. 1 is a block diagram of a conventional apparatus for performing Optical Coherence Microscopy (“OCM”);
  • FIG. 2 is a block diagram of a conventional apparatus for performing path length encoded angular compounding for reducing speckle in Optical Coherence Tomography (“OCT”);
  • FIG. 3 is a block diagram of a conventional OCT apparatus for performing speckle reduction
  • FIG. 4 is a block diagram of a conventional OCT apparatus for performing array detection for speckle reduction
  • FIGS. 5(a) and 5(b) are block diagrams of conventional apparatus for performing angle-resolved low-coherence interferometry
  • FIGS. 6(a) and 6(b) are block diagrams of further conventional apparatus for performing the angle-resolved low-coherence interferometry
  • FIG. 7 is a schematic diagram of an exemplary embodiment of an angle-resolved FD-OCT system according to the present invention that employs a single-dimensional detector array, with a rectangular, gray dashed region being oriented perpendicularly to the plane of the interferometer;
  • FIG. 8 is a schematic diagram of an exemplary embodiment of a wavelength-swept laser source utilized the system shown in FIG. 7 ;
  • FIG. 9 is a schematic and operational diagram of a detection of the interference another exemplary embodiment of an angle-resolved FD-OCT system according to the present invention that employs a two dimensional detector array for a simultaneous detection of wavelength and angle;
  • FIG. 10 is a schematic and operational diagram of imaging optics providing within a further exemplary embodiment of an angle-resolved FD-OCT system according to the present invention that can be compatible with endoscopic probes;
  • FIG. 11(a) is a two-dimensional image of a tissue phantom obtained with the exemplary embodiments of the angle-resolved FD-OCT system according to the present invention for averages across one exemplary angular sample;
  • FIG. 11(b) is another two-dimensional image of the tissue phantom obtained with the exemplary embodiments of the angle-resolved FD-OCT system according to the present invention for averages across 400 angular samples;
  • FIG. 12(a) is a graph of an angular distribution obtained from one resolution element within a tissue phantom in accordance with an exemplary embodiment of the present invention
  • FIG. 12(b) is a graph of an angular distribution obtained from one resolution element using corresponding normalized cross-correlation function in accordance with an exemplary embodiment of the present invention
  • FIG. 13A is an image of an exemplary esophageal tissue obtained from compounding one angular sample, with an arrow pointing to a thin scattering layer within the epithelium;
  • FIG. 13B is an image of an exemplary esophageal tissue obtained from compounding three angular sample, with the arrow pointing to a thin scattering layer within the epithelium;
  • FIG. 13C is an image of an exemplary esophageal tissue obtained from compounding thirty (30) angular samples, with the arrow pointing to a thin scattering layer within the epithelium;
  • FIG. 13D is an image of an exemplary esophageal tissue obtained from compounding four hundred (400) angular samples, with the arrow pointing to a thin scattering layer within the epithelium.
  • Angle-resolved FD-OCT is described herein below in a context of Fourier-Domain OCT.
  • the interference between reference light and the light backscattered from the imaging sample can be measured in the frequency domain in order to obtain the depth-resolved reflectance of a turbid, semi-turbid, or transparent medium.
  • Electro-magnetic radiation (e.g., light, laser beam, etc.) of the input light source can be split into a reference beam and a sample beam.
  • the sample beam light may be directed to the sample to be imaged, and backscattered light from the sample may be interfered with reference beam light.
  • the reference beam can be spatially expanded such that it can be made larger in a cross-sectional area than the cross-sectional area of the sample beam in order to allow for the interference with a range of backscattering angles beyond those subtended by the incident sample beam.
  • the interference between the reference beam and the backscattered light can be measured using, e.g., a detector array, which may consist of (i) detectors integrated onto a single integrated circuit element, and/or (ii) individual detectors provided together in space.
  • the angular dependence of the detected backscattered light with respect to the incident beam may be encoded in the spatial domain, as the distribution of light intensities along at least one dimension of the detector array.
  • the wavelength dependence of the interfered light may be measured, and Fourier analysis axial reflectivity profiles corresponding to different ranges of backscattering angles can be obtained.
  • the interference signal S i detected by an ith pixel of the detector array as a function of the frequency of laser light v n can be given by the following proportionality expression:
  • the amount of the sample arm and reference arm electro-magnetic radiation (e.g., light) that reaches pixel i, expressed as fractions of P(v n ) can be denoted ⁇ s,i and ⁇ r,i , respectively.
  • the reflectivity profile R(z) can be obtained as the Discrete Fourier Transform of the sampled interference signal along the dimension i:
  • Speckle results from distortions of the backscattered wavefront which are likely caused by low-angle multiple forward scattering and diffuse multiple backscattering from closely separated refractive index heterogeneities.
  • Angular compounding techniques are generally obtained from an observation that as a result of this interference, fields originating from different backscattering angles are de-correlated.
  • averaging the signals from different scattering angles incoherently e.g., averaging of the magnitude of the reconstructed reflectance profiles, a reflectance signal with reduced speckle can be obtained.
  • the speckle signal-to-noise ratio can be a measure of the speckle reduction, as the ratio of the mean to the square-root of the variance of pixel intensities within a medium with homogenous scattering properties:
  • the speckle SNR can be a normalized measure of the variance of the signal obtained from a homogenous sample. As such, the speckle SNR may differ from the system sensitivity, which can be defined without the presence of speckle as the minimum detectable reflectance.
  • An extent to which the SNR can be increased by angular compounding may therefore be dependent on the level of angular decorrelation.
  • higher levels of decorrelation for OCT sample volumes containing large numbers of scatterers can be obtained, as well as those at large optical depths.
  • sharp interfaces and scatterers with dimensions that are similar to those of the sample volumes are likely to indicate a small amount of contrast enhancement from angular compounding.
  • the angular backscattering patterns of light which may be measured by the angle-resolved FD-OCT methods and systems, can contain information about the scatterer size and the density of the imaging sample. This information may be relevant in, e.g., a clinical imaging context in order to distinguish between different regions of tissue that have very similar scattering properties that may be used in optical methods that measure the reflectance of light that is backscattered within a single angular range.
  • Image contrast measures can be generated from angular backscattering distributions at each pixel, and such measures can be spatially smoothed, and/or image contrast measures can be generated from spatially smoothed angular backscattering distributions.
  • the FD-OCT techniques of SD-OCT and OFDI systems and method can measure a discrete spectral interference, and may differ in the implementation of this measurement.
  • the OFDI systems and methods can use a wavelength-swept source to record the interference as a function of time, whereas the SD-OCT systems and methods may generally use a spectrometer to image interference spectra onto a detector array or a portion of an array.
  • FIG. 7 shows a schematic diagram of an exemplary embodiment of the angle-resolved FD-OCT imaging system in accordance with the present invention.
  • This exemplary system can include the following modules: a wavelength-swept source 705 , an interferometer 707 , and an acquisition camera 765 with corresponding electronics 785 .
  • the laser output can be directed to the optical coupler 710 which may split the light into two arms of the interferometer 707 .
  • a collimated light provided from a reference arm collimator 725 may be incident on a cylindrical lens telescope with elements 735 , 740 , 745 , and this telescope can which expand the beam in the dimension of the line-scan camera 765 .
  • a free-space coupler of variable length 712 can be placed within the reference arm before the collimator 725 to facilitate reference arm length adjustments.
  • the collimated light from the sample arm collimator 730 can be directed through a linear polarizer 755 and the beam splitter 750 , where such light may be incident on imaging optics 770 , 775 which focus the light on a sample 780 .
  • Polarization controllers 715 , 720 provided before the collimators 725 , 730 , respectively, can be positioned to maximize the fringe modulation across the frequency range of the wavelength-swept source 705 .
  • the imaging optics 770 and 775 consists of a galvanometer mirror 770 with its axis parallel to the plane of the interferometer 707 and perpendicular to the beam which is incident upon it from the beam splitter 750 , and a focusing lens 775 that is placed one focal length from the sample 780 .
  • the incident beam contacts the horizontal and vertical centers of the galvanometer mirror 770 .
  • the light back-reflected from the sample 780 can pass back via the mirror 770 and the focusing lens 775 , and may subsequently interfere with the reference beam at the beam splitter 750 .
  • the interfered light may be incident on a cylindrical lens 760 which focuses the light onto the line-scan camera 765 .
  • the light from a He—Ne laser 700 can be injected into the fiber coupler 710 , and may act as a guide beam during the imaging procedure.
  • the signals from the line-scan camera 765 can be directed toward analog-to-digital (A-D) input ports of a data acquisition (“DAQ”) board 785 .
  • A-D analog-to-digital
  • the DAQ board 785 can obtain m data points from n exposures, where m may be the number of detectors in the line scan camera 765 , and n can be the number of frequencies sampled per a-line.
  • the a-line acquisition rate can be determined as the quotient of the line scan camera readout rate and n.
  • the readout from the DAQ board 785 may be synchronized to the frequency-swept laser source 705 using, e.g., TTL trigger signals by the line-scan camera 765 at the beginning of each readout phase.
  • the exemplary embodiment of the wavelength-swept source can be constructed as a ring-cavity laser with a semiconductor optical amplifier (“SOA”) 845 as the gain element and a galvanometer mirror filter 800 that may include a galvanometer mirror 802 , a telescope 805 , 810 , a diffraction grating 815 , and a fiber collimator 820 .
  • SOA semiconductor optical amplifier
  • Two polarization controllers 825 , 840 can be provided to optimize a laser polarization and output coupler 835 which thus provides the laser output.
  • the output coupler 835 can nominally split the light approximately equally between the output port 836 and the laser port 837 .
  • An optical circulator 830 may direct light from the laser port 837 to the galvanometer mirror filter 800 via the polarization controller 840 , and can direct the light returning from the galvanometer mirror filter 800 back to the SOA 845 via the polarization controller 825 . As the galvanometer mirror 802 rotates, the wavelength reflected from the galvanometer mirror filter 800 generally changes.
  • An optical isolator 850 can be used to separate the laser from the rest of the exemplary system.
  • the detection of the interfered light can be performed using a two dimensional array of detectors, with both dimensions corresponding to the angular distribution of backscattered light.
  • the light incident on the sample may be provided by a wavelength-tunable, narrow line-width source.
  • the light backscattered from the imaging sample is interfered with a reference beam that has been expanded along two spatial dimensions.
  • Each detector array element can correspond to a unique range of polar and azimuthal angles of the backscattered light.
  • Fourier-domain optical coherence tomographic reconstruction techniques may be applied the vectors, which can generate depth-resolved reflectance profiles.
  • angle-resolved reflectance profiles for different locations on the tissue may be obtained. These profiles can be combined to form two- or three-dimensional cross-sectional reflectance images.
  • a detection of the interfered light can be performed using, e.g., a two dimensional array of detectors, with one dimension corresponding to wavelength, and the other to the angle of the backscattered light, as shown in the operational and block diagram of FIG. 9 .
  • the light incident on the sample may be provided by a broadband source.
  • the light backscattered from the sample can be interfered with a reference beam that has been expanded along one spatial dimension, and this dimension can correspond to the angle of the backscattered light.
  • the interfered light 900 may be incident on a diffraction grating 905 , which can separate light along another dimension corresponding to wavelength.
  • this separated light 910 can be incident on the two-dimensional detector array 915 .
  • Fourier-domain optical coherence tomographic reconstruction techniques can be applied to the interference spectrum, thereby providing a depth-resolved reflectance profile.
  • the angle-resolved reflectance profiles for different points on the tissue may be obtained. These profiles can be combined to form two- or three-dimensional cross-sectional reflectance images.
  • a fourth exemplary embodiment suitable for applications using small probe geometries in accordance with the present invention can be used with a fiber bundle, a shown in the operational and block diagram of FIG. 10 .
  • an array of optical fibers 1025 can be used to transmit and receive the light to and from an imaging sample 1000 .
  • One or more fibers in the array 1025 can be designated as “delivery fibers,” through which light 1010 may be transmitted to and received from the sample 1000 .
  • Each fiber in the array 1025 can correspond to a unique, narrow range of angular backscattering angles.
  • Lenses placed before the fibers 1020 may serve to enhance the amount of light collected by each fiber.
  • a lens 1015 placed in front of the lenses 1020 serves to focus light onto the sample 1000 , and to collimate light backscattered from the sample 1000 prior to the collection by the lenses 1020 .
  • Polarimetric measurements in the context of optical coherence tomography may be useful for spatially resolving birefringence in biological tissue.
  • polarimetric measurements can be performed by one or more of the following:
  • the birefringence maps of the sample can be obtained by comparing a-lines received at different times, such that the polarization states from which they originated are likely different.
  • the birefringence maps of the sample can be obtained by comparing a-lines obtained from different backscattering angular ranges such that the polarization states from which they originated are likely different.
  • the angular frequency content obtained from the angle-resolved FD-OCT system and/or method can be analyzed using a computational framework of Mie scattering, provided that the deviations of the beam from planar waves can be accounted for in the analysis.
  • the angular scattering distributions which can originate from spherical dielectric scatterers may be determined using the Mie theory, the inverse problem of determining the size distributions of the scatterers from the angular scattering distributions can be performed.
  • the Mie scattering analyses of angular backscattering distributions can enable a measurement of scatterer distributions within epithelial tissues, which may be correlated with dysplastic transitions that precede cancerous lesions.
  • Another method of processing angular backscattering distributions acquired from angle-resolved FD-OCT involves analysis of their angular frequency content.
  • Image contrast measures include the angular frequency bin with maximum power and the width of the peak with the highest power.
  • Analysis of the power-spectral density of the angular backscattering distributions is equivalent to analysis of the auto-correlation function by the Wiener-Kinchine theorem.
  • the normalized auto-correlation function C can be provided by:
  • C i ⁇ j ⁇ ⁇ ( S j - ⁇ S j ⁇ ) ⁇ ( S j - i - ⁇ S j ⁇ ) ⁇ j ⁇ ⁇ ( S j - ⁇ S j ⁇ ) 2 .
  • j and i can be angular indexes.
  • the width of the central lobe of the autocorrelation function, measured relative to the first minimum, can indicate the extent of the correlation between successive angular samples.
  • This exemplary width can be determined for each pixel of a cross-sectional image obtained using the angle-resolved FD-OCT system and method, thus providing an image with the contrast for the de-correlation level of the angular backscattering distributions.
  • the exemplary embodiment of the system and method according to the present invention which can be used for reducing speckle was verified by the following experiment.
  • Two-layer tissue phantoms were constructed from aqueous agar gel (0.5% agar by weight) and polymer microspheres of diameter 0.3 mm (Duke Scientific). The phantoms were contained in silicone isolators (Sigma). An initial scattering layer with an approximate depth of 2 mm was formed. A second scattering layer, designed to have a lower scattering coefficient than the first, was funned on top of the first and had an approximate depth of 450 mm. By analyzing the exponential signal attenuation with respect to depth, the total scattering coefficients were estimated to be 24 cm-1 and 12 cm-1 for the first and second layers, respectively.
  • the two-dimensional image generated from a single angular sample shows significant speckle, as shown in FIG. 11(a) , in which the boundary between the two layers is not clearly visible. Speckle is greatly reduced in the angularly compounded image, with the boundary between the two layers clearly visible, as shown in FIG. 11(b) .
  • the resolution in the image in FIG. 11(b) is not likely to be significantly lower than that of the image of FIG. 11(a) .
  • Graphs of exemplary representative angular distributions obtained from a point that is 500 mm below the surface of the phantom and the corresponding autocorrelation function are shown in FIGS. 12(a) and 12(b) .
  • FIGS. 13A-13D The effects of angular compounding are striking when applied to esophagus tissue, as shown in the images of FIGS. 13A-13D .
  • These images were obtained from a swine ex vivo, and the imaging sample was lightly compressed by a coverslip to enhance the visibility of the layers underlying the epithelium.
  • the image generated from a single angular sample is qualitatively similar to that obtained by a state-of-the art conventional OFDI system, e.g., in terms of the features that are resolved and the graininess resulting from speckle.
  • a scattering layer within the epithelium is only faintly apparent (see arrow).
  • the level of speckle reduction is such that this layer can be resolved only in certain parts of the image.
  • the scattering layer clearly resolved across the length of the image. Similar increases in detail afforded by angular compounding are seen within the regions of lamina limbalium and submucosa underlying the epithelium.

Abstract

Arrangements, apparatus and methods are provided according to exemplary embodiments of the present invention. In particular, at least one first electro-magnetic radiation may be received and at least one second electro-magnetic radiation within a solid angle may be forwarded to a sample. The second electro-magnetic radiation may be associated with the first electro-magnetic radiation. A plurality of third electro-magnetic radiations can be received from the sample which is associated with the second electro-magnetic radiation, and at least one portion of the third electro-magnetic radiation is provided outside a periphery of the solid angle. Signals associated with each of the third electro-magnetic radiations can be simultaneously detected, with the signals being associated with information for the sample at a plurality of depths thereof. The depths can be determined using at least one of the third electro-magnetic radiations without a need to utilize another one of the third electro-magnetic radiations.

Description

CROSS-REFERENCE TO RELATED APPLICATION(S)
This application is based upon and claims the benefit of priority from U.S. patent application Ser. No. 60/776,544, filed Feb. 24, 2006, the entire disclosure of which is incorporated herein by reference.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
The invention was made with the U.S. Government support under Contract No. R01 CA103769 awarded by the National Institutes of Health. Thus, the U.S. Government has certain rights in the invention.This invention was made with the U.S. Government support under Grant No(s). HL076398 awarded by the National Institutes of Health. The Government has certain rights in this invention.
FIELD OF THE INVENTION
The present invention relates to methods and systems for performing angle-resolved Fourier-domain optical coherence tomography, and more particularly to measuring spatially-resolved angular backscattering distributions from transparent and turbid samples using Fourier-domain optical coherence tomography techniques.
BACKGROUND OF THE INVENTION
Optical coherence tomography (“OCT”) enables cross-sectional images of biological samples to be obtained with resolution on a scale of several microns to tens of microns, thus allowing for detailed imaging of a tissue microstructure. It has been demonstrated that Fourier-domain OCT (“FD-OCT”) can provide a significantly improved sensitivity over the time-domain OCT, which enables high-speed imaging. For example, FD-OCT has been implemented in two configurations, e.g., spectral-domain OCT (“SD-OCT”) and optical frequency domain imaging (“OFDI”), as described in at least one of International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004. FD-OCT has been shown to have significant potential as a tool for identifying morphological changes in many clinical contexts, including cardiovascular, gastrointestinal, and retinal imaging.
One limitation of conventional OCT systems and methods is that the backscattered light from only one angular range centered at 180 degrees is collected. The same is the case for optical coherence microscopy (“OCM”) systems, in which the array detection can be used to generate en-face two-dimensional images without beam scanning. An example of one such OCM system is shown in FIG. 1, as described in E. Beaurepaire et al., “Full-field optical coherence microscopy,” Optics Letters 23(4): 244-246, 1998. An acquisition of light backscattered from different angles can be implemented using a technique of angular compounding, which may reduce speckle. Speckle generally manifests itself as a checkered pattern within scattering regions of the image, and makes it more difficult to discern subtle reflectance differences in the tissue reflectance.
A method and system for acquiring backscattered light at different incident angles in the context of OCT enabling angular compounding employs path length encoding. The example of such system is shown in FIG. 2, as described in N. Iftimia et al., “Speckle reduction in optical coherence tomography by ‘path length encoded’ angular compounding,” Journal Of Biomedical Optics 8(2): 260-263, 2003. For example, an optical glass can be placed in the imaging beam path, splitting the incident field into two or more beamlets. This optical glass causes a portion of the incident beam (beamlet 2) to experience a greater path length delay than beamlet 1. In addition, beamlet 2 illuminates the sample at a different angle than beamlet 1. As a result, multiple OCT images of the sample (each acquired at a different angle) appear simultaneously on the OCT display. While being amenable to high-speed imaging, these method and system generally do not scale appropriately to a large number of angles, and can involve a tradeoff between the spatial resolution and the number of angles acquired thereby.
Another method and system translates a right angle prism, directing light from the sample arm to different positions on the focusing lens. An example of such system is shown in FIG. 3, as described in M. Bashkansky et al., “Statistics and reduction of speckle in optical coherence tomography,” Optics Letters 25(8): 545-547, 2000. In these method and system, a backscattered light at a narrow angular range centered at 180 degrees is generally collected, but the angle of incidence of the incident beam with respect to the sample normal varies with the position of the prism. Such method and system likely do not provide for (or even allow) a measurement of angular backscattering distributions. The speed at which the images can be acquired may be limited by the speed at which the prism can be translated in an oscillatory manner. In yet another method and system, detection of the OCT signals with four detectors can be performed simultaneously, which enables angular compounding for the speckle reduction. An example of such system is shown in FIG. 4, as described in J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Physics In Medicine And Biology 42(7): 1427-1439, 1997. In particular, the reference beam in this system is generally not larger than the incident beam. Thus, this system may not be conducive to measurements of the angular backscattering distributions. Furthermore, while each detector element receives the light backscattered at a different angle, the solid angle subtended by the light collected for a given detector element is contained entirely within that subtended by the incident beam. The detection in this system is performed in the time domain.
In the field of light-scattering spectroscopy, it is known that the angular distributions of backscattered light generally contain information regarding the size distributions of the scattering particles within the tissue. Given the optical resolution limitations of OCT, the ability to derive robust contrast between tissues with subtle differences in reflectance properties may (in certain circumstances) utilize the measurements of the angular distributions of the backscattered light. Depth-resolved angular backscattering measurements using the low-coherence interferometry have been designed for the light-scattering measurements with high angular resolution, as shown in the arrangements of FIGS. 5(a) and 5(b), as described in A. Wax et al., “Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy,” Optics Letters 26(6): 322-324, 2001, and FIGS. 6(a) and 6(b), as described in J. W. Pyhtila et al., “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Optics Express 15(25): 3474-3484, 2003.
For example, light from a low-coherence source is divided into two arms of a modified Michelson interferometer, one beam being incident on the sample (or a sample arm) and another being incident on a mirror (or a reference arm). A lens placed in the reference arm can be translated in a direction parallel to the mirror face in order to provide the selectivity for different backscattering angles in the former arm. Measurements of interfered light are generally made in either the time domain (using the arrangement shown in FIGS. 5(a) and 5(b)) or the frequency domain (using the arrangement shown in FIGS. 6(a) and 6(b)). These techniques generally do not permit simultaneous measurements of the angular backscattering distributions, and the measurement speed is likely limited by the speed at which the lens can be precisely translated. While optimized for angular, point-sampling, in-situ measurements, angle-resolved LCI in its current implementations may likely be unsuitable for in-vivo clinical imaging.
Accordingly, there is a need to overcome the deficiencies described herein above. Indeed, simultaneously measuring the light that is backscattered from multiple angles in the imaging context of the optical coherence tomography may allow for high levels of speckle reduction and additional forms of image contrast.
Accordingly, there is a need to overcome the deficiencies described herein above.
OBJECTS AND SUMMARY OF THE INVENTION
To address and/or overcome the above-described problems and/or deficiencies, exemplary embodiments of systems, apparatus and methods according to the present invention are provided for measuring spatially-resolved angular backscattering distributions from transparent and turbid samples using Fourier-domain optical coherence tomography principles. In addition, according to further exemplary embodiments of the present invention, systems and methods for utilizing the backscattering distributions are provided for performing speckle reduction and for generating image contrast.
Thus, in accordance with one exemplary embodiment of the present invention, apparatus and method are provided. In particular, at least one first electro-magnetic radiation can be received and at least one second electro-magnetic radiation within a solid angle may be forwarded to a sample. The second electro-magnetic radiation may be associated with the first electro-magnetic radiation. A plurality of third electro-magnetic radiations can be received from the sample which is associated with the second electro-magnetic radiation, and at least one portion of the third electro-magnetic radiation is provided outside a periphery of the solid angle. Signals associated with each of the third electro-magnetic radiations can be simultaneously detected, with the signals being associated with information for the sample at a plurality of depths thereof. The depths can be determined using at least one of the third electro-magnetic radiations without a need to utilize another one of the third electro-magnetic radiations.
In addition, an interference can be detected (e.g., using at least one third arrangement) between the two of the third radiations and at least one fourth radiation associated with the first radiation, and information associated with the sample can be obtained as a function of the depths within the sample based on the interference. Data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample can be provided as a function of the signals (e.g., using at least one third arrangement). At least one image of at least one portion of the sample can be generated (e.g., using at least one third arrangement) as a function of the signals. The data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample can also be provided as a function of the signals. The data can be contrast data associated with the image (e.g., using at least one third arrangement). Data associated with scattering characteristics of at least one portion of the sample can also be provided as a function of a combination of the signals. Further, the depths may be determined using a single one of the third electro-magnetic radiations.
According to another exemplary embodiment of the present invention, apparatus and method can provided which facilitate the production of data associated with at least one sample. For example, first information associated with signals for a plurality of electro-magnetic radiations provided from the at least one sample can be received. At least first one of the electro-magnetic radiations may be provided along a first axis, and at least second one of the electro-magnetic radiations can be provided along second axis which is different from the first axis. Data for each of the signals within at least one portion of the first information may include data for a plurality of depths within the sample. Second information associated with contrast data of at least one portion of an image for the at least one sample can be produced as a function of the first information.
In yet another exemplary embodiment o f the present invention, further apparatus and method can provided. For example, at least one first electro-magnetic radiation can be received, and at least one second electro-magnetic radiation within a solid angle can be forwarded to a sample. The second electro-magnetic radiation may be associated with the first electro-magnetic radiation. At least two of a plurality of third electro-magnetic radiations may be simultaneously received from the sample which is associated with the second electro-magnetic radiation, and at least one portion of the third electro-magnetic radiations may be provided outside a periphery of the solid angle. An interference between the at least two of the third radiations and at least one fourth radiation associated with the first radiation may be detected. Information associated with the sample can be obtained as a function of at least one depth within the sample based on the interference.
These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Further objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the present invention, in which:
FIG. 1 is a block diagram of a conventional apparatus for performing Optical Coherence Microscopy (“OCM”);
FIG. 2 is a block diagram of a conventional apparatus for performing path length encoded angular compounding for reducing speckle in Optical Coherence Tomography (“OCT”);
FIG. 3 is a block diagram of a conventional OCT apparatus for performing speckle reduction;
FIG. 4 is a block diagram of a conventional OCT apparatus for performing array detection for speckle reduction;
FIGS. 5(a) and 5(b) are block diagrams of conventional apparatus for performing angle-resolved low-coherence interferometry;
FIGS. 6(a) and 6(b) are block diagrams of further conventional apparatus for performing the angle-resolved low-coherence interferometry;
FIG. 7 is a schematic diagram of an exemplary embodiment of an angle-resolved FD-OCT system according to the present invention that employs a single-dimensional detector array, with a rectangular, gray dashed region being oriented perpendicularly to the plane of the interferometer;
FIG. 8 is a schematic diagram of an exemplary embodiment of a wavelength-swept laser source utilized the system shown in FIG. 7;
FIG. 9 is a schematic and operational diagram of a detection of the interference another exemplary embodiment of an angle-resolved FD-OCT system according to the present invention that employs a two dimensional detector array for a simultaneous detection of wavelength and angle;
FIG. 10 is a schematic and operational diagram of imaging optics providing within a further exemplary embodiment of an angle-resolved FD-OCT system according to the present invention that can be compatible with endoscopic probes;
FIG. 11(a) is a two-dimensional image of a tissue phantom obtained with the exemplary embodiments of the angle-resolved FD-OCT system according to the present invention for averages across one exemplary angular sample;
FIG. 11(b) is another two-dimensional image of the tissue phantom obtained with the exemplary embodiments of the angle-resolved FD-OCT system according to the present invention for averages across 400 angular samples;
FIG. 12(a) is a graph of an angular distribution obtained from one resolution element within a tissue phantom in accordance with an exemplary embodiment of the present invention;
FIG. 12(b) is a graph of an angular distribution obtained from one resolution element using corresponding normalized cross-correlation function in accordance with an exemplary embodiment of the present invention;
FIG. 13A is an image of an exemplary esophageal tissue obtained from compounding one angular sample, with an arrow pointing to a thin scattering layer within the epithelium;
FIG. 13B is an image of an exemplary esophageal tissue obtained from compounding three angular sample, with the arrow pointing to a thin scattering layer within the epithelium;
FIG. 13C is an image of an exemplary esophageal tissue obtained from compounding thirty (30) angular samples, with the arrow pointing to a thin scattering layer within the epithelium; and
FIG. 13D is an image of an exemplary esophageal tissue obtained from compounding four hundred (400) angular samples, with the arrow pointing to a thin scattering layer within the epithelium.
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Exemplary Principle of Angle-Resolved FD-OCT
Angle-resolved FD-OCT is described herein below in a context of Fourier-Domain OCT. For example, in FD-OCT, the interference between reference light and the light backscattered from the imaging sample can be measured in the frequency domain in order to obtain the depth-resolved reflectance of a turbid, semi-turbid, or transparent medium. Electro-magnetic radiation (e.g., light, laser beam, etc.) of the input light source can be split into a reference beam and a sample beam. The sample beam light may be directed to the sample to be imaged, and backscattered light from the sample may be interfered with reference beam light. In the case of angle-resolved FD-OCT, the reference beam can be spatially expanded such that it can be made larger in a cross-sectional area than the cross-sectional area of the sample beam in order to allow for the interference with a range of backscattering angles beyond those subtended by the incident sample beam. The interference between the reference beam and the backscattered light can be measured using, e.g., a detector array, which may consist of (i) detectors integrated onto a single integrated circuit element, and/or (ii) individual detectors provided together in space. The angular dependence of the detected backscattered light with respect to the incident beam may be encoded in the spatial domain, as the distribution of light intensities along at least one dimension of the detector array. The wavelength dependence of the interfered light may be measured, and Fourier analysis axial reflectivity profiles corresponding to different ranges of backscattering angles can be obtained.
For example, the interference signal Si detected by an ith pixel of the detector array as a function of the frequency of laser light vn can be given by the following proportionality expression:
S i ( v n ) P ( v n ) γ r , i ( v n ) γ s , i ( v n ) 0 R ( z ) cos ( 4 π v n z / c + ϕ ( z ) ) z ( 1 )
where P(vn) is the total power of the source. R(z) and φ(z) are the amplitude and phase terms of the reflectance profile, respectively. An axial distance z may be expressed as a relative distance, with z=0 corresponding to zero optical path difference between the sample and reference arms. The amount of the sample arm and reference arm electro-magnetic radiation (e.g., light) that reaches pixel i, expressed as fractions of P(vn) can be denoted γs,i and γr,i, respectively. The reflectivity profile R(z) can be obtained as the Discrete Fourier Transform of the sampled interference signal along the dimension i:
R ( z ) DFT ( S i ) ( 2 )
Exemplary Principle of Speckle Reduction Using Angle-Resolved FD-OCT
Speckle results from distortions of the backscattered wavefront, which are likely caused by low-angle multiple forward scattering and diffuse multiple backscattering from closely separated refractive index heterogeneities. Angular compounding techniques are generally obtained from an observation that as a result of this interference, fields originating from different backscattering angles are de-correlated. By averaging the signals from different scattering angles incoherently, e.g., averaging of the magnitude of the reconstructed reflectance profiles, a reflectance signal with reduced speckle can be obtained.
The speckle signal-to-noise ratio (“SNR”) can be a measure of the speckle reduction, as the ratio of the mean to the square-root of the variance of pixel intensities within a medium with homogenous scattering properties:
SNR = S k ( S k - S k ) 2 , ( 3 )
where the angular brackets denote an average over a collection of pixels indexed by k. The speckle SNR can be a normalized measure of the variance of the signal obtained from a homogenous sample. As such, the speckle SNR may differ from the system sensitivity, which can be defined without the presence of speckle as the minimum detectable reflectance. For the exemplary angular compounding method, the SNR may increase proportionally to the square-root of the number of uncorrelated, incoherent averages, N:
SNR(N)=SNR(1)√{square root over (N)}.  (4)
An extent to which the SNR can be increased by angular compounding may therefore be dependent on the level of angular decorrelation. In general, higher levels of decorrelation for OCT sample volumes containing large numbers of scatterers can be obtained, as well as those at large optical depths. In comparison, sharp interfaces and scatterers with dimensions that are similar to those of the sample volumes are likely to indicate a small amount of contrast enhancement from angular compounding.
Principle of Extraction of Parameters from Angular Backscattering Distributions for Image Contrast
The angular backscattering patterns of light, which may be measured by the angle-resolved FD-OCT methods and systems, can contain information about the scatterer size and the density of the imaging sample. This information may be relevant in, e.g., a clinical imaging context in order to distinguish between different regions of tissue that have very similar scattering properties that may be used in optical methods that measure the reflectance of light that is backscattered within a single angular range. Image contrast measures can be generated from angular backscattering distributions at each pixel, and such measures can be spatially smoothed, and/or image contrast measures can be generated from spatially smoothed angular backscattering distributions.
Angle-Resolved Fourier-Domain OCT
The FD-OCT techniques of SD-OCT and OFDI systems and method can measure a discrete spectral interference, and may differ in the implementation of this measurement. The OFDI systems and methods can use a wavelength-swept source to record the interference as a function of time, whereas the SD-OCT systems and methods may generally use a spectrometer to image interference spectra onto a detector array or a portion of an array.
FIG. 7 shows a schematic diagram of an exemplary embodiment of the angle-resolved FD-OCT imaging system in accordance with the present invention. This exemplary system can include the following modules: a wavelength-swept source 705, an interferometer 707, and an acquisition camera 765 with corresponding electronics 785. For example, the laser output can be directed to the optical coupler 710 which may split the light into two arms of the interferometer 707. A collimated light provided from a reference arm collimator 725 may be incident on a cylindrical lens telescope with elements 735, 740, 745, and this telescope can which expand the beam in the dimension of the line-scan camera 765. A free-space coupler of variable length 712 can be placed within the reference arm before the collimator 725 to facilitate reference arm length adjustments. The collimated light from the sample arm collimator 730 can be directed through a linear polarizer 755 and the beam splitter 750, where such light may be incident on imaging optics 770, 775 which focus the light on a sample 780.
Polarization controllers 715, 720 provided before the collimators 725, 730, respectively, can be positioned to maximize the fringe modulation across the frequency range of the wavelength-swept source 705. The imaging optics 770 and 775 consists of a galvanometer mirror 770 with its axis parallel to the plane of the interferometer 707 and perpendicular to the beam which is incident upon it from the beam splitter 750, and a focusing lens 775 that is placed one focal length from the sample 780. The incident beam contacts the horizontal and vertical centers of the galvanometer mirror 770. The light back-reflected from the sample 780 can pass back via the mirror 770 and the focusing lens 775, and may subsequently interfere with the reference beam at the beam splitter 750. The interfered light may be incident on a cylindrical lens 760 which focuses the light onto the line-scan camera 765. The light from a He—Ne laser 700 can be injected into the fiber coupler 710, and may act as a guide beam during the imaging procedure.
The signals from the line-scan camera 765 can be directed toward analog-to-digital (A-D) input ports of a data acquisition (“DAQ”) board 785. For example, in a time period corresponding to one a-line, the DAQ board 785 can obtain m data points from n exposures, where m may be the number of detectors in the line scan camera 765, and n can be the number of frequencies sampled per a-line. The a-line acquisition rate can be determined as the quotient of the line scan camera readout rate and n. The readout from the DAQ board 785 may be synchronized to the frequency-swept laser source 705 using, e.g., TTL trigger signals by the line-scan camera 765 at the beginning of each readout phase.
As shown in the diagram of FIG. 8, the exemplary embodiment of the wavelength-swept source can be constructed as a ring-cavity laser with a semiconductor optical amplifier (“SOA”) 845 as the gain element and a galvanometer mirror filter 800 that may include a galvanometer mirror 802, a telescope 805, 810, a diffraction grating 815, and a fiber collimator 820. Two polarization controllers 825, 840 can be provided to optimize a laser polarization and output coupler 835 which thus provides the laser output. The output coupler 835 can nominally split the light approximately equally between the output port 836 and the laser port 837. An optical circulator 830 may direct light from the laser port 837 to the galvanometer mirror filter 800 via the polarization controller 840, and can direct the light returning from the galvanometer mirror filter 800 back to the SOA 845 via the polarization controller 825. As the galvanometer mirror 802 rotates, the wavelength reflected from the galvanometer mirror filter 800 generally changes. An optical isolator 850 can be used to separate the laser from the rest of the exemplary system.
2D Detection for Resolution of Azimuthal and Polar Angles
According to a second exemplary embodiment of the present invention, the detection of the interfered light can be performed using a two dimensional array of detectors, with both dimensions corresponding to the angular distribution of backscattered light. The light incident on the sample may be provided by a wavelength-tunable, narrow line-width source. The light backscattered from the imaging sample is interfered with a reference beam that has been expanded along two spatial dimensions. Each detector array element can correspond to a unique range of polar and azimuthal angles of the backscattered light. By sweeping the laser across its tuning range, while acquiring readouts of the detector array, a vector for each discrete azimuth-polar angular pair can be obtained. Fourier-domain optical coherence tomographic reconstruction techniques may be applied the vectors, which can generate depth-resolved reflectance profiles. By scanning the beam across the sample or moving the sample relative to the beam while acquiring readouts of the array, angle-resolved reflectance profiles for different locations on the tissue may be obtained. These profiles can be combined to form two- or three-dimensional cross-sectional reflectance images.
2D Detection for Simultaneous Resolution of Angle and Wavelenth
According to a third exemplary embodiment of the present invention, a detection of the interfered light can be performed using, e.g., a two dimensional array of detectors, with one dimension corresponding to wavelength, and the other to the angle of the backscattered light, as shown in the operational and block diagram of FIG. 9. The light incident on the sample may be provided by a broadband source. The light backscattered from the sample can be interfered with a reference beam that has been expanded along one spatial dimension, and this dimension can correspond to the angle of the backscattered light. The interfered light 900 may be incident on a diffraction grating 905, which can separate light along another dimension corresponding to wavelength. Subsequently, this separated light 910 can be incident on the two-dimensional detector array 915. Along each one-dimensional portion of the detector array readout which corresponds to a particular backscattering angular range, Fourier-domain optical coherence tomographic reconstruction techniques can be applied to the interference spectrum, thereby providing a depth-resolved reflectance profile. By scanning the beam across the sample, or moving the sample with respect to the beam while acquiring readouts of the array, the angle-resolved reflectance profiles for different points on the tissue may be obtained. These profiles can be combined to form two- or three-dimensional cross-sectional reflectance images.
Fiber-Bundle Optical Probe
A fourth exemplary embodiment suitable for applications using small probe geometries in accordance with the present invention can be used with a fiber bundle, a shown in the operational and block diagram of FIG. 10. According to this exemplary embodiment, an array of optical fibers 1025 can be used to transmit and receive the light to and from an imaging sample 1000. One or more fibers in the array 1025 can be designated as “delivery fibers,” through which light 1010 may be transmitted to and received from the sample 1000. Each fiber in the array 1025 can correspond to a unique, narrow range of angular backscattering angles. Lenses placed before the fibers 1020 may serve to enhance the amount of light collected by each fiber. A lens 1015 placed in front of the lenses 1020 serves to focus light onto the sample 1000, and to collimate light backscattered from the sample 1000 prior to the collection by the lenses 1020.
Polarization Sensitive Angle-Resolved FD-OCT
Polarimetric measurements in the context of optical coherence tomography may be useful for spatially resolving birefringence in biological tissue. According to a fifth exemplary embodiment according to the present invention, polarimetric measurements can be performed by one or more of the following:
    • a) varying the polarization of the light prior to the receipt thereof at the interferometer, and by fixing the polarization state of the reference arm and/or the sample arm;
    • b) varying the polarization of only the sample beam as a function of time;
    • c) varying the polarization of only the reference beam as a function of time;
    • d) varying the polarization state of one or more parts of the reference beam as a function of space, such that there may be at least two distinct parts of the reference beam that differ in the polarization state;
    • e) varying the polarization state of one or more parts of the backscattered light as a function of space prior to interference with the reference beam, such that there may be at least two distinct parts of the sample beam that differ in the polarization state;
    • f) varying the polarization state of one or more parts of the interfered light as a function of space, such that there may be at least two distinct parts that differ in the polarization state.
Using the exemplary techniques (a), (b) and/or (c), the birefringence maps of the sample can be obtained by comparing a-lines received at different times, such that the polarization states from which they originated are likely different. Using the exemplary techniques (d), (e) and/or (f), the birefringence maps of the sample can be obtained by comparing a-lines obtained from different backscattering angular ranges such that the polarization states from which they originated are likely different.
Particle Sizing
The angular frequency content obtained from the angle-resolved FD-OCT system and/or method can be analyzed using a computational framework of Mie scattering, provided that the deviations of the beam from planar waves can be accounted for in the analysis. In particular, as the angular scattering distributions which can originate from spherical dielectric scatterers may be determined using the Mie theory, the inverse problem of determining the size distributions of the scatterers from the angular scattering distributions can be performed. The Mie scattering analyses of angular backscattering distributions can enable a measurement of scatterer distributions within epithelial tissues, which may be correlated with dysplastic transitions that precede cancerous lesions.
Angular Decorrelation
Another method of processing angular backscattering distributions acquired from angle-resolved FD-OCT involves analysis of their angular frequency content. Image contrast measures include the angular frequency bin with maximum power and the width of the peak with the highest power. Analysis of the power-spectral density of the angular backscattering distributions is equivalent to analysis of the auto-correlation function by the Wiener-Kinchine theorem. The normalized auto-correlation function C can be provided by:
C i = j ( S j - S j ) ( S j - i - S j ) j ( S j - S j ) 2 . ( 5 )
where j and i can be angular indexes. For example, the width of the central lobe of the autocorrelation function, measured relative to the first minimum, can indicate the extent of the correlation between successive angular samples. This exemplary width can be determined for each pixel of a cross-sectional image obtained using the angle-resolved FD-OCT system and method, thus providing an image with the contrast for the de-correlation level of the angular backscattering distributions.
EXAMPLE
The exemplary embodiment of the system and method according to the present invention which can be used for reducing speckle was verified by the following experiment. Two-layer tissue phantoms were constructed from aqueous agar gel (0.5% agar by weight) and polymer microspheres of diameter 0.3 mm (Duke Scientific). The phantoms were contained in silicone isolators (Sigma). An initial scattering layer with an approximate depth of 2 mm was formed. A second scattering layer, designed to have a lower scattering coefficient than the first, was funned on top of the first and had an approximate depth of 450 mm. By analyzing the exponential signal attenuation with respect to depth, the total scattering coefficients were estimated to be 24 cm-1 and 12 cm-1 for the first and second layers, respectively.
The two-dimensional image generated from a single angular sample shows significant speckle, as shown in FIG. 11(a), in which the boundary between the two layers is not clearly visible. Speckle is greatly reduced in the angularly compounded image, with the boundary between the two layers clearly visible, as shown in FIG. 11(b). By a qualitative inspection, the resolution in the image in FIG. 11(b) is not likely to be significantly lower than that of the image of FIG. 11(a). Graphs of exemplary representative angular distributions obtained from a point that is 500 mm below the surface of the phantom and the corresponding autocorrelation function are shown in FIGS. 12(a) and 12(b).
The effects of angular compounding are striking when applied to esophagus tissue, as shown in the images of FIGS. 13A-13D. These images were obtained from a swine ex vivo, and the imaging sample was lightly compressed by a coverslip to enhance the visibility of the layers underlying the epithelium. In particular, as shown in FIG. 13A, the image generated from a single angular sample is qualitatively similar to that obtained by a state-of-the art conventional OFDI system, e.g., in terms of the features that are resolved and the graininess resulting from speckle. In this exemplary image, a scattering layer within the epithelium is only faintly apparent (see arrow). With three compounded angles as shown in the image of FIG. 13B, the level of speckle reduction is such that this layer can be resolved only in certain parts of the image. With 30 or more angular averages as shown in the images of FIGS. 13C and 13D, the scattering layer clearly resolved across the length of the image. Similar increases in detail afforded by angular compounding are seen within the regions of lamina propria and submucosa underlying the epithelium.
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with any OCT system, OFDI system, spectral domain OCT (SD-OCT) system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.

Claims (39)

What is claimed is:
1. An apparatus comprising:
a first arrangement having a lens configured to receive at least one first electro-magnetic radiation, and forward at least one second electro-magnetic radiation within a solid angle to a sample, wherein the at least one forwarded second electro-magnetic radiation is at least one focused radiation, wherein the at least one second electro-magnetic radiation is associated with the at least one first electro-magnetic radiation, wherein the first arrangement is configured to receive a plurality of third electro-magnetic radiations from the sample which is associated with the at least one second electro-magnetic radiation, wherein the third electro-magnetic radiations are based on the at least one focused second electro-magnetic radiation, and wherein the lens receives at least one portion of the third electro-magnetic radiations is provided outside a periphery of the solid angle; and
a second arrangement having a detector configured to simultaneously detect signals which are (i) provided along optical axes associated therewith that are different from one another, and (ii) associated with each of the third electro-magnetic radiations, wherein the signals are associated with information for the at least one sample at a plurality of depths thereof, and wherein the second arrangement is configured to determine the depths using the at least one portion of the third electro-magnetic radiations.
2. The apparatus according to claim 1, further comprising a third wherein the second arrangement having a detector configured to detect an interference between the at least one portion of the third electro-magnetic radiation and at least one fourth electro-magnetic radiation associated with the at least one first electro-magnetic radiation, and to obtain information associated with the sample as a function of the depths within the sample based on the interference.
3. The apparatus according to claim 1, further comprising a third arrangement having a computer configured to provide data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample as a function of the signals.
4. The apparatus according to claim 1, further comprising a third arrangement having a computer capable of generating at least one image of at least one portion of the sample as a function of the signals.
5. The apparatus according to claim 4, wherein the third arrangement is further configured to provide data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample as a function of the signals.
6. The apparatus according to claim 5, wherein the data is contrast data associated with the at least one image.
7. The apparatus according to claim 1, further comprising a third arrangement including a computer configured to provide data associated with scattering characteristics of at least one portion of the sample as a function of a combination of the signals.
8. The apparatus according to claim 1, wherein the second arrangement is configured to determine the depths using a single one of the third electro-magnetic radiations.
9. A method for detecting signals, comprising:
receiving at least one first electro-magnetic radiation;
forwarding at least one second electro-magnetic radiation within a solid angle to a sample, wherein the at least one second electro-magnetic radiation is associated with the at least one first electro-magnetic radiation;
receiving a plurality of third electro-magnetic radiations from the sample which is associated with the at least one second electro-magnetic radiation, wherein at least one portion of the third electro-magnetic radiations is provided outside a periphery of the solid angle;
simultaneously detecting the signals which are (i) provided along optical axes associated therewith that are different from one another, and (ii) associated with each of the third electro-magnetic radiations, wherein the signals are associated with in formation for the at least one sample at a plurality of depths thereof, and
using a computer arrangement, determining the depths using the at least one portion of the third electro-magnetic radiations.
10. An apparatus for providing data associated with at least one sample, comprising:
a first arrangement configured to receive first information associated with signals for a plurality of electro-magnetic radiations provided from the at least one sample, wherein at least one of the electro-magnetic radiations has a frequency that changes over time, wherein at least a first one of the electro-magnetic radiations being provided along a first axis, and at least a second one of the electro-magnetic radiations being provided along a second axis which is different from the first axis, wherein data for each of the signals within at least one portion of the first information includes data for a plurality of depths within the at least one sample; and
a second arrangement configured to produce second information associated with contrast data of at least one portion of an image for the at least one sample as a function of the first information.
11. The apparatus according to claim 10, wherein the at least one portion of the signals is provided outside a periphery of the solid angle.
12. The apparatus according to claim 10, wherein the second arrangement is capable of determining parameters of the least one depth within the sample using the first information.
13. The apparatus according to claim 10, wherein the second arrangement is capable of determining the at least one depth using data associated with a single one of the signals.
14. The apparatus according to claim 10, further comprising a third arrangement capable of generating at least one image of at least one portion of the sample as a function of the second information.
15. The apparatus according to claim 14, wherein the third arrangement is further configured to provide data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample as a function of the second information.
16. The apparatus according to claim 15, wherein the data is contrast data associated with the at least one image.
17. The apparatus according to claim 10, further comprising a third arrangement configured to provide data associated with scattering characteristics of at least one portion of the sample as a function of a combination of the signals.
18. A method providing data associated with at least one sample, comprising:
receiving first information associated with signals for a plurality of electro-magnetic radiations provided from the at least one sample, wherein at least one of the electro-magnetic radiations has a frequency that changes over time, wherein at least first one of the electro-magnetic radiations being provided along a first axis, and at least second one of the electro-magnetic radiations being provided along second axis which is different from the first axis, wherein data for each of the signals within at least one portion of the first information includes data for a plurality of depths within the at least one sample; and
using a computer arrangement, producing second information associated with contrast data of at least one portion of an image for the at least one sample as a function of the first information.
19. An apparatus comprising:
a first arrangement including a lens configured to receive at least one first electro-magnetic radiation, and forward at least one second electro-magnetic radiation within a solid angle to a sample, wherein the at least one forwarded second electro-magnetic radiation is at least one focused radiation, wherein the at least one second electro-magnetic radiation is associated with the at least one first electro-magnetic radiation, wherein the first arrangement is configured to simultaneously receive at least two of a plurality of third electro-magnetic radiations from the sample which is associated with the at least one second electro-magnetic radiation, wherein the third electro-magnetic radiations are based on the at least one focused second electro-magnetic radiation, and wherein the lens receives at least one portion of the third electro-magnetic radiations is provided outside a periphery of the solid angle; and
a second including a detector arrangement configured to simultaneously detect an interference between the at least two of the third radiations which are provided along optical axes associated therewith that are different from one another and at least one fourth radiation associated with the at least one first radiation, and configured to obtain information associated with the sample as a function of at least one depth within the sample based on the interference.
20. The apparatus according to claim 19, wherein the second arrangement is configured to determine the at least one depth based on the interference.
21. The apparatus according to claim 19, wherein the one second arrangement is configured to simultaneously detect signals associated with each of the third electro-magnetic radiations.
22. The apparatus according to claim 21 19, further comprising a third arrangement including a computer configured to provide data associated with a least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample as a function of the signals.
23. The apparatus according to claim 21 19, further comprising a third arrangement including a computer capable of generating at least one image of at least one portion of the sample as a function of the signals.
24. The apparatus according to claim 23, wherein the third arrangement is further configured to provide data associated with at least one of birefringence properties, spectroscopic properties, motion, angular back-scattering properties or elastic properties of at least one portion of the sample as a function of the signals.
25. The apparatus according to claim 24, wherein the data is contrast data associated with the at least one image.
26. The apparatus according to claim 21 19, further comprising a third arrangement including a computer configured to provide data associated with scattering characteristics of at least one portion of the sample as a function of a combination of the signals.
27. The apparatus according to claim 20, wherein the second arrangement is configured to determine the depths using a single one of the third electro-magnetic radiations.
28. A method for detecting signals, comprising:
receiving at least one first electro-magnetic radiation;
forwarding at least one second electro-magnetic radiation within a solid angle to a sample, wherein the at least one second electro-magnetic radiation is associated with the at least one first electro-magnetic radiation;
simultaneously receiving at least two of a plurality of third electro-magnetic radiations from the sample which is associated with the at least one second electro-magnetic radiation, wherein at least one portion of the third electro-magnetic radiations is provided outside a periphery of the solid angle;
simultaneously detecting an interference between the at least two of the third radiations and at least one fourth radiation associated with the at least one first radiation, wherein the third radiations are provided along optical axes associated therewith that are different from one another; and
using a computer arrangement, obtaining information associated with the sample as a function of at least one depth within the sample based on the interference.
29. The apparatus according to claim 1, wherein the second arrangement is further configured to combine the signals.
30. The method according to claim 9, further comprising, after the simultaneous detection, combining the signals.
31. The apparatus according to claim 10, wherein the first and second axes are optical axes.
32. The apparatus according to claim 10, wherein the first arrangement is at least one detector arrangement which is configured to receive the electro-magnetic radiations which are collimated.
33. The apparatus according to claim 32, wherein the collimated electro-magnetic radiations are provided from the same location of the at least one sample.
34. The method according to claim 18, wherein the first and second axes are optical axes.
35. The method according to claim 28, further comprising simultaneously detecting signals associated with each of the third electro-magnetic radiations which are provided along optical axes associated therewith that are different from one another.
36. An apparatus for providing data associated with at least one sample, comprising:
a detector arrangement configured to receive a plurality of collimated electro-magnetic radiations provided from the at least one sample and generate first information based on the collimated electro-magnetic radiations, wherein at least one of the electro-magnetic radiations has a frequency that changes over time, wherein at least a first one of the electro-magnetic radiations being received along a first axis simultaneously with at least a second one of the electro-magnetic radiations which is received along a second axis that is different from the first axis, wherein data for each of the signals within at least one portion of the first information includes data to for a plurality of depths within the at least one sample; and
another arrangement configured to produce second information associated with contrast data of at least one portion of an image for the at least one sample as a function of the first information.
37. The apparatus according to claim 36, wherein the collimated electro-magnetic radiations are provided from the same location of the at least one sample.
38. A method providing data associated with at least one sample, comprising:
using a detector arrangement, receiving a plurality of collimated electro-magnetic radiations provided from the at least one sample; and
generating first information based on the received collimated electro-magnetic radiations provided from the at least one sample, wherein at least one of the electro-magnetic radiations has a frequency that changes over time, wherein received along a first axis simultaneously with at least a second one of the electro-magnetic radiations which is received along a second axis that is different from the first axis, wherein data for each of the signals within at least one portion of the first information includes data for a plurality of depths within the at least one sample; and
using a computer arrangement, producing second information associated with contrast data of at least one portion of an image for the at least one sample as a function of the first information.
39. The apparatus according to claim 1, wherein the first arrangement is an optical configuration.
US14/184,537 2006-02-24 2014-02-19 Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography Active 2028-12-28 USRE46412E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/184,537 USRE46412E1 (en) 2006-02-24 2014-02-19 Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US77654406P 2006-02-24 2006-02-24
US11/677,278 US7982879B2 (en) 2006-02-24 2007-02-21 Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
US14/184,537 USRE46412E1 (en) 2006-02-24 2014-02-19 Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/677,278 Reissue US7982879B2 (en) 2006-02-24 2007-02-21 Methods and systems for performing angle-resolved fourier-domain optical coherence tomography

Publications (1)

Publication Number Publication Date
USRE46412E1 true USRE46412E1 (en) 2017-05-23

Family

ID=38234475

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/677,278 Ceased US7982879B2 (en) 2006-02-24 2007-02-21 Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
US14/184,537 Active 2028-12-28 USRE46412E1 (en) 2006-02-24 2014-02-19 Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/677,278 Ceased US7982879B2 (en) 2006-02-24 2007-02-21 Methods and systems for performing angle-resolved fourier-domain optical coherence tomography

Country Status (5)

Country Link
US (2) US7982879B2 (en)
EP (4) EP2306141A1 (en)
JP (4) JP2009527770A (en)
CN (1) CN101410691A (en)
WO (1) WO2007101026A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170219485A1 (en) * 2014-10-01 2017-08-03 Purdue Research Foundation Organism Identification
US20190101489A1 (en) * 2017-09-29 2019-04-04 Michael John Darwin Method and Apparatus for Simultaneously Measuring 3Dimensional Structures and Spectral Content of Said Structures

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324214B2 (en) 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
US7102758B2 (en) 2003-05-06 2006-09-05 Duke University Fourier domain low-coherence interferometry for light scattering spectroscopy apparatus and method
KR101006423B1 (en) * 2005-01-20 2011-01-06 지고 코포레이션 Interferometer for determining characteristics of an object surface
US8537366B2 (en) 2005-10-11 2013-09-17 Duke University Systems and methods for endoscopic angle-resolved low coherence interferometry
AU2006302086B2 (en) * 2005-10-11 2011-08-18 Duke University Systems and method for endoscopic angle-resolved low coherence interferometry
CA2651799C (en) * 2006-05-12 2016-07-19 Northwestern University Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy
US8131348B2 (en) * 2006-05-12 2012-03-06 Northshore University Healthsystem Systems, methods and apparatuses of elastic light scattering spectroscopy and low coherence enhanced backscattering spectroscopy
AU2007275018A1 (en) * 2006-07-21 2008-01-24 Oncoscope, Inc. Protective probe tip, particularly for use on a fiber-optic probe used in an endoscopic application
US7800746B2 (en) * 2006-08-11 2010-09-21 Northwestern University Method for identifying refractive-index fluctuations of a target
EP2188587A4 (en) * 2007-09-13 2017-01-18 Duke University Apparatuses, systems, and methods for low-coherence interferometry (lci)
US20090177094A1 (en) * 2008-01-08 2009-07-09 Oncoscope, Inc. Systems and methods for tissue examination, diagnostic, treatment, and/or monitoring
DE102008017740A1 (en) * 2008-04-07 2009-10-15 Lios Technology Gmbh Apparatus and method for calibrating a fiber optic temperature measuring system
JP5306075B2 (en) * 2008-07-07 2013-10-02 キヤノン株式会社 Imaging apparatus and imaging method using optical coherence tomography
US9885834B2 (en) 2009-01-08 2018-02-06 Northwestern University Probe apparatus for measuring depth-limited properties with low-coherence enhanced backscattering
CZ302803B6 (en) * 2009-02-04 2011-11-16 Univerzita Palackého Detection method of coherence granularity field movement and apparatus for making the same
WO2010100644A1 (en) * 2009-03-04 2010-09-10 Elie Meimoun Wavefront analysis inspection apparatus and method
US9823127B2 (en) 2010-01-22 2017-11-21 Duke University Systems and methods for deep spectroscopic imaging of biological samples with use of an interferometer and spectrometer
US9274001B2 (en) 2010-01-22 2016-03-01 Duke University Dual window processing schemes for spectroscopic optical coherence tomography (OCT) and fourier domain low coherence interferometry
JP5808119B2 (en) * 2010-04-13 2015-11-10 キヤノン株式会社 Model eye, method for adjusting optical tomographic imaging apparatus, and evaluation method
US11105686B2 (en) 2010-05-10 2021-08-31 University of Pittshurgh-Of the Commonwealth System of Higher Education Spatial-domain low-coherence quantitative phase microscopy
WO2011149708A1 (en) * 2010-05-24 2011-12-01 Fairfield University Low coherence enhanced backscattering tomography and techniques
US20120050746A1 (en) * 2010-08-29 2012-03-01 Shivani Sharma Apparatus and method for increasing depth range and signal to noise ratio in fourier domain low coherence interferometry
JP5588291B2 (en) * 2010-09-29 2014-09-10 キヤノン株式会社 Information processing apparatus, information processing method, information processing system, and program
CN103858134A (en) * 2011-08-09 2014-06-11 光视有限公司 Motion correction and normalization of features in optical coherence tomography
EP2565625A1 (en) * 2011-09-05 2013-03-06 Ludwig-Maximilians-Universität München Optical measurement system and method for operating an optical measurement system
CN102506917A (en) * 2011-12-03 2012-06-20 太原理工大学 Optical fiber sensing device for optical fiber chaos laser device and method thereof
US9335486B2 (en) * 2012-01-20 2016-05-10 Afl Telecommunications Llc Method and apparatus for aligning a large diameter optical fiber
EP2865003A1 (en) * 2012-06-26 2015-04-29 Kla-Tencor Corporation Scanning in angle-resolved reflectometry and algorithmically eliminating diffraction from optical metrology
US9541375B2 (en) 2012-07-20 2017-01-10 Samsung Electronics Co., Ltd. Method and apparatus for generating tomography images
WO2014085911A1 (en) 2012-12-05 2014-06-12 Tornado Medical Systems, Inc. System and method for wide field oct imaging
EP2929288A4 (en) * 2012-12-06 2016-07-06 Univ Lehigh Space-division multiplexing optical coherence tomography apparatus
WO2014089504A1 (en) * 2012-12-06 2014-06-12 Lehigh University System and method for parallel imaging optical coherence tomography
US9335154B2 (en) * 2013-02-01 2016-05-10 Duke University Systems and methods of angle-resolved low coherence interferometry based optical correlation
AU2014242096B2 (en) 2013-03-13 2018-06-28 Amo Development, Llc Laser eye surgery system
CA2904893C (en) 2013-03-13 2021-11-16 Optimedica Corporation Free floating patient interface for laser surgery system
WO2015089308A1 (en) * 2013-12-11 2015-06-18 The General Hospital Corporation Apparatus and method for high-speed full field optical coherence microscopy
CN104330104B (en) * 2014-10-31 2017-04-12 浙江大学 Measuring device for interferential sensor arm length difference
JP2016151524A (en) * 2015-02-18 2016-08-22 ソニー株式会社 Speckle imaging device, speckle imaging system, and speckle imaging method
US9984459B2 (en) * 2015-04-15 2018-05-29 Kabushiki Kaisha Topcon OCT angiography calculation with optimized signal processing
US11278206B2 (en) 2015-04-16 2022-03-22 Gentuity, Llc Micro-optic probes for neurology
EP3344126A4 (en) 2015-08-31 2019-05-08 Gentuity LLC Imaging system includes imaging probe and delivery devices
JP2018187038A (en) * 2017-05-01 2018-11-29 キヤノン株式会社 Optical coherence tomographic imaging apparatus
US10337987B2 (en) * 2017-06-16 2019-07-02 Canon U.S.A. , Inc. Radial-line scanning spectrometer with two-dimensional sensor
DE102017115922C5 (en) * 2017-07-14 2023-03-23 Precitec Gmbh & Co. Kg Method and device for measuring and setting a distance between a machining head and a workpiece and associated method for regulation
EP3655748B1 (en) 2017-07-18 2023-08-09 Perimeter Medical Imaging, Inc. Sample container for stabilizing and aligning excised biological tissue samples for ex vivo analysis
TWI804509B (en) * 2017-09-18 2023-06-11 安盟生技股份有限公司 Interference imaging device
US10856780B2 (en) * 2017-11-09 2020-12-08 Joshua Noel Hogan Spoof detection for biometric validation
EP3700406A4 (en) 2017-11-28 2021-12-29 Gentuity LLC Imaging system
GB201803523D0 (en) * 2018-03-05 2018-04-18 Malvern Panalytical Ltd Improved particle sizing by optical diffraction
CN112075925A (en) * 2020-09-21 2020-12-15 北京脑科学与类脑研究中心 Fluorescent imaging illumination device, imaging system and imaging method based on speckle principle
CN113237842A (en) * 2021-04-25 2021-08-10 哈尔滨工业大学 Fourier infrared spectrometer sample rack and using method
CN116725492B (en) * 2023-07-11 2023-12-12 江苏金视传奇科技有限公司 Blood vessel imaging method and system based on optical coherence tomography

Citations (648)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339754A (en) 1941-03-04 1944-01-25 Westinghouse Electric & Mfg Co Supervisory apparatus
US3090753A (en) 1960-08-02 1963-05-21 Exxon Research Engineering Co Ester oil compositions containing acid anhydride
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
GB1257778A (en) 1967-12-07 1971-12-22
US3856000A (en) 1972-06-19 1974-12-24 Machido Seisakusho Kk Endoscope
US3872407A (en) 1972-09-01 1975-03-18 Us Navy Rapidly tunable laser
US3941121A (en) 1974-12-20 1976-03-02 The University Of Cincinnati Focusing fiber-optic needle endoscope
US3973219A (en) 1975-04-24 1976-08-03 Cornell Research Foundation, Inc. Very rapidly tuned cw dye laser
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US4030831A (en) 1976-03-22 1977-06-21 The United States Of America As Represented By The Secretary Of The Navy Phase detector for optical figure sensing
US4030827A (en) 1973-12-03 1977-06-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Apparatus for the non-destructive examination of heterogeneous samples
US4140364A (en) 1973-06-23 1979-02-20 Olympus Optical Co., Ltd. Variable field optical system for endoscopes
US4141362A (en) 1977-05-23 1979-02-27 Richard Wolf Gmbh Laser endoscope
WO1979000841A1 (en) 1978-03-09 1979-10-18 Nat Res Dev Speckle interferometric measurement of small oscillatory movements
GB2030313A (en) 1978-06-29 1980-04-02 Wolf Gmbh Richard Endoscopes
US4224929A (en) 1977-11-08 1980-09-30 Olympus Optical Co., Ltd. Endoscope with expansible cuff member and operation section
US4295738A (en) 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
US4300816A (en) 1979-08-30 1981-11-17 United Technologies Corporation Wide band multicore optical fiber
US4303300A (en) 1979-02-07 1981-12-01 Thomson-Csf Rotary-joint device providing for an optical waveguide transmission
US4428643A (en) 1981-04-08 1984-01-31 Xerox Corporation Optical scanning system with wavelength shift correction
EP0110201A2 (en) 1982-11-25 1984-06-13 Központi Elelmiszeripari Kutato Intezet Apparatus for providing radiation of controlled spectral composition
US4479499A (en) 1982-01-29 1984-10-30 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible light
JPS6073405A (en) 1983-09-12 1985-04-25 バテル メモリアル インステイチユート Method and device for measuring position of surface element
US4533247A (en) 1981-09-03 1985-08-06 International Standard Electric Corporation Optical transmission system
JPS6140633A (en) 1984-08-02 1986-02-26 Nec Corp Tablet device
US4601036A (en) 1982-09-30 1986-07-15 Honeywell Inc. Rapidly tunable laser
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4631498A (en) 1985-04-26 1986-12-23 Hewlett-Packard Company CW Laser wavemeter/frequency locking technique
US4639999A (en) 1984-11-02 1987-02-03 Xerox Corporation High resolution, high efficiency I.R. LED printing array fabrication method
US4650327A (en) 1985-10-28 1987-03-17 Oximetrix, Inc. Optical catheter calibrating assembly
JPS62188001A (en) 1986-02-13 1987-08-17 Matsushita Electric Ind Co Ltd Rotary magnetic head recording device
EP0251062A2 (en) 1986-06-20 1988-01-07 Fujitsu Limited Dual balanced optical signal receiver
US4734578A (en) 1985-03-27 1988-03-29 Olympus Optical Co., Ltd. Two-dimensional scanning photo-electric microscope
US4744656A (en) 1986-12-08 1988-05-17 Spectramed, Inc. Disposable calibration boot for optical-type cardiovascular catheter
US4751706A (en) 1986-12-31 1988-06-14 The United States Of America As Represented By The Secretary Of The Army Laser for providing rapid sequence of different wavelengths
US4763977A (en) 1985-01-09 1988-08-16 Canadian Patents And Development Limited-Societe Optical fiber coupler with tunable coupling ratio and method of making
US4770492A (en) 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
GB2209221A (en) 1987-09-01 1989-05-04 Litton Systems Inc A demodulator circuit for an interferometer type of hydrophone
US4827907A (en) 1986-11-28 1989-05-09 Teac Optical Co., Ltd. Intra-observation apparatus
US4834111A (en) 1987-01-12 1989-05-30 The Trustees Of Columbia University In The City Of New York Heterodyne interferometer
US4868834A (en) 1988-09-14 1989-09-19 The United States Of America As Represented By The Secretary Of The Army System for rapidly tuning a low pressure pulsed laser
US4890901A (en) 1987-12-22 1990-01-02 Hughes Aircraft Company Color corrector for embedded prisms
US4892406A (en) 1988-01-11 1990-01-09 United Technologies Corporation Method of and arrangement for measuring vibrations
US4905169A (en) 1988-06-02 1990-02-27 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US4909631A (en) 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
US4925302A (en) 1988-04-13 1990-05-15 Hewlett-Packard Company Frequency locking device
US4928005A (en) 1988-01-25 1990-05-22 Thomson-Csf Multiple-point temperature sensor using optic fibers
US4940328A (en) 1988-11-04 1990-07-10 Georgia Tech Research Corporation Optical sensing apparatus and method
US4965441A (en) 1988-01-27 1990-10-23 Commissariat A L'energie Atomique Method for the scanning confocal light-optical microscopic and indepth examination of an extended field and devices for implementing said method
US4965599A (en) 1989-11-13 1990-10-23 Eastman Kodak Company Scanning apparatus for halftone image screen writing
US4966589A (en) 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
US4984888A (en) 1989-12-13 1991-01-15 Imo Industries, Inc. Two-dimensional spectrometer
US4993834A (en) 1988-10-03 1991-02-19 Fried. Krupp Gmbh Spectrometer for the simultaneous measurement of intensity in various spectral regions
US4998972A (en) 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US5039193A (en) 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
US5040889A (en) 1986-05-30 1991-08-20 Pacific Scientific Company Spectrometer with combined visible and ultraviolet sample illumination
US5045936A (en) 1988-07-25 1991-09-03 Keymed (Medical And Industrial Equipment) Limited Laser scanning imaging apparatus and method of ranging
US5046501A (en) 1989-01-18 1991-09-10 Wayne State University Atherosclerotic identification
US5065331A (en) 1981-05-18 1991-11-12 Vachon Reginald I Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
US5085496A (en) 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
WO1992001966A1 (en) 1990-07-18 1992-02-06 Medical Research Council Confocal scanning optical microscope
JPH0456907A (en) 1990-06-26 1992-02-24 Fujikura Ltd Optical fiber coupler
JPH04135551A (en) 1990-09-27 1992-05-11 Olympus Optical Co Ltd Optical three-dimensional image observing device
JPH04135550A (en) 1990-09-27 1992-05-11 Olympus Optical Co Ltd Optical scanner for observing tomographic image
US5120953A (en) 1988-07-13 1992-06-09 Harris Martin R Scanning confocal microscope including a single fibre for transmitting light to and receiving light from an object
US5121983A (en) 1989-12-14 1992-06-16 Goldstar Co., Ltd. Stereoscopic projector
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
WO1992016865A1 (en) 1991-03-22 1992-10-01 Hicks John W Multifiber endoscope with multiple scanning modes to produce an image free of fixed pattern noise
WO1992019930A1 (en) 1991-04-29 1992-11-12 Massachusetts Institute Of Technology Method and apparatus for optical imaging and measurement
US5177488A (en) 1991-10-08 1993-01-05 Hughes Aircraft Company Programmable fiber optic delay line, and radar target simulation system incorporating the same
WO1993003672A1 (en) 1991-08-20 1993-03-04 Redd Douglas C B Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system
US5197470A (en) 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
US5202931A (en) 1987-10-06 1993-04-13 Cell Analysis Systems, Inc. Methods and apparatus for the quantitation of nuclear protein
US5202745A (en) 1990-11-07 1993-04-13 Hewlett-Packard Company Polarization independent optical coherence-domain reflectometry
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
US5212667A (en) 1992-02-03 1993-05-18 General Electric Company Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US5214538A (en) 1988-07-25 1993-05-25 Keymed (Medical And Industrial Equipment) Limited Optical apparatus
US5217456A (en) 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
US5228001A (en) 1991-01-23 1993-07-13 Syracuse University Optical random access memory
US5241364A (en) 1990-10-19 1993-08-31 Fuji Photo Film Co., Ltd. Confocal scanning type of phase contrast microscope and scanning microscope
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5251009A (en) 1990-01-22 1993-10-05 Ciba-Geigy Corporation Interferometric measuring arrangement for refractive index measurements in capillary tubes
US5262644A (en) 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
US5281811A (en) 1991-06-17 1994-01-25 Litton Systems, Inc. Digital wavelength division multiplex optical transducer having an improved decoder
US5283795A (en) 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5291885A (en) 1990-11-27 1994-03-08 Kowa Company Ltd. Apparatus for measuring blood flow
US5293873A (en) 1991-08-29 1994-03-15 Siemens Aktiengesellschaft Measuring arrangement for tissue-optical examination of a subject with visible, NIR or IR light
US5293872A (en) 1991-04-03 1994-03-15 Alfano Robert R Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
EP0590268A1 (en) 1985-03-22 1994-04-06 Massachusetts Institute Of Technology Catheter for Laser angiosurgery
US5302025A (en) 1982-08-06 1994-04-12 Kleinerman Marcos Y Optical systems for sensing temperature and other physical parameters
US5304173A (en) 1985-03-22 1994-04-19 Massachusetts Institute Of Technology Spectral diagonostic and treatment system
US5305759A (en) 1990-09-26 1994-04-26 Olympus Optical Co., Ltd. Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
US5317389A (en) 1989-06-12 1994-05-31 California Institute Of Technology Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US5333144A (en) 1991-12-30 1994-07-26 U.S. Philips Corporation Diode laser device having a reflecting feedback element, and apparatus using the device
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
EP0617286A2 (en) 1993-03-18 1994-09-28 Wallac Oy Biospecific solid phase carrier
US5353790A (en) 1992-01-17 1994-10-11 Board Of Regents, The University Of Texas System Method and apparatus for optical measurement of bilirubin in tissue
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
US5394235A (en) 1993-03-17 1995-02-28 Ando Electric Co., Ltd. Apparatus for measuring distortion position of optical fiber
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
US5404415A (en) 1993-01-27 1995-04-04 Shin-Etsu Chemical Co., Ltd. Optical fiber coupler and method for preparing same
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5414509A (en) 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
US5419323A (en) 1988-12-21 1995-05-30 Massachusetts Institute Of Technology Method for laser induced fluorescence of tissue
US5424827A (en) 1993-04-30 1995-06-13 Litton Systems, Inc. Optical system and method for eliminating overlap of diffraction spectra
US5439000A (en) 1992-11-18 1995-08-08 Spectrascience, Inc. Method of diagnosing tissue with guidewire
US5441053A (en) 1991-05-03 1995-08-15 University Of Kentucky Research Foundation Apparatus and method for multiple wavelength of tissue
US5450203A (en) 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US5479928A (en) 1992-09-21 1996-01-02 Institut National De La Sante Et De La Recherche Medicale Ultrasonic method and apparatus for flow measurement
US5486701A (en) 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
WO1996002184A1 (en) 1994-07-14 1996-02-01 Washington Research Foundation Method and apparatus for detecting barrett's metaplasia of the esophagus
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5491552A (en) 1993-03-29 1996-02-13 Bruker Medizintechnik Optical interferometer employing mutually coherent light source and an array detector for imaging in strongly scattered media
EP0697611A2 (en) 1994-08-18 1996-02-21 Carl Zeiss Optical coherence tomography assisted surgical apparatus
WO1996004839A1 (en) 1994-08-08 1996-02-22 Computed Anatomy, Incorporated Processing of keratoscopic images using local spatial phase
US5522004A (en) 1993-04-30 1996-05-28 Telefonaktiebolaget Lm Ericsson Device and method for dispersion compensation in a fiber optic transmission system
JPH08136345A (en) 1994-11-10 1996-05-31 Anritsu Corp Double monochromator
US5526338A (en) 1995-03-10 1996-06-11 Yeda Research & Development Co. Ltd. Method and apparatus for storage and retrieval with multilayer optical disks
JPH08160129A (en) 1994-12-05 1996-06-21 Uniden Corp Speed detector
GB2298054A (en) 1995-02-01 1996-08-21 Nikon Precision Inc Orthogonally polarised light beam(s) for interferometer
EP0728440A2 (en) 1995-02-24 1996-08-28 Ott, Lutz Method and device for deep, selective, non-invasive detection of muscle activity
US5555087A (en) 1993-06-15 1996-09-10 Fuji Photo Film Co., Ltd. Method and apparatus for employing a light source and heterodyne interferometer for obtaining information representing the microstructure of a medium at various depths therein
WO1996028212A1 (en) 1995-03-09 1996-09-19 Innotech Usa, Inc. Laser surgical device and method of its use
US5565983A (en) 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5566267A (en) 1994-12-15 1996-10-15 Ceram Optec Industries Inc. Flat surfaced optical fibers and diode laser medical delivery devices
US5565986A (en) 1994-03-30 1996-10-15 Kn+E,Uml U+Ee Ttel; Alexander Stationary optical spectroscopic imaging in turbid objects by special light focusing and signal detection of light with various optical wavelengths
US5583342A (en) 1993-06-03 1996-12-10 Hamamatsu Photonics K.K. Laser scanning optical system and laser scanning optical apparatus
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
JPH0910213A (en) 1995-06-28 1997-01-14 Hitachi Medical Corp Needle-like ultrasonic probe
US5600486A (en) 1995-01-30 1997-02-04 Lockheed Missiles And Space Company, Inc. Color separation microlens
FR2738343A1 (en) 1995-08-30 1997-03-07 Cohen Sabban Joseph Optical microstratigraphy equipment
US5621830A (en) 1995-06-07 1997-04-15 Smith & Nephew Dyonics Inc. Rotatable fiber optic joint
US5623336A (en) 1993-04-30 1997-04-22 Raab; Michael Method and apparatus for analyzing optical fibers by inducing Brillouin spectroscopy
US5628313A (en) 1992-06-30 1997-05-13 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5635830A (en) 1993-03-29 1997-06-03 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor employing differently sized transmission lines
US5649924A (en) 1988-06-10 1997-07-22 Trimedyne, Inc. Medical device for irradiation of tissue
WO1997032182A1 (en) 1996-02-27 1997-09-04 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
JPH09230248A (en) 1995-11-07 1997-09-05 Univ Leland Stanford Jr Compact scanning confocal microscope
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US5701155A (en) 1992-09-11 1997-12-23 Welch Allyn, Inc. Processor module for video inspection probe
WO1998000057A1 (en) 1996-06-28 1998-01-08 Board Of Regents, The University Of Texas System Spectroscopic probe for in vivo measurement of raman signals
WO1998001074A1 (en) 1996-07-08 1998-01-15 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US5710630A (en) 1994-05-05 1998-01-20 Boehringer Mannheim Gmbh Method and apparatus for determining glucose concentration in a biological sample
US5716324A (en) 1992-08-25 1998-02-10 Fuji Photo Film Co., Ltd. Endoscope with surface and deep portion imaging systems
US5719399A (en) 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
US5730731A (en) 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US5735276A (en) 1995-03-21 1998-04-07 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
WO1998014132A1 (en) 1996-10-01 1998-04-09 Leica Lasertechnik Gmbh Confocal surface-measuring device
RU2108122C1 (en) 1996-09-24 1998-04-10 Владимир Павлович Жаров Method and device for physiotherapeutic irradiation with light
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5784352A (en) 1995-07-21 1998-07-21 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
JPH10213485A (en) 1997-01-29 1998-08-11 Seitai Hikarijoho Kenkyusho:Kk Light measuring apparatus
WO1998035203A2 (en) 1997-02-07 1998-08-13 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US5801831A (en) 1996-09-20 1998-09-01 Institute For Space And Terrestrial Science Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
US5801826A (en) 1997-02-18 1998-09-01 Williams Family Trust B Spectrometric device and method for recognizing atomic and molecular signatures
US5803082A (en) 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
WO1998038907A1 (en) 1997-03-06 1998-09-11 Massachusetts Institute Of Technology Instrument for optically scanning of living tissue
US5807261A (en) 1992-09-14 1998-09-15 Sextant Medical Corporation Noninvasive system for characterizing tissue in vivo
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
JPH10267631A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring instrument
JPH10267830A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring device
WO1998046123A1 (en) 1997-04-11 1998-10-22 Imperial College Of Science, Technology And Medicine Anatomical probe
US5829439A (en) 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
WO1998048838A1 (en) 1997-04-29 1998-11-05 Nycomed Imaging As Compounds
WO1998048846A1 (en) 1997-04-29 1998-11-05 Nycomed Imaging As Light imaging contrast agents
US5836877A (en) 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5840075A (en) 1996-08-23 1998-11-24 Eclipse Surgical Technologies, Inc. Dual laser device for transmyocardial revascularization procedures
US5843052A (en) 1996-10-04 1998-12-01 Benja-Athon; Anuthep Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
US5847827A (en) 1995-06-23 1998-12-08 Carl Zeiss Jena Gmbh Coherence biometry and coherence tomography with dynamic coherent
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
US5867268A (en) 1995-03-01 1999-02-02 Optical Coherence Technologies, Inc. Optical fiber interferometer with PZT scanning of interferometer arm optical length
US5865754A (en) 1995-08-24 1999-02-02 Purdue Research Foundation Office Of Technology Transfer Fluorescence imaging system and method
WO1999005487A1 (en) 1997-07-25 1999-02-04 Physical Optics Corporation Accurate tissue injury assessment using hybrid neural network analysis
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US5877856A (en) 1996-05-14 1999-03-02 Carl Zeiss Jena Gmbh Methods and arrangement for increasing contrast in optical coherence tomography by means of scanning an object with a dual beam
US5887009A (en) 1997-05-22 1999-03-23 Optical Biopsy Technologies, Inc. Confocal optical scanning system employing a fiber laser
US5892583A (en) 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US5910839A (en) 1996-02-05 1999-06-08 The Regents Of The University Of California White light velocity interferometer
WO1999028856A1 (en) 1997-12-04 1999-06-10 Applied Spectral Imaging Ltd. Method of cancer cell detection
US5912764A (en) 1996-09-18 1999-06-15 Olympus Optical Co., Ltd. Endoscope optical system and image pickup apparatus
US5920390A (en) 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
US5926592A (en) 1995-03-24 1999-07-20 Optiscan Pty Ltd Optical fibre confocal imager with variable near-confocal control
EP0933096A2 (en) 1998-01-29 1999-08-04 International Business Machines Corporation Laser for dermal ablation
WO1999044089A1 (en) 1998-02-26 1999-09-02 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
WO1999045338A1 (en) 1998-03-06 1999-09-10 Optical Coherence Technologies, Inc. Optical coherent tomography apparatus, fiberoptic lateral scanner and method for studying biological tissues in vivo
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
WO1999045838A1 (en) 1998-03-09 1999-09-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US5955737A (en) 1997-10-27 1999-09-21 Systems & Processes Engineering Corporation Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
US5975697A (en) 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
US5983125A (en) 1993-12-13 1999-11-09 The Research Foundation Of City College Of New York Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
WO1999057507A1 (en) 1998-05-01 1999-11-11 Board Of Regents, The University Of Texas System Method and apparatus for subsurface imaging
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US5995223A (en) 1998-06-01 1999-11-30 Power; Joan Fleurette Apparatus for rapid phase imaging interferometry and method therefor
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US6006128A (en) 1997-06-02 1999-12-21 Izatt; Joseph A. Doppler flow imaging using optical coherence tomography
US6007996A (en) 1995-12-12 1999-12-28 Applied Spectral Imaging Ltd. In situ method of analyzing cells
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US6014214A (en) 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
US6016197A (en) 1995-08-25 2000-01-18 Ceramoptec Industries Inc. Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
JP2000023978A (en) 1998-05-19 2000-01-25 Koninkl Philips Electron Nv Elastic deformation detecting method and ultrasonograph
US6020963A (en) 1996-06-04 2000-02-01 Northeastern University Optical quadrature Interferometer
US6025956A (en) 1995-12-26 2000-02-15 Olympus Optical Co., Ltd. Incident-light fluorescence microscope
JP2000046729A (en) 1998-07-31 2000-02-18 Takahisa Mitsui Apparatus and method for high-speed measurement of optical topographic image by using wavelength dispersion
US6033721A (en) 1994-10-26 2000-03-07 Revise, Inc. Image-based three-axis positioner for laser direct write microchemical reaction
US6037579A (en) 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6044288A (en) 1996-11-08 2000-03-28 Imaging Diagnostics Systems, Inc. Apparatus and method for determining the perimeter of the surface of an object being scanned
JP2000504234A (en) 1996-03-04 2000-04-11 イノテック ユーエスエイ インコーポレイテッド Laser surgical device and method of using the same
US6048742A (en) 1998-02-26 2000-04-11 The United States Of America As Represented By The Secretary Of The Air Force Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
US6052186A (en) 1997-11-05 2000-04-18 Excel Precision, Inc. Dual laser system for extended heterodyne interferometry
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
JP2000121961A (en) 1998-10-13 2000-04-28 Olympus Optical Co Ltd Confocal optical scanning probe system
JP2000126116A (en) 1998-10-28 2000-05-09 Olympus Optical Co Ltd Photo-diagnosis system
JP2000131222A (en) 1998-10-22 2000-05-12 Olympus Optical Co Ltd Optical tomographic image device
RU2149464C1 (en) 1999-01-19 2000-05-20 Таганрогский государственный радиотехнический университет Dynamic memory unit for storage of radio signals
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6078047A (en) 1997-03-14 2000-06-20 Lucent Technologies Inc. Method and apparatus for terahertz tomographic imaging
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US6091496A (en) 1997-01-28 2000-07-18 Zetetic Institute Multiple layer, multiple track optical disk access by confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
US6094274A (en) 1998-06-05 2000-07-25 Olympus Optical Co., Ltd. Fluorescence detecting device
WO2000042906A2 (en) 1999-01-22 2000-07-27 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
WO2000043730A1 (en) 1999-01-20 2000-07-27 Lightlab Imaging Methods and apparatus for high-speed longitudinal scanning in imaging systems
US6107048A (en) 1997-11-20 2000-08-22 Medical College Of Georgia Research Institute, Inc. Method of detecting and grading dysplasia in epithelial tissue
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
WO2000058766A1 (en) 1999-03-29 2000-10-05 Scimed Life Systems, Inc. Single mode optical fiber coupling systems
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
US6134033A (en) 1998-02-26 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
US6151522A (en) 1998-03-16 2000-11-21 The Research Foundation Of Cuny Method and system for examining biological materials using low power CW excitation raman spectroscopy
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
US6161031A (en) 1990-08-10 2000-12-12 Board Of Regents Of The University Of Washington Optical imaging methods
US6166373A (en) 1998-07-21 2000-12-26 The Institute For Technology Development Focal plane scanner with reciprocating spatial window
WO2001001111A1 (en) 1999-06-28 2001-01-04 University College London Optical fibre probe for photoacoustic material analysis
JP2001500026A (en) 1996-02-27 2001-01-09 アータン ラボラトリーズ Prostate imaging method and device
JP2001004447A (en) 1999-06-23 2001-01-12 Yokogawa Electric Corp Spectrometer
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
WO2001004828A1 (en) 1999-07-13 2001-01-18 Chromavision Medical Systems, Inc. Automated detection of objects in a biological sample
US6185271B1 (en) 1999-02-16 2001-02-06 Richard Estyn Kinsinger Helical computed tomography with feedback scan control
WO2001008579A1 (en) 1999-07-30 2001-02-08 Ceramoptec Industries, Inc. Dual wavelength medical diode laser system
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US6198956B1 (en) 1999-09-30 2001-03-06 Oti Ophthalmic Technologies Inc. High speed sector scanning apparatus having digital electronic control
US6201989B1 (en) 1997-03-13 2001-03-13 Biomax Technologies Inc. Methods and apparatus for detecting the rejection of transplanted tissue
US6208415B1 (en) 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
US6208887B1 (en) 1999-06-24 2001-03-27 Richard H. Clarke Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions
JP2001104315A (en) 1999-10-08 2001-04-17 Olympus Optical Co Ltd Ultrasonic-guided paracentesis system device
WO2001027679A1 (en) 1999-10-15 2001-04-19 Cellavision Ab Microscope and method for manufacturing a composite image with a high resolution
WO2001033215A1 (en) 1999-11-01 2001-05-10 Keren Mechkarim Ichilov, Pnimit D' System and method for generating a profile of particulate components of a body fluid sample
WO2001038820A1 (en) 1999-11-24 2001-05-31 Haag-Streit Ag Method and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
WO2001042735A1 (en) 1999-12-09 2001-06-14 Oti Ophthalmic Technologies Inc. Optical mapping apparatus with adjustable depth resolution
US6249630B1 (en) 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US6249381B1 (en) 1998-05-13 2001-06-19 Sony Corporation Illuminating method and illuminating device
US6249349B1 (en) 1996-09-27 2001-06-19 Vincent Lauer Microscope generating a three-dimensional representation of an object
JP2001508340A (en) 1997-01-13 2001-06-26 メディスペクトラ インコーポレーテッド Spatially resolved optical measurements
JP2001174404A (en) 1999-12-15 2001-06-29 Takahisa Mitsui Apparatus and method for measuring optical tomographic image
JP2001174744A (en) 1999-10-06 2001-06-29 Olympus Optical Co Ltd Optical scanning probe device
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
JP2001212086A (en) 2000-02-07 2001-08-07 Japan Science & Technology Corp Tomography and tomograph
US6272376B1 (en) 1999-01-22 2001-08-07 Cedars-Sinai Medical Center Time-resolved, laser-induced fluorescence for the characterization of organic material
US6272268B1 (en) 1996-12-31 2001-08-07 Corning Incorporated Optical couplers with multilayer fibers
US6274871B1 (en) 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US20010020126A1 (en) 1996-10-28 2001-09-06 David K. Swanson Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
JP2001264246A (en) 2000-03-21 2001-09-26 Olympus Optical Co Ltd Optical imaging device
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US6301048B1 (en) 2000-05-19 2001-10-09 Avanex Corporation Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US6308092B1 (en) 1999-10-13 2001-10-23 C. R. Bard Inc. Optical fiber tissue localization device
WO2001082786A2 (en) 2000-05-03 2001-11-08 Flock Stephen T Optical imaging of subsurface anatomical structures and biomolecules
US6324419B1 (en) 1998-10-27 2001-11-27 Nejat Guzelsu Apparatus and method for non-invasive measurement of stretch
US20010047137A1 (en) 1998-10-08 2001-11-29 University Of Kentucky Research Foundation, Kentucky Corporation Methods and apparatus for in vivo identification and characterization of vulnerable atherosclerotic plaques
US20010055462A1 (en) 2000-06-19 2001-12-27 Seibel Eric J. Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
JP2002035005A (en) 2000-07-21 2002-02-05 Olympus Optical Co Ltd Therapeutic device
US20020024015A1 (en) 2000-08-30 2002-02-28 Juergen Hoffmann Device and method for the excitation of fluorescent labels and scanning microscope
US6353693B1 (en) 1999-05-31 2002-03-05 Sanyo Electric Co., Ltd. Optical communication device and slip ring unit for an electronic component-mounting apparatus
US6359692B1 (en) 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
US20020037252A1 (en) 2000-09-26 2002-03-28 Fuji Photo Film Co., Ltd. Method and apparatus for obtaining an optical tomographic image of a sentinel lymph node
US6374128B1 (en) 1998-11-20 2002-04-16 Fuji Photo Film Co., Ltd. Blood vessel imaging system
JP2002113017A (en) 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd Laser treatment device
US6377349B1 (en) 1998-03-30 2002-04-23 Carl Zeiss Jena Gmbh Arrangement for spectral interferometric optical tomography and surface profile measurement
US20020048025A1 (en) 2000-08-12 2002-04-25 Hideyuki Takaoka Optical system and optical apparatus
US20020048026A1 (en) 2000-03-28 2002-04-25 Fumio Isshiki Laser interferometer displacement measuring system, exposure apparatus, and elecron beam lithography apparatus
US20020052547A1 (en) 2000-10-31 2002-05-02 Fuji Photo Film Co., Ltd. Endoscope apparatus
US6384915B1 (en) 1998-03-30 2002-05-07 The Regents Of The University Of California Catheter guided by optical coherence domain reflectometry
WO2002036015A1 (en) 2000-10-30 2002-05-10 The General Hospital Corporation Optical methods and systems for tissue analysis
WO2002037075A2 (en) 2000-10-31 2002-05-10 Forskningscenter Risø Optical amplification in coherent optical frequency modulated continuous wave reflectometry
US20020057431A1 (en) 1999-04-09 2002-05-16 Fateley William G. System and method for encoded spatio-spectral information processing
WO2002038040A2 (en) 2000-11-10 2002-05-16 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
US6393312B1 (en) 1999-10-13 2002-05-21 C. R. Bard, Inc. Connector for coupling an optical fiber tissue localization device to a light source
JP2002148185A (en) 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd Oct apparatus
US6394964B1 (en) 1998-03-09 2002-05-28 Spectrascience, Inc. Optical forceps system and method of diagnosing and treating tissue
US6396941B1 (en) 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US20020064341A1 (en) 2000-11-27 2002-05-30 Fauver Mark E. Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
JP2002516586A (en) 1997-06-23 2002-06-04 ティーエイチエス インターナショナル,インコーポレイテッド Method and apparatus for providing acoustic hemostasis
WO2002045572A2 (en) 2000-12-06 2002-06-13 Spentech, Inc. Doppler ultrasound method for detecting emboli
US20020076152A1 (en) 2000-12-14 2002-06-20 Hughes Richard P. Optical fiber termination
US20020086347A1 (en) 1999-06-23 2002-07-04 Johnson Peter C. Method for quantitative analysis of blood vessel structure
US20020085209A1 (en) 2000-11-14 2002-07-04 Mittleman Daniel M. Interferometric imaging system and method
US20020091322A1 (en) 1998-12-03 2002-07-11 Joseph Chaiken Method and apparatus for noninvasive assessment of skin condition and diagnosis of skin abnormalities
WO2002053050A1 (en) 2000-12-28 2002-07-11 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic emr treatment of the skin
WO2002054027A1 (en) 2000-12-28 2002-07-11 Coretek, Inc. Wavelength monitoring system
US20020093662A1 (en) 2000-09-05 2002-07-18 Chen Gang Paul System and method for fabricating components of precise optical path length
JP2002205434A (en) 2001-01-10 2002-07-23 Seiko Epson Corp Image output unit and printing system
JP2002214128A (en) 2001-01-16 2002-07-31 Japan Science & Technology Corp Heterodyne beat image synchronization measuring method and its device
US20020109851A1 (en) 2000-08-08 2002-08-15 Deck Leslie L. Frequency transform phase shifting interferometry
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US20020113965A1 (en) 2000-02-18 2002-08-22 Roche John W. High numerical aperture flow cytometer and method of using same
US6441892B2 (en) 1999-11-19 2002-08-27 Jobin Yvon, Inc. Compact spectrofluorometer
US6441959B1 (en) 2000-05-19 2002-08-27 Avanex Corporation Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6445485B1 (en) 2000-01-21 2002-09-03 At&T Corp. Micro-machine polarization-state controller
US20020122246A1 (en) 1998-02-26 2002-09-05 Tearney Guillermo J. Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US20020122182A1 (en) 2001-03-01 2002-09-05 Carl Zeiss, Inc. Optical delay line
WO2002068853A1 (en) 2001-02-22 2002-09-06 Expro North Sea Limited Improved tubing coupling
US20020140942A1 (en) 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
US6463313B1 (en) 1997-07-09 2002-10-08 Thomas R. Winston Systems for guiding a medical instrument through a body
US6469846B2 (en) 2000-06-29 2002-10-22 Riken Grism
WO2002084263A1 (en) 2001-04-17 2002-10-24 Medizinisches Laserzentrum Lübeck GmbH Interferometric arrangement for determining the transit time of light in a sample
WO2002083003A1 (en) 2001-04-11 2002-10-24 Clarke Dana S Tissue structure identification in advance of instrument
US20020158211A1 (en) 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
US6475210B1 (en) 2000-02-11 2002-11-05 Medventure Technology Corp Light treatment of vulnerable atherosclerosis plaque
US6477403B1 (en) 1999-08-09 2002-11-05 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope system
US6475159B1 (en) 1995-09-20 2002-11-05 S. Ward Casscells Method of detecting vulnerable atherosclerotic plaque
US20020163622A1 (en) 2001-04-06 2002-11-07 Paul Magnin Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US20020166946A1 (en) 2001-03-12 2002-11-14 Olympus Optical Co., Ltd. Optical scanning probe device using low coherence light
US20020168158A1 (en) 1999-09-02 2002-11-14 Asahi Kogaku Kogyo Kabushiki Kaisha Fiber bundle and endoscope apparatus
US20020172485A1 (en) 2001-04-02 2002-11-21 Keaton Gregory L. Optical wavelength filtering apparatus with depressed-index claddings
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6485482B1 (en) 1999-07-30 2002-11-26 Scimed Life Systems, Inc. Rotational and translational drive coupling for catheter assembly
US20020183623A1 (en) 2001-05-31 2002-12-05 Jing Tang Multi-path optical catheter
US20020188204A1 (en) 2001-06-07 2002-12-12 Mcnamara Edward I. Fiber optic endoscopic gastrointestinal probe
US20020198457A1 (en) 2001-04-30 2002-12-26 Tearney Guillermo J. Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US20020196446A1 (en) 2001-01-22 2002-12-26 Roth Jonathan E. Method and apparatus for polarization-sensitive optical coherence tomography
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US20030001071A1 (en) 2000-07-28 2003-01-02 Mandella Michael J. Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
JP2003014585A (en) 2001-06-07 2003-01-15 Agilent Technol Inc Judgment of characteristic of optical device
US20030013973A1 (en) 2001-01-19 2003-01-16 Massachusetts Institute Of Technology System and methods of fluorescence, reflectance and light scattering spectroscopy for measuring tissue characteristics
WO2003003903A2 (en) 2001-07-02 2003-01-16 Palomar Medical Technologies, Inc. Laser device for medical/cosmetic procedures
US6516014B1 (en) 1998-11-13 2003-02-04 The Research And Development Institute, Inc. Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
US20030028114A1 (en) 1995-09-20 2003-02-06 Texas Heart Institute Method and apparatus for detecting vulnerable atherosclerotic plaque
US20030026735A1 (en) 2001-06-22 2003-02-06 Nolte David D. Bio-optical compact disk system
US20030025917A1 (en) 2001-07-18 2003-02-06 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
JP2003035659A (en) 2001-06-15 2003-02-07 Carl Zeiss Jena Gmbh Post-numeric compensation by three-dimensional variable correlation kernel of dispersion in pci measurement signal and oct-a scanning signal
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
WO2003012405A2 (en) 2001-08-03 2003-02-13 Rollins Andrew M Aspects of basic oct engine technologies for high speed optical coherence tomography and light source and other improvements in oct
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
WO2003013624A2 (en) 2001-08-10 2003-02-20 C2Cure Inc. Intra vascular imaging method and apparatus
WO2003020119A2 (en) 2001-09-04 2003-03-13 Bioluminate, Inc. Multisensor probe for tissue identification
US20030053673A1 (en) 2001-09-18 2003-03-20 Piet Dewaele Radiographic scoring method
US6538817B1 (en) 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
US6540391B2 (en) 2000-04-27 2003-04-01 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
JP2003512085A (en) 1998-09-11 2003-04-02 スペクトルックス・インコーポレイテッド Multi-mode optical tissue diagnosis system
JP2003102672A (en) 2001-10-01 2003-04-08 Japan Science & Technology Corp Method and device for automatically detecting, treating, and collecting objective site of lesion or the like
US20030067607A1 (en) 2001-10-09 2003-04-10 Ralf Wolleschensky Method and arrangement for the depth-resolved detection of specimens
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
US6556305B1 (en) 2000-02-17 2003-04-29 Veeco Instruments, Inc. Pulsed source scanning interferometer
US6556853B1 (en) 1995-12-12 2003-04-29 Applied Spectral Imaging Ltd. Spectral bio-imaging of the eye
US20030082105A1 (en) 2001-06-04 2003-05-01 Alan Fischman Methods and devices for detection and therapy of atheromatous plaque
US6560259B1 (en) 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
US6558324B1 (en) 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
US6564089B2 (en) 1999-02-04 2003-05-13 University Hospital Of Cleveland Optical imaging device
US6567585B2 (en) 2000-04-04 2003-05-20 Optiscan Pty Ltd Z sharpening for fibre confocal microscopes
US20030097048A1 (en) 2001-05-31 2003-05-22 Ryan S. Eric Referencing optical catheters
US20030103212A1 (en) 2001-08-03 2003-06-05 Volker Westphal Real-time imaging system and method
WO2003046495A1 (en) 2001-11-21 2003-06-05 Delta E Refractive-diffractive spectrometer
US20030108911A1 (en) 2001-08-01 2003-06-12 Chromeon Gmbh Arrangement and method for multiple-fluorescence measurement
WO2003052478A1 (en) 2001-12-18 2003-06-26 Advanced Cardiovascular Systems Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US20030120137A1 (en) 2001-12-21 2003-06-26 Romuald Pawluczyk Raman spectroscopic system with integrating cavity
EP1324051A1 (en) 2001-12-26 2003-07-02 Kevin R. Forrester Motion measuring device
WO2003053226A2 (en) 2001-12-11 2003-07-03 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
US6593101B2 (en) 2000-03-28 2003-07-15 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US20030135101A1 (en) 2001-12-21 2003-07-17 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
RU2209094C2 (en) 1996-12-26 2003-07-27 Мединол Лтд Method and equipment for manufacturing stents
WO2003062802A2 (en) 2002-01-24 2003-07-31 The General Hospital Corporation Apparatus and method for rangings and noise reduction of low coherence interferometry lci and optical coherence tomography (oct) signals by parallel detection of spectral bands
US6611833B1 (en) 1999-06-23 2003-08-26 Tissueinformatics, Inc. Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US20030165263A1 (en) 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
US20030164952A1 (en) 2000-08-25 2003-09-04 Nikolaj Deichmann Method and apparatus for three-dimensional optical scanning of interior surfaces
US20030171691A1 (en) 1999-06-25 2003-09-11 Casscells S. Ward Method and apparatus for detecting vulnerable atherosclerotic plaque
US20030174339A1 (en) 2002-02-14 2003-09-18 Feldchtein Felix I. Method for studying a sample and optical interferometer for doing the same
US6622732B2 (en) 1998-07-15 2003-09-23 Corazon Technologies, Inc. Methods and devices for reducing the mineral content of vascular calcified lesions
RU2213421C1 (en) 2002-06-21 2003-09-27 Южно-Российский государственный университет экономики и сервиса Dynamic radio-signal memory device
US20030191392A1 (en) 2002-04-05 2003-10-09 Haldeman Paul Craig Doppler guiding catheter using sensed blood turbulence levels
US20030199769A1 (en) 2002-04-08 2003-10-23 Adrian Podoleanu Apparatus for high resolution imaging of moving organs
WO2003088826A1 (en) 2001-10-24 2003-10-30 Scimed Life Systems, Inc. Optical catheter connector
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
US20030220749A1 (en) 2002-04-09 2003-11-27 Zhongping Chen Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US20030218756A1 (en) 2002-01-16 2003-11-27 Zhongping Chen High resolution optical coherence tomography with an improved depth range using an axicon lens
US6657730B2 (en) 2001-01-04 2003-12-02 Tilman Pfau Interferometer with angled beam entry
US6658278B2 (en) 2001-10-17 2003-12-02 Terumo Cardiovascular Systems Corporation Steerable infrared imaging catheter having steering fins
WO2003105678A2 (en) 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20040002650A1 (en) 2001-06-20 2004-01-01 Evgenia Mandrusov Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6680780B1 (en) 1999-12-23 2004-01-20 Agere Systems, Inc. Interferometric probe stabilization relative to subject movement
JP2004028970A (en) 2002-06-21 2004-01-29 Institute Of Tsukuba Liaison Co Ltd Polarization-sensitive optical spectral interferometric coherence tomography apparatus and measuring method for polarization information inside sample by the same
US6687007B1 (en) 2000-12-14 2004-02-03 Kestrel Corporation Common path interferometer for spectral image generation
US6687036B2 (en) 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
JP2004037165A (en) 2002-07-01 2004-02-05 Fuji Photo Optical Co Ltd Interferometer device
JP2004056907A (en) 2002-07-19 2004-02-19 Nippon Steel Corp Synchronous machine
US20040039252A1 (en) 2002-06-27 2004-02-26 Koch Kenneth Elmon Self-navigating endotracheal tube
JP2004057652A (en) 2002-07-31 2004-02-26 Takeshi Shiina Ultrasonographic system, distortion distribution display method, and elastic modulus distribution display method
US20040039298A1 (en) 1996-09-04 2004-02-26 Abreu Marcio Marc Noninvasive measurement of chemical substances
US20040054268A1 (en) 2000-03-01 2004-03-18 Rinat Esenaliev Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
JP2004089552A (en) 2002-09-03 2004-03-25 Pentax Corp Diagnostic light irradiation apparatus
US6721094B1 (en) 2001-03-05 2004-04-13 Sandia Corporation Long working distance interference microscope
US20040072200A1 (en) 2000-11-13 2004-04-15 Rudolf Rigler Detection of nucleic acid polymorphisms
JP2004113780A (en) 2002-09-06 2004-04-15 Pentax Corp Endoscope and optical tomographic endoscope system
US6725073B1 (en) 1999-08-17 2004-04-20 Board Of Regents, The University Of Texas System Methods for noninvasive analyte sensing
US20040076940A1 (en) 1998-01-28 2004-04-22 Immersion Medical, Inc. Interface device and method for interfacing instruments to medical procedure simulation systems
WO2004034569A2 (en) 2002-10-08 2004-04-22 M/A-Com, Inc. Apparatus, methods and articles of manufacture for multiband signal processing
US20040077949A1 (en) 2001-01-11 2004-04-22 Blofgett David W. Assessment of tooth structure using laser based ultrasonics
US20040075841A1 (en) 2002-10-16 2004-04-22 Fiso Technologies, Inc. System and method for measuring an optical path difference in a sensing interferometer
US20040085540A1 (en) 2000-12-28 2004-05-06 Lapotko Dmitri Olegovich Method and device for photothermal examination of microinhomogeneities
US20040086245A1 (en) 2002-03-19 2004-05-06 Farroni Julia A. Optical fiber
US6738144B1 (en) 1999-12-17 2004-05-18 University Of Central Florida Non-invasive method and low-coherence apparatus system analysis and process control
US20040095464A1 (en) 2002-11-18 2004-05-20 Kunihiko Miyagi Vibrating object observing system and vocal cord observing processing apparatus
JP2004514920A (en) 2000-05-03 2004-05-20 ダーク・ソーンクセン Fully automatic slide scanner for microscope
US6741355B2 (en) 2000-11-20 2004-05-25 Robert Bosch Gmbh Short coherence fiber probe interferometric measuring device
US6741884B1 (en) 1998-09-03 2004-05-25 Hypermed, Inc. Infrared endoscopic balloon probes
WO2004043251A1 (en) 2002-11-07 2004-05-27 Infraredx, Inc. Spectroscope with modified field-of-view
US20040100631A1 (en) 2002-11-27 2004-05-27 Mark Bashkansky Method and apparatus for reducing speckle in optical coherence tomography images
US20040100681A1 (en) 2000-08-11 2004-05-27 Anders Bjarklev Optical wavelength converter
EP1426799A2 (en) 2002-11-29 2004-06-09 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
US20040110206A1 (en) 2002-09-26 2004-06-10 Bio Techplex Corporation Waveform modulated light emitting diode (LED) light source for use in a method of and apparatus for screening to identify drug candidates
US6757467B1 (en) 2000-07-25 2004-06-29 Optical Air Data Systems, Lp Optical fiber system
US20040126120A1 (en) 2001-03-08 2004-07-01 Xtellus, Inc. Dynamic gain equalizer
US20040126048A1 (en) 2001-01-12 2004-07-01 Dave Digant P. Fiber-based optical low coherence tomography
US20040133191A1 (en) 2002-12-27 2004-07-08 Masayuki Momiuchi Laser device for medical treatment system
WO2004057266A2 (en) 2002-12-20 2004-07-08 Carl Zeiss Interferometer system and measuring device
US20040150830A1 (en) 2003-01-29 2004-08-05 Chan Winston Kong Interferometer having a scanning mirror
US20040152989A1 (en) 2003-01-03 2004-08-05 Jayanth Puttappa Speckle pattern analysis method and system
WO2004066824A2 (en) 2003-01-24 2004-08-12 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US20040165184A1 (en) 2003-02-24 2004-08-26 Pentax Corporation Confocal probe
US20040166593A1 (en) 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
WO2004073501A2 (en) 2003-02-20 2004-09-02 Gutin Mikhail Optical coherence tomography with 3d coherence scanning
US6790175B1 (en) 1999-10-28 2004-09-14 Pentax Corporation Endoscope system
US20040188148A1 (en) 1999-08-31 2004-09-30 Halliburton Energy Service, Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US20040189999A1 (en) 2003-03-06 2004-09-30 De Groot Peter J. Profiling complex surface structures using scanning interferometry
WO2004088361A2 (en) 2003-03-31 2004-10-14 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US20040204651A1 (en) 1998-09-03 2004-10-14 Freeman Jenny E. Infrared endoscopic balloon probes
US20040212808A1 (en) 2002-09-25 2004-10-28 Olympus Optical Co., Ltd. Optical probe system
JP2004317437A (en) 2003-04-18 2004-11-11 Olympus Corp Optical imaging apparatus
WO2004100789A1 (en) 2003-05-14 2004-11-25 Spectracure Ab System and method for therapy and diagnosis comprising optical components for distribution of radiation
CN1550203A (en) 2003-05-12 2004-12-01 ��ʿд������ʽ���� Airbag type endoscope
US20040239938A1 (en) * 2003-05-28 2004-12-02 Duke University System for fourier domain optical coherence tomography
WO2004105598A1 (en) 2003-05-22 2004-12-09 Boston Scientific Limited Systems and methods for dynamic optical imaging
US20040246583A1 (en) 2001-12-14 2004-12-09 Emmerich Mueller Retro-reflecting device in particular for tunable lasers
US20040246490A1 (en) 2003-06-04 2004-12-09 Feiling Wang Measurements of substances using two different propagation modes of light through a common optical path
US20040254474A1 (en) 2001-05-07 2004-12-16 Eric Seibel Optical fiber scanner for performing multimodal optical imaging
RU2242710C2 (en) 2002-06-07 2004-12-20 Геликонов Григорий Валентинович Method and device for building object image and device for delivering low coherence optical radiation
US20040258106A1 (en) 2003-06-19 2004-12-23 Araujo Francisco M. Laser source with configurable output beam characteristics
US20040263843A1 (en) 2003-04-18 2004-12-30 Knopp Kevin J. Raman spectroscopy system and method and specimen holder therefor
WO2005000115A1 (en) 2003-06-23 2005-01-06 Infraredx, Inc. Intraluminal spectroscope with wall-contacting probe
US20050018133A1 (en) 2003-05-01 2005-01-27 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
US20050018200A1 (en) 2002-01-11 2005-01-27 Guillermo Tearney J. Apparatus for low coherence ranging
US20050018201A1 (en) 2002-01-24 2005-01-27 De Boer Johannes F Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US20050035295A1 (en) 2003-06-06 2005-02-17 Brett Bouma Process and apparatus for a wavelength tuning source
US20050036150A1 (en) 2003-01-24 2005-02-17 Duke University Method for optical coherence tomography imaging with molecular contrast
US20050046837A1 (en) 2003-09-03 2005-03-03 Fujitsu Limited Spectroscopic apparatus
US20050049488A1 (en) 2003-08-29 2005-03-03 Olympus Corporation Medical system
JP2005062850A (en) 2003-07-29 2005-03-10 Olympus Corp Confocal microscope
US20050057680A1 (en) 2003-09-16 2005-03-17 Agan Martin J. Method and apparatus for controlling integration time in imagers
US20050059894A1 (en) 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US20050057756A1 (en) 2001-12-18 2005-03-17 Massachusetts Institute Of Technology Systems and methods for phase measurements
US20050065421A1 (en) 2003-09-19 2005-03-24 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US20050075547A1 (en) 2003-06-04 2005-04-07 Feiling Wang Coherence-gated optical glucose monitor
JP2005110208A (en) 2003-09-30 2005-04-21 Lucent Technol Inc High-speed modulation for optical subcarrier
US20050083534A1 (en) 2003-08-28 2005-04-21 Riza Nabeel A. Agile high sensitivity optical sensor
WO2005045362A1 (en) 2003-10-23 2005-05-19 Carl Zeiss Meditec Ag Apparatus for interferometric eye length measurement with increased sensitivity
WO2005047813A1 (en) 2003-10-27 2005-05-26 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US6900899B2 (en) 2001-08-20 2005-05-31 Agilent Technologies, Inc. Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios
US20050119567A1 (en) 2002-04-25 2005-06-02 Cardiac Pacemakers, Inc. Methods using a dual balloon telescoping guiding catheter
DE10351319A1 (en) 2003-10-31 2005-06-16 Medizinisches Laserzentrum Lübeck GmbH Interferometer for optical coherence tomography, e.g. for use with a medical scanning OCT-enabled endoscope, has a deflection mirror for beam deflection in the sample arm of the interferometer
JP2005156540A (en) 2003-09-26 2005-06-16 Nippon Telegr & Teleph Corp <Ntt> Variable wavelength light generation device for light interference tomography and light interference tomography device
WO2005054780A1 (en) 2003-11-28 2005-06-16 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US6909105B1 (en) 1999-03-02 2005-06-21 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for representing an object
RU2255426C1 (en) 2004-02-19 2005-06-27 Южно-Российский государственный университет экономики и сервиса Radio-signal dynamic memory device having series binary fiber- optic system
JP2005195485A (en) 2004-01-08 2005-07-21 Olympus Corp Confocal microscopic spectroscope
US20050165303A1 (en) 2003-12-15 2005-07-28 Martin Kleen Catheter device
US20050171438A1 (en) 2003-12-09 2005-08-04 Zhongping Chen High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US20050190372A1 (en) 2003-08-14 2005-09-01 Aristide Dogariu Interferometric sensor for characterizing materials
JP2005241872A (en) 2004-02-25 2005-09-08 Fujitsu Ltd Microscope image photographing system and method
US20050197530A1 (en) 2003-09-25 2005-09-08 Wallace Daniel T. Balloon visualization for traversing a tissue wall
WO2005082225A1 (en) 2004-02-27 2005-09-09 Optiscan Pty Ltd Optical element
US6949072B2 (en) 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US20050221270A1 (en) 2001-03-07 2005-10-06 Connelly Patrick R Process for identifying and treating cells types within a living organism
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
US20050254061A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometry for detecting and characterizing plaques
US20050254059A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometric system for optical metrology
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US20060020172A1 (en) 2004-07-21 2006-01-26 Rowiak Gmbh. OCT laryngoscope
US6996549B2 (en) 1998-05-01 2006-02-07 Health Discovery Corporation Computer-aided image analysis
WO2006014392A1 (en) 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
US20060033923A1 (en) 2002-05-17 2006-02-16 Japan Science And Technology Agency Autonomous ultra-short optical pulse compression, phase compensating and waveform shaping device
WO2006020605A2 (en) 2004-08-10 2006-02-23 The Regents Of The University Of California Device and method for the delivery and/or elimination of compounds in tissue
US20060039004A1 (en) 2004-08-06 2006-02-23 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
US7006232B2 (en) 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US7006231B2 (en) 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
US7019838B2 (en) 2003-05-30 2006-03-28 Duke University System and method for low coherence broadband quadrature interferometry
US7027633B2 (en) 2000-11-30 2006-04-11 Foran David J Collaborative diagnostic systems
WO2006038876A1 (en) 2004-10-08 2006-04-13 Trajan Badju A method and a system for generating three- or two-dimensional images
WO2006039091A2 (en) 2004-09-10 2006-04-13 The General Hospital Corporation System and method for optical coherence imaging
US20060093276A1 (en) 2004-11-02 2006-05-04 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
WO2006050320A2 (en) 2004-10-29 2006-05-11 The General Hospital Corporation Polarization-sensitive optical coherence tomography
US20060103850A1 (en) 2004-11-12 2006-05-18 Alphonse Gerard A Single trace multi-channel low coherence interferometric sensor
US20060106375A1 (en) 2004-11-15 2006-05-18 Werneth Randell L Ablation system with feedback
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
WO2006059109A1 (en) 2004-12-03 2006-06-08 Ic Innovations Limited Method for the analysis of cells
US7072047B2 (en) 2002-07-12 2006-07-04 Case Western Reserve University Method and system for quantitative image correction for optical coherence tomography
US20060146339A1 (en) 2004-12-06 2006-07-06 Fujinon Corporation Optical tomographic apparatus
US20060155193A1 (en) 2000-01-27 2006-07-13 National Research Center Of Canada Visible-near infrared spectroscopy in burn injury assessment
US20060167363A1 (en) 2001-10-11 2006-07-27 Osypka Medical Gmbh System and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
US20060164639A1 (en) 2005-01-21 2006-07-27 Horn Jochen M M Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
US20060171503A1 (en) 2005-01-21 2006-08-03 O'hara Keith E Method to suppress artifacts in frequency-domain optical coherence tomography
US20060184048A1 (en) 2005-02-02 2006-08-17 Vahid Saadat Tissue visualization and manipulation system
US20060189928A1 (en) 2005-02-18 2006-08-24 Siemens Aktiengesellschaft Catheter device
US7099358B1 (en) 2005-08-05 2006-08-29 Santec Corporation Tunable laser light source
US20060193352A1 (en) 2005-02-25 2006-08-31 Changho Chong Tunable fiber laser light source
US7113625B2 (en) 2004-10-01 2006-09-26 U.S. Pathology Labs, Inc. System and method for image analysis of slides
US20060224053A1 (en) 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
US7130320B2 (en) 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
US7139598B2 (en) 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
WO2006124860A1 (en) 2005-05-13 2006-11-23 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
US7142835B2 (en) 2003-09-29 2006-11-28 Silicon Laboratories, Inc. Apparatus and method for digital image correction in a receiver
WO2006130797A2 (en) 2005-05-31 2006-12-07 The General Hospital Corporation Spectral encoding heterodyne interferometry techniques for imaging
WO2006131859A2 (en) 2005-06-07 2006-12-14 Philips Intellectual Property & Standards Gmbh Laser optical feedback tomography sensor and method
US20060279742A1 (en) 2005-06-01 2006-12-14 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US20070002435A1 (en) 2003-05-29 2007-01-04 The Regents Of The University Of Michigan Double-clad fiber scanning microscope
US20070019208A1 (en) 2004-12-10 2007-01-25 Fuji Photo Film Co., Ltd. Optical tomography apparatus
US20070024860A1 (en) 2005-08-01 2007-02-01 Mitutoyo Corporation Dual laser high precision interferometer
US20070035743A1 (en) 2005-08-09 2007-02-15 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US20070038040A1 (en) 2005-04-22 2007-02-15 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain polarization-sensitive optical coherence tomography
DE102005034443A1 (en) 2005-07-22 2007-02-22 Carl Zeiss Jena Gmbh Sample e.g. cell particle, luminescence microscopy method, involves prevailing one of sample regions for image of sample, so that image has local resolution which is enhanced in relation to excitation radiation distribution
US20070048818A1 (en) 1999-03-12 2007-03-01 Human Genome Sciences, Inc. Human secreted proteins
WO2007030835A2 (en) 2005-09-10 2007-03-15 Baer Stephen C High resolution microscopy using an optically switchable fluorophore
WO2007028531A1 (en) 2005-09-09 2007-03-15 Carl Zeiss Meditec Ag Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
US20070070496A1 (en) 2005-09-23 2007-03-29 Gweon Dae G Confocal self-interference microscopy from which side lobe has been removed
JP2007075403A (en) 2005-09-15 2007-03-29 Pentax Corp Oct (optical coherence tomography) observation implement, fixing implement, and oct system
WO2007038787A1 (en) 2005-09-29 2007-04-05 General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
JP2007083053A (en) 2005-09-21 2007-04-05 Siemens Ag Catheter device and image monitoring method for treating vessel blockage
US20070076217A1 (en) 2005-10-05 2007-04-05 Chris Baker Optical coherence tomography for eye-length measurement
US20070086017A1 (en) 2005-10-07 2007-04-19 Bioptigen, Inc. Imaging Systems Using Unpolarized Light And Related Methods And Controllers
US20070086013A1 (en) 2005-10-11 2007-04-19 Zygo Corporation Interferometry method and system including spectral decomposition
US20070091317A1 (en) 2005-10-26 2007-04-26 Klaus Freischlad Method and apparatus for optically analyzing a surface
US20070133002A1 (en) * 2005-10-11 2007-06-14 Duke University Systems and methods for endoscopic angle-resolved low coherence interferometry
US7236637B2 (en) 1999-11-24 2007-06-26 Ge Medical Systems Information Technologies, Inc. Method and apparatus for transmission and display of a compressed digitized image
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
WO2007084995A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
WO2007083138A1 (en) 2006-01-20 2007-07-26 Perkinelmer Singapore Pte Ltd. Improvements in and relating to imaging of biological samples
US20070188855A1 (en) 2006-01-19 2007-08-16 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy teachniques and methods for producing one or more optical arrangements
US20070203404A1 (en) 2006-01-31 2007-08-30 Zysk Adam M Method and apparatus for measurement of optical properties in tissue
US20070208225A1 (en) 2006-02-23 2007-09-06 Atmos Medizintechnik Gmbh & Co. Kg Process and arrangement for the production of a signal that corresponds to the opening status of the vocal cords of the larynx
US7267494B2 (en) 2005-02-01 2007-09-11 Finisar Corporation Fiber stub for cladding mode coupling reduction
US7272252B2 (en) 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
US20070223006A1 (en) 2006-01-19 2007-09-27 The General Hospital Corporation Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
US20070233056A1 (en) 2006-02-08 2007-10-04 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US20070236700A1 (en) 2006-04-05 2007-10-11 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
JP2007271761A (en) 2006-03-30 2007-10-18 Fujitsu Ltd Spectrometer and wavelength dispersion controller
US20070253901A1 (en) 2006-04-27 2007-11-01 David Deng Atherosclerosis genes and related reagents and methods of use thereof
US20070258094A1 (en) 2006-04-28 2007-11-08 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (OCT) using automatic dispersion compensation
US20070263226A1 (en) 2006-05-15 2007-11-15 Eastman Kodak Company Tissue imaging system
US20070291277A1 (en) 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
US20080002197A1 (en) 2006-06-19 2008-01-03 Ke-Xun Sun Grating angle magnification enhanced angular sensor and scanner
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US20080049220A1 (en) 2006-08-28 2008-02-28 Federico Izzia Spectroscopic microscopy with image-driven analysis
US20080070323A1 (en) 2005-05-23 2008-03-20 Robert Betzig Optical microscopy with phototransformable optical labels
US7355721B2 (en) 2003-05-05 2008-04-08 D4D Technologies, Llc Optical coherence tomography imaging
US20080094613A1 (en) 2003-01-24 2008-04-24 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US20080097225A1 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
US20080139906A1 (en) 2006-11-20 2008-06-12 Karlheinz Bussek Device and method for non-invasive optical detection of chemical and physical blood values and body content substances
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
US20080154090A1 (en) 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
US20080192236A1 (en) 2004-11-18 2008-08-14 Michelson Diagnostics Limited Interference Apparatus And Method And Probe
JP4135550B2 (en) 2003-04-18 2008-08-20 日立電線株式会社 Semiconductor light emitting device
JP4135551B2 (en) 2002-05-07 2008-08-20 松下電工株式会社 Position sensor
US20080201081A1 (en) 2004-10-22 2008-08-21 Fermiscan Australia Pty Ltd Analytical Method and Apparatus
JP2008533712A (en) 2005-03-09 2008-08-21 ビーエーエスエフ ソシエタス・ヨーロピア Photocell containing a photoactive semiconductor material
US20080204762A1 (en) 2007-01-17 2008-08-28 Duke University Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets
US20080218696A1 (en) 2005-07-01 2008-09-11 Jose Mir Non-Invasive Monitoring System
US20080226029A1 (en) 2007-03-12 2008-09-18 Weir Michael P Medical device including scanned beam unit for imaging and therapy
US20080228086A1 (en) 2006-02-15 2008-09-18 Olusegun Johnson Ilegbusi Systems and methods for evaluating vessels
US20080234560A1 (en) 2007-03-23 2008-09-25 Hitachi, Ltd. Optical measurement instrument for living body semiconductor laser installation for living body light measuring device
US20080252901A1 (en) 2003-09-26 2008-10-16 School Jiridical Person Kitasato Gakuen Wavelength-Tunable Light Source And Optical Coherence Tomography
US20080265130A1 (en) 2005-02-23 2008-10-30 Tristan Colomb Wave Front Sensing Method and Apparatus
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
US20080297806A1 (en) 2007-01-19 2008-12-04 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US20080308730A1 (en) 2005-01-27 2008-12-18 Vizi Szilveszter E Real-Time, 3D, Non-Linear Microscope Measuring System and Method for Application of the Same
US20090004453A1 (en) 2006-02-24 2009-01-01 Shoji Murai Fiber-Reinforced Thermoplastic Resin Molded Article, Molding Material, and Method for Production of the Molded Article
US20090005691A1 (en) 2007-04-10 2009-01-01 University Of Southern California Methods and systems for blood flow measurement using doppler optical coherence tomography
US20090011948A1 (en) 2005-04-25 2009-01-08 Unlu M Selim Structured Substrates for Optical Surface Profiling
US20090012368A1 (en) 2003-08-11 2009-01-08 Scimed Life Systems, Inc. Imaging endoscope
US20090044799A1 (en) 2007-08-15 2009-02-19 Chunyuan Qiu Systems and methods for intubation
US20090051923A1 (en) 2005-09-30 2009-02-26 Infraredx, Inc. Arterial probe for oct
WO2009033064A2 (en) 2007-09-05 2009-03-12 The General Hospital Corporation Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
US20090131801A1 (en) 2007-10-12 2009-05-21 The General Hospital Corporation Systems and processes for optical imaging of luminal anatomic structures
US7539530B2 (en) 2003-08-22 2009-05-26 Infraredx, Inc. Method and system for spectral examination of vascular walls through blood during cardiac motion
US20090192358A1 (en) 2008-01-28 2009-07-30 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
US20090196477A1 (en) 2004-05-29 2009-08-06 The General Hospital Corporation Process, System And Software Arrangement For A Chromatic Dispersion Compensation Using Reflective Layers In Optical Coherence Tomography (OCT) Imaging
US20090209834A1 (en) 2006-10-30 2009-08-20 Elfi-Tech Ltd. System and Method for In Vivo Measurement of Biological Parameters
US20090273777A1 (en) 2008-04-30 2009-11-05 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
US20090281390A1 (en) 2006-05-26 2009-11-12 Stichting Voor De Technische Wetenschappen Optical Triggering System For Stroboscopy, And A Stroboscopic System
US20090290156A1 (en) 2008-05-21 2009-11-26 The Board Of Trustee Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
US20090305309A1 (en) 2005-09-15 2009-12-10 The Regents Of The University Of California Methods and Compositions for Detecting Neoplastic Cells
US20090306520A1 (en) 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
WO2009153929A1 (en) 2008-06-19 2009-12-23 株式会社トプコン Optical image measuring device
US20090323056A1 (en) 2007-05-04 2009-12-31 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
US20100002241A1 (en) 2008-07-07 2010-01-07 Canon Kabushiki Kaisha Optical coherence tomographic imaging apparatus and optical coherence tomographic imaging method
US7646905B2 (en) 2002-12-23 2010-01-12 Qinetiq Limited Scoring estrogen and progesterone receptors expression based on image analysis
EP2149776A1 (en) 2008-07-30 2010-02-03 Canon Kabushiki Kaisha Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
US7664300B2 (en) 2005-02-03 2010-02-16 Sti Medical Systems, Llc Uterine cervical cancer computer-aided-diagnosis (CAD)
US20100086251A1 (en) 2006-10-26 2010-04-08 Chris Xu Production of optical pulses at a desired wavelength using solition self-frequency shift in higher-order-mode fiber
US20100145145A1 (en) 2008-12-05 2010-06-10 Johnson Electric S.A. Capsule endoscope
US20100150467A1 (en) 2008-07-21 2010-06-17 Mingtao Zhao Methods, systems, and computer readable media for synthetic wavelength-based phase unwrapping in optical coherence tomography and spectral domain phase microscopy
US7782464B2 (en) 2006-05-12 2010-08-24 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7799558B1 (en) 2007-05-22 2010-09-21 Dultz Shane C Ligand binding assays on microarrays in closed multiwell plates
US7805034B2 (en) 2008-01-29 2010-09-28 Fujifilm Corporation OCT probe for eliminating ghost images
US20100261995A1 (en) 2009-04-08 2010-10-14 Nellcor Puritan Bennett Llc Medical device and technique for using the same
US20110028967A1 (en) 2009-07-31 2011-02-03 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (oct)
WO2011055376A1 (en) 2009-11-09 2011-05-12 Tata Institute Of Fundamental Research Biological laser plasma x-ray point source
US20110160681A1 (en) 2008-12-04 2011-06-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including catheters having light removable coatings based on a sensed condition
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
WO2011080713A1 (en) 2009-12-29 2011-07-07 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
US20110218403A1 (en) 2010-03-05 2011-09-08 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US8315282B2 (en) 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
JP5509417B2 (en) 2007-03-26 2014-06-04 国立大学法人東京海洋大学 Germ cell marker using fish Vasa gene
JP6073405B2 (en) 2010-01-14 2017-02-01 サムスン エレクトロニクス カンパニー リミテッド Video decoding method and apparatus

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US188855A (en) * 1877-03-27 Improvement in can-jackets
US273777A (en) * 1883-03-13 Purifying water
US86347A (en) * 1869-02-02 Improvement in the manufacture of tin-lined lead pipes
US53673A (en) * 1866-04-03 Improved railway-frog
US236700A (en) * 1881-01-18 Machine for cleaning cotton
US38040A (en) * 1863-03-31 Improvement in treating phosphatic guanos
CA103769A (en) 1906-11-16 1907-02-26 Harvey S. Cover Eye guard
US984888A (en) * 1910-11-21 1911-02-21 Johns H V Manville Co Piston-packing expander.
US3028114A (en) * 1959-09-21 1962-04-03 Kloeckner Werke Ag Arrangement for coiling metal strip material
US3030816A (en) * 1960-06-03 1962-04-24 Specialties Dev Corp Control device
US3082105A (en) * 1960-09-29 1963-03-19 Bethlehem Steel Corp Chrome silica brick
US3120137A (en) * 1961-01-03 1964-02-04 Ingersoll Rand Canada Apparatus for forming varying shaped bores in hollow members
US4002650A (en) * 1973-12-10 1977-01-11 The Standard Oil Company (Ohio) Preparation of maleic anhydride from n-butane
US4077949A (en) * 1973-12-28 1978-03-07 Sloan-Kettering Institute For Cancer Research Polypeptide hormones of the thymus
DE2601226C3 (en) * 1976-01-14 1982-01-14 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Control device for the automotive control of the hydraulic variable displacement pump of a hydrostat
US4072200A (en) * 1976-05-12 1978-02-07 Morris Fred J Surveying of subterranean magnetic bodies from an adjacent off-vertical borehole
US4263843A (en) * 1979-07-30 1981-04-28 Aluminum Company Of America Method and apparatus for controlled removal of excess slurry from organic foam
JP2002517710A (en) * 1998-06-02 2002-06-18 ゼテティック・インスティチュート Method and apparatus for confocal interference microscopy using wavenumber domain reflectometer and background amplitude reduction and compensation
JP2000068862A (en) * 1998-08-19 2000-03-03 Fujitsu Ltd Error correction coder
US6193352B1 (en) * 1998-12-03 2001-02-27 Eastman Kodak Company Method for cleaning an ink jet print head
US7294333B1 (en) 2000-10-20 2007-11-13 Genegrafts Ltd. Nucleic acid constructs and cells, and methods utilizing same for modifying the electrophysiological function of excitable tissues
AU2003269460A1 (en) 2002-10-18 2004-05-04 Arieh Sher Atherectomy system with imaging guidewire
GB2407155A (en) * 2003-10-14 2005-04-20 Univ Kent Canterbury Spectral interferometry method and apparatus

Patent Citations (749)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339754A (en) 1941-03-04 1944-01-25 Westinghouse Electric & Mfg Co Supervisory apparatus
US3090753A (en) 1960-08-02 1963-05-21 Exxon Research Engineering Co Ester oil compositions containing acid anhydride
GB1257778A (en) 1967-12-07 1971-12-22
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
US3856000A (en) 1972-06-19 1974-12-24 Machido Seisakusho Kk Endoscope
US3872407A (en) 1972-09-01 1975-03-18 Us Navy Rapidly tunable laser
US4140364A (en) 1973-06-23 1979-02-20 Olympus Optical Co., Ltd. Variable field optical system for endoscopes
US4030827A (en) 1973-12-03 1977-06-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Apparatus for the non-destructive examination of heterogeneous samples
US3941121A (en) 1974-12-20 1976-03-02 The University Of Cincinnati Focusing fiber-optic needle endoscope
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US3973219A (en) 1975-04-24 1976-08-03 Cornell Research Foundation, Inc. Very rapidly tuned cw dye laser
US4030831A (en) 1976-03-22 1977-06-21 The United States Of America As Represented By The Secretary Of The Navy Phase detector for optical figure sensing
US4141362A (en) 1977-05-23 1979-02-27 Richard Wolf Gmbh Laser endoscope
US4224929A (en) 1977-11-08 1980-09-30 Olympus Optical Co., Ltd. Endoscope with expansible cuff member and operation section
WO1979000841A1 (en) 1978-03-09 1979-10-18 Nat Res Dev Speckle interferometric measurement of small oscillatory movements
GB2030313A (en) 1978-06-29 1980-04-02 Wolf Gmbh Richard Endoscopes
US4303300A (en) 1979-02-07 1981-12-01 Thomson-Csf Rotary-joint device providing for an optical waveguide transmission
US4295738A (en) 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
US4300816A (en) 1979-08-30 1981-11-17 United Technologies Corporation Wide band multicore optical fiber
US4428643A (en) 1981-04-08 1984-01-31 Xerox Corporation Optical scanning system with wavelength shift correction
US5065331A (en) 1981-05-18 1991-11-12 Vachon Reginald I Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
US4533247A (en) 1981-09-03 1985-08-06 International Standard Electric Corporation Optical transmission system
US4479499A (en) 1982-01-29 1984-10-30 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible light
US5302025A (en) 1982-08-06 1994-04-12 Kleinerman Marcos Y Optical systems for sensing temperature and other physical parameters
US4601036A (en) 1982-09-30 1986-07-15 Honeywell Inc. Rapidly tunable laser
EP0110201A2 (en) 1982-11-25 1984-06-13 Központi Elelmiszeripari Kutato Intezet Apparatus for providing radiation of controlled spectral composition
US4585349A (en) 1983-09-12 1986-04-29 Battelle Memorial Institute Method of and apparatus for determining the position of a device relative to a reference
JPS6073405A (en) 1983-09-12 1985-04-25 バテル メモリアル インステイチユート Method and device for measuring position of surface element
JPS6140633A (en) 1984-08-02 1986-02-26 Nec Corp Tablet device
US4639999A (en) 1984-11-02 1987-02-03 Xerox Corporation High resolution, high efficiency I.R. LED printing array fabrication method
US4763977A (en) 1985-01-09 1988-08-16 Canadian Patents And Development Limited-Societe Optical fiber coupler with tunable coupling ratio and method of making
US5318024A (en) 1985-03-22 1994-06-07 Massachusetts Institute Of Technology Laser endoscope for spectroscopic imaging
US5304173A (en) 1985-03-22 1994-04-19 Massachusetts Institute Of Technology Spectral diagonostic and treatment system
EP0590268A1 (en) 1985-03-22 1994-04-06 Massachusetts Institute Of Technology Catheter for Laser angiosurgery
US4734578A (en) 1985-03-27 1988-03-29 Olympus Optical Co., Ltd. Two-dimensional scanning photo-electric microscope
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4631498A (en) 1985-04-26 1986-12-23 Hewlett-Packard Company CW Laser wavemeter/frequency locking technique
US4650327A (en) 1985-10-28 1987-03-17 Oximetrix, Inc. Optical catheter calibrating assembly
JPS62188001A (en) 1986-02-13 1987-08-17 Matsushita Electric Ind Co Ltd Rotary magnetic head recording device
US5040889A (en) 1986-05-30 1991-08-20 Pacific Scientific Company Spectrometer with combined visible and ultraviolet sample illumination
EP0251062A2 (en) 1986-06-20 1988-01-07 Fujitsu Limited Dual balanced optical signal receiver
US4770492A (en) 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
US4827907A (en) 1986-11-28 1989-05-09 Teac Optical Co., Ltd. Intra-observation apparatus
US4744656A (en) 1986-12-08 1988-05-17 Spectramed, Inc. Disposable calibration boot for optical-type cardiovascular catheter
US4751706A (en) 1986-12-31 1988-06-14 The United States Of America As Represented By The Secretary Of The Army Laser for providing rapid sequence of different wavelengths
US4834111A (en) 1987-01-12 1989-05-30 The Trustees Of Columbia University In The City Of New York Heterodyne interferometer
GB2209221A (en) 1987-09-01 1989-05-04 Litton Systems Inc A demodulator circuit for an interferometer type of hydrophone
US5202931A (en) 1987-10-06 1993-04-13 Cell Analysis Systems, Inc. Methods and apparatus for the quantitation of nuclear protein
US4909631A (en) 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
US4890901A (en) 1987-12-22 1990-01-02 Hughes Aircraft Company Color corrector for embedded prisms
US4892406A (en) 1988-01-11 1990-01-09 United Technologies Corporation Method of and arrangement for measuring vibrations
US4928005A (en) 1988-01-25 1990-05-22 Thomson-Csf Multiple-point temperature sensor using optic fibers
US4965441A (en) 1988-01-27 1990-10-23 Commissariat A L'energie Atomique Method for the scanning confocal light-optical microscopic and indepth examination of an extended field and devices for implementing said method
US4925302A (en) 1988-04-13 1990-05-15 Hewlett-Packard Company Frequency locking device
US4998972A (en) 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US5730731A (en) 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US4905169A (en) 1988-06-02 1990-02-27 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US5649924A (en) 1988-06-10 1997-07-22 Trimedyne, Inc. Medical device for irradiation of tissue
US5120953A (en) 1988-07-13 1992-06-09 Harris Martin R Scanning confocal microscope including a single fibre for transmitting light to and receiving light from an object
US5045936A (en) 1988-07-25 1991-09-03 Keymed (Medical And Industrial Equipment) Limited Laser scanning imaging apparatus and method of ranging
US5214538A (en) 1988-07-25 1993-05-25 Keymed (Medical And Industrial Equipment) Limited Optical apparatus
US4868834A (en) 1988-09-14 1989-09-19 The United States Of America As Represented By The Secretary Of The Army System for rapidly tuning a low pressure pulsed laser
US4993834A (en) 1988-10-03 1991-02-19 Fried. Krupp Gmbh Spectrometer for the simultaneous measurement of intensity in various spectral regions
US4940328A (en) 1988-11-04 1990-07-10 Georgia Tech Research Corporation Optical sensing apparatus and method
US4966589A (en) 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
US5419323A (en) 1988-12-21 1995-05-30 Massachusetts Institute Of Technology Method for laser induced fluorescence of tissue
US5562100A (en) 1988-12-21 1996-10-08 Massachusetts Institute Of Technology Method for laser induced fluorescence of tissue
US5046501A (en) 1989-01-18 1991-09-10 Wayne State University Atherosclerotic identification
US5085496A (en) 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
US5317389A (en) 1989-06-12 1994-05-31 California Institute Of Technology Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US4965599A (en) 1989-11-13 1990-10-23 Eastman Kodak Company Scanning apparatus for halftone image screen writing
US4984888A (en) 1989-12-13 1991-01-15 Imo Industries, Inc. Two-dimensional spectrometer
US5121983A (en) 1989-12-14 1992-06-16 Goldstar Co., Ltd. Stereoscopic projector
US5251009A (en) 1990-01-22 1993-10-05 Ciba-Geigy Corporation Interferometric measuring arrangement for refractive index measurements in capillary tubes
US5039193A (en) 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
JPH0456907A (en) 1990-06-26 1992-02-24 Fujikura Ltd Optical fiber coupler
US5262644A (en) 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
US5197470A (en) 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
WO1992001966A1 (en) 1990-07-18 1992-02-06 Medical Research Council Confocal scanning optical microscope
US5304810A (en) 1990-07-18 1994-04-19 Medical Research Council Confocal scanning optical microscope
JPH05509417A (en) 1990-07-18 1993-12-22 メディカル・リサーチ・カウンシル Confocal scanning optical microscope
US6161031A (en) 1990-08-10 2000-12-12 Board Of Regents Of The University Of Washington Optical imaging methods
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
US5305759A (en) 1990-09-26 1994-04-26 Olympus Optical Co., Ltd. Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
JPH04135550A (en) 1990-09-27 1992-05-11 Olympus Optical Co Ltd Optical scanner for observing tomographic image
JPH04135551A (en) 1990-09-27 1992-05-11 Olympus Optical Co Ltd Optical three-dimensional image observing device
US5241364A (en) 1990-10-19 1993-08-31 Fuji Photo Film Co., Ltd. Confocal scanning type of phase contrast microscope and scanning microscope
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5202745A (en) 1990-11-07 1993-04-13 Hewlett-Packard Company Polarization independent optical coherence-domain reflectometry
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
US5291885A (en) 1990-11-27 1994-03-08 Kowa Company Ltd. Apparatus for measuring blood flow
US5228001A (en) 1991-01-23 1993-07-13 Syracuse University Optical random access memory
WO1992016865A1 (en) 1991-03-22 1992-10-01 Hicks John W Multifiber endoscope with multiple scanning modes to produce an image free of fixed pattern noise
US5293872A (en) 1991-04-03 1994-03-15 Alfano Robert R Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US6421164B2 (en) 1991-04-29 2002-07-16 Massachusetts Institute Of Technology Interferometeric imaging with a grating based phase control optical delay line
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US6160826A (en) 1991-04-29 2000-12-12 Massachusetts Institute Of Technology Method and apparatus for performing optical frequency domain reflectometry
US5459570A (en) 1991-04-29 1995-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements
US5321501A (en) 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
WO1992019930A1 (en) 1991-04-29 1992-11-12 Massachusetts Institute Of Technology Method and apparatus for optical imaging and measurement
US6282011B1 (en) 1991-04-29 2001-08-28 Massachusetts Institute Of Technology Grating based phase control optical delay line
US20010036002A1 (en) 1991-04-29 2001-11-01 Guillermo Tearney Grating based phase control optical delay line
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US5441053A (en) 1991-05-03 1995-08-15 University Of Kentucky Research Foundation Apparatus and method for multiple wavelength of tissue
US5281811A (en) 1991-06-17 1994-01-25 Litton Systems, Inc. Digital wavelength division multiplex optical transducer having an improved decoder
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
WO1993003672A1 (en) 1991-08-20 1993-03-04 Redd Douglas C B Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system
US5293873A (en) 1991-08-29 1994-03-15 Siemens Aktiengesellschaft Measuring arrangement for tissue-optical examination of a subject with visible, NIR or IR light
US5177488A (en) 1991-10-08 1993-01-05 Hughes Aircraft Company Programmable fiber optic delay line, and radar target simulation system incorporating the same
US5333144A (en) 1991-12-30 1994-07-26 U.S. Philips Corporation Diode laser device having a reflecting feedback element, and apparatus using the device
US5353790A (en) 1992-01-17 1994-10-11 Board Of Regents, The University Of Texas System Method and apparatus for optical measurement of bilirubin in tissue
US5212667A (en) 1992-02-03 1993-05-18 General Electric Company Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US5217456A (en) 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5283795A (en) 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5486701A (en) 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5628313A (en) 1992-06-30 1997-05-13 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5810719A (en) 1992-08-25 1998-09-22 Fuji Photo Film Co., Ltd. Endoscope
US5716324A (en) 1992-08-25 1998-02-10 Fuji Photo Film Co., Ltd. Endoscope with surface and deep portion imaging systems
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
US5701155A (en) 1992-09-11 1997-12-23 Welch Allyn, Inc. Processor module for video inspection probe
US5807261A (en) 1992-09-14 1998-09-15 Sextant Medical Corporation Noninvasive system for characterizing tissue in vivo
US5479928A (en) 1992-09-21 1996-01-02 Institut National De La Sante Et De La Recherche Medicale Ultrasonic method and apparatus for flow measurement
US5439000A (en) 1992-11-18 1995-08-08 Spectrascience, Inc. Method of diagnosing tissue with guidewire
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
US5601087A (en) 1992-11-18 1997-02-11 Spectrascience, Inc. System for diagnosing tissue with guidewire
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
US5404415A (en) 1993-01-27 1995-04-04 Shin-Etsu Chemical Co., Ltd. Optical fiber coupler and method for preparing same
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5414509A (en) 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
US5394235A (en) 1993-03-17 1995-02-28 Ando Electric Co., Ltd. Apparatus for measuring distortion position of optical fiber
EP0617286A2 (en) 1993-03-18 1994-09-28 Wallac Oy Biospecific solid phase carrier
US5635830A (en) 1993-03-29 1997-06-03 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor employing differently sized transmission lines
US5491552A (en) 1993-03-29 1996-02-13 Bruker Medizintechnik Optical interferometer employing mutually coherent light source and an array detector for imaging in strongly scattered media
US5424827A (en) 1993-04-30 1995-06-13 Litton Systems, Inc. Optical system and method for eliminating overlap of diffraction spectra
US5522004A (en) 1993-04-30 1996-05-28 Telefonaktiebolaget Lm Ericsson Device and method for dispersion compensation in a fiber optic transmission system
US5623336A (en) 1993-04-30 1997-04-22 Raab; Michael Method and apparatus for analyzing optical fibers by inducing Brillouin spectroscopy
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
US5583342A (en) 1993-06-03 1996-12-10 Hamamatsu Photonics K.K. Laser scanning optical system and laser scanning optical apparatus
US5555087A (en) 1993-06-15 1996-09-10 Fuji Photo Film Co., Ltd. Method and apparatus for employing a light source and heterodyne interferometer for obtaining information representing the microstructure of a medium at various depths therein
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5803082A (en) 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
US5983125A (en) 1993-12-13 1999-11-09 The Research Foundation Of City College Of New York Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
US5450203A (en) 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
US5565986A (en) 1994-03-30 1996-10-15 Kn+E,Uml U+Ee Ttel; Alexander Stationary optical spectroscopic imaging in turbid objects by special light focusing and signal detection of light with various optical wavelengths
US5710630A (en) 1994-05-05 1998-01-20 Boehringer Mannheim Gmbh Method and apparatus for determining glucose concentration in a biological sample
WO1995033971A1 (en) 1994-06-02 1995-12-14 Massachusetts Institute Of Technology Method and apparatus for acquiring images
WO1996002184A1 (en) 1994-07-14 1996-02-01 Washington Research Foundation Method and apparatus for detecting barrett's metaplasia of the esophagus
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
WO1996004839A1 (en) 1994-08-08 1996-02-22 Computed Anatomy, Incorporated Processing of keratoscopic images using local spatial phase
EP0697611A2 (en) 1994-08-18 1996-02-21 Carl Zeiss Optical coherence tomography assisted surgical apparatus
US6004314A (en) 1994-08-18 1999-12-21 Carl Zeiss, Inc. Optical coherence tomography assisted surgical apparatus
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US6033721A (en) 1994-10-26 2000-03-07 Revise, Inc. Image-based three-axis positioner for laser direct write microchemical reaction
JPH08136345A (en) 1994-11-10 1996-05-31 Anritsu Corp Double monochromator
JPH08160129A (en) 1994-12-05 1996-06-21 Uniden Corp Speed detector
US5566267A (en) 1994-12-15 1996-10-15 Ceram Optec Industries Inc. Flat surfaced optical fibers and diode laser medical delivery devices
US5600486A (en) 1995-01-30 1997-02-04 Lockheed Missiles And Space Company, Inc. Color separation microlens
GB2298054A (en) 1995-02-01 1996-08-21 Nikon Precision Inc Orthogonally polarised light beam(s) for interferometer
EP0728440A2 (en) 1995-02-24 1996-08-28 Ott, Lutz Method and device for deep, selective, non-invasive detection of muscle activity
US6045511A (en) 1995-02-24 2000-04-04 Dipl-Ing. Lutz Ott Device and evaluation procedure for the depth-selective, noninvasive detection of the blood flow and/or intra and/or extra-corporeally flowing liquids in biological tissue
US5867268A (en) 1995-03-01 1999-02-02 Optical Coherence Technologies, Inc. Optical fiber interferometer with PZT scanning of interferometer arm optical length
WO1996028212A1 (en) 1995-03-09 1996-09-19 Innotech Usa, Inc. Laser surgical device and method of its use
US5526338A (en) 1995-03-10 1996-06-11 Yeda Research & Development Co. Ltd. Method and apparatus for storage and retrieval with multilayer optical disks
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US5735276A (en) 1995-03-21 1998-04-07 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
US5926592A (en) 1995-03-24 1999-07-20 Optiscan Pty Ltd Optical fibre confocal imager with variable near-confocal control
US5565983A (en) 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5621830A (en) 1995-06-07 1997-04-15 Smith & Nephew Dyonics Inc. Rotatable fiber optic joint
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
US5847827A (en) 1995-06-23 1998-12-08 Carl Zeiss Jena Gmbh Coherence biometry and coherence tomography with dynamic coherent
JPH0910213A (en) 1995-06-28 1997-01-14 Hitachi Medical Corp Needle-like ultrasonic probe
US5829439A (en) 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
US5784352A (en) 1995-07-21 1998-07-21 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
US5865754A (en) 1995-08-24 1999-02-02 Purdue Research Foundation Office Of Technology Transfer Fluorescence imaging system and method
US6016197A (en) 1995-08-25 2000-01-18 Ceramoptec Industries Inc. Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
FR2738343A1 (en) 1995-08-30 1997-03-07 Cohen Sabban Joseph Optical microstratigraphy equipment
US6475159B1 (en) 1995-09-20 2002-11-05 S. Ward Casscells Method of detecting vulnerable atherosclerotic plaque
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US20030028114A1 (en) 1995-09-20 2003-02-06 Texas Heart Institute Method and apparatus for detecting vulnerable atherosclerotic plaque
JPH09230248A (en) 1995-11-07 1997-09-05 Univ Leland Stanford Jr Compact scanning confocal microscope
US6007996A (en) 1995-12-12 1999-12-28 Applied Spectral Imaging Ltd. In situ method of analyzing cells
US6556853B1 (en) 1995-12-12 2003-04-29 Applied Spectral Imaging Ltd. Spectral bio-imaging of the eye
US5719399A (en) 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US6025956A (en) 1995-12-26 2000-02-15 Olympus Optical Co., Ltd. Incident-light fluorescence microscope
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5910839A (en) 1996-02-05 1999-06-08 The Regents Of The University Of California White light velocity interferometer
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
JP2002214127A (en) 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
WO1997032182A1 (en) 1996-02-27 1997-09-04 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
JP2001500026A (en) 1996-02-27 2001-01-09 アータン ラボラトリーズ Prostate imaging method and device
JP2000504234A (en) 1996-03-04 2000-04-11 イノテック ユーエスエイ インコーポレイテッド Laser surgical device and method of using the same
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
US5877856A (en) 1996-05-14 1999-03-02 Carl Zeiss Jena Gmbh Methods and arrangement for increasing contrast in optical coherence tomography by means of scanning an object with a dual beam
US6020963A (en) 1996-06-04 2000-02-01 Northeastern University Optical quadrature Interferometer
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
WO1998000057A1 (en) 1996-06-28 1998-01-08 Board Of Regents, The University Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US5842995A (en) 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
WO1998001074A1 (en) 1996-07-08 1998-01-15 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US5840075A (en) 1996-08-23 1998-11-24 Eclipse Surgical Technologies, Inc. Dual laser device for transmyocardial revascularization procedures
US6396941B1 (en) 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US20040039298A1 (en) 1996-09-04 2004-02-26 Abreu Marcio Marc Noninvasive measurement of chemical substances
US5912764A (en) 1996-09-18 1999-06-15 Olympus Optical Co., Ltd. Endoscope optical system and image pickup apparatus
US5801831A (en) 1996-09-20 1998-09-01 Institute For Space And Terrestrial Science Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
RU2108122C1 (en) 1996-09-24 1998-04-10 Владимир Павлович Жаров Method and device for physiotherapeutic irradiation with light
US6249349B1 (en) 1996-09-27 2001-06-19 Vincent Lauer Microscope generating a three-dimensional representation of an object
WO1998014132A1 (en) 1996-10-01 1998-04-09 Leica Lasertechnik Gmbh Confocal surface-measuring device
US6263234B1 (en) 1996-10-01 2001-07-17 Leica Microsystems Heidelberg Gmbh Confocal surface-measuring device
US5843052A (en) 1996-10-04 1998-12-01 Benja-Athon; Anuthep Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
US20010020126A1 (en) 1996-10-28 2001-09-06 David K. Swanson Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US6044288A (en) 1996-11-08 2000-03-28 Imaging Diagnostics Systems, Inc. Apparatus and method for determining the perimeter of the surface of an object being scanned
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
JP2001507251A (en) 1996-11-25 2001-06-05 ボストン サイエンティフィック コーポレイション Device for rotatably connecting optical fiber
US5949929A (en) 1996-11-25 1999-09-07 Boston Scientific Corporation Rotatably connecting optical fibers
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US6249630B1 (en) 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
RU2209094C2 (en) 1996-12-26 2003-07-27 Мединол Лтд Method and equipment for manufacturing stents
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US6272268B1 (en) 1996-12-31 2001-08-07 Corning Incorporated Optical couplers with multilayer fibers
JP2001508340A (en) 1997-01-13 2001-06-26 メディスペクトラ インコーポレーテッド Spatially resolved optical measurements
US6091496A (en) 1997-01-28 2000-07-18 Zetetic Institute Multiple layer, multiple track optical disk access by confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
JPH10213485A (en) 1997-01-29 1998-08-11 Seitai Hikarijoho Kenkyusho:Kk Light measuring apparatus
WO1998035203A2 (en) 1997-02-07 1998-08-13 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5801826A (en) 1997-02-18 1998-09-01 Williams Family Trust B Spectrometric device and method for recognizing atomic and molecular signatures
US5836877A (en) 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
JP2001515382A (en) 1997-03-06 2001-09-18 マサチューセッツ インスティチュート オブ テクノロジー Equipment for optical scanning of living tissue
WO1998038907A1 (en) 1997-03-06 1998-09-11 Massachusetts Institute Of Technology Instrument for optically scanning of living tissue
US6201989B1 (en) 1997-03-13 2001-03-13 Biomax Technologies Inc. Methods and apparatus for detecting the rejection of transplanted tissue
US6078047A (en) 1997-03-14 2000-06-20 Lucent Technologies Inc. Method and apparatus for terahertz tomographic imaging
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
JPH10267631A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring instrument
JPH10267830A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring device
WO1998046123A1 (en) 1997-04-11 1998-10-22 Imperial College Of Science, Technology And Medicine Anatomical probe
WO1998048846A1 (en) 1997-04-29 1998-11-05 Nycomed Imaging As Light imaging contrast agents
WO1998048838A1 (en) 1997-04-29 1998-11-05 Nycomed Imaging As Compounds
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US5887009A (en) 1997-05-22 1999-03-23 Optical Biopsy Technologies, Inc. Confocal optical scanning system employing a fiber laser
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
JP2002503134A (en) 1997-06-02 2002-01-29 イザット,ジョーゼフ,エイ. Imaging of Doppler flow using optical coherence tomography
US6006128A (en) 1997-06-02 1999-12-21 Izatt; Joseph A. Doppler flow imaging using optical coherence tomography
US20030023153A1 (en) 1997-06-02 2003-01-30 Joseph A. Izatt Doppler flow imaging using optical coherence tomography
US6208415B1 (en) 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
JP2002516586A (en) 1997-06-23 2002-06-04 ティーエイチエス インターナショナル,インコーポレイテッド Method and apparatus for providing acoustic hemostasis
US5920390A (en) 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US6463313B1 (en) 1997-07-09 2002-10-08 Thomas R. Winston Systems for guiding a medical instrument through a body
WO1999005487A1 (en) 1997-07-25 1999-02-04 Physical Optics Corporation Accurate tissue injury assessment using hybrid neural network analysis
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
US6141577A (en) 1997-07-28 2000-10-31 University Of Central Florida Three dimensional optical imaging colposcopy
US5892583A (en) 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US6014214A (en) 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5955737A (en) 1997-10-27 1999-09-21 Systems & Processes Engineering Corporation Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US6052186A (en) 1997-11-05 2000-04-18 Excel Precision, Inc. Dual laser system for extended heterodyne interferometry
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
US6037579A (en) 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6107048A (en) 1997-11-20 2000-08-22 Medical College Of Georgia Research Institute, Inc. Method of detecting and grading dysplasia in epithelial tissue
WO1999028856A1 (en) 1997-12-04 1999-06-10 Applied Spectral Imaging Ltd. Method of cancer cell detection
JP2001525580A (en) 1997-12-04 2001-12-11 アプライド スペクトラル イメージング リミテッド Method for detecting cancer cells
US20040076940A1 (en) 1998-01-28 2004-04-22 Immersion Medical, Inc. Interface device and method for interfacing instruments to medical procedure simulation systems
EP0933096A2 (en) 1998-01-29 1999-08-04 International Business Machines Corporation Laser for dermal ablation
US6341036B1 (en) 1998-02-26 2002-01-22 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
WO1999044089A1 (en) 1998-02-26 1999-09-02 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
US6831781B2 (en) 1998-02-26 2004-12-14 The General Hospital Corporation Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US6134033A (en) 1998-02-26 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
US20020122246A1 (en) 1998-02-26 2002-09-05 Tearney Guillermo J. Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US6048742A (en) 1998-02-26 2000-04-11 The United States Of America As Represented By The Secretary Of The Air Force Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
WO1999045338A1 (en) 1998-03-06 1999-09-10 Optical Coherence Technologies, Inc. Optical coherent tomography apparatus, fiberoptic lateral scanner and method for studying biological tissues in vivo
WO1999045838A1 (en) 1998-03-09 1999-09-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6174291B1 (en) 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6394964B1 (en) 1998-03-09 2002-05-28 Spectrascience, Inc. Optical forceps system and method of diagnosing and treating tissue
US6151522A (en) 1998-03-16 2000-11-21 The Research Foundation Of Cuny Method and system for examining biological materials using low power CW excitation raman spectroscopy
US6384915B1 (en) 1998-03-30 2002-05-07 The Regents Of The University Of California Catheter guided by optical coherence domain reflectometry
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
US6377349B1 (en) 1998-03-30 2002-04-23 Carl Zeiss Jena Gmbh Arrangement for spectral interferometric optical tomography and surface profile measurement
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US6996549B2 (en) 1998-05-01 2006-02-07 Health Discovery Corporation Computer-aided image analysis
WO1999057507A1 (en) 1998-05-01 1999-11-11 Board Of Regents, The University Of Texas System Method and apparatus for subsurface imaging
US6249381B1 (en) 1998-05-13 2001-06-19 Sony Corporation Illuminating method and illuminating device
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
JP2000023978A (en) 1998-05-19 2000-01-25 Koninkl Philips Electron Nv Elastic deformation detecting method and ultrasonograph
US5995223A (en) 1998-06-01 1999-11-30 Power; Joan Fleurette Apparatus for rapid phase imaging interferometry and method therefor
US6094274A (en) 1998-06-05 2000-07-25 Olympus Optical Co., Ltd. Fluorescence detecting device
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
US6622732B2 (en) 1998-07-15 2003-09-23 Corazon Technologies, Inc. Methods and devices for reducing the mineral content of vascular calcified lesions
US6166373A (en) 1998-07-21 2000-12-26 The Institute For Technology Development Focal plane scanner with reciprocating spatial window
JP2000046729A (en) 1998-07-31 2000-02-18 Takahisa Mitsui Apparatus and method for high-speed measurement of optical topographic image by using wavelength dispersion
US20040204651A1 (en) 1998-09-03 2004-10-14 Freeman Jenny E. Infrared endoscopic balloon probes
US6741884B1 (en) 1998-09-03 2004-05-25 Hypermed, Inc. Infrared endoscopic balloon probes
JP2003512085A (en) 1998-09-11 2003-04-02 スペクトルックス・インコーポレイテッド Multi-mode optical tissue diagnosis system
US6816743B2 (en) 1998-10-08 2004-11-09 University Of Kentucky Research Foundation Methods and apparatus for in vivo identification and characterization of vulnerable atherosclerotic plaques
US20010047137A1 (en) 1998-10-08 2001-11-29 University Of Kentucky Research Foundation, Kentucky Corporation Methods and apparatus for in vivo identification and characterization of vulnerable atherosclerotic plaques
JP2000121961A (en) 1998-10-13 2000-04-28 Olympus Optical Co Ltd Confocal optical scanning probe system
JP2000131222A (en) 1998-10-22 2000-05-12 Olympus Optical Co Ltd Optical tomographic image device
US6274871B1 (en) 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US6324419B1 (en) 1998-10-27 2001-11-27 Nejat Guzelsu Apparatus and method for non-invasive measurement of stretch
JP2000126116A (en) 1998-10-28 2000-05-09 Olympus Optical Co Ltd Photo-diagnosis system
US6516014B1 (en) 1998-11-13 2003-02-04 The Research And Development Institute, Inc. Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
US6374128B1 (en) 1998-11-20 2002-04-16 Fuji Photo Film Co., Ltd. Blood vessel imaging system
US5975697A (en) 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
US20020091322A1 (en) 1998-12-03 2002-07-11 Joseph Chaiken Method and apparatus for noninvasive assessment of skin condition and diagnosis of skin abnormalities
RU2149464C1 (en) 1999-01-19 2000-05-20 Таганрогский государственный радиотехнический университет Dynamic memory unit for storage of radio signals
US6191862B1 (en) 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
WO2000043730A1 (en) 1999-01-20 2000-07-27 Lightlab Imaging Methods and apparatus for high-speed longitudinal scanning in imaging systems
WO2000042906A2 (en) 1999-01-22 2000-07-27 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6272376B1 (en) 1999-01-22 2001-08-07 Cedars-Sinai Medical Center Time-resolved, laser-induced fluorescence for the characterization of organic material
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6564089B2 (en) 1999-02-04 2003-05-13 University Hospital Of Cleveland Optical imaging device
US6185271B1 (en) 1999-02-16 2001-02-06 Richard Estyn Kinsinger Helical computed tomography with feedback scan control
US6909105B1 (en) 1999-03-02 2005-06-21 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for representing an object
US20070048818A1 (en) 1999-03-12 2007-03-01 Human Genome Sciences, Inc. Human secreted proteins
WO2000058766A1 (en) 1999-03-29 2000-10-05 Scimed Life Systems, Inc. Single mode optical fiber coupling systems
US20020057431A1 (en) 1999-04-09 2002-05-16 Fateley William G. System and method for encoded spatio-spectral information processing
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
US6353693B1 (en) 1999-05-31 2002-03-05 Sanyo Electric Co., Ltd. Optical communication device and slip ring unit for an electronic component-mounting apparatus
US6611833B1 (en) 1999-06-23 2003-08-26 Tissueinformatics, Inc. Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
JP2001004447A (en) 1999-06-23 2001-01-12 Yokogawa Electric Corp Spectrometer
US20020086347A1 (en) 1999-06-23 2002-07-04 Johnson Peter C. Method for quantitative analysis of blood vessel structure
US6208887B1 (en) 1999-06-24 2001-03-27 Richard H. Clarke Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions
US20030171691A1 (en) 1999-06-25 2003-09-11 Casscells S. Ward Method and apparatus for detecting vulnerable atherosclerotic plaque
WO2001001111A1 (en) 1999-06-28 2001-01-04 University College London Optical fibre probe for photoacoustic material analysis
US6839496B1 (en) 1999-06-28 2005-01-04 University College Of London Optical fibre probe for photoacoustic material analysis
US6359692B1 (en) 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
WO2001004828A1 (en) 1999-07-13 2001-01-18 Chromavision Medical Systems, Inc. Automated detection of objects in a biological sample
JP2003504627A (en) 1999-07-13 2003-02-04 クロマビジョン メディカル システムズ インコーポレイテッド Automatic detection of objects in biological samples
US6485482B1 (en) 1999-07-30 2002-11-26 Scimed Life Systems, Inc. Rotational and translational drive coupling for catheter assembly
WO2001008579A1 (en) 1999-07-30 2001-02-08 Ceramoptec Industries, Inc. Dual wavelength medical diode laser system
US6477403B1 (en) 1999-08-09 2002-11-05 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope system
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6725073B1 (en) 1999-08-17 2004-04-20 Board Of Regents, The University Of Texas System Methods for noninvasive analyte sensing
US20040188148A1 (en) 1999-08-31 2004-09-30 Halliburton Energy Service, Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US20020168158A1 (en) 1999-09-02 2002-11-14 Asahi Kogaku Kogyo Kabushiki Kaisha Fiber bundle and endoscope apparatus
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US6198956B1 (en) 1999-09-30 2001-03-06 Oti Ophthalmic Technologies Inc. High speed sector scanning apparatus having digital electronic control
JP2001174744A (en) 1999-10-06 2001-06-29 Olympus Optical Co Ltd Optical scanning probe device
JP2001104315A (en) 1999-10-08 2001-04-17 Olympus Optical Co Ltd Ultrasonic-guided paracentesis system device
US6308092B1 (en) 1999-10-13 2001-10-23 C. R. Bard Inc. Optical fiber tissue localization device
US6393312B1 (en) 1999-10-13 2002-05-21 C. R. Bard, Inc. Connector for coupling an optical fiber tissue localization device to a light source
WO2001027679A1 (en) 1999-10-15 2001-04-19 Cellavision Ab Microscope and method for manufacturing a composite image with a high resolution
US6538817B1 (en) 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
US6790175B1 (en) 1999-10-28 2004-09-14 Pentax Corporation Endoscope system
WO2001033215A1 (en) 1999-11-01 2001-05-10 Keren Mechkarim Ichilov, Pnimit D' System and method for generating a profile of particulate components of a body fluid sample
JP2003513278A (en) 1999-11-01 2003-04-08 ケレン メッカリム イチロブ, プニミット デー System and method for generating a particulate component profile of a body fluid sample
US6441892B2 (en) 1999-11-19 2002-08-27 Jobin Yvon, Inc. Compact spectrofluorometer
US6806963B1 (en) 1999-11-24 2004-10-19 Haag-Streit Ag Method and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object
US7236637B2 (en) 1999-11-24 2007-06-26 Ge Medical Systems Information Technologies, Inc. Method and apparatus for transmission and display of a compressed digitized image
WO2001038820A1 (en) 1999-11-24 2001-05-31 Haag-Streit Ag Method and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object
JP2003516531A (en) 1999-12-09 2003-05-13 オーティーアイ オフサルミック テクノロジーズ インク Optical mapping device with variable depth resolution
WO2001042735A1 (en) 1999-12-09 2001-06-14 Oti Ophthalmic Technologies Inc. Optical mapping apparatus with adjustable depth resolution
JP2001174404A (en) 1999-12-15 2001-06-29 Takahisa Mitsui Apparatus and method for measuring optical tomographic image
US6738144B1 (en) 1999-12-17 2004-05-18 University Of Central Florida Non-invasive method and low-coherence apparatus system analysis and process control
US6680780B1 (en) 1999-12-23 2004-01-20 Agere Systems, Inc. Interferometric probe stabilization relative to subject movement
US6445485B1 (en) 2000-01-21 2002-09-03 At&T Corp. Micro-machine polarization-state controller
US20060155193A1 (en) 2000-01-27 2006-07-13 National Research Center Of Canada Visible-near infrared spectroscopy in burn injury assessment
JP2001212086A (en) 2000-02-07 2001-08-07 Japan Science & Technology Corp Tomography and tomograph
US6475210B1 (en) 2000-02-11 2002-11-05 Medventure Technology Corp Light treatment of vulnerable atherosclerosis plaque
US6556305B1 (en) 2000-02-17 2003-04-29 Veeco Instruments, Inc. Pulsed source scanning interferometer
US20020113965A1 (en) 2000-02-18 2002-08-22 Roche John W. High numerical aperture flow cytometer and method of using same
US20040054268A1 (en) 2000-03-01 2004-03-18 Rinat Esenaliev Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
JP2001264246A (en) 2000-03-21 2001-09-26 Olympus Optical Co Ltd Optical imaging device
US6593101B2 (en) 2000-03-28 2003-07-15 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US20020048026A1 (en) 2000-03-28 2002-04-25 Fumio Isshiki Laser interferometer displacement measuring system, exposure apparatus, and elecron beam lithography apparatus
US6567585B2 (en) 2000-04-04 2003-05-20 Optiscan Pty Ltd Z sharpening for fibre confocal microscopes
US6692430B2 (en) 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
US6540391B2 (en) 2000-04-27 2003-04-01 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
US20020016533A1 (en) 2000-05-03 2002-02-07 Marchitto Kevin S. Optical imaging of subsurface anatomical structures and biomolecules
WO2001082786A2 (en) 2000-05-03 2001-11-08 Flock Stephen T Optical imaging of subsurface anatomical structures and biomolecules
JP2004514920A (en) 2000-05-03 2004-05-20 ダーク・ソーンクセン Fully automatic slide scanner for microscope
US6441959B1 (en) 2000-05-19 2002-08-27 Avanex Corporation Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
US6301048B1 (en) 2000-05-19 2001-10-09 Avanex Corporation Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US6560259B1 (en) 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
US20010055462A1 (en) 2000-06-19 2001-12-27 Seibel Eric J. Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US6469846B2 (en) 2000-06-29 2002-10-22 Riken Grism
JP2002035005A (en) 2000-07-21 2002-02-05 Olympus Optical Co Ltd Therapeutic device
US6757467B1 (en) 2000-07-25 2004-06-29 Optical Air Data Systems, Lp Optical fiber system
US20030001071A1 (en) 2000-07-28 2003-01-02 Mandella Michael J. Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
US6882432B2 (en) 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
US20020109851A1 (en) 2000-08-08 2002-08-15 Deck Leslie L. Frequency transform phase shifting interferometry
US20040100681A1 (en) 2000-08-11 2004-05-27 Anders Bjarklev Optical wavelength converter
US20020048025A1 (en) 2000-08-12 2002-04-25 Hideyuki Takaoka Optical system and optical apparatus
US20030164952A1 (en) 2000-08-25 2003-09-04 Nikolaj Deichmann Method and apparatus for three-dimensional optical scanning of interior surfaces
US20020024015A1 (en) 2000-08-30 2002-02-28 Juergen Hoffmann Device and method for the excitation of fluorescent labels and scanning microscope
US6459487B1 (en) 2000-09-05 2002-10-01 Gang Paul Chen System and method for fabricating components of precise optical path length
US20020093662A1 (en) 2000-09-05 2002-07-18 Chen Gang Paul System and method for fabricating components of precise optical path length
US20020037252A1 (en) 2000-09-26 2002-03-28 Fuji Photo Film Co., Ltd. Method and apparatus for obtaining an optical tomographic image of a sentinel lymph node
JP2002095663A (en) 2000-09-26 2002-04-02 Fuji Photo Film Co Ltd Method of acquiring optical tomographic image of sentinel lymph node and its device
JP2002113017A (en) 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd Laser treatment device
WO2002036015A1 (en) 2000-10-30 2002-05-10 The General Hospital Corporation Optical methods and systems for tissue analysis
US7231243B2 (en) 2000-10-30 2007-06-12 The General Hospital Corporation Optical methods for tissue analysis
WO2002037075A2 (en) 2000-10-31 2002-05-10 Forskningscenter Risø Optical amplification in coherent optical frequency modulated continuous wave reflectometry
US20020052547A1 (en) 2000-10-31 2002-05-02 Fuji Photo Film Co., Ltd. Endoscope apparatus
US6687036B2 (en) 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
JP2002148185A (en) 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd Oct apparatus
WO2002038040A2 (en) 2000-11-10 2002-05-16 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
US20080013960A1 (en) 2000-11-10 2008-01-17 The General Hospital Corporation Apparatus and method for providing information for at least one structure
US20040072200A1 (en) 2000-11-13 2004-04-15 Rudolf Rigler Detection of nucleic acid polymorphisms
US20020085209A1 (en) 2000-11-14 2002-07-04 Mittleman Daniel M. Interferometric imaging system and method
US6741355B2 (en) 2000-11-20 2004-05-25 Robert Bosch Gmbh Short coherence fiber probe interferometric measuring device
US6558324B1 (en) 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
US20020064341A1 (en) 2000-11-27 2002-05-30 Fauver Mark E. Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US7027633B2 (en) 2000-11-30 2006-04-11 Foran David J Collaborative diagnostic systems
WO2002045572A2 (en) 2000-12-06 2002-06-13 Spentech, Inc. Doppler ultrasound method for detecting emboli
US20020076152A1 (en) 2000-12-14 2002-06-20 Hughes Richard P. Optical fiber termination
US6687007B1 (en) 2000-12-14 2004-02-03 Kestrel Corporation Common path interferometer for spectral image generation
US6501878B2 (en) 2000-12-14 2002-12-31 Nortel Networks Limited Optical fiber termination
WO2002054027A1 (en) 2000-12-28 2002-07-11 Coretek, Inc. Wavelength monitoring system
US20040085540A1 (en) 2000-12-28 2004-05-06 Lapotko Dmitri Olegovich Method and device for photothermal examination of microinhomogeneities
US7230708B2 (en) 2000-12-28 2007-06-12 Dmitri Olegovich Lapotko Method and device for photothermal examination of microinhomogeneities
WO2002053050A1 (en) 2000-12-28 2002-07-11 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic emr treatment of the skin
US20020161357A1 (en) 2000-12-28 2002-10-31 Anderson R. Rox Method and apparatus for EMR treatment
US6657730B2 (en) 2001-01-04 2003-12-02 Tilman Pfau Interferometer with angled beam entry
JP2002205434A (en) 2001-01-10 2002-07-23 Seiko Epson Corp Image output unit and printing system
US20040077949A1 (en) 2001-01-11 2004-04-22 Blofgett David W. Assessment of tooth structure using laser based ultrasonics
US20040126048A1 (en) 2001-01-12 2004-07-01 Dave Digant P. Fiber-based optical low coherence tomography
JP2002214128A (en) 2001-01-16 2002-07-31 Japan Science & Technology Corp Heterodyne beat image synchronization measuring method and its device
US20030013973A1 (en) 2001-01-19 2003-01-16 Massachusetts Institute Of Technology System and methods of fluorescence, reflectance and light scattering spectroscopy for measuring tissue characteristics
US20020196446A1 (en) 2001-01-22 2002-12-26 Roth Jonathan E. Method and apparatus for polarization-sensitive optical coherence tomography
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US20020140942A1 (en) 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
WO2002068853A1 (en) 2001-02-22 2002-09-06 Expro North Sea Limited Improved tubing coupling
US20020122182A1 (en) 2001-03-01 2002-09-05 Carl Zeiss, Inc. Optical delay line
US6654127B2 (en) 2001-03-01 2003-11-25 Carl Zeiss Ophthalmic Systems, Inc. Optical delay line
US6721094B1 (en) 2001-03-05 2004-04-13 Sandia Corporation Long working distance interference microscope
US20050221270A1 (en) 2001-03-07 2005-10-06 Connelly Patrick R Process for identifying and treating cells types within a living organism
US20040126120A1 (en) 2001-03-08 2004-07-01 Xtellus, Inc. Dynamic gain equalizer
US20020166946A1 (en) 2001-03-12 2002-11-14 Olympus Optical Co., Ltd. Optical scanning probe device using low coherence light
US20020172485A1 (en) 2001-04-02 2002-11-21 Keaton Gregory L. Optical wavelength filtering apparatus with depressed-index claddings
US20020163622A1 (en) 2001-04-06 2002-11-07 Paul Magnin Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US6552796B2 (en) 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
WO2002083003A1 (en) 2001-04-11 2002-10-24 Clarke Dana S Tissue structure identification in advance of instrument
US20020158211A1 (en) 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
US20040150829A1 (en) 2001-04-17 2004-08-05 Peter Koch Interferometric arrangement for determining the transit time of light in a sample
WO2002084263A1 (en) 2001-04-17 2002-10-24 Medizinisches Laserzentrum Lübeck GmbH Interferometric arrangement for determining the transit time of light in a sample
US20020198457A1 (en) 2001-04-30 2002-12-26 Tearney Guillermo J. Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US20040254474A1 (en) 2001-05-07 2004-12-16 Eric Seibel Optical fiber scanner for performing multimodal optical imaging
US6701181B2 (en) 2001-05-31 2004-03-02 Infraredx, Inc. Multi-path optical catheter
US20020183623A1 (en) 2001-05-31 2002-12-05 Jing Tang Multi-path optical catheter
US20030097048A1 (en) 2001-05-31 2003-05-22 Ryan S. Eric Referencing optical catheters
US20030082105A1 (en) 2001-06-04 2003-05-01 Alan Fischman Methods and devices for detection and therapy of atheromatous plaque
JP2003014585A (en) 2001-06-07 2003-01-15 Agilent Technol Inc Judgment of characteristic of optical device
US20020188204A1 (en) 2001-06-07 2002-12-12 Mcnamara Edward I. Fiber optic endoscopic gastrointestinal probe
US20030043381A1 (en) 2001-06-15 2003-03-06 Carl Zeiss Jena Gmbh Numerical a posteriori dispersion compensation in PCI measurement signals and OCT A-scan signals with spatially variant correlation core
JP2003035659A (en) 2001-06-15 2003-02-07 Carl Zeiss Jena Gmbh Post-numeric compensation by three-dimensional variable correlation kernel of dispersion in pci measurement signal and oct-a scanning signal
US7113288B2 (en) 2001-06-15 2006-09-26 Carl Zeiss Jena Gmbh Numerical a posteriori dispersion compensation in PCI measurement signals and OCT A-scan signals with spatially variant correlation core
US20040002650A1 (en) 2001-06-20 2004-01-01 Evgenia Mandrusov Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US20030026735A1 (en) 2001-06-22 2003-02-06 Nolte David D. Bio-optical compact disk system
US6685885B2 (en) 2001-06-22 2004-02-03 Purdue Research Foundation Bio-optical compact dist system
US20040166593A1 (en) 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
WO2003003903A2 (en) 2001-07-02 2003-01-16 Palomar Medical Technologies, Inc. Laser device for medical/cosmetic procedures
US20030025917A1 (en) 2001-07-18 2003-02-06 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
US20030108911A1 (en) 2001-08-01 2003-06-12 Chromeon Gmbh Arrangement and method for multiple-fluorescence measurement
US20030137669A1 (en) 2001-08-03 2003-07-24 Rollins Andrew M. Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US7061622B2 (en) 2001-08-03 2006-06-13 Case Western Reserve University Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
WO2003012405A2 (en) 2001-08-03 2003-02-13 Rollins Andrew M Aspects of basic oct engine technologies for high speed optical coherence tomography and light source and other improvements in oct
US20030103212A1 (en) 2001-08-03 2003-06-05 Volker Westphal Real-time imaging system and method
WO2003013624A2 (en) 2001-08-10 2003-02-20 C2Cure Inc. Intra vascular imaging method and apparatus
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
US6900899B2 (en) 2001-08-20 2005-05-31 Agilent Technologies, Inc. Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios
WO2003020119A2 (en) 2001-09-04 2003-03-13 Bioluminate, Inc. Multisensor probe for tissue identification
US20030053673A1 (en) 2001-09-18 2003-03-20 Piet Dewaele Radiographic scoring method
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
JP2003102672A (en) 2001-10-01 2003-04-08 Japan Science & Technology Corp Method and device for automatically detecting, treating, and collecting objective site of lesion or the like
US20030067607A1 (en) 2001-10-09 2003-04-10 Ralf Wolleschensky Method and arrangement for the depth-resolved detection of specimens
US20060167363A1 (en) 2001-10-11 2006-07-27 Osypka Medical Gmbh System and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US7148970B2 (en) 2001-10-16 2006-12-12 The General Hospital Corporation Systems and methods for imaging a sample
US6658278B2 (en) 2001-10-17 2003-12-02 Terumo Cardiovascular Systems Corporation Steerable infrared imaging catheter having steering fins
US7006231B2 (en) 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
WO2003088826A1 (en) 2001-10-24 2003-10-30 Scimed Life Systems, Inc. Optical catheter connector
WO2003046495A1 (en) 2001-11-21 2003-06-05 Delta E Refractive-diffractive spectrometer
JP2005510323A (en) 2001-11-29 2005-04-21 ザ・ジェネラル・ホスピタル・コーポレイション Confocal microscopy using multispectral encoding and systems and apparatus for spectroscopy-encoded confocal microscopy
WO2003046636A1 (en) 2001-11-29 2003-06-05 The General Hospital Corporation Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
WO2003053226A2 (en) 2001-12-11 2003-07-03 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
US20040246583A1 (en) 2001-12-14 2004-12-09 Emmerich Mueller Retro-reflecting device in particular for tunable lasers
US20050057756A1 (en) 2001-12-18 2005-03-17 Massachusetts Institute Of Technology Systems and methods for phase measurements
US7365858B2 (en) 2001-12-18 2008-04-29 Massachusetts Institute Of Technology Systems and methods for phase measurements
WO2003052478A1 (en) 2001-12-18 2003-06-26 Advanced Cardiovascular Systems Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US20030135101A1 (en) 2001-12-21 2003-07-17 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
US20030120137A1 (en) 2001-12-21 2003-06-26 Romuald Pawluczyk Raman spectroscopic system with integrating cavity
EP1324051A1 (en) 2001-12-26 2003-07-02 Kevin R. Forrester Motion measuring device
US7310150B2 (en) 2002-01-11 2007-12-18 The General Hospital Corporation Apparatus and method for low coherence ranging
US20050018200A1 (en) 2002-01-11 2005-01-27 Guillermo Tearney J. Apparatus for low coherence ranging
US20030218756A1 (en) 2002-01-16 2003-11-27 Zhongping Chen High resolution optical coherence tomography with an improved depth range using an axicon lens
US20080152353A1 (en) 2002-01-24 2008-06-26 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US20080100837A1 (en) 2002-01-24 2008-05-01 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US20050018201A1 (en) 2002-01-24 2005-01-27 De Boer Johannes F Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US20080097709A1 (en) 2002-01-24 2008-04-24 The General Hospital Corporation Apparatus and method for rangings and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
WO2003062802A2 (en) 2002-01-24 2003-07-31 The General Hospital Corporation Apparatus and method for rangings and noise reduction of low coherence interferometry lci and optical coherence tomography (oct) signals by parallel detection of spectral bands
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US20100094576A1 (en) 2002-01-24 2010-04-15 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US7643152B2 (en) 2002-01-24 2010-01-05 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
JP2005516187A (en) 2002-01-24 2005-06-02 ザ ジェネラル ホスピタル コーポレーション Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
US7630083B2 (en) 2002-01-24 2009-12-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US20030174339A1 (en) 2002-02-14 2003-09-18 Feldchtein Felix I. Method for studying a sample and optical interferometer for doing the same
US20030165263A1 (en) 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
US20040086245A1 (en) 2002-03-19 2004-05-06 Farroni Julia A. Optical fiber
US7139598B2 (en) 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
US20030191392A1 (en) 2002-04-05 2003-10-09 Haldeman Paul Craig Doppler guiding catheter using sensed blood turbulence levels
US7006232B2 (en) 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US20030199769A1 (en) 2002-04-08 2003-10-23 Adrian Podoleanu Apparatus for high resolution imaging of moving organs
US20030220749A1 (en) 2002-04-09 2003-11-27 Zhongping Chen Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20050119567A1 (en) 2002-04-25 2005-06-02 Cardiac Pacemakers, Inc. Methods using a dual balloon telescoping guiding catheter
JP4135551B2 (en) 2002-05-07 2008-08-20 松下電工株式会社 Position sensor
US20060033923A1 (en) 2002-05-17 2006-02-16 Japan Science And Technology Agency Autonomous ultra-short optical pulse compression, phase compensating and waveform shaping device
US7177027B2 (en) 2002-05-17 2007-02-13 Japan Science And Technology Agency Autonomous ultra-short optical pulse compression, phase compensating and waveform shaping device
RU2242710C2 (en) 2002-06-07 2004-12-20 Геликонов Григорий Валентинович Method and device for building object image and device for delivering low coherence optical radiation
WO2003105678A2 (en) 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US7272252B2 (en) 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
RU2213421C1 (en) 2002-06-21 2003-09-27 Южно-Российский государственный университет экономики и сервиса Dynamic radio-signal memory device
JP2004028970A (en) 2002-06-21 2004-01-29 Institute Of Tsukuba Liaison Co Ltd Polarization-sensitive optical spectral interferometric coherence tomography apparatus and measuring method for polarization information inside sample by the same
US20040039252A1 (en) 2002-06-27 2004-02-26 Koch Kenneth Elmon Self-navigating endotracheal tube
JP2004037165A (en) 2002-07-01 2004-02-05 Fuji Photo Optical Co Ltd Interferometer device
US7072047B2 (en) 2002-07-12 2006-07-04 Case Western Reserve University Method and system for quantitative image correction for optical coherence tomography
JP2004056907A (en) 2002-07-19 2004-02-19 Nippon Steel Corp Synchronous machine
JP2004057652A (en) 2002-07-31 2004-02-26 Takeshi Shiina Ultrasonographic system, distortion distribution display method, and elastic modulus distribution display method
JP2004089552A (en) 2002-09-03 2004-03-25 Pentax Corp Diagnostic light irradiation apparatus
JP2004113780A (en) 2002-09-06 2004-04-15 Pentax Corp Endoscope and optical tomographic endoscope system
US20040212808A1 (en) 2002-09-25 2004-10-28 Olympus Optical Co., Ltd. Optical probe system
US20040110206A1 (en) 2002-09-26 2004-06-10 Bio Techplex Corporation Waveform modulated light emitting diode (LED) light source for use in a method of and apparatus for screening to identify drug candidates
WO2004034569A2 (en) 2002-10-08 2004-04-22 M/A-Com, Inc. Apparatus, methods and articles of manufacture for multiband signal processing
US20040075841A1 (en) 2002-10-16 2004-04-22 Fiso Technologies, Inc. System and method for measuring an optical path difference in a sensing interferometer
WO2004037068A2 (en) 2002-10-22 2004-05-06 Reliant Technologies, Inc. Method and apparatus for treating skin using patterns of optical energy
WO2004043251A1 (en) 2002-11-07 2004-05-27 Infraredx, Inc. Spectroscope with modified field-of-view
US20040095464A1 (en) 2002-11-18 2004-05-20 Kunihiko Miyagi Vibrating object observing system and vocal cord observing processing apparatus
US20040100631A1 (en) 2002-11-27 2004-05-27 Mark Bashkansky Method and apparatus for reducing speckle in optical coherence tomography images
EP1426799A2 (en) 2002-11-29 2004-06-09 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
WO2004057266A2 (en) 2002-12-20 2004-07-08 Carl Zeiss Interferometer system and measuring device
US7646905B2 (en) 2002-12-23 2010-01-12 Qinetiq Limited Scoring estrogen and progesterone receptors expression based on image analysis
US20040133191A1 (en) 2002-12-27 2004-07-08 Masayuki Momiuchi Laser device for medical treatment system
US20040152989A1 (en) 2003-01-03 2004-08-05 Jayanth Puttappa Speckle pattern analysis method and system
WO2004066824A2 (en) 2003-01-24 2004-08-12 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US7075658B2 (en) 2003-01-24 2006-07-11 Duke University Method for optical coherence tomography imaging with molecular contrast
US20050004453A1 (en) 2003-01-24 2005-01-06 Tearney Guillermo J. System and method for identifying tissue using low-coherence interferometry
US20080094637A1 (en) 2003-01-24 2008-04-24 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US7643153B2 (en) 2003-01-24 2010-01-05 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US20080094613A1 (en) 2003-01-24 2008-04-24 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US20050036150A1 (en) 2003-01-24 2005-02-17 Duke University Method for optical coherence tomography imaging with molecular contrast
US20040150830A1 (en) 2003-01-29 2004-08-05 Chan Winston Kong Interferometer having a scanning mirror
WO2004073501A2 (en) 2003-02-20 2004-09-02 Gutin Mikhail Optical coherence tomography with 3d coherence scanning
US20040165184A1 (en) 2003-02-24 2004-08-26 Pentax Corporation Confocal probe
JP2004258144A (en) 2003-02-24 2004-09-16 Pentax Corp Confocal probe and confocal microscope
US20040189999A1 (en) 2003-03-06 2004-09-30 De Groot Peter J. Profiling complex surface structures using scanning interferometry
WO2004088361A2 (en) 2003-03-31 2004-10-14 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
JP4135550B2 (en) 2003-04-18 2008-08-20 日立電線株式会社 Semiconductor light emitting device
US20040263843A1 (en) 2003-04-18 2004-12-30 Knopp Kevin J. Raman spectroscopy system and method and specimen holder therefor
US20040247268A1 (en) 2003-04-18 2004-12-09 Olympus Corporation Optical imaging system
JP2004317437A (en) 2003-04-18 2004-11-11 Olympus Corp Optical imaging apparatus
US20050018133A1 (en) 2003-05-01 2005-01-27 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
US7355721B2 (en) 2003-05-05 2008-04-08 D4D Technologies, Llc Optical coherence tomography imaging
CN1550203A (en) 2003-05-12 2004-12-01 ��ʿд������ʽ���� Airbag type endoscope
WO2004100789A1 (en) 2003-05-14 2004-11-25 Spectracure Ab System and method for therapy and diagnosis comprising optical components for distribution of radiation
JP2007500059A (en) 2003-05-22 2007-01-11 ボストン サイエンティフィック リミテッド Dynamic optical image forming apparatus and method
WO2004105598A1 (en) 2003-05-22 2004-12-09 Boston Scientific Limited Systems and methods for dynamic optical imaging
US20040239938A1 (en) * 2003-05-28 2004-12-02 Duke University System for fourier domain optical coherence tomography
US20070002435A1 (en) 2003-05-29 2007-01-04 The Regents Of The University Of Michigan Double-clad fiber scanning microscope
US7019838B2 (en) 2003-05-30 2006-03-28 Duke University System and method for low coherence broadband quadrature interferometry
US6903820B2 (en) 2003-06-04 2005-06-07 Tomophase Corporation Measurements of substances using two different propagation modes of light through a common optical path
US20040246490A1 (en) 2003-06-04 2004-12-09 Feiling Wang Measurements of substances using two different propagation modes of light through a common optical path
US20050075547A1 (en) 2003-06-04 2005-04-07 Feiling Wang Coherence-gated optical glucose monitor
US20050035295A1 (en) 2003-06-06 2005-02-17 Brett Bouma Process and apparatus for a wavelength tuning source
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
US20040258106A1 (en) 2003-06-19 2004-12-23 Araujo Francisco M. Laser source with configurable output beam characteristics
JP2007524455A (en) 2003-06-23 2007-08-30 インフレアデックス, インク. Intraluminal spectrometer with wall contact probe
WO2005000115A1 (en) 2003-06-23 2005-01-06 Infraredx, Inc. Intraluminal spectroscope with wall-contacting probe
JP2005062850A (en) 2003-07-29 2005-03-10 Olympus Corp Confocal microscope
US20090012368A1 (en) 2003-08-11 2009-01-08 Scimed Life Systems, Inc. Imaging endoscope
US20050190372A1 (en) 2003-08-14 2005-09-01 Aristide Dogariu Interferometric sensor for characterizing materials
US7539530B2 (en) 2003-08-22 2009-05-26 Infraredx, Inc. Method and system for spectral examination of vascular walls through blood during cardiac motion
US20050083534A1 (en) 2003-08-28 2005-04-21 Riza Nabeel A. Agile high sensitivity optical sensor
US20050049488A1 (en) 2003-08-29 2005-03-03 Olympus Corporation Medical system
US20050046837A1 (en) 2003-09-03 2005-03-03 Fujitsu Limited Spectroscopic apparatus
US7304798B2 (en) 2003-09-03 2007-12-04 Fujitsu Limited Spectroscopic apparatus
US20050059894A1 (en) 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US20050057680A1 (en) 2003-09-16 2005-03-17 Agan Martin J. Method and apparatus for controlling integration time in imagers
US20050065421A1 (en) 2003-09-19 2005-03-24 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US6949072B2 (en) 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US20050197530A1 (en) 2003-09-25 2005-09-08 Wallace Daniel T. Balloon visualization for traversing a tissue wall
US20080252901A1 (en) 2003-09-26 2008-10-16 School Jiridical Person Kitasato Gakuen Wavelength-Tunable Light Source And Optical Coherence Tomography
JP2005156540A (en) 2003-09-26 2005-06-16 Nippon Telegr & Teleph Corp <Ntt> Variable wavelength light generation device for light interference tomography and light interference tomography device
US7142835B2 (en) 2003-09-29 2006-11-28 Silicon Laboratories, Inc. Apparatus and method for digital image correction in a receiver
JP2005110208A (en) 2003-09-30 2005-04-21 Lucent Technol Inc High-speed modulation for optical subcarrier
WO2005045362A1 (en) 2003-10-23 2005-05-19 Carl Zeiss Meditec Ag Apparatus for interferometric eye length measurement with increased sensitivity
US7733497B2 (en) 2003-10-27 2010-06-08 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US20060244973A1 (en) 2003-10-27 2006-11-02 Seok-Hyun Yun Method and apparatus for performing optical imaging using frequency-domain interferometry
US7969578B2 (en) 2003-10-27 2011-06-28 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US20100309477A1 (en) 2003-10-27 2010-12-09 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
WO2005047813A1 (en) 2003-10-27 2005-05-26 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
DE10351319A1 (en) 2003-10-31 2005-06-16 Medizinisches Laserzentrum Lübeck GmbH Interferometer for optical coherence tomography, e.g. for use with a medical scanning OCT-enabled endoscope, has a deflection mirror for beam deflection in the sample arm of the interferometer
US7130320B2 (en) 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
US20050128488A1 (en) 2003-11-28 2005-06-16 Dvir Yelin Method and apparatus for three-dimensional spectrally encoded imaging
WO2005054780A1 (en) 2003-11-28 2005-06-16 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US20050171438A1 (en) 2003-12-09 2005-08-04 Zhongping Chen High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US20050165303A1 (en) 2003-12-15 2005-07-28 Martin Kleen Catheter device
JP2005195485A (en) 2004-01-08 2005-07-21 Olympus Corp Confocal microscopic spectroscope
RU2255426C1 (en) 2004-02-19 2005-06-27 Южно-Российский государственный университет экономики и сервиса Radio-signal dynamic memory device having series binary fiber- optic system
JP2005241872A (en) 2004-02-25 2005-09-08 Fujitsu Ltd Microscope image photographing system and method
WO2005082225A1 (en) 2004-02-27 2005-09-09 Optiscan Pty Ltd Optical element
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US7190464B2 (en) 2004-05-14 2007-03-13 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US20050254061A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometry for detecting and characterizing plaques
US20050254059A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometric system for optical metrology
US20090196477A1 (en) 2004-05-29 2009-08-06 The General Hospital Corporation Process, System And Software Arrangement For A Chromatic Dispersion Compensation Using Reflective Layers In Optical Coherence Tomography (OCT) Imaging
WO2006004743A2 (en) 2004-06-28 2006-01-12 University Of Washington Optical fiber scanner for performing multimodal optical imaging
WO2006014392A1 (en) 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
US20060020172A1 (en) 2004-07-21 2006-01-26 Rowiak Gmbh. OCT laryngoscope
US20060039004A1 (en) 2004-08-06 2006-02-23 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006020605A2 (en) 2004-08-10 2006-02-23 The Regents Of The University Of California Device and method for the delivery and/or elimination of compounds in tissue
WO2006039091A2 (en) 2004-09-10 2006-04-13 The General Hospital Corporation System and method for optical coherence imaging
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
US7113625B2 (en) 2004-10-01 2006-09-26 U.S. Pathology Labs, Inc. System and method for image analysis of slides
WO2006038876A1 (en) 2004-10-08 2006-04-13 Trajan Badju A method and a system for generating three- or two-dimensional images
US20080201081A1 (en) 2004-10-22 2008-08-21 Fermiscan Australia Pty Ltd Analytical Method and Apparatus
WO2006050320A2 (en) 2004-10-29 2006-05-11 The General Hospital Corporation Polarization-sensitive optical coherence tomography
US20080007734A1 (en) 2004-10-29 2008-01-10 The General Hospital Corporation System and method for providing Jones matrix-based analysis to determine non-depolarizing polarization parameters using polarization-sensitive optical coherence tomography
US20060093276A1 (en) 2004-11-02 2006-05-04 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
US20060103850A1 (en) 2004-11-12 2006-05-18 Alphonse Gerard A Single trace multi-channel low coherence interferometric sensor
US20060106375A1 (en) 2004-11-15 2006-05-18 Werneth Randell L Ablation system with feedback
US20080192236A1 (en) 2004-11-18 2008-08-14 Michelson Diagnostics Limited Interference Apparatus And Method And Probe
US7609391B2 (en) 2004-11-23 2009-10-27 Robert Eric Betzig Optical lattice microscopy
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
WO2006059109A1 (en) 2004-12-03 2006-06-08 Ic Innovations Limited Method for the analysis of cells
US20060146339A1 (en) 2004-12-06 2006-07-06 Fujinon Corporation Optical tomographic apparatus
US20070019208A1 (en) 2004-12-10 2007-01-25 Fuji Photo Film Co., Ltd. Optical tomography apparatus
US20080154090A1 (en) 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US8315282B2 (en) 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7330270B2 (en) 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
US20060164639A1 (en) 2005-01-21 2006-07-27 Horn Jochen M M Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
US20060171503A1 (en) 2005-01-21 2006-08-03 O'hara Keith E Method to suppress artifacts in frequency-domain optical coherence tomography
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
US20080308730A1 (en) 2005-01-27 2008-12-18 Vizi Szilveszter E Real-Time, 3D, Non-Linear Microscope Measuring System and Method for Application of the Same
US7267494B2 (en) 2005-02-01 2007-09-11 Finisar Corporation Fiber stub for cladding mode coupling reduction
US20060184048A1 (en) 2005-02-02 2006-08-17 Vahid Saadat Tissue visualization and manipulation system
US7664300B2 (en) 2005-02-03 2010-02-16 Sti Medical Systems, Llc Uterine cervical cancer computer-aided-diagnosis (CAD)
US20060189928A1 (en) 2005-02-18 2006-08-24 Siemens Aktiengesellschaft Catheter device
US7649160B2 (en) 2005-02-23 2010-01-19 Lyncee Tec S.A. Wave front sensing method and apparatus
US20080265130A1 (en) 2005-02-23 2008-10-30 Tristan Colomb Wave Front Sensing Method and Apparatus
US20060193352A1 (en) 2005-02-25 2006-08-31 Changho Chong Tunable fiber laser light source
JP2006237359A (en) 2005-02-25 2006-09-07 Sun Tec Kk Wavelength-scanning fiber laser light source
US7382809B2 (en) 2005-02-25 2008-06-03 Santec Corporation Tunable fiber laser light source
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
JP2008533712A (en) 2005-03-09 2008-08-21 ビーエーエスエフ ソシエタス・ヨーロピア Photocell containing a photoactive semiconductor material
US20060224053A1 (en) 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
US20070038040A1 (en) 2005-04-22 2007-02-15 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain polarization-sensitive optical coherence tomography
US20090011948A1 (en) 2005-04-25 2009-01-08 Unlu M Selim Structured Substrates for Optical Surface Profiling
WO2006124860A1 (en) 2005-05-13 2006-11-23 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
US20080070323A1 (en) 2005-05-23 2008-03-20 Robert Betzig Optical microscopy with phototransformable optical labels
WO2006130797A2 (en) 2005-05-31 2006-12-07 The General Hospital Corporation Spectral encoding heterodyne interferometry techniques for imaging
US20060279742A1 (en) 2005-06-01 2006-12-14 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
WO2006131859A2 (en) 2005-06-07 2006-12-14 Philips Intellectual Property & Standards Gmbh Laser optical feedback tomography sensor and method
US20080218696A1 (en) 2005-07-01 2008-09-11 Jose Mir Non-Invasive Monitoring System
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
DE102005034443A1 (en) 2005-07-22 2007-02-22 Carl Zeiss Jena Gmbh Sample e.g. cell particle, luminescence microscopy method, involves prevailing one of sample regions for image of sample, so that image has local resolution which is enhanced in relation to excitation radiation distribution
US20070024860A1 (en) 2005-08-01 2007-02-01 Mitutoyo Corporation Dual laser high precision interferometer
US7099358B1 (en) 2005-08-05 2006-08-29 Santec Corporation Tunable laser light source
US20070035743A1 (en) 2005-08-09 2007-02-15 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
WO2007028531A1 (en) 2005-09-09 2007-03-15 Carl Zeiss Meditec Ag Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
WO2007030835A2 (en) 2005-09-10 2007-03-15 Baer Stephen C High resolution microscopy using an optically switchable fluorophore
JP2007075403A (en) 2005-09-15 2007-03-29 Pentax Corp Oct (optical coherence tomography) observation implement, fixing implement, and oct system
US20090305309A1 (en) 2005-09-15 2009-12-10 The Regents Of The University Of California Methods and Compositions for Detecting Neoplastic Cells
JP2007083053A (en) 2005-09-21 2007-04-05 Siemens Ag Catheter device and image monitoring method for treating vessel blockage
US20070070496A1 (en) 2005-09-23 2007-03-29 Gweon Dae G Confocal self-interference microscopy from which side lobe has been removed
WO2007038787A1 (en) 2005-09-29 2007-04-05 General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US20070233396A1 (en) 2005-09-29 2007-10-04 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US20090051923A1 (en) 2005-09-30 2009-02-26 Infraredx, Inc. Arterial probe for oct
US20070076217A1 (en) 2005-10-05 2007-04-05 Chris Baker Optical coherence tomography for eye-length measurement
US20070086017A1 (en) 2005-10-07 2007-04-19 Bioptigen, Inc. Imaging Systems Using Unpolarized Light And Related Methods And Controllers
US20070086013A1 (en) 2005-10-11 2007-04-19 Zygo Corporation Interferometry method and system including spectral decomposition
US20070133002A1 (en) * 2005-10-11 2007-06-14 Duke University Systems and methods for endoscopic angle-resolved low coherence interferometry
US20070091317A1 (en) 2005-10-26 2007-04-26 Klaus Freischlad Method and apparatus for optically analyzing a surface
WO2007084995A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
US20080021275A1 (en) 2006-01-19 2008-01-24 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US20070188855A1 (en) 2006-01-19 2007-08-16 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy teachniques and methods for producing one or more optical arrangements
US20070223006A1 (en) 2006-01-19 2007-09-27 The General Hospital Corporation Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
WO2007083138A1 (en) 2006-01-20 2007-07-26 Perkinelmer Singapore Pte Ltd. Improvements in and relating to imaging of biological samples
US20070203404A1 (en) 2006-01-31 2007-08-30 Zysk Adam M Method and apparatus for measurement of optical properties in tissue
US20070233056A1 (en) 2006-02-08 2007-10-04 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US20080228086A1 (en) 2006-02-15 2008-09-18 Olusegun Johnson Ilegbusi Systems and methods for evaluating vessels
US20070208225A1 (en) 2006-02-23 2007-09-06 Atmos Medizintechnik Gmbh & Co. Kg Process and arrangement for the production of a signal that corresponds to the opening status of the vocal cords of the larynx
US20090004453A1 (en) 2006-02-24 2009-01-01 Shoji Murai Fiber-Reinforced Thermoplastic Resin Molded Article, Molding Material, and Method for Production of the Molded Article
JP2007271761A (en) 2006-03-30 2007-10-18 Fujitsu Ltd Spectrometer and wavelength dispersion controller
US20070236700A1 (en) 2006-04-05 2007-10-11 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US20070253901A1 (en) 2006-04-27 2007-11-01 David Deng Atherosclerosis genes and related reagents and methods of use thereof
US20070258094A1 (en) 2006-04-28 2007-11-08 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (OCT) using automatic dispersion compensation
US7782464B2 (en) 2006-05-12 2010-08-24 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US20070263226A1 (en) 2006-05-15 2007-11-15 Eastman Kodak Company Tissue imaging system
US20090281390A1 (en) 2006-05-26 2009-11-12 Stichting Voor De Technische Wetenschappen Optical Triggering System For Stroboscopy, And A Stroboscopic System
US20080002197A1 (en) 2006-06-19 2008-01-03 Ke-Xun Sun Grating angle magnification enhanced angular sensor and scanner
US20070291277A1 (en) 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
US20080049220A1 (en) 2006-08-28 2008-02-28 Federico Izzia Spectroscopic microscopy with image-driven analysis
US20080097225A1 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US20100086251A1 (en) 2006-10-26 2010-04-08 Chris Xu Production of optical pulses at a desired wavelength using solition self-frequency shift in higher-order-mode fiber
US20090209834A1 (en) 2006-10-30 2009-08-20 Elfi-Tech Ltd. System and Method for In Vivo Measurement of Biological Parameters
US20080139906A1 (en) 2006-11-20 2008-06-12 Karlheinz Bussek Device and method for non-invasive optical detection of chemical and physical blood values and body content substances
US20080204762A1 (en) 2007-01-17 2008-08-28 Duke University Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets
US7911621B2 (en) 2007-01-19 2011-03-22 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US20080297806A1 (en) 2007-01-19 2008-12-04 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US20080226029A1 (en) 2007-03-12 2008-09-18 Weir Michael P Medical device including scanned beam unit for imaging and therapy
US20080234560A1 (en) 2007-03-23 2008-09-25 Hitachi, Ltd. Optical measurement instrument for living body semiconductor laser installation for living body light measuring device
JP5509417B2 (en) 2007-03-26 2014-06-04 国立大学法人東京海洋大学 Germ cell marker using fish Vasa gene
US20090005691A1 (en) 2007-04-10 2009-01-01 University Of Southern California Methods and systems for blood flow measurement using doppler optical coherence tomography
US20090323056A1 (en) 2007-05-04 2009-12-31 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
US7799558B1 (en) 2007-05-22 2010-09-21 Dultz Shane C Ligand binding assays on microarrays in closed multiwell plates
US20090044799A1 (en) 2007-08-15 2009-02-19 Chunyuan Qiu Systems and methods for intubation
WO2009033064A2 (en) 2007-09-05 2009-03-12 The General Hospital Corporation Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
US20090131801A1 (en) 2007-10-12 2009-05-21 The General Hospital Corporation Systems and processes for optical imaging of luminal anatomic structures
US20090192358A1 (en) 2008-01-28 2009-07-30 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
US7805034B2 (en) 2008-01-29 2010-09-28 Fujifilm Corporation OCT probe for eliminating ghost images
US20090273777A1 (en) 2008-04-30 2009-11-05 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
US20090290156A1 (en) 2008-05-21 2009-11-26 The Board Of Trustee Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
US20090306520A1 (en) 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
WO2009153929A1 (en) 2008-06-19 2009-12-23 株式会社トプコン Optical image measuring device
US20100002241A1 (en) 2008-07-07 2010-01-07 Canon Kabushiki Kaisha Optical coherence tomographic imaging apparatus and optical coherence tomographic imaging method
US20100150467A1 (en) 2008-07-21 2010-06-17 Mingtao Zhao Methods, systems, and computer readable media for synthetic wavelength-based phase unwrapping in optical coherence tomography and spectral domain phase microscopy
EP2149776A1 (en) 2008-07-30 2010-02-03 Canon Kabushiki Kaisha Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
US20110160681A1 (en) 2008-12-04 2011-06-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including catheters having light removable coatings based on a sensed condition
US20100145145A1 (en) 2008-12-05 2010-06-10 Johnson Electric S.A. Capsule endoscope
US20100261995A1 (en) 2009-04-08 2010-10-14 Nellcor Puritan Bennett Llc Medical device and technique for using the same
US20110028967A1 (en) 2009-07-31 2011-02-03 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (oct)
WO2011055376A1 (en) 2009-11-09 2011-05-12 Tata Institute Of Fundamental Research Biological laser plasma x-ray point source
WO2011080713A1 (en) 2009-12-29 2011-07-07 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
JP6073405B2 (en) 2010-01-14 2017-02-01 サムスン エレクトロニクス カンパニー リミテッド Video decoding method and apparatus
US20110218403A1 (en) 2010-03-05 2011-09-08 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution

Non-Patent Citations (1130)

* Cited by examiner, † Cited by third party
Title
(Japanese Notice of Reasons for Rejection dated Feb. 15, 2012 for JP2008-553509.
A. Ymeti et al., "Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor", Biosensors and Bioelectronics, Elsevier Science Publishers, 2005, pp. 1417-1421.
A.A. Bednov et al., "Investigation of Statistical Properties of Lymph Flow Dynamics Using Speckle-Microscopy," SPIE, 2981: 181-90 (1997).
Abbas, G.L., V.W.S. Chan et al., "Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne-Detection," Optics Letters, vol. 8, pp. 419-421, Aug. 1983 issue.
Acioli, L. H., M. Ulman, et al. (1991). "Femtosecond Temporal Encoding in Barium-Titanate." Optics Letters 16(24): 1984-1986.
Adrain, Alyn L. et al. (1997) "High-Resolution Endoluminal Sonography is a Sensitive Modality for the Identification of Barrett's Meaplasia" Gastrointestinal Endoscopy vol. 46, No. 2, pp. 147-151.
Agrawal, G.P., "Population Pulsations and Nondegenerate 4-Wave Mixing in Semiconductor-Lasers and Amplifiers," Journal of the Optical Society of America B-Optical Physics, vol. 5, pp. 147-159, Jan. 1998.
Aigouy, L., A. Lahrech, et al. (1999). "Polarization effects in apertureless scanning near-field optical microscopy: an experimental study." Optics Letters 24(4): 187-189.
Aizu, Y et al. (1991) "Bio-Speckle Phenomena and Their Application to the Evaluation of Blood Flow" Optics and Laser Technology, vol. 23, No. 4, Aug. 1, 1991.
Akiba, M., K. P. Chan, et al. (2003). "Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras." Optics Letters 28(10): 816-818.
Akiba, Masahiro et al. "En-face optical coherence imaging for three-dimensional microscopy", SPIE, 2002, pp. 8-15.
Akkin, T., D. P. Dave, et al. (2003). "Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity." Lasers in Surgery and Medicine 33(4): 219-225.
Akkin, T., D. P. Dave, et al. (2003). "Surface analysis using phase sensitive optical low coherence reflectometry." Lasers in Surgery and Medicine: 4-4.
Akkin, T., D. P. Dave, et al. (2004). "Detection of neural activity using phase-sensitive optical low-coherence reflectometry." Optics Express 12(11): 2377-2386.
Akkin, T., T. E. Milner, et al. (2002). "Phase-sensitive measurement of birefringence change as an indication of neural functionality and diseases." Lasers in Surgery and Medicine: 6-6.
Anderson, R. Rox et al. (1983) "Selective Photothermolysis" Precise Microsurgery by Selective Absorption of Pulsed Radiation Science vol. 220, No. 4596, pp. 524-527.
Andreas Zumbusch et al. "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering", Physical Review Letters 1999, 82 (20): 4142-4145.
Andretzky, P. et al., "Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio," The International Society for Optical Engineering, USA, vol. 3915, 2000.
Andretzky, P., Lindner, M.W., Herrmann, J.M., Schultz, A., Konzog, M., Kiesewetter, F., Haeusler, G. (1999). "Optical coherence tomography by 'spectral radar': Dynamic range estimation and in vivo measurements of skin." Proceedings of SPIE-The International Society for Optical Engineering 3567: pp. 78-87.
Andretzky, P., Lindner, M.W., Herrmann, J.M., Schultz, A., Konzog, M., Kiesewetter, F., Haeusler, G. (1999). "Optical coherence tomography by ‘spectral radar’: Dynamic range estimation and in vivo measurements of skin." Proceedings of SPIE—The International Society for Optical Engineering 3567: pp. 78-87.
Antcliff, R. J., M. R. Stanford, et al. (2000). "Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis." Ophthalmology 107(3): 593-9.
Antcliff, R. J., T. J. ffytche, et al. (2000). "Optical coherence tomography of melanocytoma." American Journal of Ophthalmology 130(6): 845-7.
Anvari, B., B. S. Tanenbaum, et al. (1995). "A Theoretical-Study of the Thermal Response of Skin to Cryogen Spray Cooling and Pulsed-Laser Irradiation-Implications for Treatment of Port-Wine Stain Birthmarks." Physics in Medicine and Biology 40(9): 1451-1465.
Anvari, B., B. S. Tanenbaum, et al. (1995). "A Theoretical-Study of the Thermal Response of Skin to Cryogen Spray Cooling and Pulsed-Laser Irradiation—Implications for Treatment of Port-Wine Stain Birthmarks." Physics in Medicine and Biology 40(9): 1451-1465.
Anvari, B., T. E. Milner, et al. (1995). "Selective Cooling of Biological Tissues-Application for Thermally Mediated Therapeutic Procedures." Physics in Medicine and Biology 40(2):241-252.
Anvari, B., T. E. Milner, et al. (1995). "Selective Cooling of Biological Tissues—Application for Thermally Mediated Therapeutic Procedures." Physics in Medicine and Biology 40(2):241-252.
Arend, O., M. Ruffer, et al. (2000). "Macular circulation in patients with diabetes mellitus with and without arterial hypertension." British Journal of Ophthalmology 84(12): 1392-1396.
Arimoto, H. and Y. Ohtsuka (1997). "Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer." Optics Letters 22(13): 958-960.
Athey, B.D. et al., "Development and Demonstration of a Networked Telepathology 3-D Imaging, Databasing, and Communication System", 1998 ("C2") , pp. 5-17.
Australian Examiner's Report dated May 27, 2008 for Australian Patent Application No. 2003210669.
Australian Examiner's Report mailed May 27, 2008 for Australian patent application No. 2003210669.
Azzolini, C., F. Patelli, et al. (2001). "Correlation between optical coherence tomography data and biomicroscopic interpretation of idiopathic macular hole." American Journal of Ophthalmology 132(3): 348-55.
B. Bailey et al. "Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation," Nature 366:44 (1993).
Baba, T., K. Ohno-Matsui, et al. (2002). "Optical coherence tomography of choroidal neovascularization in high myopia." Acta Ophthalmoloqica Scandinavica 80(1): 82-7.
Bachmann A.H. et al: "Heterodyne Fourier Domain Optical Coherence Tomography for Full Range Probing with High Axial Resolution", Optics Express, OSA, vol. 14, No. 4, Feb. 20, 2006.
Bail, M. A. H., Gerd; Herrmann, Juergen M.; Lindner, Michael W.; Ringler, R. (1996). "Optical coherence tomography with the "spectral radar": fast optical analysis in volume scatterers by short-coherence interferometry." Proc. SPIE , 2925: p. 298-303.
Ballif, J. et al., "Rapid and Scalable Scans at 21 m/s in optical Low-Coherence Reflectometry," Optics Letters, vol. 22, pp. 757-759, Jun. 1997.
Baney, D. M. And W. V. Sorin (1993). "Extended-Range Optical Low-Coherence Reflectometry Using a Recirculating Delay Technique." Ieee Photonics Technology Letters 5(9): 1109-1112.
Baney, D. M., B. Szafraniec, et al. (2002). "Coherent optical spectrum analyzer." Ieee Photonics Technology Letters 14(3): 355-357.
Barakat, R. (1981). "Bilinear Constraints between Elements of the 4by4 Mueller-Jones Transfer-Matrix of Polarization Theory." Optics Communications 38(3): 159-161.
Barakat, R. (1993). "Analytic Proofs of the Arago-Fresnel Laws for the Interference of Polarized-Light." Journal of the Optical Society of America a-Optics Image Science and Vision 10(1): 180-185.
Barakat, Richard, "Statistics of the Stokes Parameters," J. Opt. Soc. Am. B., vol. 4, No. 7, Jul. 1987, pp. 1256-1263.
Barbastathis, G. and D. J. Brady (1999). "Multidimensional tomographic imaging using volume holography." Proceedings of the leee 87(12): 2098-2120.
Bardal, S., A. Kamal, et al. (1992). "Photoinduced Birefringence in Optical Fibers-a Comparative-Fibers Study of Low-Birefringence and High-Birefringence Fibers." Optics Letters 17(6): 411-413.
Bardal, S., A. Kamal, et al. (1992). "Photoinduced Birefringence in Optical Fibers—a Comparative-Fibers Study of Low-Birefringence and High-Birefringence Fibers." Optics Letters 17(6): 411-413.
Barfuss et al (1989) "Modified Optical Frequency Domain Reflectometry with High spatial Resolution for Components of integrated optic Systems", Journal of Lightwave Technology, IEEE vol. 7., No. 1.
Barfuss H. et al., "Modified Optical Frequency-Domain Reflectometry with High Spatial-Resolution for Components of Integrated Optic Systems," Journal of Lightwave Technology, vol. 7, pp. 3-10, Jan. 1989.
Barr, H et al. (2005) "Endoscopic Therapy for Barrett's Oesophaugs" Gut vol. 54:875-884.
Barry Cense et al., "Spectral-domain polarization-sensitive optical coherence tomography at 850nm", Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005, pp. 159-162.
Barsky, S. H., S. Rosen, et al. (1980). "Nature and Evolution of Port Wine Stains-Computer-Assisted Study." Journal of Investigative Dermatology 74(3): 154-157.
Barsky, S. H., S. Rosen, et al. (1980). "Nature and Evolution of Port Wine Stains—Computer-Assisted Study." Journal of Investigative Dermatology 74(3): 154-157.
Barton, J. K., A. J. Welch, et al. (1998). "Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography." Optics Express 3.
Barton, J. K., A. Rollins, et al. (2001). "Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling." Physics in Medicine and Biology 46.
Barton, J. K., J. A. Izatt, et al. (1999). "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images." Dermatology 198(4):355-361.
Bashkansky, et al., "Signal Processing for Improving Field Cross-Correlation Function in Optical Coherence Tomography," Optics & Photonics News, vol. 9, pp. 8137-8138, May 1998.
Bashkansky, M. and J. Reintjes (2000). "Statistics and reduction of speckle in optical coherence tomography." Optics Letters 25(8): 545-547.
Bashkansky, M., M. D. Duncan, et al. (1997). "Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography." Optics Letters 22 (1): 61-63.
Baumgartner, A., C. K. Hitzenberger, et al. (1998). "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye." Journal of Biomedical Optics 3(1): 45-54.
Baumgartner, A., C. K. Hitzenberger, et al. (2000). "Resolution-improved dual-beam and standard optical coherence tomography: a comparison." Graefes Archive for Clinical and Experimental Ophthalmology 238(5): 385-392.
Baumgartner, A., S. Dichtl, et al. (2000). "Polarization-sensitive optical coherence tomography of dental structures." Caries Research 34(1): 59-69.
Baxter: "Image Zooming", Jan. 25, 2005, Retrieved from the Internet.
Beaud, P. et al., "Optical Reflectometry with Micrometer Resolution for the Investigation of Integrated Optical-Devices," Leee Journal of Quantum Electronics, vol. 25, pp. 755-759, Apr. 1989.
Beaurepaire, E., L. Moreaux, et al. (1999). "Combined scanning optical coherence and two-photon-excited fluorescence microscopy." Optics Letters 24(14): 969-971.
Beaurepaire, E., P. Gleyzes, et at. (1998). Optical coherence microscopy for the in-depth study of biological structures: System based on a parallel detection scheme, Proceedings of SPIE-The International Society for Optical Engineering.
Beaurepaire, E., P. Gleyzes, et at. (1998). Optical coherence microscopy for the in-depth study of biological structures: System based on a parallel detection scheme, Proceedings of SPIE—The International Society for Optical Engineering.
Bechara, F. G., T. Gambichler, et al. (2004). "Histomorphologic correlation with routine histology and optical coherence tomography." Skin Research and Technology 10 (3): 169-173.
Bechmann, M., M. J. Thiel, et al. (2000). "Central corneal thickness determined with optical coherence tomography in various types of glaucoma. [see comments]." British Journal of Ophthalmology 84(11): 1233-7.
Beddow et al, (May 2002) "Improved Performance Interferomater Designs for Optical Coherence Tomography", IEEE Optical Fiber Sensors Conference, pp. 527-530.
Bek, T. and M. Kandi (2000). "Quantitative anomaloscopy and optical coherence tomography scanning in central serous chorioretinopathy." Acta Ophthalmologica Scandinavica 78(6): 632-7.
Benoit, A. M., K. Naoun, et al. (2001). "Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices." Applied Optics 40(4): 565-569.
Bernet, S et al: "Quantitative Imaging of Complex Samples by Spiral Phase Contrast Microscopy", Optics Express, May 9, 2006.
Berovic, N. "Observation of Brillion scattering from single muscle fibers", European Biophysics Journal, 1989, vol. 17, pp. 69-74.
Bickel, S. William et al., "Stokes Vectors, Mueller Matrices, and Polarized Scattered Light," Am. J. Phys., vol. 53, No. 5, May 1985 pp. 468-478.
Bicout, D., C. Brosseau, et al. (1994). "Depolarization of Multiply Scattered Waves by Spherical Diffusers-Influence of the Size Parameter." Physical Review E 49(2): 1767-1770.
Bicout, D., C. Brosseau, et al. (1994). "Depolarization of Multiply Scattered Waves by Spherical Diffusers—Influence of the Size Parameter." Physical Review E 49(2): 1767-1770.
Bilenca A et al: "The Role of Amplitude and phase in Fluorescence Coherence Imaging: From Wide Filed to Nanometer Depth Profiling", Optics IEEE, May 5, 2007.
Bingid U. et al., "Fibre-Optic Laser-Assisted Infrared Tumour Diagnostics (FLAIR); Infrared Tomour Diagnostics" Journal of Physics D. Applied Physics, vol. 38, No. 15, Aug. 7, 2005.
Blanchot, L., M. Lebec, et al. (1997). Low-coherence in depth microscopy for biological tissues imaging: Design of a real time control system. Proceedings of SPIE-The International Society for Optical Engineering.
Blanchot, L., M. Lebec, et al. (1997). Low-coherence in depth microscopy for biological tissues imaging: Design of a real time control system. Proceedings of SPIE—The International Society for Optical Engineering.
Blumenthal, E. Z. and R. N. Weinreb (2001). "Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection. [Review][36 refs]." Survey of Ophthalmology 45(Suppl 3):S305-12; discussion S332-4.
Blumenthal, E. Z., J. M. Williams, et al. (2000). "Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography." Ophthalmology 107(12): 2278-82.
Boas et al., "Diffusing temporal light correlation for burn diagnosis". SPIE, 1999, 2979:468-477.
Boogert, Jolanda Van Den et al. (1999) "Endoscopic Ablation Therapy for Barrett's Esophagua with High-Grade Dysplasia: A Review" The American Journal of Gastroenterology vol. 94, No. 5, pp. 1153-1160.
Boppart, S. A., B. E. Bouma, et al. (1996). "Imaging developing neural morphology using optical coherence tomography." Journal of Neuroscience Methods 70.
Boppart, S. A., B. E. Bouma, et al. (1997). "Forward-imaging instruments for optical coherence tomography." Optics Letters 22.
Boppart, S. A., B. E. Bouma, et al. (1998). "Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography." Radiology 208: 81-86.
Boppart, S. A., J. Herrmann, et al. (1999). "High-resolution optical coherence tomography-guided laser ablation of surgical tissue." Journal of Surgical Research 82(2): 275-84.
Bouma B E et al: Diagnosis of Specialized Intestinal Metaplasia of the Esophagus with Optical Coherence Tomography, Conference on Lasers and Electro-Optics. Technical Digest. OSA, US, vol. 56, May 6, 2001
Bouma, B et al. (1994) "Hybrid Mode Locking of a Flash-Lamp-Pumped Ti: Al2O3 Laser" Optics Letters vol. 19, No. 22, pp. 1858-1860.
Bouma, B et al. (1995) "High Resolution Optical Coherence Tomography Imaging Using a Mode-Locked Ti: Al2O3 Laser Source" Optics Letters vol. 20, No. 13, pp. 1486-1488.
Bouma, B. E. and G. J. Teamey (2002). "Clinical imaging with optical coherence tomography." Academic Radiology 9(8): 942-953.
Bouma, B. E. and J. G. Fujimoto (1996). "Compact Kerr-lens mode-locked resonators." Optics Letters 21. 134-136.
Bouma, B. E., G. J. Tearney, et al. (1996). "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography." Optics Letters 21(22): 1839.
Bouma, B. E., G. J. Tearney, et al. (2000). "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography." Gastrointestinal Endoscopy 51(4): 467-474.
Bouma, B. E., G. J. Tearney, et al. (2003). "Evaluation of intracoronary stenting by intravascular optical coherence tomography." Heart 89(3): 317-320.
Bouma, B. E., L. E. Nelson, et al. (1998). "Optical coherence tomographic imaging of human tissue at 1.55 82 m and 1.81 μm using Er and Tm-doped fiber sources." Journal of Biomedical Optics3. 76-79.
Bouma, B. E., M. Ramaswamy-Paye, et al. (1997). "Compact resonator designs for mode-locked solid-state lasers." Applied Physics B (Lasers and Optics) B65. 213-220.
Bouma, Brett et al., "Power-Efficient Nonreciprocal Interferometer and Linear-Scanning Fiber-Optic Catheter for Optical Coherence Tomography," Optics Letters, vol. 24, pp. 531-533, Apr. 1999.
Bourquin, S., P. Seitz, et al. (2001). "Optical coherence topography based on a two-dimensional smart detector array." Optics Letters 26(8): 512-514.
Bourquin, S., V. Monterosso, et al. (2000). "Video-rate optical low-coherence reflectometry based on a linear smart detector array." Optics Letters 25(2): 102-104.
Bouzid, A., M. A. G. Abushagur, et al. (1995). "Fiber-optic four-detector polarimeter." Optics Communications 118(3-4): 329-334.
Bowd, C., L. M. Zangwill, et al. (2001). "Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function." Investigative Ophthalmology & Visual Science 42(9): 1993-2003.
Bowd, C., L. M. Zangwill, et al. (2002). "Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender." Journal of the Optical Society of America, A, Optics, Image Science, & Vision 19(1): 197-207.
Bowd, C., R. N. Weinreb, et al. (2000). "The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography." Archives of Ophthalmology 118(1): 22-6.
Brand, S., J. M. Poneros, et al. (2000). "Optical coherence tomography in the gastrointestinal tract." Endoscopy 32(10): 796-803.
Bréhonnet, F. Le Roy et al., "Optical Media and Target Characterization by Mueller Matrix Decomposition," J. Phys. D: Appl. Phys. 29, 1996, pp. 34-38.
Brezinski, M. E. and J. G. Fujimoto (1999). "Optical coherence tomography: high-resolution imaging in nontransparent tissue." IEEE Journal of Selected Topics in Quantum Electronics 5(4): 1185-1192.
Brezinski, M. E., G. J. Teamey, et al. (1996). "Optical coherence tomography for optical biopsy-Properties and demonstration of vascular pathology." Circulation 93(6): 1206-1213.
Brezinski, M. E., G. J. Teamey, et al. (1996). "Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology." Circulation 93(6): 1206-1213.
Brezinski, M. E., G. J. Teamey, et al. (1997). "Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound." Heart 77(5): 397-403.
Brezinski, M. E., G. J. Tearney, et al. (1996). "Imaging of coronary artery microstructure (in vitro) with optical coherence tomography." American Journal of Cardiology 77 (1): 92-93.
Brink, H. B. K. and G. J. Vanblokland (1998). "Birefringence of the Human Foveal Area Assessed Invivo with Mueller-Matrix Ellipsometry." Journal of the Optical Society of America a-Optics Image Science and Vision 5(1): 49-57.
Brinkman, Ralf et al. (1996) "Analysis of Cavitation Dynamics During Pulsed Laser Tissue Ablation by Optical On-Line Monitoring" IEEE Journal of Selected Topics in Quantum Electronics vol. 2, No. 4, pp. 826-835.
Brinkmeyer, E. et al., "Efficient Algorithm for Non-Equidistant Interpolation of Sampled Data," Electronics Letters, vol. 28, p. 693, Mar. 1992.
Brinkmeyer, E. et al., "High-Resolution OCDR in Dispersive Wave-Guides," Electonics Letters, vol. 26, pp. 413-414, Mar. 1990.
Brosseau, C. and D. Bicout (1994). "Entropy Production in Multiple-Scattering of Light by a Spatially Random Medium." Physical Review E 50(6): 4997-5005.
Brown, Stanley B. et al. (2004) "The Present and Future Role of Photodynamic Therapy in Cancer Treatment" The Lancet Oncology vol. 5, pp. 497-508.
Burgoyne, C. F., D. E. Mercante, et al. (2002). "Change detection in regional and volumetric disc parameters using longitudinal confocal scanning laser tomography." Ophthalmology 109(3): 455-66.
C. Joo, et al. "Spectral Domain optical coherence phase and multiphoton microscopy," Optics Letters 32:623 (2007).
C.J. Stewart et al., "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging", Elsevier Ltd., 2005, vol. 31, pp. 744-752.
Cameron, Brent D. et al., "Measurement and Calculation of the Two-Dimensional Backscattering Mueller Matrix of a Turbid Medium," Optics Letters, vol. 23, No. 7, Apr. 1, 1998, pp. 485-487.
Canadian Office Action dated Oct. 10, 2012 for 2,514,189.
Candido, R. and T. J. Allen (2002). "Haemodynamics in microvascular complications in type 1 diabetes." Diabetes-Metabolism Research and Reviews 18(4): 286-304.
Canto, Marcia Irene et al (1999) "Vital Staining and Barrett's Esophagus" Gastrointestinal Endoscopy vol. 49, No. 3, part 2, pp. 12-16.
Cense, B., N. Nassif, et al. (2004). "Ultrahigh-Resolution High-Speed Retinal Imaging Using Spectral-Domain Optical Coherence Tomography." Optics Express 12(11): 2435-2447.
Cense, B., T. C. Chen, et al. (2004). "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography." Investigative Ophthalmology & Visual Science 45(8): 2606-2612.
Cense, Barry et al., "In Vivo Birefringence and Thickness Measurements of the Human Retinal Nerve Fiber Layer Using Polarization-Sensitive Optical Coherence Journal of Tomography," Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 121-125.
Cense, Barry et al., "In Vivo Depth-Resolved Birefringence Measurements of the Human Retinal Nerve Fiber Layer by Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 27, No. 18, Sep. 15, 2002, pp. 1610-1612.
Chance, B., J. S. Leigh, et al. (1988). "Comparison of Time-Resolved and Time-Unresolved Measurements of Deoxyhemoglobin in Brain." Proceedings of the National Academy of Sciences of the United States of America 85(14): 4971-4975.
Chang, E. P., D. A. Keedy, et al. (1974). "Ultrastructures of Rabbit Corneal Stroma-Mapping of Optical and Morphological Anisotropies." Biochimica Et Biophysica Acta 343(3): 615-626.
Chang, E. P., D. A. Keedy, et al. (1974). "Ultrastructures of Rabbit Corneal Stroma—Mapping of Optical and Morphological Anisotropies." Biochimica Et Biophysica Acta 343(3): 615-626.
Chartier, T., A. Hideur, et al. (2001). "Measurement of the elliptical birefringence of single-mode optical fibers." Applied Optics 40(30): 5343-5353.
Chauhan, B. C., J. W. Blanchard, et al. (2000). "Technique for Detecting Serial Topographic Changes in the Optic Disc and Peripapillary Retina Using Scanning Laser Tomograph." Invest Ophthalmol Vis Sci 41: 775-782.
Chen, Z. P., T. E. Milner, et al. (1997). "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography." Optics Letters 22(14): 1119-1121.
Chen, Z. P., T. E. Milner, et al. (1997). "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media." Optics Letters 22(1): 64-66.
Chen, Z. P., Y. H. Zhao, et al. (1999). "Optical Doppler tomography." Ieee Journal of SelectedTopics in Quantum Electronics 5(4): 1134-1142.
Cheong, W. F., S. A. Prahl, et al. (1990). "A Review of the Optical-Properties of Biological Tissues." Ieee Journal of Quantum Electronics 26(12): 2166-2185.
Chernikov, S. V., Y. Zhu, et al. (1997). "Supercontinuum self-Q-switched ytterbium fiber laser." Optics Letters 22(5): 298-300.
Chinese office action dated Aug. 4, 2010 for CN 200780005949.9.
Chinese office action dated Aug. 4, 2010 for CN 200780016266.3.
Chinese Office Action dated Jun. 8, 2010 for Chinese application No. 200780031332.4.
Chinn, S.R. et al., "Optical Coherence Tomography Using a Frequency-Tunable Optical Source," Optics Letters, vol. 22, pp. 340-342, Mar. 1997.
Cho, S. H., B. E. Bouma, et al. (1999). "Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:AI/sub 2/0/sub 3/ laser with a multiple-pass cavity." Optics Letters 24(6): 417-419.
Choma et al. ["Sensitivity advantage of swept source and Fourier domain optical coherence tomography"] published by Optics Express, vol. 11, No. 18, Sep. 8, 2003, pp. 2183-2189. *
Choma, M. A., C. H. Yang, et al. (2003). "Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers." Optics Letters 28(22): 2162-2164.
Choma, M. A., M. V. Sarunic, et al. (2003). "Sensitivity advantage of swept source and Fourier domain optical coherence tomography." Optics Express 11(18): 2183-2189.
Choplin, N. T. and D. C. Lundy (2001). "The sensitivity and specificity of scanning laser polarimetry in the detection of glaucoma in a clinical setting." Ophthalmology 108 (5): 899-904.
Christens Barry, W. A., W. J. Green, et al. (1996). "Spatial mapping of polarized light transmission in the central rabbit cornea." Experimental Eye Research 62(6): 651-662.
Chvapil, M., D. P. Speer, et al. (1984). "Identification of the depth of burn injury by collagen stainability." Plastic & Reconstructive Surgery 73(3): 438-41.
Cioffi, G. A. (2001). "Three common assumptions about ocular blood flow and glaucoma." Survey of Ophthalmology 45: S325-S331.
Clark et al., "Tracking Speckle Patterns with Optical Correlation", SPIE, 1992, 1772:77-87.
Coleman, A. L. (1999). "Glaucoma." Lancet 354(9192): 1803-10.
Collaborative Normal-Tension Glaucoma Study Group (1998). "Comparison of Glaucomatous Progression Between Untreated Patients With Normal Tension Glaucoma and Patients with Therapeutically Reduced Intraocular Pressures." Am J Ophthalmol 126: 487-97.
Collaborative Normal-Tension Glaucoma Study Group (1998). "The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma." Am J Ophthalmol 126: 498-505.
Collaborative Normal-Tension Glaucoma Study Group (2001). "Natural History of Normal-Tension Glaucoma." Ophthalmology 108: 247-253.
Colston, B. W., M. J. Everett, et al. (1998). "Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography." Applied Optics 37(16): 3582-3585.
Colston, B. W., U. S. Sathyam, et al. (1998). "Dental OCT." Optics Express 3(6): 230-238.
Communication pursuant to Article 94(3) for EP 10186189.6 mailed Dec. 22, 2011.
Congdon, N. G., D. S. Friedman, et al. (2003). "Important causes of visual impairment in the world today." Jama-Journal of the American Medical Association 290(15): 2057-2060.
Constance R. Chu et al: Arthroscopic Microscopy of Articular Cartilage Using Optical Coherence Tomography, American Journal of Sports Medicine, American Orthopedic Society for Sports Medicine, Waltham, MA, Vo. 32, No. 9, Apr. 1, 2004.
Cregan, R. F., B. J. Mangan, et al. (1999). "Single-mode photonic band gap guidance of light in air." Science 285(5433): 1537-1539.
D. Fu et al., "Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach", Phys. Med. Biol. 2000 (45): 1495-1509.
D. Huang et al., "Optical Coherence Tomography," Science, vol. 254, pp. 1178-1181, Nov. 1991.
D. Yelin et al., "Three-dimensional imaging using spectral encoding heterodyne interferometry", Optics Letters, Jul. 15, 2005, vol. 30, No. 14, pp. 1794-1796.
D.J. Bowery et al., (1999) "Patterns of Gastritis in Patients with Gastro-Oesophageal Reflux Disease,", Gut, vol. 45, pp. 798-803.
DalMolin, M., A. Galtarossa, et al. (1997). "Experimental investigation of linear polarization in high-birefringence single-mode fibers." Applied Optics 36(12): 2526-2528.
D'Amico, A.V., et al., "Optical Coherence Tomography as a Method for Identifying Benign and Maliganat Microscopic Structures in the Prostate Gland", Urology, vol. 55, Isue 5, May 2000 ("C3"), pp. 783-787.
Danielson, B. L. and C. D. Whittenberg (1987). "Guided-Wave Reflectometry with Micrometer Resolution." Applied Optics 26(14): 2836-2842.
Danielson, B.L. et al., "Absolute Optical Ranging Using Low Coherence Interferometry," Applied Optics, vol. 30, p. 2975, Jul. 1991.
Database Biosis Biosciences Information Service, Philadelphia, PA, US; Oct. 2006, Yelin D. et al: "Three-Dimensional Miniature Endoscopy".
Database Compendex Engineering Information, Inc., New York, NY, US; Mar. 5, 2007, Yelin, Dvir et al: "Spectral-Domain Spectrally-Encoded Endoscopy".
Dave, D. P. and T. E. Milner (2000), "Doppler-angle measurement in highly scattering media." Optics Letters 25(20): 1523-1525.
Davé, Digant P. et al., "Polarization-Maintaining Fiber-Based Optical Low-Coherence Reflectometer for Characterization and Ranging of Birefringence," Optics Letters, vol. 28, No. 19, Oct. 1, 2003, pp. 1775-1777.
David J. Briers, "Speckle fluctuations and biomedical optics: implications and applications", Optical Engineering, 1993, 32(2):277-283.
de Boer, J. F., C. E. Saxer, et al. (2001). "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography." Applied Optics 40(31): 5787-5790.
de Boer, J. F., T. E. Milner, et al. (1998). Two dimensional birefringence imaging in biological tissue using phase and polarization sensitive optical coherence tomography. Trends in Optics and Photonics (TOPS): Advances in Optical Imaging and Photon Migration, Orlando, USA, Optical Society of America, Washington, DC 1998.
De Boer, Johannes F. et al., "Determination of the Depth-Resolved Stokes Parameters of Light Backscattered from Turbid Media by use of Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 24, No. 5, Mar. 1, 1999, pp. 300-302.
De Boer, Johannes F. et al., "Imaging Thermally Damaged Tissue by Polarization Sensitive Optical Coherence Tomography," Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 212-218.
De Boer, Johannes F. et al., "Improved with Signal-to-Noise Ratio in Spectral-Domain Compared with Time-Domain Optical Coherence Tomography," Optics Letters, vol. 28, No. 21, Nov. 1, 2003, pp. 2067-2069.
De Boer, Johannes F. et al., "Polarization Effects in Optical Coherence Tomography of Various Viological Tissues," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1200-1204.
De Boer, Johannes F. et al., "Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination," Journal of Biomedical Optics, Jul. 2002, vol. 7, No. 3, pp. 359-371.
De Boer, Johannes F. et al., "Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination," Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 359-371.
De Boer, Johannes F. et al., "Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 22, No. 12, Jun. 15, 1997, pp. 934-936.
Deckelbaum, Lawrence I. (1994) "Coronary Laser Angioplasty" Lasers in Surgery and Medicine vol. 14, pp. 101-110.
Degroot, P. and L. Deck (1993). "3-Dimensional Imaging by Sub-Nyquist Sampling of White-Light Interferograms." Optics Letters 18(17): 1462-1464.
Denk, W., J. H. Strickler, et al. (1990). "2-Photon Laser Scanning Fluorescence Microscopy." Science 248(4951): 73-76.
Descour, M. R., A. H. O. Karkkainen, et al. (2002). "Toward the development of miniaturized Imaging systems for detection of pre-cancer." Ieee Journal of Quantum Electronics 38(2): 122-130.
Desjardins A.E., et al., "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging", Optics Express, May 15, 2006, vol. 14, No. 11, pp. 4736-4745.
Dettwiller, L. (1997). "Polarization state interference: A general investigation." Pure and Applied Optics 6(1): 41-53.
Devesa, Susan S. et al. (1998) "Changing Patterns in the Incidence of Esophegeal and Gastric Carcinoma in the United States." American Cancer Society vol. 83, No. 10 pp. 2049-2053.
DiCarlo, C. D., W. P. Roach, et al. (1999). "Comparison of optical coherence tomography imaging of cataracts with histopathology." Journal of Biomedical Optics 4.
Ding, Z., Y. Zhao, et al. (2002). "Real-time phase-resolved optical coherence tomography and optical Doppler tomography." Optics Express 10(5): 236-245.
Dobrin, P. B. (1996). "Effect of histologic preparation on the cross-sectional area of arterial rings." Journal of Surgical Research 61(2): 413-5.
Donohue, D. J., B. J. Stoyanov, et al. (1995). "Numerical Modeling of the Corneas Lamellar Structure and Birefringence Properties." Journal of the Optical Society of America a-Optics Image Science and Vision 12(7): 1425-1438.
Doornbos, R. M. P., R. Lang, et al. (1999). "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy." Physics in Medicine and Biology 44(4): 967-981.
Dorrer, C. et al., "Spectral Resolution and Sampling Issues in Fourier-Transform Spectral Interferometry," Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1795-1802, Oct. 2000.
Drexler, W., A. Baumgartner, et al. (1997). "Biometric investigation of changes in the anterior eye segment during accommodation." Vision Research 37(19): 2789-2800.
Drexler, W., A. Baumgartner, et al. (1997). "Submicrometer precision biometry of the anterior segment of the human eye." Investigative Opthalmology & Visual Science 38(7): 1304-1313.
Drexler, W., A. Baumgartner, et al. (1998). "Dual beam optical coherence tomography: signal identification for ophthalmologic diagnosis." Journal of Biomedical Optics 3 (1): 55-65.
Drexler, W., C. K. Hitzenberger, et aI. (1995). "Measurement of the Thickness of Fundus Layers by Partial Coherence Tomography." Optical Engineering 34(3): 701-710.
Drexler, W., C. K. Hitzenberger, et al. (1996). "(Sub)micrometer precision biometry of the human eye by optical coherence tomography and topography." Investigative Ophthalmology & Visual Science 37(3): 4374-4374.
Drexler, W., C. K. Hitzenberger, et al. (1998). "Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry." Experimental Eye Research 66(1): 25-33.
Drexler, W., D. Stamper, et al. (2001). "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis." Journal of Rheumatology 28(6): 1311-8.
Drexler, W., H. Sattmann, et al. (2003). "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography." Archives of Ophthalmology 121(5): 695-706.
Drexler, W., O. Findl, et al. (1997). "Clinical feasibility of dual beam optical coherence topography and tomography for ophthalmologic diagnosis." Investigative Ophthalmology& Visual Science 38(4): 1038-1038.
Drexler, W., O. Findl, et al. (1998). "Partial coherence interferometry: A novel approach to biometry in cataract surgery." American Journal of Ophthalmology 126(4): 524-534.
Drexler, W., U. Morgner, et al. (2001). "Ultrahigh-resolution ophthalmic optical coherence tomography. [erratum appears in Nat Med May 2001;7(5):636.]." Nature Medicine 7(4): 502-7.
Drexler, W., U. Morgner, et al. (2001). "Ultrahigh-resolution ophthalmic optical coherence tomography." Nature Medicine 7(4): 502-507.
Droog, E. J., W. Steenbergen, et al. (2001). "Measurement of depth of burns by laser Doppler perfusion imaging." Burns 27(6): 561-8.
Dubois Arnaud et al., "Ultrahigh-resolution OCT using white-light interference microscopy", Proceedings of SPIE, 2003, vol. 4956, pp. 14-21.
Dubois, A., K. Grieve, et al. (2004). "Ultrahigh-resolution full-field optical coherence tomography." Applied Optics 43(14): 2874-2883.
Dubois, A., L. Vabre, et al. (2002). "High-resolution full-field optical coherence tomography with a Linnik microscope." Applied Optics 41(4):805-812.
Ducros, M. G., J. D. Marsack, et al. (2001). "Primate retina imaging with polarization-sensitive optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 18(12): 2945-2956.
Ducros, M., M. Laubscher, et al. (2002). "Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array." Optics Communications 202(1-3): 29-35.
Ducros, Mathieu G. et al., "Polarization Sensitive Optical Coherence Tomography of the Rabbit Eye," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1159-1167.
Dudley, J.M. et al., "Cross-Correlation Frequency Resolved Optical Gating Analysis of Broadband Continuum Generation in Photonic Crystal Fiber: Simulations and Experiments," Optics Express, vol. 10, p. 1215, Oct. 2002.
Duncan, A., J. H. Meek, et al. (1995). "Optical Pathlength Measurements on Adult Head, Calf and Forearm and the Head of the Newborn-Infant Using Phase-Resolved Optical Spectroscopy." Physics in Medicine and Biology 40(2): 295-304.
E. Betzig et al. "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313:1642 (2006), stochastic optical reconstruction microscopy (STORM).
E. Montgomery et al., "Reproducibility of the Diagnosis of Dysplasia in Barrett Esophagus: A Reaffirmation," Apr. 2001, Human Pathology, vol. 32, No. 4, pp. 368-378.
Eickhoff, W. et al., "Optical Frequency-Domain Reflectometry in Single-Mode Fiber," Applied Physics Letters, vol. 39, pp. 693-695, 1981.
Eigensee, A., G. Haeusler, et al. (1996). "New method of short-coherence interferometry in human skin (in vivo) and in solid vol. scatterers." Proceedings of SPIE-The International Society for Optical Engineering 2925: 169-178.
Eigensee, A., G. Haeusler, et al. (1996). "New method of short-coherence interferometry in human skin (in vivo) and in solid vol. scatterers." Proceedings of SPIE—The International Society for Optical Engineering 2925: 169-178.
Eisenbeiss, W., J. Marotz, et al. (1999). "Reflection-optical multispectral imaging method for objective determination of burn depth." Burns 25(8): 697-704.
Elbaum, M., M. King, et al. (1972). "Wavelength-Diversity Technique for Reduction of Speckle Size." Journal of the Optical Society of America 62(5): 732-&.
Elena Zagaynova et al: "Optical Coherence Tomography: Potentialities in Clinical Practice", Proceedings of SPIE, Aug. 20, 2004.
Elliott, K. H. "The use of commercial CCD cameras as linear detectors in the physics undergraduate teaching laboratory", European Journal of Physics 19, 1998, pp. 107-117.
Erdelyi et al. "Generation of diffraction-free beams for applications in optical microlithography", J. Vac. Sci. Technol. B 15 (12), Mar./Apr. 1997, pp. 287-292.
Ervin, J. C., H. G. Lemij, et al. (2002). "Clinician change detection viewing longitudinal stereophotographs compared to confocal scanning laser tomography in the LSU Experimental Glaucoma (LEG) Study." Ophthalmology 109(3): 467-81.
Essenpreis, M., C. E. Elwell, et al. (1993). "Spectral Dependence of Temporal Point Spread Functions in Human Tissues." Applied Optics 32(4): 418-425.
Eun, H. C. (1995). "Evaluation of skin blood flow by laser Doppler flowmetry. [Review][151 refs]." Clinics in Dermatology 13(4): 337-47.
European communication dated May 15, 2008 for European patent application No. 05819917.5.
European Communication Pursuant to EPC Article 94(3) for EP 07845206.7 dated Aug. 30, 2012.
European Extended Search Report mailed Mar. 26, 2013 for EP 09825421.1.
European Extended Search Report mailed on Feb. 1, 2013 for EP 12171521.3.
European Office Action dated Jul. 14, 2010 for EP 06751266.5.
European Office Action dated Jun. 11, 2010 for EP 07761877.5.
European Official Action dated Aug. 1, 2012 for EP 10193526.0.
European Official Action dated Dec. 2, 2008 for EP 07718117.0.
European Official Communication dated Aug. 1, 2012 for EP 10193526.0.
European Official Communication dated Feb. 12, 2008 for EP 07718117.0.
European Official Communication dated Feb. 6, 2013 for 04822169.1.
European Official Communication dated Jun. 28, 2013 for EP 09158713.9.
European Official Communication mailed on Feb. 11, 2013 for EP 08837490.5.
European Official Communication mailed on Feb. 15, 2012 for EP 04822169.1.
European Patent Office Search report for Application No. 01991092.6-2305 dated Jan. 12, 2006.
European Search Report dated Dec. 3, 2010 for EP 10182442.3.
European Search Report dated Jul. 15, 2013 for EP 10800455.7.
European Search Report dated Jul. 26, 2013 for EP 09743687.7.
European Search Report dated Jun. 25, 2012 for EP 10733985.5.
European Search Report dated Mar. 2, 2012 for EP 11188120.7.
European Search Report dated Sep. 10, 2013 for EP 10183412.5.
European Search Report for 12194876.4 dated Feb. 1, 2013.
European Search Report issued May 5, 2009 for European Application No. 01991471.2.
European Search Report mailed on Mar. 11, 2013 doe EP 10739129.4.
European Search Report mailed on Mar. 11, 2013 for EP 10739129.4.
Evans, J. A., J. M. Poneros, et al. (2004). "Application of a histopathologic scoring system to optical coherence tomography (OCT) images to identify high-grade dysplasia in Barrett's esophagus." Gastroenterology 126(4): A51-A51.
Evans, John A. et al. (2006) "Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett's Esophagus" Clinical Gastroenterology and Hepatology vol. 4. pp. 38-43.
Everett, M.J. et al., "Birefringence Characterization of Biological Tissue by Use of Optical Coherence Tomography," Optics Letters, vol. 23, No. 3, Feb. 1, 1998, pp. 228-230.
Extended European Search Report dated Jul. 11, 2013 for EP 09832543.4.
Extended European Search Report dated Jul. 2, 2013 for EP 10738929.8.
Extended European Search Report dated Nov. 28, 2011 for EP 09767845.2.
Extended European Search Report mailed Dec. 14, 2010 for EP 10182301.1.
Facchini et al., "An endoscopic system for DSPI", Optik, 1993, 95(1):27-30.
Falk, Gary W. et al. (1997) "Surveillance of Patients with Barrett's Esophagus for Dysplasia and Cancer with Ballon Cytology" Gastrorenterology vol. 112, pp. 1787-1797.
Feldchtein, F. I., G. V. Gelikonov, et al. "Endoscopic applications of optical coherence tomography." Optics Express 3(6): 257-270. (1998).
Feldchtein, F. I., G. V. Gelikonov, et al. "In vivo OCT imaging of hard and soft tissue of the oral cavity." Optics Express 3(6): 239-250. (1998).
Feng et al., "Mesocopic Conductors and Correlations in Laser Speckle Patters" Science, New Series, vol. 251, No. 4994, pp. 633-639 (Feb. 8, 1991).
Fercher, A. F., C. Hitzenberger, et al. (1991). "Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light." Journal of Modern Optics 38(7): 1327-1333.
Fercher, A. F., C. K. Hitzenberger, et al. (1993). "In-Vivo Optical Coherence Tomography." American Journal of Ophthalmology 116(1): 113-115.
Fercher, A. F., C. K. Hitzenberger, et al. (1994). In-vivo dual-beam optical coherence tomography. Proceedings of SPIE-The International Society for Optical Engineering.
Fercher, A. F., C. K. Hitzenberger, et al. (1994). In-vivo dual-beam optical coherence tomography. Proceedings of SPIE—The International Society for Optical Engineering.
Fercher, A. F., C. K. Hitzenberger, et al. (1995). "Measurement of Intraocular Distances by Backscattering Spectral Interferometry." Optics Communications 117(1-2): 43-48.
Fercher, A. F., C. K. Hitzenberger, et al. (1996). Ocular partial coherence interferometry. Proceedings of SPIE-The International Society for Optical Engineering.
Fercher, A. F., C. K. Hitzenberger, et al. (1996). Ocular partial coherence interferometry. Proceedings of SPIE—The International Society for Optical Engineering.
Fercher, A. F., C. K. Hitzenberger, et al. (2000). "A thermal light source technique for optical coherence tomography." Optics Communications 185(1-3): 57-64.
Fercher, A. F., C. K. Hitzenberger, et al. (2001). "Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography." Optics Express 9(12): 610-615.
Fercher, A. F., C. K. Hitzenberger, et al. (2002) "Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique." Optics Communications 204(1-6): 67-74.
Fercher, A. F., H. C. Li, et al. (1993). "Slit Lamp Laser-Doppler Interferometer." Lasers in Surgery and Medicine 13(4): 447-452.
Fercher, A. F., K. Mengedoht, et at. (1988). "Eye-Length Measurement by Interferometry with Partially Coherent-Light." Optics Letters 13(3): 186-188.
Fercher, A. F., W. Drexler, et al. (1994). Measurement of optical distances by optical spectrum modulation. Proceedings of SPIE-The International Society for Optical Engineering.
Fercher, A. F., W. Drexler, et al. (1994). Measurement of optical distances by optical spectrum modulation. Proceedings of SPIE—The International Society for Optical Engineering.
Fercher, A. F., W. Drexler, et al. (1997). "Optical ocular tomography." Neuro-Ophthalmology 18(2): 39-49.
Fercher, A. F., W. Drexler, et al. (2003). "Optical coherence tomography-principles and applications." Reports on Progress in Physics 66(2): 239-303.
Fercher, A. F., W. Drexler, et al. (2003). "Optical coherence tomography—principles and applications." Reports on Progress in Physics 66(2): 239-303.
Fercher, Adolf "Optical Coherence Tomography," Journal of Biomedical Optics, vol. 1, pp. 157-173, Apr. 1996.
Fernandez, Cabrera Delia et al. "Automated detection of retinal layer structures on optical coherence tomography images", Optics Express vol. 13, No. 25, Oct. 4, 2005, pp. 10200-10216.
Fernández, Cabrera Delia et al. "Automated detection of retinal layer structures on optical coherence tomography images", Optics Express vol. 13, No. 25, Oct. 4, 2005, pp. 10200-10216.
Fernandez-Suarez, M. et al., "Fluorescent Probes for Super-Resolution Imaging in Living Cells" Nature Reviews Molecular Cell Biology vol. 9, Dec. 2008.
Ferreira, L.A. et al., "Polarization-Insensitive Fiberoptic White-Light Interferometry," Optics Communications, vol. 114, pp. 386-392, Feb. 1995.
Ferro, P., M. Haelterman, et al. (1991). "All-Optical Polarization Switch with Long Low-Birefringence Fiber." Electronics Letters 27(16): 1407-1408.
Fetterman, M. R., D. Goswami, et al. (1998). "Ultrafast pulse shaping: amplification and characterization." Optics Express 3(10): 366-375.
Findl, O., W. Drexler, et al. (2001). "Improved prediction of intraocular lens power using partial coherence interferometry." Journal of Cataract and Refractive Surgery 27 (6): 861-867.
Fork, R. L., C. H. B. Cruz, et al. (1987). "Compression of Optical Pulses to 6 Femtoseconds by Using Cubic Phase Compensation." Optics Letters 12(7): 483-485.
Foschini, G. J. and C. D. Poole (1991). "Statistical-Theory of Polarization Dispersion in Single-Mode Fibers." Journal of Lightwave Technology 9(11): 1439-1456.
Fox, J.A. et al; "A New Galvanometric Scanner for Rapid tuning of C02 Lasers" New York, IEEE, US vol. Apr. 7, 1991.
Francia, C., F. Bruyere, et al. (1998). "PMD second-order effects on pulse propagation in single-mode optical fibers." Ieee Photonics Technology Letters 10(12): 1739-1741.
French, P.M.W. et al. (1993) "Continuous-wave Mode-Locked Cr.∝4+: YAG Laser" Optics Letters vol. 18, No. 1, pp. 39-41.
Fried, D., R. E. Glena, et al. (1995). "Nature of Light-Scattering in Dental Enamel and Dentin at Visible and near-Infrared Wavelengths." Applied Optics 34(7): 1278-1285.
Fried, Daniel et al., "Imaging Caries Lesions and Lesion Progression with Polarization Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 7, No. 4, Oct. 2002, pp. 618-627.
Froehly, J. et al. (2003) "Multiplexed 3D Imaging Using Wavelength Encoded Spectral Interferometry: A Proof of Principle" Optics Communications vol. 222, pp. 127-136.
Fu L e tal: Double-Clad Photonic Crystal Fiber Coupler for compact Nonlinear Optical Microscopy Imaging, Optics Letters, OSA, Optical Society of America, vol. 31, No. 10, May 15, 2006, pp. 1471-1473.
Fujii, Yohji, "High-Isolation Polarization-Independent Optical Circulator", Journal of Lightwave Technology, vol. 9, pp. 1239-1243, Oct. 1991.
Fujimoto et al., "High Resolution in Vivo Intra-Arterial Imaging with Optical Coherence Tomography," Official Journal of the British Cardiac Society, vol. 82, pp. 128-133 Heart, 1999.
Fujimoto, J. G., M. E. Brezinski, et al. (1995). "Optical Biopsy and Imaging Using Optical Coherence Tomography." Nature Medicine 1(9): 970-972.
Fukasawa, A. and H. Iijima (2002). "Optical coherence tomography of choroidal osteoma." American Journal of Ophthalmology 133(3): 419-21.
Fymat, A. L. (1981). "High-Resolution Interferometric Spectrophotopolarimetry." Optical Engineering 20(1): 25-30.
G. J. Tearney et al., "Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis", CLEO 2001, vol. 56, pp. 307-307.
Galtarossa, A., L. Palmieri, et al. (2000). "Measurements of beat length and perturbation length in long single-mode fibers." Optics Letters 25(6): 384-386.
Galtarossa, A., L. Palmieri, et al. (2000). "Statistical characterization of fiber random birefringence." Optics Letters 25(18):1322-1324.
Gandjbakhche, A. H., P. Mills, et al. (1994). "Light-Scattering Technique for the Study of Orientation and Deformation of Red-Blood-Cells in a Concentrated Suspension." Applied Optics 33(6): 1070-1078.
Gang Yao et al. "Monte Carlo Simulation of an Optical Coherence Tomography Signal in Homogenous Turbid Media," Physics in Medicine and Biology, 1999.
Ganz, Robert A. et al. (2004) "Complete Ablation of Esophageal Epithelium with a Balloon-based Bipolar Electrode: A Phased Evaluation in the Porcine and in the Human Esophagus" Gastrointestinal Endoscopy vol. 60, No. 6, pp. 1002-1010.
Garcia, N. and M. Nieto-Vesperinas (2002). "Left-handed materials do not make a perfect lens." Physical Review Letters 88(20).
Ge Z et al: "Identification of Colonic Dysplasia and Neoplasia by Diffuse Reflectance Spectroscopy and Pattern Recognition Techniques", Applied Spectroscopy, The Society for Applied Spectroscopy, vol. 52, No. 6, Jun. 1, 1998.
Gelikono, V. M. et al. Oct. 1, 2004 "Two-Wavelength Optical Coherence Tomography" Radio physics and Quantum Electronics, Kluwer Academic Publishers-Consultants. vol. 47, No. 10-1.
Gelikonov, V. M., G. V. Gelikonov, et al. (1995). "Coherent Optical Tomography of Microscopic Inhomogeneities in Biological Tissues." Jetp Letters 61(2): 158-162.
Georgakoudi, Irene et al. (2001) "Fluorescence, Reflectance, and Light-Scattering Spectroscopy for Evaluating Dysplasia in Patients with Barrett's Esophagus" Gastroenterology vol. 120, pp. 1620-1629.
George, N. and A. Jain (1973). "Speckle Reduction Using Multiple Tones of Illumination." Applied Optics 12(6): 1202-1212.
Gibson, G. N., R. Klank, et al. (1996). "Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator." Optics Letters 21(14): 1055.
Gil, J. J. (2000). "Characteristic properties of Mueller matrices." Journal of the Optical Society of America a-Optics Image Science and Vision 17(2): 328-334.
Gil, J. J. and E. Bernabeu (1987). "Obtainment of the Polarizing and Retardation Parameters of a Nondepolarizing Optical-System from the Polar Decomposition of Its Mueller Matrix." Optik 76(2): 67-71.
Giuliano, Scarcelli et al., "Confocal Brillouin Microscopy for Three-Dimensional Mechanical Imaging." Nat Photonis, Dec. 9, 2007.
Giuliano, Scarcelli et al., "Three-Dimensional Brillouin Confocal Microscopy". Optical Society of American, 2007, CtuV5.
Gladkova, N. D., G. A. Petrova, et al. (2000). "In vivo optical coherence tomography imaging of human skin: norm and pathology." Skin Research and Technology 6 (1): 6-16.
Glaessl, A., A. G. Schreyer, et al. (2001). "Laser surgical planning with magnetic resonance imaging-based 3-dimensional reconstructions for intralesional Nd : YAG laser therapy of a venous malformation of the neck." Archives of Dermatology 137(10): 1331-1335.
Glance, B., "Polarization Independent Coherent Optical Receiver," Journal of Lightwave Technology, vol. LT-5, p. 274, Feb. 1987.
Gloesmann, M., B. Hermann, et al. (2003). "Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography." Investigative Ophthalmology & Visual Science 44(4): 1696-1703.
Glombitza, U., "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides," Journal of Lightwave Technology, vol. 11, pp. 1377-1384, Aug. 1993.
Goldberg, L. and D. Mehuys (1994). "High-Power Superluminescent Diode Source." Electronics Letters 30(20): 1682-1684.
Goldsmith, J. A., Y. Li, et al. (2005). "Anterior chamber width measurement by high speed optical coherence tomography." Ophthalmology 112(2): 238-244.
Goldstein, L. E., J. A. Muffat, et al. (2003). "Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease." Lancet 361(9365): 1258-1265.
Golubovic, B. et al., "Optical Frequency-Domain Reflectometry Using Rapid Wavelength Tuning of a Cr4+:Forsterite Laser," Optics Letters, vol. 11, pp. 1704-1706, Nov. 1997.
Golubovic, B., B. E. Bouma, et al. (1996). "Thin crystal, room-temperature Cr/sup 4 +/:forstefite laser using near-infrared pumping." Optics Letters 21(24): 1993-1995.
Gonick, Maria M., et al (2002) "Visualization of Blood Microcirculation Parameters in Human Tissues by Time Integrated Dynamic Speckles Analysis" vol. 972, No. 1, Oct. 1, 2002.
Gonzalez, R.C. and Wintz, P., "Digital Image Processing" Addison-Wesley Publishing Company, Reading MA, 1987.
Gonzalez, S. and Z. Tannous (2002). "Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma." Journal of the American Academy of Dermatology 47(6): 869-874.
Gordon, M. O. and M. A. Kass (1999). "The Ocular Hypertension Treatment Study: design and baseline description of the participants." Archives of Ophthalmology 117(5): 573-83.
Götzinger, Erich et al., "Measurement and Imaging of Birefringent Properties of the Human Cornea with Phase-Resolved, Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 94-102.
Grayson, T. P., J. R. Torgerson, et al. (1994). "Observation of a Nonlocal Pancharatnam Phase-Shift in the Process of Induced Coherence without Induced Emission." Physical Review A 49(1): 626-628.
Greaney, M. J., D. C. Hoffman, et al. (2002). "Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma." Investigative Opthalmology & Visual Science 43(1): 140-5.
Greenfield, D. S., H. Bagga, et al. (2003). "Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography." Archives of Ophthalmology 121(1): 41-46.
Greenfield, D. S., R. W. Knighton, et al. (2000). "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry." American Journal of Ophthalmology 129(6): 715-722.
Griffin, R. A., D. D. Sampson, et al. (1995). "Coherence Coding for Photonic Code-Division Multiple-Access Networks." Journal of Lightwave Technology 13(9): 1826-1837.
Groner, Warren et al., "Orthogonal Polarization Spectral Imaging: A New Method for Study of the Microcirculation," Nature Medicine Inc., vol. 5 No. 10, Oct. 1999, pp. 1209-1213.
Groot De P et al: "Three Dimensional Imaging by Sub-Nyquist Sampling of White-Light Interferograms", Optics Letters, vol. 18, No. 17, Sep. 1, 1993.
Guedes, V., J. S. Schuman, et al. (2003). "Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes." Ophthalmology 110(1): 177-189.
Gueugniaud, P. Y., H. Carsin, et al. (2000). "Current advances in the initial management of major thermal burns. [Review] [76 refs]." Intensive Care Medicine 26(7): 848-56.
Guido, S. and R. T. Tranquillo (1993). "A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Collagen Gels-Correlation of Fibroblast Orientation and Gel Birefringence." Journal of Cell Science 105: 317-331.
Guido, S. and R. T. Tranquillo (1993). "A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Collagen Gels—Correlation of Fibroblast Orientation and Gel Birefringence." Journal of Cell Science 105: 317-331.
Guo, Bujin et al., "Laser-based mid-infrared reflectance imaging of biological tissues", Optics Express, Jan. 12, 2004, vol. 12, No. 1, pp. 208-219.
Guo, Shuguang et al., "Depth-Resolved Birefringence and Differential Optical Axis Orientation Measurements with Finer-based Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 29, No. 17, Sep. 1, 2004, pp. 2025-2027.
Gurses-Ozden, R., H. Ishikawa, et al. (1999). "Increasing sampling density improves reproducibility of optical coherence tomography measurements." Journal of Glaucoma 8(4): 238-41.
Guzzi, R. (1998). "Scattering Theory from Homogeneous and Coated Spheres." 1-11.
H. Geddert et al., "Expression of Cyclin B1 in the Metaplasia- Dysphasia -Carcinoma Sequence of Barrett Esophagus," Jan. 2002, Cancer, vol. 94, No. 1, pp. 212-218.
Haberland, U. B., Vladimir; Schmitt, Hans J. (1996). "Optical coherent tomography of scattering media using electrically tunable near-infrared semiconductor laser." Applied Optics Draft Copy.
Haberland, U. H. P. et al., "Chirp Optical Coherence Tomography of Layered Scattering Media," Journal of Biomedical Optics, vol. 3, pp. 259-266, Jul. 1998.
Haberland, U. R., Walter; Blazek, Vladimir; Schmitt, Hans J. (1995). "Investigation of highly scattering media using near-infrared continuous wave tunable semiconductor laser." Proc. SPIE, 2389: 503-512.
Haggitt et al: "Barrett's Esophaagus, Dysplasia, and Adenocarcinoma", Human Pathology, Saunders, Philadelphia, PA, US, vol. 25, No. 10, Oct. 1, 1994.
Hajime Tanaka et al., "New Method of Superheterodyne Light Beating Spectroscopy for Brillouin-Scattering Using Frequency-Tunable Lasers", Physical Review Letters 1995, 74 (9): 1609-1612.
Hale, G. M. and M. R. Querry (1973). "Optical-Constants of Water in 200-Nm to 200-μm Wavelength Region." Applied Optics 12(3): 555-563.
Hammer, D. X., R. D. Ferguson, et al. (2002). "Image stabilization for scanning laser ophthalmoscopy." Optics Express 10(26): 1542.
Hammer, Daniel X. et al., "Spectrally Resolved White-Light Interferometry for Measurement of Ocular Dispersion," Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 16, pp. 2092-2102, Sep. 1999.
Hara, T., Y. Ooi, et al. (1989). "Transfer Characteristics of the Microchannel Spatial Light-Modulator." Applied Optics 28(22): 4781-4786.
Hariri, Lida P. et al. "Endoscopic Optical Coherence Tomography and Laser-Induced Fluorescence Spectroscopy in a Murine Colon Cancer Model", Laser in Surgery and Medicine, vol. 38, 2006, pp. 305-313.
Harland, C. C., S. G. Kale, et al. (2000). "Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound." British Journal of Dermatology 143(2): 281-289.
Hartl, I., X. D. Li, et al. (2001). "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber." Optics Letters 26(9): 608-610.
Harvey, K. C. et al., "External-Cavity Diode-Laser Using a Grazing-Incidence Diffraction Grating," Optics Letters, vol. 16, pp. 910-912, Jun. 1991.
Hassenstein, A., A. A. Bialasiewicz, et al. (2000). "Optical coherence tomography in uveitis patients." American Journal of Ophthalmology 130(5): 669-70.
Hattenhauer, M. G., D. H. Johnson, et al. (1998). "The probability of blindness from open-angle glaucoma. [see comments]." Ophthalmology 105(11): 2099-104.
Hausler, G., J. M. Herrmann, et al. (1996). "Observation of light propagation in volume scatterers with 10(11)-fold slow motion." Optics Letters 21(14): 1087-1089.
Hausler, Gerd et al., "'Coherence Radar' and 'Spectral Radar' New Tools for Dermatological Diagnosis," Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan. 1998.
Hausler, Gerd et al., "‘Coherence Radar’ and ‘Spectral Radar’ New Tools for Dermatological Diagnosis," Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan. 1998.
Hazebroek, H. F. and A. A. Holscher (1973). "Interferometric Ellipsometry." Journal of Physics E-Scientific Instruments 6(9): 822-826.
Hazebroek, H. F. and W. M. Visser (1983). "Automated Laser Interferometric Ellipsometry and Precision Reflectometry." Journal of Physics E-Scientific Instruments 16(7): 654-661.
He, Z. Y., N. Mukohzaka, et al. (1997). "Selective image extraction by synthesis of the coherence function using two-dimensional optical lock-in amplifier with microchannel spatial light modulator." Ieee Photonics Technology Letters 9(4): 514-516.
Hee, M. R., C. A. Puliafito, et al. (1995). "Quantitative assessment of macular edema with optical coherence tomography." Archives of Ophthalmology 113(8): 1019-29.
Hee, M. R., C. A. Puliafito, et al. (1998). "Topography of diabetic macular edema with optical coherence tomography." Ophthalmology 105(2): 360-70.
Hee, M. R., J. A. Izatt, et al. (1993). "Femtosecond Transillumination Optical Coherence Tomography." Optics Letters 18(12): 950-952.
Hee, M. R., J. A. Izatt, et al. (1995). "Optical coherence tomography of the human retina." Archives of Ophthalmology 113(3): 325-32.
Hee, Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging," J. Opt. Soc. Am. B., vol. 9, No. 6, Jun. 1992, pp. 903-908.
Hee, Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging," Journal of the Optical Society of America B (Optical Physics), vol. 9, p. 903-908, Jun. 1992.
Hellmuth, T. and M. Welle (1998). "Simultaneous measurement of dispersion, spectrum, and distance with a fourier transform spectrometer." Journal of Biomedical Optics 3(1): 7-11.
Hemenger, R. P. (1989). "Birefringence of a medium of tenuous parallel cylinders." Applied Optics 28(18): 4030-4034.
Hendrik Verschueren, "Interference Reflection Microscopy in Cell Biology", J. Cell Sci. 75, 1985, pp. 289-301.
Henry, M. (1981). "Fresnel-Arago Laws for Interference in Polarized-Light-Demonstration Experiment." American Journal of Physics 49(7): 690-691.
Henry, M. (1981). "Fresnel-Arago Laws for Interference in Polarized-Light—Demonstration Experiment." American Journal of Physics 49(7): 690-691.
Herz, P. R., Y. Chen, et al. (2004). "Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography." Optics Letters 29(19): 2261-2263.
Hess, S.T. et al. "Ultra-high Resolution Imaging by Fluorescence Photoactivation Localization Microscopy" Biophysical Journal vol. 91, Dec. 2006, 4258-4272.
Hirakawa, H., H. Iijima, et al. (1999). "Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa." American Journal of Ophthalmology 128(2): 185-91.
Hitzenberger, C. K. and A. F. Fercher (1999). "Differential phase contrast in optical coherence tomography." Optics Letters 24(9): 622-624.
Hitzenberger, C. K., A. Baumgartner, et al. (1994). "Interferometric Measurement of Corneal Thickness with Micrometer Precision." American Journal of Ophthalmology 118(4): 468-476.
Hitzenberger, C. K., A. Baumgartner, et al. (1998). "Dispersion induced multiple signal peak splitting in partial coherence interferometry." Optics Communications 154 (4): 179-185.
Hitzenberger, C. K., A. Baumgartner, et al. (1999). "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging." Journal of Biomedical Optics 4(1): 144-151.
Hitzenberger, C. K., M. Danner, et al. (1999). "Measurement of the spatial coherence of superluminescent diodes." Journal of Modern Optics 46(12): 1763-1774.
Hitzenberger, C. K., M. Sticker, et al. (2001). "Differential phase measurements in low-coherence interferometry without 2 pi ambiguity." Optics Letters 26(23): 1864-1866.
Hitzenberger, Christopher K. et al., "Measurement and Imaging of Birefringence and Optic Axis Orientation by Phase Resolved Polarization Sensitive Optical Coherence Tomography," Optics Express, vol. 9, No. 13, Dec. 17, 2001, pp. 780-790.
Ho, W. Y. et al. (2005) "115 KHz Tuning Repetition Rate Ultrahigh-Speed Wavelength-Swept Semiconductor Laser" Optics Letters col. 30, No. 23, pp. 3159-3161.
Hoeling, B. M., A. D. Fernandez, et al. (2000). "An optical coherence microscope for 3-dimensional imaging in developmental biology." Optics Express 6(7): 136-146.
Hoerauf, H., C. Scholz, et al. (2002). "Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye." Archives of Ophthalmology 120(6): 816-9.
Hoffmann, K., M. Happe, et al. (1998). "Optical coherence tomography (OCT) in dermatology." Journal of Investigative Dermatology 110(4): 583-583.
Hoh, S. T., D. S. Greenfield, et al. (2000). "Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes." American Journal of Ophthalmology 129(2): 129-35.
Hohenleutner, U., M. Hilbert, et al. (1995). "Epidermal Damage and Limited Coagulation Depth with the Flashlamp-Pumped Pulsed Dye-Laser-a Histochemical-Study." Journal of Investigative Dermatology 104(5): 798-802.
Hohenleutner, U., M. Hilbert, et al. (1995). "Epidermal Damage and Limited Coagulation Depth with the Flashlamp-Pumped Pulsed Dye-Laser—a Histochemical-Study." Journal of Investigative Dermatology 104(5): 798-802.
Holland, A. J. A., H. C. O. Martin, et al. (2002). "Laser Doppler imaging prediction of burn wound outcome in children." Burns 28(1): 11-17.
Hotate Kazuo et al., "Optical Coherence Domain Reflectometry by Synthesis of Coherence Function," Journal of Lightwave Technology, vol. 11, pp. 1701-1710, Oct. 1993.
Hotate, K. and T. Okugawa (1994). "Optical Information-Processing by Synthesis of the Coherence Function." Journal of Lightwave Technology 12(7): 1247-1255.
Hourdakis, C. J. and A. Perris (1995). "A Monte-Carlo Estimation of Tissue Optical-Properties for Use in Laser Dosimetry." Physics in Medicine and Biology 40(3): 351-364.
Hrabovsky, M., "Theory of speckle dispacement and decorrelation: application in mechanics", SPIE, 1998, 3479:345-354.
Hu, Z., F. Li, et al. (2000). "Wavelength-tunable narrow-linewidth semiconductor fiber-ring laser." IEEE Photonics Technology Letters 12(8): 977-979.
Huang, F., W. Yang, et al. (2001). "Quadrature spectral interferometric detection and pulse shaping." Optics Letters 26(6): 382-384.
Huang, X. R. and R. W. Knighton (2002). "Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter." Journal of Biomedical Optics 7(2): 199-204.
Huang, Xiang-Run et al., "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Investigative Ophthalmology & Visual Science, vol. 45, No. 9, Sep. 2004, pp. 3073-3080.
Huber, R et al: "Fourier Domain Mode Locked Lasers for OCT Imaging at up to 290 kHz Sweep Rates", Proceedings of SPIE, SPIE-International Society for Optical Engineering, US, vol. 5861, No. 1, Jan. 1, 2005.
Huber, R et al: "Fourier Domain Mode Locked Lasers for OCT Imaging at up to 290 kHz Sweep Rates", Proceedings of SPIE, SPIE—International Society for Optical Engineering, US, vol. 5861, No. 1, Jan. 1, 2005.
Huber, R., M. Wojtkowski, et al. (2005). "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles." Optics Express 13(9): 3513-3528.
Hunter, D. G., J. C. Sandruck, et al. (1999). "Mathematical modeling of retinal birefringence scanning." Journal of the Optical Society of America a-Optics Image Science and Vision 16(9): 2103-2111.
Hurwitz, H. H. and R. C. Jones (1941). "A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems." Journal of the Optical Society of America 31(7): 493-499.
Huttner, B., B. Gisin, et al. (1999). "Distributed PMD measurement with a polarization-OTDR in optical fibers." Journal of Lightwave Technology 17(10): 1843-1848.
Huttner, B., C. De Barros, et al. (1999). "Polarization-induced pulse spreading in birefringent optical fibers with zero differential group delay." Optics Letters 24(6): 370-372.
Huttner, B., J. Reecht, et al. (1998). "Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry." Ieee Photonics Technology Letters 10(10): 1458-1460.
Hyde, S. C. W., N. P. Barry, et al. (1995). "Depth-Resolved Holographic Imaging through Scattering Media by Photorefraction." Optics Letters 20(11): 1331-1333.
Hyde, S. C. W., N. P. Barry, et al. (1995). "Sub-100-Mu-M Depth-Resolved Holographic Imaging through Scattering Media in the near-Infrared." Optics Letters 20(22): 2330-2332.
Iftimia, N. V., B. E. Bouma, et al. (2004). "Adaptive ranging for optical coherence tomography." Optics Express 12(17): 4025-4034.
Igor Gurov et al: "High-Speed Signal Evaluation in Optical Coherence Tomography Based on Sub-Nyquist Sampling and Kalman Filtering Method" AIP Coherence Proceedings, vol. 860, Jan. 1, 2006.
Igor Gurov et al: (2007) "Full-field High-Speed Optical Coherence Tomography System for Evaluting Multilayer and Random Tissues", Proc. Of SPIE, vol. 6618.
Iida, T., N. Hagimura, et al. (2000). "Evaluation of central serous chorioretinopathy with optical coherence tomography." American Journal of Ophthalmology 129(1): 16-20.
Imai, M., H. Iijima, et al. (2001). "Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy. [republished in Am J Ophthalmol. Sep. 2001;132(3):458-61 ; 11530091.]." American Journal of Ophthalmology 132(1): 81-4.
Indebetouw, G. and P. Klysubun (2000). "Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography." Optics Letters 25(4): 212-214.
Inoue, Kyo et al., "Nearly Degenerate 4-Wave-Mixing in a Traveling-Wave Semiconductor-Laser Amplifier," Applied Physics Letters, vol. 51, pp. 1051-1053, 1987.
Inoue, Yusuke et al: "Varible Phase-Contrast Fluorescence Spectrometry for Fluorescently Strained Cells", Applied Physics Letters, Sep. 18, 2006.
International Application Search Report and Written Opinion dated Apr. 11, 2013 for PCT/US2013/021299.
International Preliminary Report on Patentability dated Jun. 7, 2007 for PCT/US2005/042408.
International Search Report and Written Opinion date Jul. 4, 2008 for International Application No. PCT/US2008/051432.
International Search Report and Written Opinion dated Aug. 11, 2008 for International Application No. PCT/US2008/058703.
International Search Report and Written Opinion dated Aug. 27, 2008 for International Application No. PCT/US2008/060600.
International Search Report and Written Opinion dated Aug. 31, 2010 for PCT/US2010/022034.
International Search Report and Written Opinion dated Aug. 7, 2008 for International Application No. PCT/US2007/074873.
International Search Report and Written Opinion dated Dec. 20, 2004 for PCT/US04/10152.
International Search Report and Written Opinion dated Dec. 23, 2009.
International Search Report and Written Opinion dated Feb. 2, 2009 for International Application No. PCT/US2008/071786.
International Search Report and Written Opinion dated Feb. 23, 2011 for PCT/US2010/041923.
International Search Report and Written Opinion dated Feb. 24, 2009 for PCT/US2008/076447.
International Search Report and Written Opinion dated Feb. 28, 2007 for International Application No. PCT/US2006/038277.
International Search Report and Written Opinion dated Feb. 5, 2007 for International Application No. PCT/US2006/031275.
International Search Report and Written Opinion dated Jan. 15, 2009 for International Application No. PCT/US2008/074863.
International Search Report and Written Opinion dated Jan. 30, 2009 for International Application No. PCT/US2008/081834.
International Search Report and Written Opinion dated Jul. 17, 2008 for International Application No. PCT/US2008/057450.
International Search Report and Written Opinion dated Jul. 18, 2008 for International Application No. PCT/US2008/05733.
International Search Report and Written Opinion dated Jun. 10, 2008 for International Application No. PCT/US2008/051335.
International Search Report and Written Opinion dated Jun. 10, 2009 for PCT/US08/075456.
International Search Report and Written Opinion dated Jun. 10, 2009 for PCT/US2008/075456.
International Search Report and Written Opinion dated Mar. 23, 2006 for International Application No. PCT/US2005/042408.
International Search Report and Written Opinion dated Mar. 23, 2006 for PCT/US2005/042408.
International Search Report and Written Opinion dated Mar. 7, 2006 for International Search Report for PCT/US2005/035711.
International Search Report and Written Opinion dated May 26, 2008 for International Application No. PCT/US2008/051404.
International Search Report and Written Opinion dated May 29, 2012 for PCT/US2011/05007.
International Search Report and Written Opinion dated May 29, 2012 for PCT/US2011/058110.
International Search Report and Written Opinion dated Oct. 9, 2008 for International Application No. PCT/US2008/081982.
International Search Report and Written Opinion dated Sep. 19, 2013 for PCT/US2013/042008.
International Search Report and Written Opinion for PCT/US2007/081982 dated Oct. 19, 2007.
International Search Report and Written Opinion for PCT/US2011/037916 mailed Dec. 27, 2011.
International Search Report and Written Opinion for PCT/US2011/038421 mailed Jan. 12, 2012.
International Search Report and Written Opinion for PCT/US2011/039066 mailed Dec. 28, 2011.
International Search Report and Written Opinion for PCT/US2013/022136.
International Search Report and Written Opinion mailed Aug. 30, 2012 for PCT/US2012/035234.
International Search Report and Written Opinion mailed Feb. 9, 2012 based on PCT/US2011/034810.
International Search Report and Written Opinion mailed Jan. 31, 2013 for PCT/US2012/060843.
International Search Report and Written Opinion mailed Jul. 18, 2008 for PCT/US2008/057533.
International Search Report and Written Opinion mailed Jul. 4, 2008 for PCT/US2008/051432.
International Search Report and Written Opinion mailed Jun. 10, 2008 for PCT/US2008/051335.
International Search Report and Written Opinion mailed Mar. 14, 2005 for PCT/US2004/018045.
International Search Report and Written Opinion mailed Mar. 7, 2006 for PCT/US2005/035711.
International Search Report and Written Opinion mailed Oct. 25, 2012 for PCT/US2012/047415.
International Search Report and Written Opinion mailed on Aug. 16, 2012 for PCT/US2012/035887.
International Search Report and Written Opinion mailed on Aug. 16, 2012 for PCT/US2012/051132.
International Search Report and Written Opinion mailed on Dec. 6, 2012 for PCT/US2012/052553.
International Search report dated Apr. 29, 2011 for PCT/US2010/051715.
International Search Report dated Feb. 23, 2010 for U.S. Appl. No. 11/445,131.
International Search Report dated Jan. 27, 2010 for PCT/US2009/047988.
International Search Report dated Jan. 27, 2010 for PCT/US2009/050553.
International Search report dated Jul. 28, 2011 for PCT/US2010/059534.
International Search Report dated May 27, 2010 for PCT/US2009/063420.
International Search report dated Nov. 18, 2011 for PCT/US2011/027437.
International Search report dated Nov. 18, 2011 for PCT/US2011/027450.
International Search report dated Nov. 22, 2011 for PCT/US2011/027421.
International Search report dated Sep. 13, 2010 for PCT/US2010/023215.
International Search Report mailed Jan. 31, 2013 for PCT/US2012/061135.
International Written Opinion for International Patent application No. PCT/US2006/016677 filed Apr. 28, 2006.
International Written Opinion for International Patent application No. PCT/US2006/018865 filed May 5, 2006.
Invitation of Pay Additional Fees mailed Aug. 7, 2008 for International Application No. PCT/US2008/062354.
Invitation of Pay Additional Fees mailed Jul. 20, 2008 for International Application No. PCT/US2007/081982.
Invitation to Pay Additional Fees dated Aug. 7, 2008 for International Application No. PCT/US2008/062354.
Invitation to Pay Additional Fees dated Jul. 29, 2008 for International Application No. PCT/US2007/081982.
Ip, M. S., B. J. Baker, et al. (2002). "Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography." Archives of Ophthalmology 120(1): 29-35.
Ishikawa, Hiroshi et al. "Macular Segmentation with optical coherence tomography", Investigative Ophthalmology & Visual Science, vol. 46, No. 6, Jun. 2005, pp. 2012-2017.
Ismail, R., V. Tanner, et al. (2002). "Optical coherence tomography imaging of severe commotio retinae and associated macular hole." British Journal of Ophthalmology 86(4): 473-4.
Ivanov, A. P. et al., "Interferometric Study of the Spatial Structure of a Light-Scattering Medium," Journal of Applied Spectroscopy, vol. 28, pp. 518-525, 1978.
Ivanov, A. P. et al., "New Method for High-Range Resolution Measurements of Light Scattering in Optically Dense Inhomogeneous Media," Optics Letters, vol. 1, pp. 226-228, Dec. 1977.
Izatt, J. A., M. D. Kulkami, et al. (1997). "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography." Optics Letters 22(18): 1439-1441.
Izatt, J. A., M. D. Kulkarni, et al. (1996). "Optical coherence tomography and microscopy in gastrointestinal tissues." IEEE Journal of Selected Topics in Quantum Electronics 2(4): 1017.
Izatt, J. A., M. R. Hee, et al. (1994). "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography." Archives of Ophthalmology 112 (12): 1584-9.
Izatt, J. A., M. R. Hee, et al. (1994). "Optical Coherence Microscopy in Scattering Media." Optics Letters 19(8): 590-592.
J.R. Turner et al., MN Antigen Expression in Normal Preneoplastic, and Neoplastic Esophagus: A Clinicopathological Study of a New Cancer-Associated Biomarker,: Jun. 1997, Human Pathology, vol. 28, No. 6, pp. 740-744.
Jacques, S. L., J. R. Roman, et al. (2000). "Imaging superficial tissues with polarized light." Lasers in Surgery and Medicine 26(2): 119-129.
Jacques, S. L., J. S. Nelson, et al. (1993). "Pulsed Photothermal Radiometry of Port-Wine-Stain Lesions." Applied Optics 32(13): 2439-2446.
Jacques, Steven L. (1993) "Role of Tissue Optics and Pulse Duration on Tissue Effects During High-Power Laser Irradiation" Applied Optics vol. 32, No. 13, pp. 2447-2454.
Jang, I. K., B. D. MacNeill, et al. (2002). "In-vivo characterization of coronary plaques in patients with ST elevation acute myocardial infarction using optical coherence tomography (OCT)." Circulation 106(19): 698-698 3440 Suppl. S.
Jang, I. K., B. E. Bouma, et al. (2002). "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound." Journal of the American College of Cardiology 39(4): 604-609.
Jang, I. K., G. J. Tearney, et al. (2000). "Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients." Circulation 102(18): 509-509.
Japanese language Appeal Decision dated Jan. 10, 2012 for JP 2006-503161.
Japanese Language Appeal Decision mailed Jan. 10, 2012 for JP 2006-503161.
Japanese Notice of Grounds for Rejection dated Dec. 28, 2011 for JP2008-535793.
Japanese Notice of Grounds for Rejection dated Oct. 28, 2011 for JP2009-294737.
Japanese Notice of Reasons for Rejection dated Dec. 12, 2011 for JP 2008-533712.
Japanese Notice of Reasons for Rejection dated Dec. 12, 2011 for JP2003516531.
Japanese Notice of Reasons for Rejection dated Dec. 18, 2012 for 2011-136398.
Japanese Notice of Reasons for Rejection dated Feb. 17, 2012 for JP 2007-539336.
Japanese Notice of Reasons for Rejection dated Jul. 14, 2009 for Japanese Patent application No. 2006-503161.
Japanese Notice of Reasons for Rejection dated Jul. 16, 2013 for JP 2009-063553.
Japanese Notice of Reasons for Rejection dated Jun. 20, 2012 for JP 2009-546534.
Japanese Notice of Reasons for Rejection dated Jun. 26, 2012 for JP 2002-585939.
Japanese Notice of Reasons for Rejection dated Mar. 13, 2012 for JP2009-063553.
Japanese Notice of Reasons for Rejection dated Mar. 27, 2012 for JP 2003-102672.
Japanese Notice of Reasons for Rejection dated Mar. 27, 2012 for JP 2008-554495.
Japanese Notice of Reasons for Rejection dated May 21, 2012 for JP 2008-551523.
Japanese Notice of Reasons for Rejection dated May 8, 2012 for JP 2008-533727.
Japanese Notice of Reasons for Rejection dated Nov. 27, 2012 for 2009-554772.
Japanese Notice of Reasons for Rejection dated Oct. 11, 2012 for 2008-533712.
Japanese Notice of Reasons for Rejection for 2007-539336 dated May 21, 2013.
Japanese Notice of Reasons for Rejection for 2010-529142 dated Jan. 29, 2013.
Japanese Notice of Reasons for Rejection for 2013-026880 dated Jun. 6, 2013.
Japanese Notice of Reasons for Rejection for 2013-026897 dated Jun. 6, 2013.
Japanese Notice of Reasons for Rejections dated Nov. 27, 2012 for JP 2009-554772.
Japanese Notice of Reasons for Rejections dated Nov. 9, 2012 for 2007-530134.
Japanese Notice of Reasons for Rejections dated Nov. 9, 2012 for JP 2007-530134.
Japanese Notice of Reasons for Rejections dated Oct. 10, 2012 for 2008-553511.
Japanese Notice of Reasons for Rejections dated Oct. 11, 2012 for JP 2008-533712.
Japanese Notice of Reasons for Rejections dated Oct. 2, 2012 for 2007-543626.
Japanese Office Action dated Apr. 13, 2010 for Japanese Patent application No. 2007-515029.
Japanese Office Action dated Aug. 20, 2013 for JP 2011-546443.
Japanese Office Action dated Dec. 2, 2008.
Japanese Office Action dated Oct. 8, 2013 for JP 2011-168738.
Japanese Official Action dated Oct. 15, 2013 for JP 2012-181098.
Jeng, J. C., A. Bridgeman, et al. (2003). "Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial." Burns 29(7): 665-670.
Jerath, Maya R. et al (1992) "Dynamic Optical Property Changes: Implications for Reflectance Feedback Control of Photocoagulation" Journal of Photochemical,.Photobiology. B: Biol vol. 16, pp. 113-126.
Jerath, Maya R. et al. (1993) "Calibrated Real-Time Control of Lesion Size Based on Reflectance Images" Applied Optics vol. 32, No. 7, pp. 1200-1209.
Jesser, C. A., S. A. Boppart, et al. (1999). "High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology." British Journal of Radiology 72: 1170-1176.
Jiao, Shuliang et al., "Contrast Mechanisms in Polarization-Sensitive Mueller-Matrix Optical Coherence Tomography and Application in Burn Imaging," Applied Optics, vol. 42, No. 25, Sep. 1, 2003, pp. 5191-5197.
Jiao, Shuliang et al., "Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and Mueller Matrices of Biological Tissue Measured with Optical Coherence Tomography," Applied Optics, vol. 39, No. 34, Dec. 1, 2000, pp. 6318-6324.
Jiao, Shuliang et al., "Jones-Matrix Imaging of Biological Tissues with Quadruple-Channel Optical Coherence Tomography," Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 350-358.
Jiao, Shuliang et al., "Optical-Fiber-Based Mueller Optical Coherence Tomography," Optics Letters, vol. 28, No. 14, Jul. 15, 2003, pp. 1206-1208.
Jiao, Shuliang et al., "Two-Dimensional Depth-Resolved Mueller Matrix of Biological Tissue Measured with Double-Beam Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 27, No. 2, Jan. 15, 2002, pp. 101-103.
John M. Poneros, "Diagnosis of Barrett's esophagus using optical coherence tomography", Gastrointestinal Endoscopy clinics of North America, 14 (2004) pp. 573-588.
John W. Pyhtila and Adam Wax, "Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry," Dec. 13, 2004, Optics Express, vol. 12, No. 25, pp. 6178-6183. *
Johnson, C. A., J. L. Kellner, et al. (2002). "Baseline visual field characteristics in the ocular hypertension treatment study." Ophthalmology 109(3): 432-7.
Johnston, Mark H.(2005) "Technology Insight: Ablative Techniques for Barrett's Esophagus-Current and Emerging Trends" www.Nature.com/clinicalpractice/gasthep.
Johnston, Mark H.(2005) "Technology Insight: Ablative Techniques for Barrett's Esophagus—Current and Emerging Trends" www.Nature.com/clinicalpractice/gasthep.
Jonathan, Enock (2005) "Dual Reference Arm Low-Coherence Interferometer-Based Reflectometer for Optical Coherence Tomography (OCT) Application" Optics Communications vol. 252.
Jones, R. C. (1941). "A new calculus for the treatment of optical systems I. Description and discussion of the calculus." Journal of the Optical Society of America 31(7): 488-493.
Jones, R. C. (1941). "A new calculus for the treatment of optical systems III. The Sohncke theory of optical activity." Journal of the Optical Society of America 31 (7): 500-503.
Jones, R. C. (1942). "A new calculus for the treatment of optical systems. IV." Journal of the Optical Society of America 32(8): 486-493.
Jones, R. C. (1947). "A New Calculus for the Treatment of Optical Systems .5. A More General Formulation, and Description of Another Calculus." Journal of the Optical Society of America 37(2): 107-110.
Jones, R. C. (1947). "A New Calculus for the Treatment of Optical Systems .6. Experimental Determination of the Matrix." Journal of the Optical Society of America 37(2): 110-112.
Jones, R. C. (1948). "A New Calculus for the Treatment of Optical Systems .7. Properties of the N-Matrices." Journal of the Optical Society of America 38(8): 671-685.
Jones, R. C. (1956). "New Calculus for the Treatment of Optical Systems .8. Electromagnetic Theory." Journal of the Optical Society of America 46(2): 126-131.
Joo, Chulmin et al., Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging, Optics Letters, Aug. 15, 2005, vol. 30, No. 16, pp. 2131-2133.
Jopson, R. M., L. E. Nelson, et al. (1999). "Measurement of second-order polarization-mode dispersion vectors in optical fibers." Ieee Photonics Technology Letters 11 (9): 1153-1155.
Joshua, Fox et al: "Measuring Primate RNFL Thickness with OCT", IEEE Journal of Selected Topics in Quantum Electronics, IEEE Service Center, Piscataway, NJ, US, vol. 7,No. 6, Nov. 1, 2001.
Jost, B. M., A. V. Sergienko, et al. (1998). "Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera." Optics Express 3(2): 81-88.
Jun Zhang et al. "Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography" Optics Express, vol. 12, No. 24. Nov. 29, 2004.
K. Drabe et al. "Localization of Spontaneous Emission in front of a mirror," Optics Communications 73:91 (1989).
K.J. Koski et al., "Brillouin imaging" Applied Physics Letters 87, 2005.
K.M. Yung et al. "Phase-Domain Processing of Optical Coherence Tomography Images" J. of Biomedical Optics 4(1) pp. 125-136, Jan. 1999.
Kaplan, B., E. Compain, et al. (2000). "Phase-modulated Mueller ellipsometry characterization of scattering by latex sphere suspensions." Applied Optics 39 (4): 629-636.
Kass, M. A., D. K. Heuer, et al. (2002). "The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma." Archives of Ophthalmology 120(6): 701-13; discussion 829-30.
Kasuga, Y., J. Arai, et al. (2000). "Optical coherence tomograghy to confirm early closure of macular holes." American Journal of Ophthalmology 130(5): 675-6.
Katrin Kneipp et al., "Single molecule detection using surface-enhanced Raman scattering (SERS)", Physical Review Letters 1997, 78 (9): 1667-1670.
Kaufman, T., S. N. Lusthaus, et al. (1990). "Deep Partial Skin Thickness Burns-a Reproducible Animal-Model to Study Burn Wound-Healing." Burns 16(1): 13-16.
Kaufman, T., S. N. Lusthaus, et al. (1990). "Deep Partial Skin Thickness Burns—a Reproducible Animal-Model to Study Burn Wound-Healing." Burns 16(1): 13-16.
Kazovsky, L. G. et al., "Heterodyne Detection Through Rain, Snow, and Turbid Media: Effective Receiver Size at Optical Through Millimeter Wavelenghths," Applied Optics, vol. 22, pp. 706-710, Mar. 1983.
Kemp, N. J., J. Park, et al. (2005). "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 22(3): 552-560.
Kerrigan-Baumrind, L. A., H. A. Quigley, et al. (2000). "Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons." Investigative Ophthalmology & Visual Science 41(3): 741-8.
Kersey, A. D. et al., "Adaptive Polarization Diversity Receiver Configuration for Coherent Optical Fiber Communications," Electronics Letters, vol. 25, pp. 275-277, Feb. 1989.
Kesen, M. R., G. L. Spaeth, et al. (2002). "The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma." American Journal of Ophthalmology 133(5): 613-6.
Khan, Misban Huzaira et al. (2005) "Intradermally Focused Infrared Laser Pulses: Thermal Effects at Defined Tissue Depths" Lasers in Surgery and Medicine vol. 36, pp. 270-280.
Kienle, A. and R. Hibst (1995). "A New Optimal Wavelength for Treatment of Port-Wine Stains." Physics in Medicine and Biology 40(10): 1559-1576.
Kienle, A., L. Lilge, et al. (1996). "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue." Applied Optics 35(13): 2304-2314.
Kim, B. Y. and S. S. Choi (1981). "Analysis and Measurement of Birefringence in Single-Mode Fibers Using the Backscattering Method." Optics Letters 6(11): 578-580.
Kim, B.M. et al. (1998) "Optical Feedback Signal for Ultrashort Laser Pulse Ablation of Tissue" Applied Surface Science vol. 127-129, pp. 857-862.
Kimel, S., L. O. Svaasand, et al. (1994). "Differential Vascular-Response to Laser Photothermolysis." Journal of Investigative Dermatology 103(5): 693-700.
Kinoshita, Masaya et al., "Optical Frequency-Domain Imaging Microprofilmetry with a Frequency-Tunable Liquid-Crystal Fbry-Perot Etalon Device" Applied Optics, vol. 38, No. 34, Dec. 1, 1999.
Kirkpatrick J. Sean et al. "Optical Assessment of Tissue Mechanical Properties", Proceedings of the SPIE-The International Society for Optical Engineering SPIE-vol. 4001, 2000, pp. 92-101.
Kirkpatrick J. Sean et al. "Optical Assessment of Tissue Mechanical Properties", Proceedings of the SPIE—The International Society for Optical Engineering SPIE—vol. 4001, 2000, pp. 92-101.
Kloppenberg, F. W. H., G. Beerthuizen, et al. (2001). "Perfusion of burn wounds assessed by Laser Doppler Imaging is related to burn depth and healing time." Burns 27(4): 359-363.
Knighton, R. W. and X. R. Huang (2002). "Analytical methods for scanning laser polarimetry." Optics Express 10(21): 1179-1189.
Knighton, R. W., X. R. Huang, et al. (2002). "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment." Investigative Opthalmology & Visual Science 43(2): 383-392.
Knuettel, A. R. S., Joseph M.: Shay, M.; Knutson, Jay R. (1994). "Stationary low-coherence light imaging and spectroscopy using a CCD camera." Proc. SPIE, vol. 2135: p. 239-250.
Knuttel, A. and J. M. Schmitt (1993). "Stationary Depth-Profiling Reflectometer Based on Low-Coherence Interferometry." Optics Communications 102(3-4): 193-198.
Knuttel, A. and M. Boehlau-Godau (2000). "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography." Journal of Biomedical Optics 5(1): 83-92.
Knuttel, A., J. M. Schmitt, et al. (1994). "Low-Coherence Reflectometry for Stationary Lateral and Depth Profiling with Acoustooptic Deflectors and a Ccd Camera." Optics Letters 19(4): 302-304.
Ko T et al., "Ultrahigh resolution in vivo versus ex vivo OCT imaging and tissue preservation", Conference on Lasers and electro-optics, 2001, pp. 252-253.
Kobayashi, M., H. Hanafusa, et al. (1991). "Polarization-Independent Interferometric Optical-Time-Domain Reflectometer." Journal of Lightwave Technology 9(5): 623-628.
Kohlhaas, Andreas et al., "High-Resolution OCDR for Testing Integrated-Optical Waveguides: Dispersion-Corrupted Experimental Data Corrected by a Numerical Algorithm," Journal of Lightwave Technology, vol. 9, pp. 1493-1502, Nov. 1991.
Kolios, M. C., M. D. Sherar, et al. (1995). "Large Blood-Vessel Cooling in Heated Tissues-a Numerical Study." Physics in Medicine and Biology 40(4): 477-494.
Kolios, M. C., M. D. Sherar, et al. (1995). "Large Blood-Vessel Cooling in Heated Tissues—a Numerical Study." Physics in Medicine and Biology 40(4): 477-494.
Koozekanani, D., K. Boyer, et al. (2001). "Retinal thickness measurements from optical coherence tomography using a Markov boundary model." Ieee Transactions on Medical Imaging 20(9): 900-916.
Kop, R. H. J. and R. Sprik (1995). "Phase-sensitive interferometry with ultrashort optical pulses." Review of Scientific Instruments 66(12): 5459-5463.
Korean Notification of Ground for Rejection dated Sep. 30, 2013 for 10-2007-7027721.
Korean Office Action dated May 25, 2012 for KR 10-2007-7008116.
Kramer, R. Z., J. Bella, et al. (1999). "Sequence dependent conformational variations of collagen triple-helical structure." Nature.Structural Biology 6(5): 454-7.
Kubba A.K. et al. (1999) "Role of p53 Assessment in Management of Barrett's Esophagus" Digestive Disease and Sciences vol. 44, No. 4. pages 659-667.
Kuipers E.J et al. (2005) "Diagnostic and Therapeutic Endoscopy" Journal of Surgical Oncology vol. 92, pp. 203-209.
Kulkami, M. D., T. G. van Leeuwen, et al. (1998). "Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography." Optics Letters 23(13): 1057-1059.
Kulkarni, et al., "Image Enhancement in Optical Coherence Tomography Using Deconvolution," Electronics Letters, vol. 33, pp. 1365-1367, Jul. 1997.
Kuranov, R.V. et al., "Complementary Use of Cross-Polarization and Standard OCT for Differential Diagnosis of Pathological Tissues," Optics Express, vol. 10, No. 15, Jul. 29, 2002, pp. 707-713.
Kwon, Y. H., C. S. Kim, et al. (2001). "Rate of visual field loss and long-term visual outcome in primary open-angle glaucoma." American Journal of Ophthalmology 132(1): 47-56.
Kwong, K. F., D. Yankelevich, et al. (1993). "400-Hz Mechanical Scanning Optical Delay-Line." Optics Letters 18(7): 558-560.
Landers, J., I. Goldberg, et al. (2002). "Analysis of risk factors that may be associated with progression from ocular hypertension to primary open angle glaucoma." Clin Experiment Ophthalmogy 30(4): 242-7.
Larkin, Kieran G., "Efficient Nonlinear Algorithm for Envelope Detection in White Light Interferometry," Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 13, pp. 832-843, Apr. 1996.
Laszlo, A. and A. Venetianer (1998). "Heat resistance in mammalian cells: lessons and challenges. [Review] [52 refs]." Annals of the New York Academy of Sciences 851: 169-78.
Laszlo, A. and A. Venetianer (1998). Heat resistance in mammalian cells: Lessons and challenges. Stress of Life. 851: 169-178.
Lauer, V. "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope", Journal of Microscopy vol. 205, Issue 2, 2002, pp. 165-176.
Laufer, J., R. Simpson, et al. (1998). "Effect of temperature on the optical properties of ex vivo human dermis and subdermis." Physics in Medicine and Biology 43(9): 2479-2489.
Lederer, D. E., J. S. Schuman, et al. (2003). "Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography." American Journal of Ophthalmology 135(6): 838-843.
Lee et al., "The Unstable Atheroma," Arteriosclerosis, Thrombosis & Vascular Biology, 17:1859-67 (1997).
Lee, P. P., Z. W. Feldman, et al. (2003). "Longitudinal prevalence of major eye diseases." Archives of Ophthalmology 121(9): 1303-1310.
Lee, Seok-Jeong et al., "Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators", The Japan Soceity of Applied Physics, vol. 40 (2001).
Lees, S. et al., "Studies of Compact Hard Tissues and Collagen by Means of Brillouin Light Scattering", Connective Tissue Research, 1990, vol. 24, pp. 187-205.
Lehrer, M. S., T. T. Sun, et al. (1998). "Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation." Journal of Cell Science 111(Pt 19): 2867-75.
Leibowitz, H. M., D. E. Krueger, et al. (1980). "The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975." Survey of Ophthalmology 24(Suppl): 335-610.
Leitgeb, R. A., C. K. Hitzenberger, et al. (2003). "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography." Optics Letters 28(22): 2201-2203.
Leitgeb, R. A., L. Schmetterer, et al. (2003). "Real-time assessment of retinal ultrafast acquisition by color Doppler Fourier domain optical coherence tomography." Express 11(23): 3116-3121. blood flow with Optics.
Leitgeb, R. A., L. Schmetterer, et al. (2004). "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography." Optics Letters 29 (2): 171-173.
Leitgeb, R. A., W. Drexler, et al. (2004). "Ultrahigh resolution Fourier domain optical coherence tomography." Optics Express 12(10): 2156-2165.
Leitgeb, R. et al., "Spectral measurement of Absorption by Spectroscopic Frequency-Domain Optical Coherence Tomography," Optics Letters, vol. 25, pp. 820-822, Jun. 2000.
Leitgeb, R., C. K. Hitzenberger, et al. (2003). "Performance of fourier domain vs. time domain optical coherence tomography." Optics Express 11(8): 889-894.
Leitgeb, R., L. F. Schmetterer, et al. (2002). "Flow velocity measurements by frequency domain short coherence interferometry." Proc. SPIE 4619: 16-21.
LeRoyBrehonnet, F. and B. LeJeune (1997). "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties." Progress in Quantum Electronics 21(2): 109-151.
Leske, M. C., A. Heijl, et al. (1999). "Early Manifest Glaucoma Trial. Design and Baseline Data." Ophthalmology 106(11): 2144-2153.
Leske, M. C., A. M. Connell, et al. (1995). "Risk factors for open-angle glaucoma. The Barbados Eye Study. [see comments]." Archives of Ophthalmology 113(7): 918-24.
Leske, M. C., A. M. Connell, et al. (2001). "Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. [see comments]." Archives of Ophthalmology 119(1): 89-95.
Lewis, S. E., J. R. DeBoer, et al. (2005). "Sensitive, selective, and analytical improvements to a porous silicon gas sensor." Sensors and Actuators B: Chemical 110(1): 54-65.
Lexer, F. et al., "Wavelength-Tuning Interferometry of Intraocular Distances," Applied Optics, vol. 36, pp. 6548-6553, Sep. 1997.
Lexer, F., C. K. Hitzenberger, et al. (1999). "Dynamic coherent focus OCT with depth-independent transversal resolution." Journal of Modern Optics 46(3): 541-553.
Li, X., C. Chudoba, et al. (2000). "Imaging needle for optical coherence tomography." Optics Letters 25: 1520-1522.
Li, X., T. H. Ko, et al. (2001). "Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography." Optics Letters 26: 1906-1908.
Liddington, M. I. and P. G. Shakespeare (1996). "Timing of the thermographic assessment of burns." Burns 22(1): 26-8.
Lin, Stollen et al., (1977) "A CW Tunable Near-infrared (1.085-1.175-μm) Raman Oscillator," Optics Letters, vol. 1, 96.
Lindmo, T., D. J. Smithies, et al. (1998). "Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation." Physics in Medicine and Biology 43(10): 3045-3064.
Liptak David C. et al., (2007) "On the Development of a Confocal Rayleigh-Brillouin Microscope" American Institute of Physics vol. 78, 016106.
Lisauskas B. Jennifer et al., "Investigation of Plaque Biomechanics from Intravascular Ultrasound Images using Finite Element Modeling", Proceedings of the 19th International Conference-IEEE Oct. 30-Nov. 2, 1997, pp. 887-888.
Lisauskas B. Jennifer et al., "Investigation of Plaque Biomechanics from Intravascular Ultrasound Images using Finite Element Modeling", Proceedings of the 19th International Conference—IEEE Oct. 30-Nov. 2, 1997, pp. 887-888.
Liu, J., X. Chen, et al. (1999). "New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating." IEEE Transactions on Biomedical Engineering 46(4): 420-8.
Loree et al., "Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools", Arteriosclerosis and Thrombosis, 1994, 14(2):230-234.
Lu, Shih-Yau et al., "Homogeneous and Inhomogeneous Jones Matrices," J. Opt. Soc. Am. A., vol. 11, No. 2, Feb. 1994, pp. 766-773.
Luke, D. G., R. McBride, et al. (1995). "Polarization mode dispersion minimization in fiber-wound piezoelectric cylinders." Optics Letters 20(24): 2550-2552.
M. Gualini Muddassir et al., "Recent Advancements of Optical Interferometry Applied to Medicine", IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 205-212.
M. Gustafsson "Nonlinear structured illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," PNAS 102:13081 (2005)).
M. Gustafsson "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of Microscopy 198:82 (2000).
M. Kourogi et al: "Programmable High Speed (1MHz) Vernier-mode-locked Frequency-Swept Laser for OCT Imaging", Proceedings of SPIE, vol. 6847, Feb. 7, 2008.
M. Rust et al. "Sub-diffraction-limited imaging by stochastic optical reconstruction microscopy (STORM)," Nature Methods 3:783 (2006), and structured illumination microscopy (SIM).
M. Wussling et al., "Laser diffraction and speckling studies in skeletal and heart muscle", Biomed, Biochim, Acta, 1986, 45(1/2):S 23-S 27.
M.I. Canto et al., (1999) "Vital Staining and Barrett's Esophagus," Gastrointestinal Endoscopy, vol. 49, No. 3, Part 2, pp. S12-S16.
MacNeill, B. D., I. K. Jong, et al. (2004). "Focal and multi-focal plaque distributions in patients with macrophage acute and stable presentations of coronary artery disease." Journal of the American College of Cardiology 44(5): 972-979.
Mahgerefteh, D. and C. R. Menyuk (1999). "Effect of first-order PMD compensation on the statistics of pulse broadening in a fiber with randomly varying birefringence." Ieee Photonics Technology Letters 11(3): 340-342.
Maitland, D. J. and J. T. Walsh, Jr. (1997). "Quantitative measurements of linear birefringence during heating of native collagen." Lasers in Surgery & Medicine 20 (3): 310-8.
Majaron, B., S. M. Srinivas, et al. (2000). "Deep coagulation of dermal collagen with repetitive Er : YAG laser irradiation." Lasers in Surgery and Medicine 26(2): 215-222.
Mansuripur, M. (1991). "Effects of High-Numerical-Aperture Focusing on the State of Polarization in Optical and Magnetooptic Data-Storage Systems." Applied Optics 30(22): 3154-3162.
Marc Nikles et al., "Brillouin gain spectrum characterization in single-mode optical fibers", Journal of Lightwave Technology 1997, 15 (10): 1842-1851.
Marshall, G. W., S. J. Marshall, et al. (1997). "The dentin substrate: structure and properties related to bonding." Journal of Dentistry 25(6): 441-458.
Martin, P. (1997). "Wound healing-Aiming for perfect skin regeneration." Science 276 (5309): 75-81.
Martin, P. (1997). "Wound healing—Aiming for perfect skin regeneration." Science 276 (5309): 75-81.
Martinez, O. E. (1987). "3000 Times Grating Compressor with Positive Group-Velocity Dispersion-Application to Fiber Compensation in 1.3-1.6 Mu-M Region." Ieee Journal of Quantum Electronics 23(1): 59-64.
Martinez, O. E. (1987). "3000 Times Grating Compressor with Positive Group-Velocity Dispersion—Application to Fiber Compensation in 1.3-1.6 Mu-M Region." Ieee Journal of Quantum Electronics 23(1): 59-64.
Martinez, O. E., J. P. Gordon, et al. (1984). "Negative Group-Velocity Dispersion Using Refraction." Journal of the Optical Society of America a-Optics Image Science and Vision 1(10): 1003-1006.
Masahiro, Yamanari et al: "Polarization-Sensitive Swept-Source Optical Coherence Tomography with Continuous Source Polarization Modulation", Optics Express, vol. 16, No. 8, Apr. 14, 2008.
Matcher, Stephen J. et al., "The Collagen Structure of Bovine Intervertebral Disc Studied Using Polarization-Sensitive Optical Coherence Tomography," Physics in Medicine and Biology, 2004, pp. 1295-1306.
Maurice L. Roch et al. "Noninvasive Vascular Elastography: Theoretical Framework", IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 164-180.
McKenzie, A. L. (1990) "Physics of Thermal Processes in Laser-Tissue Interaction" Phys. Med. Biol vol. 35, No. 9, pp. 1175-1209.
McKinney, J. D., M. A. Webster, et al. (2000). "Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source." Optics Letters 25(1): 4-6.
Miglior, S., M. Casula, et al. (2001). "Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes." Ophthalmology 108 (9): 1621-7.
Milner, T. E., D. J. Smithies, et al. (1996). "Depth determination of chromophores in human skin by pulsed photothermal radiometry." Applied Optics 35(19): 3379-3385.
Milner, T. E., D. M. Goodman, et al. (1995). "Depth Profiling of Laser-Heated Chromophores in Biological Tissues by Pulsed Photothermal Radiometry." Journal of the Optical Society of America a-Optics Image Science and Vision 12 (7): 1479-1488.
Milner, T. E., D. M. Goodman, et al. (1996). "Imaging laser heated subsurface chromophores in biological materials: Determination of lateral physical dimensions." Physics in Medicine and Biology 41(1): 31-44.
Mishchenko, M. I. and J. W. Hovenier (1995). "Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles." Optics Letters 20(12): 1356-&.
Mistlberger, A., J. M. Liebmann, et al. (1999). "Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes." Ophthalmology 106(10): 2027-32.
Mitsui, T. (1999). "High-speed detection of ballistic photons propagating through suspensions using spectral interferometry." Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38(5A): 2978-2982.
Mitsui, T. (1999). "High-speed detection of ballistic photons propagating through suspensions using spectral interferometry." Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers 38(5A): 2978-2982.
Mitsui, Takahisa, "Dynamic Range of Optical Reflectometry with Spectral Interferometry," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 6133-6137, 1999.
Mitsui, Takahisa, "Dynamic Range of Optical Reflectometry with Spectral Interferometry," Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, vol. 38, pp. 6133-6137, 1999.
Moiseev et al., "Spectral Self-Interfence Fluorescence Microscopy", J. Appl. Phys. 96 (9) 2004, pp. 5311-5315.
Molteno, A. C., N. J. Bosma, et al. (1999). "Otago glaucoma surgery outcome study: long-term results of trabeculectomy-1976 to 1995." Ophthalmology 106(9): 1742-50.
Molteno, A. C., N. J. Bosma, et al. (1999). "Otago glaucoma surgery outcome study: long-term results of trabeculectomy—1976 to 1995." Ophthalmology 106(9): 1742-50.
Montag Ethan D., "Parts of the Eye" online textbook for JIMG 774: Vision & Psycophysics, download on Jun. 23, 2010 from http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap-8/ch8p3.html.
Montag Ethan D., "Parts of the Eye" online textbook for JIMG 774: Vision & Psycophysics, download on Jun. 23, 2010 from http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap—8/ch8p3.html.
Moreau, Julien et al., "Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory," Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3800-3810.
Moreau, Julien et al., "Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. II. Instrument and Results," Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3811-3818.
Morelli, J.G., et al (1986) "Tunable Dye Laser (577 nm) Treatment of Port Wine Stains" Lasers in Surgery and Medicine vol. 6, pp. 94-99.
Morgan, Stephen P. et al., "Surface-Reflection Elimination in Polarization Imaging of Superficial Tissue," Optics Letters, vol. 28, No. 2, Jan. 15, 2003, pp. 114-116.
Morgner, U., F. X. Kartner, et al. (1999). "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : sapphire laser (vol. 24, p. 411, 1999)." Optics Letters 24(13): 920-920.
Morgner, U., W. Drexler, et al. (2000). "Spectroscopic optical coherence tomography." Optics Letters 25(2): 111-113.
Motaghian Nezam, S.M. et al: "High-speed Wavelength-Swept Semiconductor laser using a Diffrection Grating and a Polygon Scanner in Littro Configuration" Optical Fiber Communication and the National Fiber Optic Engineers Conference Mar. 29, 2007.
Motaghian Nezam, S.M.R. (2007) "Increased Ranging Depth in optical Frequency Domain Imaging by Frequency Encoding" Optics Letters, vol. 32, No. 19, Oct. 1, 2007.
Motz, J.T. et al: "Spectral-and Frequency-Encoded Fluorescence Imaging" Optics Letters, OSA, Optical Society of America, Washington, DC, US, vol. 30, No. 20, Oct. 15, 2005, pp. 2760-2762.
Mourant, J. R., A. H. Hielscher, et al. (1998). "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells." Cancer Cytopathology 84(6): 366-374.
Muller, M., J. Squier, et al. (1998). "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives." Journal of Microscopy-Oxford 191: 141-150.
Murakami, K. "A Miniature Confocal Optical Scanning Microscopy for Endscopes", Proceedings of SPIE, vol. 5721, Feb. 28, 2005, pp. 119-131.
Muscat, S., N. McKay, et al. (2002). "Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography." Investigative Ophthalmology & Visual Science 43(6): 1791-5.
Musch, D. C., P. R. Lichter, et al. (1999). "The Collaborative Initial Glaucoma Treatment Study. Study Design, Methods, and Baseline Characteristics of Enrolled Patients." Ophthalmology 106: 653-662.
N. V. Salunke et al., "Biomechanics of Atherosclerotic Plaque" Critical Reviews™ in Biomedical Engineering 1997, 25(3):243-285.
Nadkarni, Seemantini K. et al (2005) "Charaterization of Atherosclerotic Plaques by Laser Speckle Imaging" Circulation vol. 112, pp. 885-892.
Nadkarni, Seemantini K., et al., "Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images", Journal of Biomedical Optics, vol. 11 Mar./Apr. 2006, pp. 021006-1-8.
Naganuma, Kazunori et al., "Group-Delay Measurement Using the Fourier-Transform of an Interferometric Cross-Correlation Generated by White Light," Optics Letters, vol. 15, pp. 393-395, Apr. 1990.
Nahen, Kester et al. (1999) "Investigations on Acosustic On-Line Monitoring of IR Laser Ablation of burned Skin" Lasers in Surgery and Medicine vol. 25, pp. 69-78.
Nakamura, Koichiro et al., "A New Technique of Optical Ranging by a Frequency-Shifted Feedback Laser", IEEE Phontonics Technology Letters, vol. 10, No. 12, pp. 1041-1135, Dec. 1998.
Nassif, N. A. et al., "In Vivo High-Resolution Video-Rate Spectral-Domain Optical Coherence Tomography of the Human Retina and Optic Nerve," Optics Express, vol. 12, No. 3, Feb. 9, 2004, pp. 367-376.
Nassif, Nader et al., "In Vivo Human Retinal Imaging by Ultrahigh-Speed Spectral Domain Optical Coherence Tomography," Optics Letters, vol. 29, No. 5, Mar. 1, 2004, pp. 480-482.
Neerken, S., Lucassen, G.W., Bisschop, M.A., Lenderink, E., Nuijs, T.A.M. (2004). "Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography." Journal of Biomedical Optics 9(2): 274-281.
Nelson, J. S., K. M. Kelly, et al. (2001). "Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography." Archives of Dermatology 137(6): 741-744.
Neumann, R.A. et al. (1991) "Enzyme Histochemical Analysis of Cell Viability After Argon Laser-Induced Coagulation Necrosis of the Skin" Journal of the American Academy of Dermatology vol. 25, No. 6, pp. 991-998.
Newson, T. P., F. Farahi, et al. (1988). "Combined Interferometric and Polarimetric Fiber Optic Temperature Sensor with a Short Coherence Length Source." Optics Communications 68(3): 161-165.
Nicusor V. Iftimia et al., "A Portable, Low Coherence Interferometry Based Instrument for Fine Needle Aspiration Biopsy Guidance," Accepted to Review of Scientific Instruments, 2005.
Notice of Allowance and Fees mailed Dec. 1, 2010 for U.S. Appl. No. 12/261,967.
Notice of Allowance and Fees mailed Nov. 23, 2010 for U.S. Appl. No. 12/627,918.
Notice of Allowance dated Oct. 3, 2007 for U.S. Appl. No. 11/225,840.
Notice of Allowance mailed Jun. 4, 2008 for U.S. Appl. No. 11/174,425.
Notice of Reasons for Reject dated Jul. 14, 2009 for Japanese Application No. 2006-503161.
Notice of Reasons for Rejection and English translation for Japanese Patent Application No. 2002-538830.
Notice of Reasons for Rejection dated Feb. 19, 2013 for JP 2008-507983.
Notice of Reasons for Rejection dated Feb. 5, 2013 for JP 2008-509233.
Notice of Reasons for Rejection dated May 5, 2010 for JP 2006-515266.
Notice of Reasons for Rejection dated Nov. 2, 2011 for JP 2008-509233.
Notice of Reasons for Rejection dated Nov. 21, 2011 for JP 2007-525075.
Notice of Reasons for Rejection mailed Dec. 2, 2008 for Japanese patent application No. 2000-533782.
Notice of Reasons for Rejection mailed on Apr. 16, 2013 for JP 2008-533727.
Notice of Reasons for Rejection mailed on Apr. 16, 2013 for JP 2009-510092.
Notice of Reasons for Rejection mailed on May 7, 2013 for JP 2011-508674.
Notification Concerning Transmittal of International Preliminary Report on Patentability dated Oct. 13, 2005 for PCT/US04/10152.
Notification of the international Preliminary Report on Patentability mailed Oct. 21, 2005.
November, L. J. (1993). "Recovery of the Matrix Operators in the Similarity and Congruency Transformations-Applications in Polarimetry." Journal of the Optical Society of America a-Optics Image Science and Vision 10(4): 719-739.
November, L. J. (1993). "Recovery of the Matrix Operators in the Similarity and Congruency Transformations—Applications in Polarimetry." Journal of the Optical Society of America a-Optics Image Science and Vision 10(4): 719-739.
Office Action dated Apr. 15, 2009 for U.S. Appl. No. 12/205,775.
Office Action dated Apr. 17, 2009 for U.S. Appl. No. 11/537,343.
Office Action dated Apr. 8, 2010 of U.S. Appl. No. 11/414,564.
Office Action dated Aug. 10, 2007 for U.S. Appl. No. 10/997,789.
Office Action dated Aug. 13, 2009 for U.S. Appl. No. 10/136,813.
Office Action dated Aug. 18, 2009 for U.S. Appl. No. 12/277,178.
Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/505,700.
Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/956,079.
Office Action dated Aug. 24, 2006 for U.S. Appl. No. 10/137,749.
Office Action dated Aug. 25, 2008 for U.S. Appl. No. 09/709,162.
Office Action dated Aug. 25, 2008 for U.S. Appl. No. 11/264,655.
Office Action dated Aug. 27, 2010 for U.S. Appl. No. 11/569,790.
Office Action dated Aug. 31, 2010 for U.S. Appl. No. 11/677,278.
Office Action dated Aug. 5, 2010 for U.S. Appl. No. 11/623,852.
Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/624,455.
Office Action dated Dec. 14, 2009 for U.S. Appl. No. 11/537,123.
Office Action dated Dec. 15, 2009 for U.S. Appl. No. 11/549,397.
Office Action dated Dec. 18, 2006 for U.S. Appl. No. 10/501,276.
Office Action dated Dec. 18, 2007 for U.S. Appl. No. 11/288,994.
Office Action dated Dec. 21, 2007 for U.S. Appl. No. 11/264,655.
Office Action dated Dec. 23, 2008 for U.S. Appl. No. 11/780,261.
Office Action dated Dec. 6, 2006 for U.S. Appl. No. 10/997,789.
Office Action dated Dec. 9, 2008 for U.S. Appl. No. 09/709,162.
Office Action dated Feb. 17, 2009 for U.S. Appl. No. 11/211,483.
Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/285,301.
Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/697,012.
Office Action dated Feb. 2, 2007 for U.S. Appl. No. 11/174,425.
Office Action dated Feb. 23, 2009 for U.S. Appl. No. 11/956,129.
Office Action dated Feb. 4, 2008 for U.S. Appl. No. 10/861,179.
Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/410,937.
Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/435,228.
Office Action dated Jan. 11, 2008 for U.S. Appl. No. 11/445,990.
Office Action dated Jan. 25, 2010 for U.S. Appl. No. 11/537,048.
Office Action dated Jan. 3, 2008 for U.S. Appl. No. 10/997,789.
Office Action dated Jan. 9, 2009 for U.S. Appl. No. 11/624,455.
Office Action dated Jan. 9, 2010 for U.S. Appl. No. 11/624,455.
Office Action dated Jul. 16, 2010 for U.S. Appl. No. 11/445,990.
Office Action dated Jul. 20, 2010 for U.S. Appl. No. 11/625,135.
Office Action dated Jul. 7, 2008 for U.S. Appl. No. 10/551,735.
Office Action dated Jul. 7, 2010 for U.S. Appl. No. 11/624,277.
Office Action dated Jun. 10, 2010 for U.S. Appl. No. 11/505,700.
Office Action dated Jun. 2, 2010 for U.S. Appl. No. 12/112,205.
Office Action dated Jun. 30, 2008 for U.S. Appl. No. 11/670,058.
Office Action dated Jun. 4, 2010 for U.S. Appl. No. 11/285,301.
Office Action dated Jun. 8, 2010 for U.S. Appl. No. 12/201,816.
Office Action dated Mar. 16, 2009 for U.S. Appl. No. 11/621,694.
Office Action dated Mar. 18, 2010 of U.S. Appl. No. 11/844,454.
Office Action dated Mar. 24, 2009 for U.S. Appl. No. 11/744,412.
Office Action dated Mar. 28, 2007 for U.S. Appl. No. 11/241,907.
Office Action dated May 15, 2009 for U.S. Appl. No. 11/537,123.
Office Action dated May 23, 2007 for U.S. Appl. No. 10/406,751.
Office Action dated May 23, 2007 for U.S. Appl. No. 10/551,735.
Office Action dated May 28, 2010 for U.S. Appl. No. 12/015,642.
Office Action dated Nov. 13, 2006 for U.S. Appl. No. 10/501,268.
Office Action dated Nov. 15, 2010 for U.S. Appl. No. 12/795,529.
Office Action dated Nov. 20, 2006 for U.S. Appl. No. 09/709,162.
Office Action dated Nov. 24, 2010 for U.S. Appl. No. 11/624,334.
Office Action dated Oct. 1, 2008 for U.S. Appl. No. 11/955,986.
Office Action dated Oct. 1, 2009 for U.S. Appl. No. 11/677,278.
Office Action dated Oct. 11, 2007 for U.S. Appl. No. 11/534,095.
Office Action dated Oct. 20, 2010 for U.S. Appl. No. 12/015,642.
Office Action dated Oct. 25, 2010 for U.S. Appl. No. 11/622,854.
Office Action dated Oct. 26, 2010 for U.S. Appl. No. 11/211,482.
Office Action dated Oct. 27, 2010 for U.S. Appl. No. 11/744,287.
Office Action dated Oct. 30, 2007 for U.S. Appl. No. 11/670,069.
Office Action dated Oct. 6, 2009 for U.S. Appl. No. 12/015,642.
Office Action dated Oct. 9, 2007 for U.S. Appl. No. 09/709,162.
Office Action dated Sep. 11, 2008 for U.S. Appl. No. 11/624,334.
Office Action dated Sep. 29, 2010 for U.S. Appl. No. 11/672,571.
Office Action dated Sep. 3, 2010 for U.S. Appl. No. 12/139,314.
Office Action mailed Dec. 3, 2010 for U.S. Appl. No. 12/210,979.
Office Action mailed Oct. 1, 2008 for U.S. Appl. No. 11/955,986.
Official European Search report mailed on Apr. 24, 2013 for EP 10182341.7.
Oh, Jung-Taek et al., "Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Epoxy Composites," Optics Express, vol. 11, No. 14, Jul. 14, 2003, pp. 1669-1676.
Oh, W. Y., S. H. Yun, et al. (2005). "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers." Ieee Photonics Technology Letters 17(3): 678-680.
Oh. W.Y. et al (2006) "Ultrahigh-Speed Optical Frequency Domain Imaging and Application to laser Ablation Monitoring" Applied Physics Letters, vol. 88.
Oka, K. and T. Kato (1999). "Spectroscopic polarimetry with a channeled spectrum." Optics Letters 24(21): 1475-1477.
Okoshi,Takanori, "Polarization-State Control Schemes for Heterodyne or Homodyne Optical Fiber Communications," Journal of Lightwave Technology, vol. LT-3, pp. 1232-1237, Dec. 1995.
Okugawa, T. and K. Rotate (1996). "Real-time optical image processing by synthesis of the coherence function using real-time holography." Ieee Photonics Technology Letters 8(2): 257-259.
O'Reich et al., (2000) "Expression of Oestrogen and Progesterone Receptors in Low-Grade Endometrial Stromal Sarcomas,", British Journal of Cancer, vol. 82, No. 5, pp. 1030-1034.
Oscar Eduardo Martinez, "3000 Times Grating Compress or with Positive Group Velocity Dispersion," IEEE, vol. QE-23, pp. 59-64, Jan. 1987.
Oshima, M., R. Torii, et al. (2001). "Finite element simulation of blood flow in the cerebral artery." Computer Methods in Applied Mechanics and Engineering 191 (6-7): 661-671.
Overholt, Bergein F. et al. (1999) "Photodynamic Therapy for Barrett's Esophagus: Follow-Up in 100 Patients" Gastrointestinal Endoscopy vol. 49, No. 1, pp. 1-7.
P. Pfau et al., (2003) "Criteria for the Diagnosis of Dysphasia by Endoscopic Optical Coherence Tomography," Gastrointestinal Endoscopy, vol. 58, No. 2, pp. 196-2002.
P.F. Escobar et al., "Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva", Int. Journal of Gynecological Cancer 2004, 14, pp. 470-474.
Pan, Y. T., H. K. Xie, et al. (2001). "Endoscopic optical coherence tomography based on a microelectromechanical mirror." Optics Letters 26(24): 1966-1968.
Parisi, V., G. Manni, et al. (2001). "Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients." Ophthalmology 108(5): 905-12.
Park et al., "Diffraction Phase and Fluorescence Microscopy", Opt. Expr. 14 (18) 2006, pp. 8263-8268.
Park, B. H., M. C. Pierce, et al. (2005). "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m." Optics Express 13(11): 3931-3944.
Park, B. Hyle et al., "In Vivo Burn Depth Determination by High-Speed Fiber-Based Polarization Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 6, No. 4, Oct. 2001, pp. 474-479.
Park, B. Hyle et al., "Jones Matrix Analysis for a Polarization-Sensitive Optical Coherence Tomography System Using Fiber-Optic Components," Optics Letters, vol. 29, No. 21, Nov. 1, 2004, pp. 2512-2514.
Park, B. Hyle et al., "Real-Time Multi-Functional Optical Coherence Tomography," Optics Express, vol. 11, No. 7, Apr. 7, 2003, pp. 782-793.
Park, B. Hyle et al., Comment on "Optical-Fiber-Based Mueller Optical Coherence Tomography," Optics Letters, vol. 29, No. 24, Dec. 15, 2004, pp. 2873-2874.
Park, D. H., J. W. Hwang, et al. (1998). "Use of laser Doppler flowmetry for estimation of the depth of burns." Plastic and Reconstructive Surgery 101(6): 1516-1523.
Parker K. J. et al., "Techniques for Elastic Imaging: A Review", IEEE Engineering in Medicine and Biology, Nov./Dec. 1996, pp. 52-59.
Passy, R. et al., "Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor-Laser Sources," Journal of Lightwave Technology, vol. 12, pp. 1622-1630, Sep. 1994.
Paul M. Ripley et al., "A comparison of Artificial Intelligence techniques for spectral classification in the diagnosis of human pathologies based upon optical biopsy", Journal of Optical Society of America, 2000, pp. 217-219.
PCT International Preliminary Report on Patentability for Application No. PCT/US2005/043951 dated Jun. 7, 2007.
PCT International Preliminary Report on Patentability for International Application No. PCT/US2004/038404 dated Jun. 2, 2006.
PCT International Search Report and Written Opinion for Application No. PCT/US2004/023585 filed Jul. 23, 2004.
PCT International Search Report and Written Opinion for Application No. PCT/US2006/031905 dated May 3, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/060319 dated Jun. 6, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/060481 dated May 23, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/060657 dated Aug. 13, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/060670 dated Sep. 21, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/060717 dated May 24, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/061463 dated Jan. 23, 2008.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/061481 dated Mar. 17, 2008.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/061815 dated Aug. 2, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/062465 dated Aug. 8, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/066017 dated Aug. 30, 2007.
PCT International Search Report and Written Opinion for Application No. PCT/US2007/078254 dated Mar. 28, 2008.
PCT International Search Report for Application No. PCT/US2006/016677 filed Apr. 28, 2006.
PCT International Search Report for Application No. PCT/US2006/018865 filed May 5, 2006.
PCT International Search Report for Application No. PCT/US2007/060787 dated Mar. 18, 2008.
PCT International Search Report for Application No. PCT/US2007/068233 dated Feb. 21, 2008.
Pendry, J. B., A. J. Holden, et al. (1999). "Magnetism from conductors and enhanced nonlinear phenomena." Ieee Transactions on Microwave Theory and Techniques 47(11): 2075-2084.
Penninckx, D. and V. Morenas (1999). "Jones matrix of polarization mode dispersion." Optics Letters 24(13): 875-877.
Pfefer, Jorje at al. (2006) "Performance of the Aer-O-Scope, A Pneumatic, Self Propelling, Self Navigating Colonoscope in Animal Experiments" Gastrointestinal Endoscopy vol. 63, No. 5, pp. AB223.
Pierce, M. C., M. Shishkov, et al. (2005). "Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography." Optics Express 13(15): 5739-5749.
Pierce, Mark C. et al., "Advances in Optical Coherence Tomography Imaging for Dermatology," The Society for Investigative Dermatology, Inc. 2004, pp. 458-463.
Pierce, Mark C. et al., "Birefringence Measurements in Human Skin Using Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 287-291.
Pierce, Mark C. et al., "Collagen Denaturation can be Quantified in Burned Human Skin Using Polarization-Sensitive Optical Coherence Tomography," Elsevier, Burns, 2004, pp. 511-517.
Pierce, Mark C. et al., "Simultaneous Intensity, Birefringence, and Flow Measurements with High-Speed Fiber-Based Optical Coherence Tomography," Optics Letters, vol. 27, No. 17, Sep. 1, 2002, pp. 1534-1536.
Pircher, M., E. Gotzinger, et al. (2003). "Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography." Optics Express 11(18): 2190-2197.
Pircher, M., E. Gotzinger, et al. (2003). "Speckle reduction in optical coherence tomography by frequency compounding." Journal of Biomedical Optics 8(3): 565-569.
Pircher, Michael et al., "Imaging of Polarization Properties of Human Retina in Vivo with Phase Resolved Transversal PS-OCT," Optics Express, vol. 12, No. 24, Nov. 29, 2004 pp. 5940-5951.
Pircher, Michael et al., "Three Dimensional Polarization Sensitive OCT of Human Skin in Vivo," 2004, Optical Society of America.
Pircher, Michael et al., "Transversal Phase Resolved Polarization Sensitive Optical Coherence Tomography," Physics in Medicine & Biology, 2004, pp. 1257-1263.
Podbielska, H. "Interferometric Methods and Biomedical Research", SPIE, 1999, 2732:134-141.
Podoleanu, A. G. and D. A. Jackson (1999). "Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope." Applied Optics 38(10): 2116-2127.
Podoleanu, A. G., G. M. Dobre, et al. (1998). "En-face coherence imaging using galvanometer scanner modulation." Optics Letters 23(3): 147-149.
Podoleanu, A. G., J. A. Rogers, et al. (2000). "Three dimensional OCT images from retina and skin." Optics Express 7(9): 292-298.
Podoleanu, A. G., M. Seeger, et al. (1998). "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry." Journal of Biomedical Optics 3(1): 12-20.
Podoleanu, Adrian G., "Unbalanced Versus Balanced Operation in an Optical Coherence Tomography System," Applied Optics, vol. 39, pp. 173-182, Jan. 2000.
Poneros er al: "Optical Coherence Tomography of the Biliary Tree During ERCP", Gastrointestinal Endoscopy, Elsevier, NL, vol. 55, No. 1, Jan. 1, 2002, pp. 84-88.
Poneros, John M. et al. (2001) "Diagnosis of Specialized Intestinal Metaplasia by Optical Coherence Tomography" Gastroenterology vol. 120, pp. 7-12.
Poole, C. D. (1988). "Statistical Treatment of Polarization Dispersion in Single-Mode Fiber." Optics Letters 13(8): 687-689.
Povazay, B., K. Bizheva, et al. (2002). "Submicrometer axial resolution optical coherence tomography." Optics Letters 27(20): 1800-1802.
Price, J. H. V. et al., "Tunable, Femtosecond Pulse Source Operating in the Range 1.06-1.33 mu m Based on an Yb3+-doped Holey Fiber Amplifier," Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 1286-1294, Jun. 2002.
Pyhtila John W. et al., "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system", Optics Express, Dec. 15, 2003, vol. 11, No. 25, pp. 3473-3484.
Pyhtila John W. et al., "Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry", Optics Society of America, 2004.
Pyhtila, Optics Express, U.S.A., Optical Society of America, Dec. 13, 2004, V12 N25.
Qi, B., A. P. Himmer, et al. (2004). "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror." Optics Communications 232(1-6): 123-128.
Qiang Zhou et al: "A Novel Machine Vision Application for Analysis and Visualization of Confocal Microscopic Images" Machine Vision and Applications, vol. 16, No. 2, Feb. 1, 2005.
R. Haggitt et al., "Barrett's Esophagus Correlation Between Mucin Histochemistry, Flow Cytometry, and Histological Diagnosis for Predicting Increased Cancer Risk," Apr. 1988, American Journal of Pathology, vol. 131, No. 1, pp. 53-61.
R. Kiesslich et al., (2004) "Confocal Laser Endoscopy for Diagnosing Intraepithelial Neoplasias and Colorectal Cancer in Vivo," Gastroenterology, vol. 127, No. 3, pp. 706-713.
R. Thompson et al. "Precise nanometer localization analysis for individual fluorescent probes," Biophysical Journal 82:2775 (2002).
R.H. Hardwick et al., (1995) "c-erbB-2 Overexpression in the Dysplasia/Carcinoma Sequence of Barrett's Oesophagus," Journal of Clinical Pathology, vol. 48, No. 2, pp. 129-132.
Radhakrishnan, S., A. M. Rollins, et al. (2001). "Real-time optical coherence tomography of the anterior segment at 1310 nm." Archives of Ophthalmology 119(8): 1179-1185.
Ramasamy Manoharan et al., "Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy", Atherosclerosis, May 1993, 181-1930.
Reid, Brian J. (2001) "p53 and Neoplastic Progression in Barrett's Esophagus" The American Journal of Gastroenterology vol. 96, No 5, pp. 1321-1323.
Ren, Hongwu et al., "Phase-Resolved Functional Optical Coherence Tomography: Simultaneous Imaging of in Situ Tissue Structure, Blood Flow Velocity, Standard Deviation, Birefringence, and Stokes Vectors in Human Skin," Optics Letters, vol. 27, No. 19, Oct. 1, 2002, pp. 1702-1704.
Richards G.J. et al. (1997) "Laser Speckle Contrast Analysis (LASCA): A Technique for Measuring Capillary Blood Flow Using the First Order Statistics of Laser Speckle Patterns" Apr. 2, 1997.
Richards-Kortum et al., "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter", American Heart Journal, 1989, 118(2):381-391.
Rogers, A. J. (1981). "Polarization-Optical Time Domain Reflectometry-a Technique for the Measurement of Field Distributions." Applied Optics 20(6): 1060-1074.
Rogers, A. J. (1981). "Polarization-Optical Time Domain Reflectometry—a Technique for the Measurement of Field Distributions." Applied Optics 20(6): 1060-1074.
Rollins, A. M. and J. A. Izatt (1999). "Optimal interferometer designs for optical coherence tomography." Optics Letters 24(21): 1484-1486.
Rollins, A. M., R. Ung-arunyawee, et al. (1999). "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design." Optics Letters 24(19): 1358-1360.
Rollins, A. M., S. Yazdanfar, et al. (2000). "Imaging of human retinal hemodynamics using color Doppler optical coherence tomography." Investigative Ophthalmology & Visual Science 41(4): S548-S548.
Rollins, A. M., S. Yazdanfar, et al. (2002). "Real-time in vivo colors Doppler optical coherence tomography." Journal of Biomedical Optics 7(1): 123-129.
Rollins, et al., "In Vivo Video Rate Optical Coherence Tomography," Optics Express, vol. 3, pp. 219-229, Sep. 1998.
Roth, Jonathan E. et al., "Simplified Method for Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 26, No. 14, Jul. 15, 2001, pp. 1069-1071.
Ruth, B. "Blood flow determination by the laser speckle method", Int J Microcirc: Clin Exp, 1990, 9:21-45.
S. Hell et al. "Ground-State-Depletion fluorescence microscopy-a concept for breaking the diffraction resolution limit," Applied Physics B. 60:780 (1994)) fluorescence microscopy, photo-activated localization microscopy (PALM).
S. Hell et al. "Ground-State-Depletion fluorescence microscopy—a concept for breaking the diffraction resolution limit," Applied Physics B. 60:780 (1994)) fluorescence microscopy, photo-activated localization microscopy (PALM).
S. Hell et al., "Breaking the diffraction resolution limit by stimulated-emission-stimulated-emission-depletion fluorescence microscopy," Optics Letters. 19:495 (1995) and Ground State Depletion (GSD).
S. Hell et al., "Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy," Optics Letters. 19:495 (1995) and Ground State Depletion (GSD).
S. Jackle et al., (2000) "In Vivo Endoscopic Optical Coherence Tomography of the Human Gastrointestinal Tract-Toward Optical Biopsy," Encoscopy, vol. 32, No. 10, pp. 743-749.
S.B. Adams Jr. et al., "The use of polarization sensitive optical coherence tomography and elastography to assess connective tissue", Optical Soc. of American Washington 2002, p. 3.
Sadhwani, Ajay et al., "Determination of Teflon thickness with laser speckle I. Potential for burn depth diagnosis", Optical Society of America, 1996, vol. 35, No. 28, pp. 5727-5735.
Sampliner, Richard E. (2004) "Endoscopic Ablative Therapy for Barrett's Esophagus: Current Status" Gastrointestinal Endoscopy vol. 59, No. 1, pp. 66-69.
Sampliner, Richard E. et al. (1996) "Reversal of Barrett's Esophagus with Acid Suppression and Multipolar Electrocoagulation: Preliminary Results" Gastrointestinal Endoscopy vol. 44, No. 5, pp. 532-535.
Sanchez et al., "Near-Field Fluorscence Microscopy Based on Two-Photon Excvitation with Metal Tips", Phys. Rev. Lett. 82 (20) 1999, pp. 4014-4017.
Sandoz, P. (1997). "Wavelet transform as a processing tool in white-light interferometry." Optics Letters 22(14): 1065-1067.
Sankaran, V., J. T. Walsh, et al. (2000). "Polarized light propagation through tissue phanto, ehms containing densely packed scatterers." Optics Letters 25(4): 239-241.
Sankaran, V., M. J. Everett, et al. (1999). "Comparison of polarized-light propagation in biological tissue and phantoms." Optics Letters 24(15): 1044-1046.
Sarunic, M. V., M. A. Choma, et al. (2005). "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers." Optics Express 13(3): 957-967.
Sathyam, U. S., B. W. Colston, et al. (1999). "Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths." Applied Optics 38(10): 2097-2104.
Saxer, et al., High Speed Fiber-Based Polarization-Sensitive Optical Coherence Tomography of in Vivo Human Skin, Optical Society of America, vol. 25, pp. 1355-1357, Sep. 2000.
Schmitt M. Joseph et al. "OCT elastography: imaging microscopic deformation and strain of tissue", Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 199-211.
Schmitt, J. M. (1997). "Array detection for speckle reduction in optical coherence microscopy." Physics in Medicine and Biology 42(7):1427-1439.
Schmitt, J. M. (1999). "Optical coherence tomography (OCT): A review." Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1205-1215.
Schmitt, J. M. and A. Knuttel (1997). "Model of optical coherence tomography of heterogeneous tissue." Journal of the Optical Society of America a-Optics Image Science and Vision 14(6): 1231-1242.
Schmitt, J. M. et al, "Measurement of Optical-Properties of Biological Tissues by Low-Coherence Reflectometry," Applied Optics, vol. 32, pp. 6032-6042, Oct. 1993.
Schmitt, J. M., M. J. Yadlowsky, et al. Coherence Microscopy. "Subsurface Imaging of Living Skin with Optical" Dermatology (1995). 191(2): 93-98.
Schmitt, J. M., S. H. Xiang, et aI. (1999). "Speckle in optical coherence tomography." Journal of Biomedical Optics 4(1): 95-105.
Schmitt, J. M., S. H. Xiang, et al. (1998). "Differential absorption imaging with optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 15(9): 2288-2296.
Schmitt, J. M., S. L. Lee, et al. (1997). "An optical coherence microscope with enhanced resolving power in thick tissue." Optics Communications 142(4-6): 203-207.
Schmitt, J.M. et al., "Cross-Polarized Backscatter in Optical Coherence Tomography of Biological Tissue," Optics Letters, vol. 23, No. 13, Jul. 1, 1998, pp. 1060-1062.
Schoenenberger, Klaus et al., "Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography," Applied Optics, vol. 37, No. 25, Sep. 1, 1998, pp. 6026-6036.
Sean J. Kirkpatrick et al., "Laser speckle microstrain measurements in vascular tissue", SPIE, 1999, 3598:121-129.
Sean J. Kirkpatrick et al., "Micromechanical behavior of cortical bone as inferred from laser speckle data", Journal of Biomedical Materials Research, 1998, 39(3):373-379.
Seltzer et al., (1991) "160 nm Continuous Tuning of a MQW Laser in an External Cavity Across the Entire 1.3 μm Communications Window," Electronics Letters, vol. 27, pp. 95-96.
Sennaroglu, Alphan at al. (1995) "Efficient Continuous-Wave Chromium-Doped YAG Laser" Journal of Optical Society of America vol. 12, No. 5, pp. 930-937.
Seok, H. Yun et al: "Comprehensive Volumetric Optical Microscopy in Vivo", Nature Medicine, vol. 12, No. 12, Jan. 1, 2007.
Sepchler, Stuart Jon. (1997) "Barrett's Esophagus: Should We Brush off this Balloning Problem?" Gastroenterology vol. 112, pp. 2138-2152.
Shapo et al., "Intravascular strain imaging: Experiments on an Inhomogeneous Phantom", IEEE Ultrasonics Symposium 1996, 2:1177-1180.
Shapo et al., "Ultrasonic displacement and strain imaging of coronary arteries with a catheter array", IEEE Ultrasonics Symposium 1995, 2:1511-1514.
Sharma, P. et al.(2003) "Magnification Chromoendoscopy for the Detection of Intestinal Metaplasia and Dysplasia in Barrett's Oesophagus" Gut vol. 52, pp. 24-27.
Shen et al: "Ex Vivo Histology-Correlated Optical Coherence Tomography in the Detection of Transmural Inflammation in Crohn's Disease", Clinical Gastroenterology and Heptalogy, vol. 2, No. 9, Sep. 1, 2004.
Shen et al: "In Vivo Colonscopic Optical Coherence Tomography for Transmural Inflammation in Inflammatory Bowel Disease", Clinical Gastroenterology and Hepatology, American Gastroenterological Association, US, vol. 2, No. 12, Dec. 1, 2004.
Shi, H., I. Nitta, et al. (1999). "Demonstration of phase correlation in multiwavelength mode-locked semiconductor diode lasers." Optics Letters 24(4): 238-240.
Shi, H., J. Finlay, et al. (1997). "Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser." Ieee Photonics Technology Letters 9(11): 1439-1441.
Shim M.G. et al., "Study of Fiber-Optic Probes for in vivo Medical Raman Spectroscopy" Applied Spectroscopy. vol. 53, No. 6, Jun. 1999.
Shribak, Michael et al., "Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions," Applied Optics, vol. 42, No. 16, Jun. 1, 2003, pp. 3009-3017.
Siavash et al., "Self-Referenced Doppler Optical Coherence Tomography" Optics Letters, vol. 27, No. 23, Dec. 1, 2002.
Siavash Yazdanfar et al., "In Vivo imaging in blood flow in human retinal vessels using color Doppler optical coherence tomography", SPIE, 1999 vol. 3598, pp. 177-184.
Silberberg, Y. et al., "Passive-Mode Locking of a Semiconductor Diode-Laser," Optics Letters, vol. 9, pp. 507-509, Nov. 1984.
Silva et al: "Extended Range, Rapid Scanning Optical Delay Line for Biomedical Interferometric Imaging", Electronics Letters, IEE Stevenage, GB vol. 35, No. 17, Aug. 19, 1999.
Simon, R. (1982). "The Connection between Mueller and Jones Matrices of Polarization Optics." Optics Communications 42(5): 293-297.
Sir Randall, John et al., "Brillouin scattering in systems of biological significance", Phil. Trans. R. Soc. Lond. A 293, 1979, pp. 341-348.
Smith, L. Montgomery et al., "Absolute Displacement Measurements Using Modulation of the Spectrum of White-Light in a Michelson Interferometer," Applied Optics, vol. 28, pp. 3339-3342, Aug. 1989.
Smithies, D. J., T. Lindmo, et al. (1998). "Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation." Physics in Medicine and Biology 43(10): 3025-3044.
Soetikno, Roy M. et al. (2003) "Endoscopic Mucosal resection" Gastrointestinal Endoscopy vol. 57, No. 4, pp. 567-579.
Somervell, A.R.D. et al., "Direct Measurement of Fringe Amplitude and Phase Using a Heterodyne Interferometer Operating in Broadband Light," Elsevier, Optics Communications, Oct. 2003.
Sonnenschein, C. M. et al., "Signal-To-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from Atmosphere," Applied Optics, vol. 10, pp. 1600-1604, Jul. 1971.
Sorin, W. V. and D. F. Gray (1992). "Simultaneous Thickness and Group Index Measurement Using Optical Low-Coherence Reflectometry." Ieee Photonics Technology Letters 4(1): 105-107.
Sorin, W. V. et al., "A Simple Intensity Noise-Reduction Technique for Optical Low-Coherence Reflectometry," IEEE Photonics Technology Letters, vol. 4, pp. 1404-1406, Dec. 1992.
Sorin, W. V. et al., "Measurement of Rayleigh Backscattering at 1.55 mu m with 32 mu m Spatial Resolution," IEEE Photonics Technology Letters, vol. 4, pp. 374-376, Apr. 1992.
Srinivas, Shyam M. et al., "Determination of Burn Depth by Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 207-212.
Statement under Article 19 and Reply to PCT Written Opinion for PCT International Application No. PCT/US2005/043951 dated Jun. 6, 2006.
Sticker, M., C. K. Hitzenberger, et al. (2001). "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography." Optics Letters 26(8): 518-520.
Sticker, M., M. Pircher, et al. (2002). "En face imaging of single cell layers by differential phase-contrast optical coherence microscopy." Optics Letters 27(13): 1126-1128.
Sticker, Markus (2002) En Face Imaging of Single Cell layers by Differential Phase-Contrast Optical Coherence Microscopy Optics Letters, col. 27, No. 13, Jul. 1, 2002.
Stifter, D. et al., "Polarisation-Sensitive Optical Coherence Tomography for Material Characterisation and Strain-Field Mapping," Applied Physics A 76, Materials Science & Processing, Jan. 2003, pp. 947-951.
Stoller, P., B. M. Kim, et al. (2002). "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon." Journal of Biomedical Optics 7(2): 205-214.
Strasswimmer, John et al., "Polarization-Sensitive Optical Coherence Tomography of Invasive Basal Cell Carcinoma," Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 292-298.
Summons to attend Oral Proceedings dated Oct. 9, 2009 for European patent application No. 06813365.1.
Summons to attend Oral Proceedings for European Patent No. 06813365.1 dated Oct. 9, 2009.
Sun, C. S. (2003). "Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration." Optics Letters 28(12): 1001-1003.
Swan et al. "Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference," IEEE Quantum Electronics 9:294 (2003).
Swan et al., "High Resolution Spectral Self-Interference Fluorescence Microscopy", Proc. SPIE 4621, 2002, pp. 77-85.
Swan et al., "Toward Nanometer-Scale Resolution in Fluorescence Microscopy using Spectral Self-Inteference" IEEE Journal. Selected Topics in Quantum Electronics 9 (2) 2003, pp. 294-300.
Swanson, E. A. et al., "High-Speed Optical Coherence Domain Reflectometry," Optics Letters, vol. 17, pp. 151-153, Jan. 1992.
Swanson, E. A., J. A. Izatt, et al. (1993). "In-Vivo Retinal Imaging by Optical Coherence Tomography." Optics Letters 18(21): 1864-1866.
T. Yoshimura et al., "Statistical properties of dynamic speckles", J. Opt. Soc. Am A. 1986, 3(7): 1032-1054.
Takada, K. et al., "High-Resolution OFDR with Incorporated Fiberoptic Frequency Encoder," IEEE Photonics Technology Letters, vol. 4, pp. 1069-1072, Sep. 1992.
Takada, K., A. Himeno, et al. (1991). "Phase-Noise and Shot-Noise Limited Operations of Low Coherence Optical-Time Domain Reflectometry." Applied Physics Letters 59(20): 2483-2485.
Takada, Kazumasa et al., "Narrow-Band light Source with Acoustooptic Tunable Filter for Optical Low-Coherence Reflectometry," IEEE Photonics Technology Letters, vol. 8, pp. 658-660, May 1996.
Takada, Kazumasa et al., "New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interometric-Technique," Applied Optics, vol. 26, pp. 1603-1606, May 1987.
Takagi, Yasunari, "Application of a microscope to Brillouin scattering spectroscopy", Review of Scientific Instruments, No. 12, Dec. 1992, pp. 5552-5555.
Takenaka, H. (1973). "Unified Formalism for Polarization Optics by Using Group-Theory I (Theory)." Japanese Journal of Applied Physics 12(2): 226-231.
Tang C. L. et al., "Transient effects in wavelength-modulated dye lasers", Applied Physics Letters, vol. 26, No. 9, May 1, 1975, pp. 534-537.
Tang C. L. et al., "Wide-band electro-optical tuning of semiconductor lasers", Applied Physics Letters, vol. 30, No. 2, Jan. 15, 1977, pp. 113-116.
Tan-no, N., T. Ichimura, et al. (1994). "Optical Multimode Frequency-Domain Reflectometer." Optics Letters 19(8): 587-589.
Tanno, N., T. Ichimura, et al. (1994). "Optical Multimode Frequency-Domain Reflectometer." Optics Letters 19(8): 587-589.
Targowski, P., M. Wojtkowski, et al. (2004). "Complex spectral OCT in human eye imaging in vivo." Optics Communications 229(1-6): 79-84.
Tateda, Mitsuhiro et al., "Interferometric Method for Chromatic Dispersion Measurement in a Single-Mode Optical Fiber," IEEE Journal of Quantum Electronics, vol. 17, pp. 404-407, Mar. 1981.
Tearney et al., "Spectrally encoded miniature endoscopy" Optical Society of America; Optical Letters vol. 27, No. 6, Mar. 15, 2002; pp. 412-414.
Tearney, G. J., B. E. Bouma, et al. (1996). "Rapid acquisition of in vivo biological images by use of optical coherence tomography." Optics Letters 21(17): 1408-1410.
Tearney, G. J., B. E. Bouma, et al. (1997). "In vivo endoscopic optical biopsy with optical coherence tomography." Science 276(5321): 2037-2039.
Tearney, G. J., H. Yabushita, et al. (2003). "Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography." Circulation 107(1): 113-119.
Tearney, G. J., I. K. Jong, et al. (2000). "Porcine coronary imaging in vivo by optical coherence tomography." Acta Cardiologica 55(4): 233-237.
Tearney, G. J., M. E. Brezinski, et al. (1995). "Determination of the refractive index of highly scattering human tissue by optical coherence tomography." Optics Letters 20(21): 2258-2260.
Tearney, G. J., M. E. Brezinski, et al. (1996). "Catheter-based optical imaging of a human coronary artery." Circulation 94(11): 3013-3013.
Tearney, G. J., M. E. Brezinski, et al. (1997). "In vivo endoscopic optical biopsy with optical coherence tomography." Science 276(5321): 2037-9.
Tearney, G. J., M. E. Brezinski, et al. (1997). "Optical biopsy in human gastrointestinal tissue using optical coherence tomography." American Journal of Gastroenterology 92(10): 1800-1804.
Tearney, G. J., R. H. Webb, et al. (1998). "Spectrally encoded confocal microscopy." Optics Letters 23(15): 1152-1154.
Tearney, G. J., S. A. Boppart, et al. (1996). "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography (vol. 21, p. 543, 1996)." Optics Letters 21(12): 912-912.
Tearney, G.J. et al., "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography", Science, vol. 276, No. 5321, Jun. 27, 1997 ("C6"), pp. 2037-2039.
Telle M. John, et al., "New method for electro-optical tuning of tunable lasers", Applied Physics Letters, vol. 24, No. 2, Jan. 15, 1974, pp. 85-87.
Telle M. John, et al., "Very rapid tuning of cw dye laser", Applied Physics Letters, vol. 26, No. 10, May 15, 1975, pp. 572-574.
The Office Action for Chinese Patent Application No. 200780010517.7 mailed on Apr. 6, 2016.
The Office Action for Japanese Patent Application No. 2013-205046 mailed on Jan. 6, 2015.
Thomas J. Flotte: "Pathology Correlations with Optical Biopsy Techniques", Annals of the New York Academy of Sciences, Wiley-Blackwell Publishing, Inc. SU, vol. 838, No. 1, Feb. 1, 1998, pp. 143-149.
Thompson et al., "Diffusive media characterization with laser speckle", Applied Optics, 1997, 36(16):3726-3734.
Thompson et al., "Imaging in scattering media by use of laser speckle", Opt. Soc. Am. A., 1997, 14(9):2269-2277.
Thomsen, Sharon et al. (1990) "Microscopic Correlates of Macroscopic Optical Property Changes During Thermal Coagulation of Myocardium" SPIE vol. 1202, pp. 2-11.
Todorovi{hacek over (c)}, Milo{hacek over (s)} et al., "Determination of Local Polarization Properties of Biological Samples in the Presence of Diattenuation by use of Mueller Optical Coherence Tomography," Optics Letters, vol. 29, No. 20, Oct. 15, 2004, pp. 2402-2404.
Toide, M. et al., "Two-Dimensional Coherent Detection Imaging in Multiple Scattering Media Based the Directional Resolution Capability of the Optical Heterodyne Method," Applied Physics B (Photophysics and Laser Chemistry), vol. B52, pp. 391-394, 1991.
Tower, T. T. and R. T. Tranquillo (2001). "Alignment maps of tissues: I. Microscopic elliptical polarimetry." Biophysical Journal 81(5): 2954-2963.
Tower, T. T. and R. T. Tranquillo (2001). "Alignment maps of tissues: II. Fast harmonic analysis for imaging." Biophysical Journal 81(5): 2964-2971.
Tripathi, Renu et al., "Spectral Shaping for Non-Gaussian Source Spectra in Optical Coherence Tomography," Optics Letters, vol. 27, No. 6, Mar. 15, 2002, pp. 406-408.
Troy, T. L. and S. N. Thennadil (2001). "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm." Journal of Biomedical Optics 6 (2): 167-176.
Trutna, W. R. et al., "Continuously Tuned External-Cavity Semiconductor-Laser," Journal of Lightwave Technology, vol. 11, pp. 1279-1286, Aug. 1993.
Tsuyoshi Sonehara et al., "Forced Brillouin Spectroscopy Using Frequency-Tunable Continuous-Wave Lasers", Physical Review Letters 1995, 75 (23): 4234-4237.
Tuchin, Valery V., "Coherent Optical Techniques for the Analysis of Tissue Structure and Dynamics," Journal of Biomedical Optics, 1999, 4(1):106-124.
US National Library of Medicine (NLM), Bethesda, MD, US; Oct. 2007, "Abstracts of the 19th Annual Symposium of Transcatheter Cardiovascular Therapeutics, Oct. 20-25, 2007, Washington, DC, USA."
Uttam, Deepak et al., "Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique," Journal of Lightwave Technology, vol. 3, pp. 971-977, Oct. 1985.
V. Tuchin et al., "Speckle interferometry in the measurements ofbiotissues vibrations," SPIE, 1647: 125 (1992).
Vabre, L., A. Dubois, et al. (2002). "Thermal-light full-field optical coherence tomography." Optics Letters 27(7): 530-532.
Vakhtin, A. B., D. J. Kane, et al. (2003). "Common-path interferometer for frequency-domain optical coherence tomography." Applied Optics 42(34): 6953-6958.
Vakhtin, A. B., K. A. Peterson, et al. (2003). "Differential spectral interferometry: an imaging technique for biomedical applications." Optics Letters 28(15): 1332-1334.
Vakoc, B. J., S. H. Yun, et al. (2005). "Phase-resolved optical frequency domain imaging." Optics Express 13(14): 5483-5493.
van Leeuwen, T. G., M. D. Kulkarni, et al. (1999). "High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography." Optics Letters 24(22): 1584-1586.
Vansteenkiste, N., P. Vignolo, et al. (1993). "Optical Reversibility Theorems for Polarization-Application to Remote-Control of Polarization." Journal of the Optical Society of America a-Optics Image Science and Vision 10(10): 2240-2245.
Vansteenkiste, N., P. Vignolo, et al. (1993). "Optical Reversibility Theorems for Polarization—Application to Remote-Control of Polarization." Journal of the Optical Society of America a-Optics Image Science and Vision 10(10): 2240-2245.
Vargas, O., E. K. Chan, et al. (1999). "Use of an agent to reduce scattering in skin." Lasers in Surgery and Medicine 24(2): 133-141.
Vaughan, J.M. et al., "Brillouin Scattering, Density and Elastic Properties of the Lens and Cornea of the Eye", Nature, vol. 284, Apr. 3, 1980, pp. 489-491.
Victor S. Y. Lin et al., "A Porous Silicon-Based Optical Interferometric Biosensor," Science Magazine, vol. 278, pp. 840-843, Oct. 31, 1997.
Viliyam K. Pratt. Lazernye Sistemy Svyazi. Moskva, Izdatelstvo "Svyaz", 1972. p. 68-70.
Virmani et al., "Lesions from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions," Arterioscler. Thromb. Vase. Bio., 20:1262-75 (2000).
Vogel, Alfred et al. (2003) "Mechanisms of Pulsed Laser Ablation of Biological Tissues" American Chemical Society vol. 103, pp. 577-644.
Von Der Weid, J. P. et al., "On the Characterization of Optical Fiber Network Components with Optical Frequency Domain Reflectometry," Journal of Lightwave Technology, vol. 15, pp. 1131-1141, Jul. 1997.
W. Drexler et al., "In Vivo Ultrahigh-Resolution Optical Coherence Tomography," Optics Letters vol. 24, pp. 1221-1223, Sep. 1999.
W. Polkowski et al., (1998) Clinical Decision making in Barrett's Oesophagus can be supported by Computerized Immunoquantitation and Morphometry of Features Associated with Proliferation and Differentiation, Journal of pathology, vol. 184, pp. 161-168.
W.Y. Oh et al: "High-Speed Polarization Sensitive Optical Frequency Domain Imaging with Frequency Multiplexing", Optics Express, vol. 16, No. 2, Jan. 1, 2008.
Wang, R. K. (1999). "Resolution improved optical coherence-gated tomography for imaging through biological tissues." Journal of Modern Optics 46(13): 1905-1912.
Wang, X. J., T. E. Milner, et al. (1995). "Characterization of Fluid-Flow Velocity by Optical Doppler Tomography." Optics Letters 20(11): 1337-1339.
Wang, X. J., T. E. Milner, et al. (1997). "Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography." Applied Optics 36(1): 144-149.
Wang, Xiao-Jun et al., "Characterization of Dentin and Enamel by Use of Optical Coherence Tomography," Applied Optics, vol. 38, No. 10, Apr. 1, 1999, pp. 2092-2096.
Wang, Y. M., J. S. Nelson, et al. (2003). "Optimal wavelength for ultrahigh-resolution optical coherence tomography." Optics Express 11(12): 1411-1417.
Wang, Y. M., Y. H. Zhao, et al. (2003). "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber." Optics Letters 28(3): 182-184.
Watkins, L. R., S. M. Tan, et al. (1999). "Determination of interferometer phase distributions by use of wavelets." Optics Letters 24(13): 905-907.
Webb RH et al. "Confocal Scanning Laser Ophthalmoscope", Applied Optics 1987, 26 (8): 1492-1499.
Wentworth, R. H. (1989). "Theoretical Noise Performance of Coherence-Multiplexed Interferometric Sensors." Journal of Lightwave Technology 7(6): 941-956.
Westphal et al: "Correlation of Endoscopic Optical Coherence Tomography with Histology in the Lower-GI Tract", Gastrointestinal Endoscopy, Elsevier, NL, vol. 61, No. 4, Apr. 1, 2005.
Westphal, V., A. M. Rollins, et al. (2002). "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle." Optics Express 10(9): 397-404.
Westphal, V., S. Yazdanfar, et al. (2002). "Real-time, high velocity-resolution color Doppler optical coherence tomography." Optics Letters 27(1): 34-36.
Wetzel, J. (2001). "Optical coherence tomography in dermatology: a review." Skin Research and Technology 7(1): 1-9.
Whelan, W.M. et al. (2005) "A novel Strategy for Monitoring Laser Thermal Therapy Based on Changes in Optothermal Properties of Heated Tissues" International Journal of Thermophysics vol. 26., No. 1, pp. 233-241.
White, Brian R. et al., "In Vivo Dynamic Human Retinal Blood Flow Imaging Using Ultra-High-Speed Spectral Domain Optical Doppler Tomography," Optics Express, vol. 11, No. 25, Dec. 15, 2003, pp. 3490-3497.
Wieser, Wolfgang et al., "Multi-Megahertz OCT: High Quality 3D Imaging at 20 million A-Scans and 4.5 Gvoxels Per Second" Jul. 5, 2010, vol. 18, No. 14, Optics Express.
Williams, P. A. (1999). "Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion." Applied Optics 38(31): 6508-6515.
Wojtkowski, M., A. Kowalczyk, et al. (2002). "Full range complex spectral optical coherence tomography technique in eye imaging." Optics Letters 27(16): 1415-1417.
Wojtkowski, M., R. Leitgeb, et al. (2002). "Fourier domain OCT imaging of the human eye in vivo." Proc. SPIE 4619: 230-236.
Wojtkowski, M., R. Leitgeb, et al. (2002). "In vivo human retinal imaging by Fourier domain optical coherence tomography." Journal of Biomedical Optics 7(3): 457-463.
Wojtkowski, M., T. Bajraszewski, et al. (2003). "Real-time in vivo imaging by high-speed spectral optical coherence tomography." Optics Letters 28(19): 1745-1747.
Wojtkowski, M., V. J. Srinivasan, et al. (2004). "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation." Optics Express 12(11): 2404-2422.
Wojtkowski, Maciej, Ph.D. "Three-Dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography" Ophthalmology, Oct. 2005 112(10): 1734-1746.
Wolfgang Drexler et al., "Ultrahigh-resolution optical coherence tomography", Journal of Biomedical Optics Spie USA, 2004, pp. 47-74.
Wong, B. J. F., Y. H. Zhao, et al. (2004). "Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm." Otolaryngology-Head and Neck Surgery 130(3): 334-338.
Wong, Brian J.F. et al., "Optical Coherence Tomography of the Rat Cochlea," Journal of Biomedical Optics, vol. 5, No. 4, Oct. 2000, pp. 367-370.
Wysocki, P.F. et al., "Broad-Spectrum, Wavelength-Swept, Erbium-Doped Fiber Laser at 1.55-Mu-M," Optics Letters, vol. 15, pp. 879-881, Aug. 1990.
X. Qi et al., (2004) "Computer Aided Diagnosis of Dysphasia in Barrett's Esophagus Using Endoscopic Optical Coherence Tomography," SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII. Proc. Of Conference on., vol. 5316, pp. 33-40.
Yamanari M. et al., "Polarization sensitive Fourier domain optical coherence tomography with continuous polarization modulation", Proc. of SPIE, vol. 6079, 2006.
Yang, C. H., A. Wax, et al. (2000). "Interferometric phase-dispersion microscopy." Optics Letters 25(20): 1526-1528.
Yang, C. H., A. Wax, et al. (2001). "Phase-dispersion optical tomography." Optics Letters 26(10): 686-688.
Yang, C., A. Wax, et al. (2001). "Phase-dispersion optical tomography." Optics Letters 26(10): 686-688.
Yang, C., A. Wax, et al. (2001). "Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics." Optics Letters26(16): 1271-1273.
Yang, V. X. D., B. Qi, et al. (2003). "In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography." Gastroenterology 124(4): A49-A50.
Yang, V. X. D., M. L. Gordon, et al. (2002). "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation." Optics Communications 208(4-6): 209-214.
Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance." Optical Express 11(7): 794-809.
Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis." Optics Express 11(14): 1650-1658.
Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts." Optics Express 11(19): 2416-2424.
Yang, Ying et al., "Observations of Birefringence in Tissues from Optic-Fibre-Based Optical Coherence Tomography," Measurement Science and Technology, Nov. 2002, pp. 41-46.
Yao, G. and L. H. V. Wang (2000). "Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue." Applied Optics 39(4): 659-664.
Yao, Gang et al., "Propagation of Polarized Light in Turbid Media: Simulated Animation Sequences," Optics Express, vol. 7, No. 5, Aug. 28, 2000, pp. 198-203.
Yao, Gang et al., "Two-Dimensional Depth-Resolved Mueller Matrix Characterization of Biological Tissue by Optical Coherence Tomography," Optics Letters, Apr. 15, 1999, vol. 24, No. 8, pp. 537-539.
Yaqoob et al., (Jun. 2002) "High-Speed Wavelength-Multiplexed Fiber-Optic Sensors for Biomedicine," Sensors Proceedings of the IEEE, pp. 325-330.
Yasuno, Y. et al., "Birefringence Imaging of Human Skin by Polarization-Sensitive Spectral Interferometric Optical Coherence Tomography," Optics Letters, vol. 27, No. 20, Oct. 15, 2002 pp. 1803-1805.
Yasuno, Yoshiaki et al., "Polarization-Sensitive Complex Fourier Domain Optical Coherence Tomography for Jones Matrix Imaging of Biological Samples," Applied Physics Letters, vol. 85, No. 15, Oct. 11, 2004, pp. 3023-3025.
Yazdanfar, S. and J. A. Izatt (2002). "Self-referenced Doppler optical coherence tomography." Optics Letters 27(23): 2085-2087.
Yazdanfar, S., A. M. Rollins, et al. (2000). "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography." Optical Letters 25(19): 1448-1450.
Yazdanfar, S., A. M. Rollins, et al. (2000). "Noninvasive imaging and velocimetry of human retinal blood flow using color Doppler optical coherence tomography." Investigative Ophthalmology & Visual Science 41(4): S548-S548.
Yazdanfar, S., A. M. Rollins, et al. (2003). "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography." Archives of Opthalmology 121(2): 235-239.
Yazdanfar, S., C. H. Yang, et al. (2005). "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound." Optics Express 13(2): 410-416.
Yazdanfar, S., M. D. Kulkarni, et al. (1997). "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography." Optics Express 1 (13): 424-431.
Yelin et al., "Double-clad Fiber for Endoscopy" Optical Society of America; Optical Letters vol. 29, No. 20, Oct. 16, 2005; pp. 2408-2410.
Yoden, K. et al. "An Approach to Optical Reflection Tomography Along the Geometrial Thickness," Optical Review, vol. 7, No. 5, Oct. 1, 2000.
Yong Zhao et al: "Virtual Data Grid Middleware Services for Data-Intensive Science", Concurrency and Computation: Practice and Experience, Wiley, London, GB, Jan. 1, 2000, pp. 1-7, pp. 1532-0626.
Yonghua et al., "Real-Time Phase-Resolved Functional Optical Hilbert Transformation" Optics Letters, vol. 27, No. 2, Jan. 15, 2002.
Youngquist, Robert C. et al., "Optical Coherence-Domain Reflectometry-A New Optical Evaluation Technique," Optics Letters, vol. 12, pp. 158-160, Mar. 1987.
Youngquist, Robert C. et al., "Optical Coherence-Domain Reflectometry—A New Optical Evaluation Technique," Optics Letters, vol. 12, pp. 158-160, Mar. 1987.
Yu, P. et al. "Imaging of tumor necroses using full-frame optical coherence imaging", Proceedings of SPIE vol. 4956, 2003, pp. 34-41.
Yun et al., (2004) "Removing the Depth-Degeneracy in Optical Frequency Domain Imaging with Frequency Shifting", Optics Express, vol. 12, No. 20.
Yun, S. H. et al., "Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser," Optics Letters, vol. 23, pp. 843-845, Jun. 1998.
Yun, S. H. et al., "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter," IEEE Journal of Selected Topicsin Quantum Electronics, vol. 3, pp. 1087-1096, Aug. 1997.
Yun, S. H., C. Boudoux, et al. (2003). "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter." Optics Letters 28(20): 1981-1983.
Yun, S. H., C. Boudoux, et al. (2004). "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging." Ieee Photonics Technology Letters 16(1): 293-295.
Yun, S. H., G. J. Tearney, et al. (2004). "Motion artifacts in optical coherence tomography with frequency-domain ranging." Optics Express 12(13): 2977-2998.
Yun, S. H., G. J. Tearney, et al. (2004). "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts." Optics Express 12(23): 5614-5624.
Yun, S. H., G. J. Tearney, et al. (2004). "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting." Optics Express 12(20): 4822-4828.
Yun, S.H. et al., "High-Speed Optical Frequency-Domain Imaging," Optics Express, vol. 11, No. 22, Nov. 3, 2003, pp. 2953-2963.
Yun, S.H. et al., "High-Speed Spectral-Domain Optical Coherence Tomography at 1.3 μm Wavelength," Optics Express, vol. 11, No. 26, Dec. 29, 2003, pp. 3598-3604.
Yung et al., "Phase-Domain Processing of Optical Coherence Tomography Images," Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
Yung, K. M., "Phase-Domain Processing of Optical Coherence Tomography Images," Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
Zhang and Chen, "Fourier Domain Functional Optical Coherence Tomography," 2005, Proc. of SPIE vol. 5771. *
Zhang et al, (Sep. 2004), "Fourier Domain Functional Optical Coherence Tomography", Saratov Fall Meeting 2004, pp. 8-14.
Zhang et al., "Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography" Optics Express, Nov. 29, 2004, vol. 12, No. 24.
Zhang Jun et al., "Full range polarization-sensitive Fourier domain optical coherence tomography", Optics Express, Nov. 29, 2004, vol. 12, No. 24, pp. 6033-6039.
Zhang, J., J. S. Nelson, et al. (2005). "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator." Optics Letters 30(2): 147-149.
Zhang, Jun et al., "Determination of Birefringence and Absolute Optic Axis Orientation Using Polarization-Sensitive Optical Coherence Tomography with PM Fibers," Optics Express, vol. 11, No. 24, Dec. 1, 2003, pp. 3262-3270.
Zhang, Y., M. Sato, et al. (2001). "Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement." Optics Communications 192(3-6): 183-192.
Zhang, Y., M. Sato, et al. (2001). "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes." Optics Letters 26(4): 205-207.
Zhao, Y. et al. "Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography", IEEE Journal of Selected Topics in Quantum Electronics 7.6 (2001): 931-935.
Zhao, Y. H., Z. P. Chen, et al. (2000). "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow." Optics Letters 25(18): 1358-1360.
Zhao, Y. H., Z. P. Chen, et al. (2000). "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity." Optics Letters 25(2): 114-116.
Zhao, Y., Z. Chen, et al. (2002). "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation." Optics Letters 27(2): 98-100.
Zhou, D., P. R. Prucnal, et al. (1998). "A widely tunable narrow linewidth semiconductor fiber ring laser." IEEE Photonics Technology Letters 10(6): 781-783.
Zhou, Xiao-Qun et al., "Extended-Range FMCW Reflectometry Using an optical Loop with a Frequency Shifter," IEEE Photonics Technology Letters, vol. 8, pp. 248-250, Feb. 1996.
Zimnyakov et al., "A study of statistical properties of partially developed speckle fields as applied to the diagnosis of structural changes in human skin", Optics and Spectroscopy, 1994, 76(5): 747-753.
Zimnyakov et al., "Spatial speckle correlometry in applications to tissue structure monitoring", Applied Optics 1997, 36(22): 5594-5607.
Zimnyakov et al., "Speckle patterns polarization analysis as an approach to turbid tissue structure monitoring", SPIE 1999, 2981:172-180.
Zimnyakov, Dmitry A. et al (2002) "Speckle-Contrast Monitoring of Tissue Thermal Modification" Applied Optics vol. 41, No. 28, pp. 5989-5996.
Zorabedian, Paul et al., "Tuning Fidelity of Acoustooptically Controlled External Cavity Semiconductor-Lasers," Journal of Lightwave Technology, vol. 13, pp. 62-66, Jan. 1995.
Zuluaga, A. F. and R. Richards-Kortum (1999). "Spatially resolved spectral interferometry for determination of subsurface structure." Optics Letters 24(8): 519-521.
Zvyagin, A. V., J. B. FitzGerald, et al. (2000). "Real-time detection technique for Doppler optical coherence tomography." Optics Letters 25(22): 1645-1647.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170219485A1 (en) * 2014-10-01 2017-08-03 Purdue Research Foundation Organism Identification
US20190101489A1 (en) * 2017-09-29 2019-04-04 Michael John Darwin Method and Apparatus for Simultaneously Measuring 3Dimensional Structures and Spectral Content of Said Structures

Also Published As

Publication number Publication date
JP2014041137A (en) 2014-03-06
EP2306141A1 (en) 2011-04-06
US20070201033A1 (en) 2007-08-30
JP5856119B2 (en) 2016-02-09
CN101410691A (en) 2009-04-15
JP2015166747A (en) 2015-09-24
JP5887006B2 (en) 2016-03-16
EP1987318A2 (en) 2008-11-05
WO2007101026A3 (en) 2007-10-25
US7982879B2 (en) 2011-07-19
EP2982929A1 (en) 2016-02-10
JP2009527770A (en) 2009-07-30
EP1987318B1 (en) 2015-08-12
EP2309221A1 (en) 2011-04-13
WO2007101026A2 (en) 2007-09-07
JP2013064747A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
USRE46412E1 (en) Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US7859679B2 (en) System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging
JP5555277B2 (en) System and method for angle resolved low coherence interferometry with endoscope
JP4454030B2 (en) Image processing method for three-dimensional optical tomographic image
US20090219544A1 (en) Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
JP5579606B2 (en) Apparatus, system and method for low coherence interferometry (LCI)
US10292595B2 (en) Systems and methods for endoscopic angle-resolved low coherence interferometry
EP1277040A2 (en) Methods and systems using field-based light scattering spectroscopy
CN105996999B (en) Method and system for measuring sample depth resolution attenuation coefficient based on OCT
EP2526374A1 (en) Multiple window processing schemes for spectroscopic optical coherence tomography (oct) and fourier domain low coherence interferometry
CN109115804A (en) A kind of device and method of quantitative detection glass subsurface defect
Verrier et al. Influence of interfaces reflectivity for central thickness measurement of a contact lens by low coherence interferometry
Zhu et al. Interferometric light scattering techniques for measuring nuclear morphology and detecting dysplasia
Zhang Development of High-performance Off-line and In-line Optical Coherence Tomography Techniques
Adie Enhancement of contrast in optical coherence tomography: new modes, methods and technology
Mazurenko et al. Spectral heterodyne tomography
Pircher et al. Absorption and dispersion measurements of water, D2O, and acetone by phase resolved PCI and OCT in the mid-infrared range 1.3 um to 2.0 um
Jacobs et al. Digital phase stabilization for improving sensitivity and degree of polarization accuracy in polarization sensitive optical coherence tomography
Goetzinger et al. In vivo imaging with high-speed full-range complex spectral domain optical coherence tomography
Kazemzadeh Laser Interference Fringe Tomography-A Novel 3D Imaging Microscopy Technique

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESJARDINS, ADRIEN E.;VAKOC, BENJAMIN J.;TEARNEY, GUILLERMO J.;AND OTHERS;REEL/FRAME:033287/0474

Effective date: 20070216

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12