WO2014007213A1 - 成形用材料、その成形体、および該成形体の製造方法 - Google Patents

成形用材料、その成形体、および該成形体の製造方法 Download PDF

Info

Publication number
WO2014007213A1
WO2014007213A1 PCT/JP2013/068041 JP2013068041W WO2014007213A1 WO 2014007213 A1 WO2014007213 A1 WO 2014007213A1 JP 2013068041 W JP2013068041 W JP 2013068041W WO 2014007213 A1 WO2014007213 A1 WO 2014007213A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
mass
parts
fiber bundle
molding material
Prior art date
Application number
PCT/JP2013/068041
Other languages
English (en)
French (fr)
Inventor
松田 猛
横溝 穂高
一光 古川
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to KR1020147035294A priority Critical patent/KR101585824B1/ko
Priority to JP2014523733A priority patent/JP5694610B2/ja
Priority to EP13813023.2A priority patent/EP2871203B1/en
Priority to CN201380035938.0A priority patent/CN104428351B/zh
Priority to US14/412,726 priority patent/US9284436B2/en
Publication of WO2014007213A1 publication Critical patent/WO2014007213A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/105Esters; Ether-esters of monocarboxylic acids with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a molding material in which a thermoplastic polyamide is adhered to an easily impregnated carbon fiber bundle, a molded body having excellent mechanical properties obtained from the molding material, and a method for producing the molded body.
  • the resin is a composite material reinforced with carbon fibers.
  • CFRTP carbon fiber reinforced thermoplastic resin
  • a production method in which a carbon fiber bundle is impregnated with a thermoplastic resin in a molten state having a relatively high viscosity to obtain a composite material.
  • the carbon fiber bundle in order to prevent the strength from being lowered in the molded product due to insufficient impregnation, the carbon fiber bundle is kept for a long time at an excessive pressure with the atmospheric temperature raised and the melt viscosity of the thermoplastic resin lowered. It is necessary to perform the impregnation treatment, and there is a problem that the manufacturing cost increases due to such a high-pressure impregnation treatment for a long time.
  • Patent Document 1 a method of impregnating a carbon fiber bundle with a low molecular weight molten resin and then impregnating a high molecular weight thermoplastic resin (Patent Document 2), and opening carbon fibers in a molten resin bath A method of impregnation (Patent Document 3) and the like are disclosed. Further, Patent Document 4 describes adjusting the carbon fiber converging agent to an agent having good wettability with the resin as a method for allowing the carbon fiber itself to be impregnated with the thermoplastic resin.
  • thermoplastic polyamide hereinafter sometimes abbreviated as PA
  • An object of the present invention is to enable a carbon fiber reinforced thermoplastic polyamide molded article having excellent physical properties and appearance, a method for producing the molded article by a simple process without causing an increase in production cost, and the production method.
  • An object of the present invention is to provide a molding material.
  • the inventors of the present invention remarkably use carbon fiber bundles containing specific compounds (hereinafter referred to as easily impregnable carbon fiber bundles) by plasticized thermoplastic polyamide. It was found to be easily impregnated. Furthermore, the present inventors used a material obtained by adhering a thermoplastic polyamide to this easily impregnated carbon fiber bundle as a molding material, and this was used in the molding die in the state of the plasticizing temperature of the thermoplastic polyamide. It was found that a surprising phenomenon occurs in which the thermoplastic polyamide is impregnated into the easily impregnated carbon fiber bundle and spreads in the mold while releasing the carbon fiber bundle.
  • easily impregnable carbon fiber bundles carbon fiber bundles containing specific compounds
  • thermoplastic polyamide in a readily impregnable carbon fiber bundle containing 3 to 15 parts by mass of one or more impregnation aids satisfying the following conditions 1 to 3 with respect to 100 parts by mass of carbon fiber A molding material characterized in that is adhered.
  • Condition 1 The viscosity of the liquid at 280 ° C. is 10 Pa ⁇ s or less.
  • the glass transition temperature drop rate ( ⁇ Tg) defined by the following formula (A) is larger than 0.2 [° C./%] from the glass transition temperature Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • a carbon fiber reinforced thermoplastic polyamide molded article having excellent physical properties and appearance, a method for producing the molded article by a simple process without causing an increase in production cost, and a molding enabling the production method Materials can be provided.
  • the present invention relates to an easily impregnable carbon fiber bundle containing 3 to 15 parts by mass of one or more impregnation aids satisfying the following conditions 1 to 3 with respect to 100 parts by mass of carbon fiber, and 50 to 2000 parts by mass of thermoplasticity.
  • the present invention relates to a molding material to which polyamide is adhered, a molded body obtained from the molding material, and a method for producing the molded body.
  • Condition 1 The viscosity of the liquid at 280 ° C. is 10 Pa ⁇ s or less.
  • the glass transition temperature drop rate ( ⁇ Tg) defined by the following formula (A) is larger than 0.2 [° C./%] from the glass transition temperature Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • Impregnation aid blending ratio [%] 100 ⁇ impregnating auxiliary compounding amount [parts by mass] / thermoplastic polyamide amount [parts by mass] (B).
  • Condition 3 The boiling point under normal pressure is 340 ° C. or higher, and the heat loss at 300 ° C. in a nitrogen atmosphere is 2% / min or lower.
  • the easily impregnated carbon fiber bundle in the present invention includes thermoplastic polyamide (3 to 15 parts by mass of one or more impregnation aids satisfying the following conditions 1 to 3 with respect to 100 parts by mass of carbon fibers.
  • the carbon fiber bundle is easily impregnated with a plasticized thermoplastic polyamide).
  • Condition 1 The viscosity of the liquid at 280 ° C. is 10 Pa ⁇ s or less.
  • the glass transition temperature drop rate ( ⁇ Tg) defined by the following formula (A) is larger than 0.2 [° C./%] from the glass transition temperature Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • Impregnation aid blending ratio [%] 100 ⁇ impregnating auxiliary compounding amount [parts by mass] / thermoplastic polyamide amount [parts by mass] (B).
  • Condition 3 The boiling point under normal pressure is 340 ° C. or higher, and the heat loss at 300 ° C. in a nitrogen atmosphere is 2% / min or lower.
  • the easily impregnable carbon fiber bundle may be a carbon fiber bundle that contains the impregnation aid in a predetermined amount with respect to the carbon fiber, and includes its production method and carbon fiber and impregnation aid. Regardless of form.
  • the impregnation aid used in the present invention satisfies the above-mentioned condition 1, which means that the impregnation aid is in a low viscosity state at 280 ° C., which is a typical processing temperature of general-purpose thermoplastic polyamides, And it means that the viscosity as a liquid can be measured at 280 ° C. The viscosity of the liquid at 280 ° C.
  • a rotary viscometer is suitable as a method for measuring the viscosity of the impregnation aid as a liquid. Specifically, the method etc. which measure with a parallel plate with a high temperature tank can be illustrated.
  • the impregnation aid used in the present invention satisfies the above condition 2.
  • the impregnation aid has a glass transition temperature decrease rate ( ⁇ Tg)> 0.2 [° C./%] over the entire range of the blending amount of 1 to 100 parts by mass per 100 parts by mass of the thermoplastic polyamide. It is not necessary, and any material that exhibits a glass transition temperature decrease rate ( ⁇ Tg) greater than 0.2 ° C./% in a part of the blending amount range may be used.
  • the glass transition temperature reduction rate ( ⁇ Tg) is greater than 0.2 ° C./%, it has an effect of promoting impregnation, and ⁇ Tg is more preferably greater than 0.3 ° C./%. If ⁇ Tg is 0.2 ° C./% or less, it means that the impregnation aid is not effective enough to lower the Tg of the thermoplastic polyamide, so that the Tg of the thermoplastic polyamide is estimated as it is. is doing. Even when an impregnation aid having a ⁇ Tg of 0.2 ° C./% or less is added to the carbon fiber bundle and a thermoplastic polyamide is adhered thereto, the impregnation promoting effect by the impregnation aid is remarkably low. In the formed product, poor carbon fiber dispersion occurs.
  • thermoplastic polyamide As a method for measuring the glass transition temperature of the thermoplastic polyamide or the resin composition of the thermoplastic polyamide and the impregnation aid, there may be mentioned a method by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • “boiling point under normal pressure is 340 ° C. or higher” means that the impregnating aid is liquid that does not clearly boil at 340 ° C. even if the boiling point under normal pressure cannot be clearly measured. If it remains, it will be understood that the condition is satisfied.
  • the loss on heating at 300 ° C. in a nitrogen atmosphere is 2% / min or less”
  • an impregnation aid is severely decomposed at 300 ° C. in a nitrogen atmosphere, and the loss on heating cannot be measured accurately. In this case, it is understood that the condition is not satisfied.
  • the amount of the impregnation aid contained in the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fibers.
  • the amount is less than 3 parts by mass, the impregnation of the thermoplastic polyamide into the carbon fiber becomes insufficient.
  • the amount exceeds 15 parts by mass the impregnation of the thermoplastic polyamide into the carbon fiber is excellent. It is not preferable because the heat resistance of the molded product is lowered due to the lowering of the transition temperature.
  • the amount of the impregnation aid contained in the easily impregnated carbon fiber bundle can be controlled by the size conditions (for example, the line speed and the concentration of the impregnation aid in the emulsion).
  • the readily impregnable carbon fiber bundle used in the present invention may contain a plurality of types of impregnation aids, and the impregnation aid used in the present invention includes a specific alkyl p-hydroxybenzoate as described later. An ester is preferred.
  • a typical method for producing an easily impregnated carbon fiber bundle is to impregnate a general-purpose carbon fiber bundle by at least one method selected from the group selected from a dipping method, a spray method, a roller transfer method, a slit coater method, and the like.
  • the method of including an auxiliary agent is exemplified.
  • the impregnation aid adheres mainly to the surface of the carbon fiber bundle, and a part of the impregnation aid also penetrates into the carbon fiber bundle. Seem.
  • the impregnation aid in producing the easily impregnable carbon fiber bundle it can be handled as an aqueous emulsion, an organic solvent diluted solution, or a heated viscous or molten liquid.
  • a preferable combination of the production method and the form of the impregnation aid is a dipping method or a roller transfer method in the case of an aqueous emulsion, but a drying step in an atmosphere of 100 ° C. or higher is necessary to sufficiently dry the water. It becomes.
  • a heated viscous liquid a general coating method such as a slit coater method can be used, and after an appropriate amount is attached to the carbon fiber bundle, it can be uniformly attached with a smoothing roll or the like.
  • the impregnation aid is adhered to the carbon fiber bundle as uniformly as possible.
  • the heat treatment is again performed at a temperature at which the viscosity of the impregnation aid is sufficiently lowered.
  • the heat treatment for example, hot air, a hot plate, a roller, an infrared heater or the like can be used, and a roller is preferably used.
  • the carbon fiber contained in the molding material of the present invention may be any carbon fiber such as polyacrylonitrile (PAN), petroleum / petroleum pitch, rayon, and lignin.
  • PAN polyacrylonitrile
  • PAN-based carbon fibers using PAN as a raw material are preferable because they are excellent in productivity and mechanical properties on a factory scale.
  • the carbon fiber preferably has an average diameter of 3 to 12 ⁇ m, more preferably an average diameter of 5 to 10 ⁇ m, more preferably an average diameter of 5 to 9 ⁇ m, and an average diameter of 5 to 7 ⁇ m. Can be used more preferably.
  • a general carbon fiber is a carbon fiber filament in which 1000 to 50000 single fibers are bundled.
  • the carbon fiber bundle in the present invention includes such general carbon fiber filaments, and the carbon fiber filaments are further overlapped and combined, or the combined yarn is twisted into a twisted yarn. Is also included.
  • the carbon fiber contained in the molding material of the present invention one in which an oxygen-containing functional group is introduced to the surface by a surface treatment is preferable in order to improve the adhesion between the carbon fiber and the thermoplastic polyamide.
  • the carbon fiber bundle when making an easily impregnated carbon fiber bundle by including an impregnation aid in the carbon fiber bundle, the carbon fiber bundle is stabilized in order to stabilize the step of uniformly attaching the impregnation aid to the carbon fiber bundle.
  • the sizing agent those known for producing carbon fiber filaments can be used.
  • the carbon fiber bundle even if the oil agent used for increasing the slipping property at the time of production remains, it can be used without any problem in the present invention.
  • the term “surface treatment agent” may be used to mean a superordinate concept that includes an impregnation aid and other treatment agents such as the above-described sizing agent.
  • the impregnation aid satisfying the above-mentioned conditions 1 to 3 used in the present invention is p-hydroxybenzoic acid alkyl ester, preferably having 14 or more carbon atoms in the alkyl group. It is more preferable that it is 14 or more and 30 or less, and it is much more preferable that this carbon number is 14 or more and 20 or less.
  • alkyl ester of p-hydroxybenzoic acid having 14 or more carbon atoms in the alkyl group examples include linear aliphatic alcohols having 14 or more carbon atoms, aliphatic alcohols having a branched chain having 14 or more carbon atoms, carbon One or more aliphatic alcohols selected from the group consisting of aliphatic alcohols having 14 or more and one or more double bonds, and aliphatic alcohols having 14 or more and one or more aromatic rings A p-hydroxybenzoic acid ester is preferred.
  • the p-hydroxybenzoic acid ester of the above aliphatic alcohol is not limited to those obtained by directly esterifying the aliphatic alcohol with p-hydroxybenzoic acid, and includes alkyl halides and the like. Of course, the same compounds obtained using the above derivatives as raw materials are also included.
  • Examples of the p-hydroxybenzoic acid ester of a linear aliphatic alcohol having 14 or more carbon atoms include 1-tetradecanol, 1-hexadecanol, 1-octadecanol, 1-eicosanol, and 1-docosanol.
  • Examples of the p-hydroxybenzoic acid ester of an aliphatic alcohol having a branched chain having 14 or more carbon atoms include one or more selected from the group consisting of hexyl decanol, isostearyl alcohol, octyldodecanol, and decyl tetradecanol.
  • Examples of the p-hydroxybenzoic acid ester of an aliphatic alcohol having 14 or more carbon atoms and one or more double bonds include p-hydroxybenzoic acid ester of oleyl alcohol.
  • Examples of the p-hydroxybenzoic acid ester of an aliphatic alcohol having 14 or more carbon atoms and one or more aromatic rings include p-hydroxybenzoic acid ester of octylbenzyl alcohol.
  • the above-mentioned p-hydroxybenzoic acid alkyl ester having an alkyl group having 14 or more carbon atoms is a p-hydroxybenzoic acid ester of an aliphatic alcohol having a branched chain having 14 or more carbon atoms, and It is a p-hydroxybenzoic acid alkyl ester of a primary alcohol branched at the carbon atom adjacent to the carbon atom with the hydroxy group represented by the general formula (1), that is, the 2-position ( ⁇ -position). And more preferred.
  • n is an integer of 4 to 7
  • j is an integer of 6 to 9.
  • p-hydroxybenzoic acid alkyl ester in which the alkyl group represented by the general formula (1) has 14 or more carbon atoms, particularly preferred is p-hydroxybenzoic acid 2-hexyldecyl ester, p-hydroxy One or more selected from the group consisting of 2-benzoyldecyl benzoate and 2-decyltetradecyl p-hydroxybenzoate, and more preferably 2-hexyldecyl p-hydroxybenzoate is there.
  • thermoplastic polyamide is attached to the above-described easily impregnable carbon fiber bundle at 50 to 2000 parts by mass per 100 parts by mass of carbon fiber contained in the easily impregnable carbon fiber bundle. More preferably, it is adhered at 66 to 1900 parts by mass, and more preferably at 100 to 600 parts by mass.
  • the shape of the molding material of the present invention is not particularly limited, and examples thereof include a columnar shape, a plate shape, a granular shape, a lump shape, a thread shape (string shape), a net shape, and the like, and a plurality of types of molding materials having different shapes may be molded. Is possible.
  • thermoplastic polyamide As a method of making the molding material of the present invention by adhering thermoplastic polyamide to the easily impregnated carbon fiber bundle, a method of coating the surface of the easily impregnable carbon fiber bundle with molten thermoplastic polyamide, easy impregnation A method in which molten thermoplastic polyamide is cast and laminated using a T-die or the like after arranging the conductive carbon fiber bundles, and a film-like thermoplastic polyamide resin is laminated and laminated on the easily-impregnated carbon fiber bundles arranged in parallel. And a method in which powdery thermoplastic polyamide is sprayed on an easily impregnated carbon fiber bundle. Instead of the easily impregnable carbon fiber bundles arranged in a continuous manner, an aggregate of easily impregnable fiber bundles cut to a predetermined length can be used in the same manner.
  • the molding material of the present invention preferably has a core-sheath structure having an easily impregnated carbon fiber bundle as a core component and a thermoplastic polyamide as a sheath component, and particularly for the molding material of the present invention, for injection molding.
  • a core-sheath structure having an easily impregnated carbon fiber bundle as a core component and a thermoplastic polyamide as a sheath component, and particularly for the molding material of the present invention, for injection molding.
  • an easily impregnated carbon fiber bundle obtained by cutting a strand coated with a thermoplastic polyamide around the easily impregnated carbon fiber bundle with a strand cutter, the easily impregnated carbon fiber bundle as a core component, and the thermoplastic polyamide as a sheath component.
  • the core-sheath type pellet is more preferable, and a pellet having a length of about 3 to 10 mm in the longitudinal direction (hereinafter sometimes referred to as a core-sheath type pellet) is more preferable.
  • a pellet having a length of about 3 to 10 mm in the longitudinal direction hereinafter sometimes referred to as a core-sheath type pellet
  • it is 1/10 or more and 2 times or less of pellet length, and it is more preferable that it is 1/4 or more of pellet length and is equal to or less than pellet length.
  • thermoplastic polyamide resin used in the present invention is PA6 (also called polycaproamide or polycaprolactam) as a polyamide (hereinafter, may be abbreviated as PA and may be referred to as nylon).
  • PA26 polyethylene adipamide
  • PA46 polytetramethylene adipamide
  • PA66 polyhexamethylene adipamide
  • PA69 polyhexamethylene azepamide
  • PA610 polyhexamethylene
  • PA611 Polyhexamethylene undecanamide
  • PA612 Polyhexamethylene dodecanamide
  • PA11 Polyundecanamide
  • PA12 Polydodecanamide
  • PA1212 Polydodecanidene dodecamide
  • PA6T Polypolyamide) Hexamethylene Rephthalamide
  • PA6I polyhexamethylene isophthalamide
  • PA912 polynonamethylene dodecamide
  • PA1012 polydecanamethylene dodecamide
  • PA9T polynonamethylene terephthalamide
  • PA9I polynonamethylene isophthalamide
  • PA10T Polydecamethylene terephthalamide
  • thermoplastic polyamides preferred are polyamides having a high melting point, called aromatic polyamides, those obtained from aromatic dicarboxylic acids and aliphatic diamines or aliphatic dicarboxylic acids and aromatic diamines, or fats
  • aromatic polyamides those obtained from aromatic dicarboxylic acids and aliphatic diamines or aliphatic dicarboxylic acids and aromatic diamines, or fats
  • polyamide 66 and polyamide 46 having a high melting point are listed. More specifically, the melting point of the thermoplastic polyamide homopolymer used in the present invention is preferably 250 to 300 ° C., and the melting point of the thermoplastic polyamide copolymer is preferably 260 to 290 ° C., more preferably Is 265-285 ° C.
  • the bifunctional or higher functional acid component monomer to be copolymerized includes components other than the above-mentioned terephthalic acid or its lower alcohol ester derivative, isophthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid, trimellit Examples thereof include aliphatic or aromatic polybasic acids such as acids and succinic acid, or derivatives capable of forming esters thereof; aromatic hydroxycarboxylic acids such as hydroxybenzoic acid and hydroxynaphthoic acid, or derivatives capable of forming esters thereof.
  • Bifunctional or higher polyhydroxy component monomers polycondensed with acid component monomers include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, hexamethylene glycol, neopentyl glycol as components other than 1,4-butanediol.
  • Lower alkylene glycols such as cyclohexanedimethanol and 1,3-octanediol; aromatic polyhydroxy compounds such as 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 4,4′-dihydroxybiphenyl; bisphenol Alkylene oxide adducts of aromatic polyhydroxy compounds such as ethylene oxide 2 mol adducts of A and propylene oxide 3 mol adducts of bisphenol A; glycerin, pentaerythritol Polyols, etc. and the like.
  • thermoplastic polyamide produced by polycondensation of the acid component monomer and the polyhydroxy component monomer as described above can be used.
  • Each of the above component monomers can be used alone or in admixture of two or more.
  • a thermoplastic polyamide homopolymer is preferably used.
  • thermoplastic polyamide homopolymer or copolymer The method for producing a thermoplastic polyamide homopolymer or copolymer is not special and is generally known.
  • 1,4-butanediol, terephthalic acid and, if necessary, comonomer components are directly polymerized
  • the polymerization may be performed by a method, (ii) a method in which these are transesterified and polymerized.
  • thermoplastic polyamide homopolymer and copolymer are simply referred to as a thermoplastic polyamide resin, unless otherwise required.
  • various polymers, fillers, stabilizers, pigments, etc. are blended within the range that does not impair the mechanical strength in order to increase fluidity, appearance gloss, flame retardancy, thermal stability, weather resistance, impact resistance, etc. May be.
  • the molding material of the present invention is molded by the existing thermoplastic resin molding process without performing the treatment for impregnating the thermoplastic resin into the reinforcing fiber in an independent process as in the prior art.
  • a thermoplastic polyamide is impregnated into an easily impregnated carbon fiber bundle, melted and flowed while unraveling the carbon fiber bundle, and obtained in a mold to obtain a molded article having good physical properties. Is possible.
  • the invention of the molded body made of the molding material of the present invention and the molding material is present in the mold at a temperature equal to or higher than the plasticizing temperature of the thermoplastic polyamide.
  • the easily impregnated carbon fiber bundle is impregnated with the thermoplastic polyamide, the carbon fiber bundle of the easily impregnable carbon fiber bundle is molded while being dispersed, and then cooled.
  • the invention of the manufacturing method of the molded article is also included.
  • “dissolving and dispersing the carbon fiber bundles of the easily impregnated carbon fiber bundles” means that the carbon fiber bundles are formed to such an extent that the carbon fibers do not become a lump in the molded body. It means that the fiber bundles such as carbon fiber filaments are defibrated and dispersed, and do not have to be completely unwound up to each of the thousands of tens of thousands of carbon fiber single yarns that make up the carbon fiber bundle. A molded article having excellent physical properties and appearance can be obtained.
  • the molding material can be used in various forms suitable for the molding method employed.
  • a pellet-shaped molding in which a strand coated with a thermoplastic polyamide is cut into a length of about 3 to 10 mm by a strand cutter around the easily impregnated carbon fiber bundle. It can be used as a material (core-sheath type pellet).
  • press molding is effective for obtaining a plate-like large molded body.
  • press molding use a plate-shaped molding material in which thermoplastic polyamide and easily impregnated carbon fiber bundles are laminated, and heat this to a temperature equal to or higher than the plasticizing temperature of the thermoplastic polyamide and place it in the press mold. Thereafter, it is possible to mold at a predetermined pressing pressure.
  • a method of molding using a preform body obtained by pre-heating the molding material according to the present invention is also effective.
  • the molding material and the carbon fiber content of the molding (mass basis)
  • the composition of the carbon fiber content and the like expressed as a ratio is naturally the same. Therefore, the amount of carbon fiber and thermoplastic polyamide contained in the molded article of the present invention and the preferred range thereof are as described above for the molding material.
  • the carbon fiber content of either the molding material or the obtained molded body ( Rate) is measured and this can be regarded as the other carbon fiber content (rate).
  • the calculation is performed based on the amount of addition, and the molding material or molded body of the present invention is calculated. From one carbon fiber content (rate), the other carbon fiber content (rate) can be obtained.
  • Conventional molded articles of carbon fiber reinforced thermoplastic resin are pellets obtained by melt-kneading thermoplastic resin and carbon fiber with a twin screw extruder or the like to make the carbon fiber uniformly dispersed in the thermoplastic resin. Is obtained as a material.
  • the carbon fibers are crushed in the extruder, and the carbon fiber length in the obtained molded body becomes less than 0.3 mm. Will fall.
  • the molded body of the molding material of the present invention is excellent in the impregnation property of the thermoplastic polyamide into the carbon fiber bundle, it is not necessary to knead the carbon fiber bundle and the molten resin with high shear. For this reason, carbon fibers remain in the molded article obtained for a long time, and the mechanical strength is excellent.
  • the carbon fiber in which the easily impregnated carbon fiber bundle is unwound in the molded product is dispersed with an average fiber length of 0.3 mm or more, more preferably the carbon fiber is an average fiber. It is dispersed with a length of 0.4 mm or more.
  • the upper limit of the average fiber length of the remaining carbon fibers is not particularly limited, and depends on the application and the molding method employed.
  • the average fiber length of the carbon fiber For example, for a molded body obtained by injection molding using a strand coated with thermoplastic polyamide around a readily impregnated carbon fiber bundle and pelletized with a strand cutter as a molding material, the average fiber length of the carbon fiber A carbon fiber bundle having a degree of impregnation with a thermoplastic resin having a higher degree of impregnation with a thermoplastic resin is more likely to break during injection molding, and thus the average fiber length is often 2 mm or less.
  • the molded body of the present invention satisfies the relationship of the following formula (C) in a tensile test piece having an ISO 527 standard thickness of 4 mm.
  • MPa ⁇ tensile strength
  • the fact that the above formula (C) is satisfied means that in a molded article of carbon fiber reinforced thermoplastic resin, the tensile strength of the molded article is extremely high compared to the carbon fiber content, which is extremely preferable in terms of cost and performance. .
  • the glass transition temperature decrease rate ( ⁇ Tg) defined by (A) is 0.5 ° C./%, which is larger than 0.2 ° C./%.
  • the boiling point of the alkyl ester of p-hydroxybenzoic acid at room temperature is 472 ° C., and the loss on heating at 300 ° C. in a nitrogen atmosphere is 0.077 (% / min).
  • the liquid viscosity of p-hydroxybenzoic acid 2-ethylhexyl ester at 280 ° C. is 2 mPa ⁇ s (2 ⁇ 10 ⁇ 3 Pa ⁇ s).
  • the glass transition temperature decrease rate ( ⁇ Tg) defined by the formula (A) is 0.5 ° C./%, and is larger than 0.2 ° C./%.
  • each measurement test method and evaluation method used in Examples and Comparative Examples are as follows.
  • the carbon fiber content is determined by placing a molding material such as pellets or a sample of the cut molded body into a crucible, putting it in a muffle furnace set at a furnace temperature of 600 ° C., and removing the resin component by combustion. It was determined from the mass of the carbon fiber.
  • what is shown as carbon fiber content (mass%) about a molding material or a molded object is not only carbon fiber and thermoplastic polyamide but also the mass of carbon fiber relative to the total mass including impregnation aids and the like. It is a ratio.
  • the amount of the surface treatment agent such as impregnation aid contained in the easily impregnable carbon fiber bundle or carbon fiber filament is put in a crucible with the carbon fiber bundle cut out in a length of 1 m, and the furnace temperature is 550 ° C.
  • the surface treatment agent component was burned and removed, and determined from the mass of the remaining carbon fiber.
  • a dumbbell test piece was prepared from the obtained molding material by an injection molding machine, and the tensile strength was measured according to ISO 527 (JIS K 7161).
  • Example 1 As impregnation aid, p-hydroxybenzoic acid 2-hexyldecyl ester (Exepal HD-PB manufactured by Kao Corporation) was used as a carbon fiber bundle in a solution emulsified to a non-volatile content of 12% by mass. After passing a carbon fiber filament (STS40 24K equivalent, manufactured by Toho Tenax Co., Ltd., fiber diameter: 7.0 ⁇ m, filament number: 24,000, tensile strength: 4000 MPa), the solution excessively attached to the carbon fiber bundle was removed with a nip roll. Furthermore, the carbon fiber bundle to which the impregnation aid was adhered was dried by passing it through a hot air drying furnace heated to 180 ° C.
  • STS40 24K equivalent manufactured by Toho Tenax Co., Ltd., fiber diameter: 7.0 ⁇ m, filament number: 24,000, tensile strength: 4000 MPa
  • C4 was cavity and N was nozzle), and injection molding was carried out in a molding cycle of 35 seconds to obtain a tensile test dumbbell (molded body) having a thickness of 4 mm.
  • the resulting molded article had good appearance with no fibrous mass or bubbles due to poor dispersion, and exhibited excellent mechanical properties with a tensile strength of 252 MPa.
  • the average fiber length contained in a molded object was 1.2 mm. The results are shown in Table 1.
  • Example 2 Impregnation by treating carbon fiber filaments with a concentration of emulsified solution of p-hydroxybenzoic acid 2-hexyldecyl ester (Exepal HD-PB manufactured by Kao Corporation) as an impregnation aid at a non-volatile content of 25% by weight
  • the operation was performed in the same manner as in Example 1 except that an easily impregnable carbon fiber bundle having an auxiliary agent content of 11% by mass (12.3 parts by mass per 100 parts by mass of carbon fiber) was used.
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 3 When an easily impregnated carbon fiber bundle is coated with polyamide 66 using a wire-covering crosshead die having an exit diameter of 3 mm, the carbon fiber content of the obtained pellet-shaped molding material is 30% by mass (carbon fiber 100). The operation was performed in the same manner as in Example 2 except that polyamide 66 was 221 parts by mass per part by mass. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • the easily impregnated carbon fiber bundle obtained above was coated with polyamide 10T (manufactured by Daicel-Evonik, Inc .: VESTAMID HT plus, melting point 285 ° C.) using a crosshead die for covering the wire with an outlet diameter of 3 mm.
  • the core is cut into a length of 6 mm, the core is suitable for injection molding with a carbon fiber content of 20 mass% (polyamide 10T is 388.3 mass parts per 100 mass parts of carbon fibers), a diameter of 3.2 mm, and a length of 6 mm.
  • a molding material which is a sheath-type pellet was obtained.
  • Example 5 When an easily impregnated carbon fiber bundle is coated with polyamide 10T using an electric wire covering crosshead die having an outlet diameter of 3 mm, the carbon fiber content of the obtained pellet-shaped molding material is 30% by mass (carbon fiber 100 The operation was performed in the same manner as in Example 4 except that polyamide 10T was 221.6 parts by mass per part by mass. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 6> Instead of emulsifying solution of p-hydroxybenzoic acid 2-hexyldecyl ester, which is an impregnation aid, p-hydroxybenzoic acid 2-hexyldecyl ester heated to 120 ° C. and melted to form a liquid is bundled with carbon fiber. The carbon bundle was impregnated with 2-hexyldecyl ester of p-hydroxybenzoic acid dropped onto the surface and further melted through a hot bar heated to 120 ° C.
  • the easily impregnated carbon having a content of 6 mass% (6.4 mass parts per 100 mass parts of carbon fiber) of the p-hydroxybenzoic acid 2-hexyldecyl ester impregnation aid is obtained.
  • the operation was performed in the same manner as in Example 1 except that the fiber bundle was used.
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 7 Impregnation by treating carbon fiber filaments with an emulsified solution of p-hydroxybenzoic acid 2-hexyldecyl ester (Exepal HD-PB manufactured by Kao Corporation) as an impregnation aid at a non-volatile content of 6% by weight.
  • an easily impregnated carbon fiber bundle having an auxiliary agent content of 3.0% by mass (3.1 parts by mass per 100 parts by mass of carbon fiber) was used.
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 8 Impregnation by treating carbon fiber filaments with a concentration of emulsified solution of 2-hexyldecyl ester of p-hydroxybenzoic acid (Exepal HD-PB manufactured by Kao Corporation), which is an impregnation aid, having a nonvolatile content of 24% by weight
  • Example 1 a concentration of emulsified solution of 2-hexyldecyl ester of p-hydroxybenzoic acid (Exepal HD-PB manufactured by Kao Corporation), which is an impregnation aid, having a nonvolatile content of 24% by weight
  • Example 1 The same operation as in Example 1 was carried out except that an easily impregnated carbon fiber bundle having an auxiliary agent content of 12.9% by mass (14.8 parts by mass per 100 parts by mass of carbon fiber) was used.
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 9 As impregnation aid, p-hydroxybenzoic acid 2-hexyldecyl ester (Exepal HD-PB manufactured by Kao Corporation) was used to treat the carbon fiber filament with an emulsion liquid having a nonvolatile content of 15% by mass. Thus, an easily impregnated carbon fiber bundle having a content of the impregnation aid of 7.3% by mass (7.9 parts by mass per 100 parts by mass of the carbon fiber) was obtained.
  • the easily impregnated carbon fiber bundle obtained above was covered with polyamide 6 (Ube Industries, Ltd .: 1015B, melting point 225 ° C.) using a wire-covering crosshead die having an outlet diameter of 3 mm, and this A core-sheath type that is cut into a length of 6 mm and has a carbon fiber content of 18% by mass (447.7 parts by mass of polyamide 6 per 100 parts by mass of carbon fiber), a diameter of 3.2 mm, and a length of 6 mm. A molding material in the form of pellets was obtained.
  • polyamide 6 Ube Industries, Ltd .: 1015B, melting point 225 ° C.
  • Example 10 Carbon fiber filaments were treated with p-hydroxybenzoic acid 2-hexyldecyl ester (Exepal HD-PB, manufactured by Kao Corporation) as an impregnation aid and an emulsion liquid having a nonvolatile content of 12% by mass.
  • an easily impregnated carbon fiber bundle having a content of the above impregnation aid of 6.1% by mass (6.5 parts by mass per 100 parts by mass of the carbon fiber) was obtained.
  • the easily impregnated carbon fiber bundle obtained above was covered with polyamide 9T (manufactured by Kuraray Co., Ltd .: Genesta N1000A, melting point 300 ° C.) using an electric wire covering crosshead die having an outlet diameter of 3 mm.
  • J110AD 110 ton electric injection molding machine
  • Carbon fiber having an emulsified solution concentration of 8% by weight of the emulsified solution is used as an impregnation aid, not p-hydroxybenzoic acid 2-hexyldecyl ester but p-hydroxybenzoic acid 2-ethylhexyl ester.
  • the operation was performed in the same manner as in Example 1 except that the carbon fiber bundle having a content of the impregnation aid of 7.0% by mass (7.5 parts by mass per 100 parts by mass of carbon fiber) was obtained by treating the filament. . Since a large amount of gas was generated during molding, silver-white streaks, so-called silver streaks, existed in the flow direction on the surface of the obtained molded body. The results are shown in Table 1.
  • the injection molding was performed under the same conditions as in 1.
  • the obtained molded body had a good carbon fiber dispersion state, but the average fiber length of the carbon fibers in the molded body was as short as 0.20 mm, and the tensile strength was not 185 MPa, which was not satisfactory.
  • a pellet having a carbon fiber content of 20% by mass (393.6 parts by mass of polyamide 66 per 100 parts by mass of carbon fiber), a diameter of 3.2 mm, and a length of 6 mm was obtained.
  • 6.4 parts by mass of p-hydroxybenzoic acid 2-hexyldecyl ester was added (post-addition) per 100 parts by mass of carbon fiber to obtain a molding material suitable for injection molding.
  • This molding material was injection molded under the same conditions as in Example 1 to obtain a tensile test dumbbell having a thickness of 4 mm.
  • the obtained molded article had low tensile strength and poor appearance. The results are shown in Table 1.
  • the present inventors used the same easy-impregnating carbon fiber bundles and carbon fiber filaments as in the above-described examples and comparative examples, and formed a molding material on which a sheet-like thermoplastic polyamide was placed on a metal plate.
  • the impregnation rate of the thermoplastic polyamide which is the matrix resin (hereinafter referred to as the matrix resin impregnation rate, including cases where a thermoplastic resin other than the thermoplastic polyamide is used) is obtained, and the easy impregnation property is evaluated. did.
  • the results of evaluating the easy impregnation properties of the easily impregnable carbon fiber bundles of Examples 1 to 10 and Comparative Examples 1 to 7 are shown as Reference Examples A to H and Comparative Reference Examples A to E, respectively.
  • Example A A readily impregnable carbon fiber bundle having a content of 6% by mass of p-hydroxybenzoic acid 2-hexyldecyl ester (6.4 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Example 1. Placed on a hot plate heated to 280 ° C. with a sheet-like polyamide 66 (UBE Nylon 66 manufactured by Ube Industries Co., Ltd.) having a thickness of 300 ⁇ m and a width of 10 mm and a length of 20 mm on the upper surface (width 10 mm length 20 mm), easy impregnation The carbon fiber bundle and the sheet-like polyamide 66 were heated for 2 minutes.
  • UE Nylon 66 manufactured by Ube Industries Co., Ltd.
  • the portion of the carbon fiber bundle that is not impregnated with the polyamide 66 does not adhere to the polyamide 66 between the carbon single fibers in a dry state, and the carbon single fibers are easily peeled off. Therefore, the carbon single fiber is peeled off from the portion of the sample after heating which has not been impregnated with the polyamide 66, the mass is measured, and the easy impregnation when the matrix resin is the polyamide 66 according to the following calculation formula (D).
  • the matrix resin impregnation rate into the carbon fiber bundle was calculated.
  • Matrix resin impregnation rate (mass%) 100 ⁇ (mass of unimpregnated carbon single fiber / mass of carbon fiber bundle as matrix resin) ⁇ 100 (D)
  • the matrix resin impregnation ratio was as extremely high as 97% by mass, and it was confirmed that the polyamide 66 was easily impregnated with the easily impregnable carbon fiber bundle used in Example 1.
  • ⁇ Reference Example B> easily impregnable carbon having a content of 11% by mass of p-hydroxybenzoic acid 2-hexyldecyl ester (12.3 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Examples 2 and 3.
  • the same operation as in Reference Example A was performed except that a fiber bundle (width 10 mm, length 20 mm) was used.
  • the matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the polyamide 66 was easily impregnated with the easily impregnated carbon fiber bundle used in Examples 2 and 3.
  • Example C The content of p-hydroxybenzoic acid 2-hexyldecyl ester impregnation aid obtained by the same operation as in Example 4 or Example 1 was 10.5% by mass (11.7% by mass per 100 parts by mass of carbon fiber). Part)), and a sheet-like polyamide 10T (manufactured by Daicel-Evonik Co., Ltd.) is used in place of the sheet-like polyamide 66. The operation was performed. The matrix resin impregnation rate was as extremely high as 98% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 4 was very easily impregnated with the polyamide 10T.
  • a sheet-like polyamide 10T manufactured by Daicel-Evonik Co., Ltd.
  • ⁇ Reference Example G> easily impregnated carbon obtained by the same operation as in Example 9 and having a content of p-hydroxybenzoic acid 2-hexyldecyl ester of 7.3% by mass (7.9 parts by mass per 100 parts by mass of carbon fiber)
  • the operation was performed in the same manner as in Reference Example A, except that a fiber bundle (width 10 mm, length 20 mm) was used and sheet-like polyamide 6 was used instead of sheet-like polyamide 66.
  • the matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 9 was very easily impregnated in the polyamide 6.
  • ⁇ Reference Example H> easily impregnated carbon obtained by the same operation as in Example 10 and having a content of p-hydroxybenzoic acid 2-hexyldecyl ester of 6.1% by mass (6.5 parts by mass per 100 parts by mass of carbon fiber)
  • the operation was performed in the same manner as in Reference Example A, except that a fiber bundle (width 10 mm, length 20 mm) was used and sheet-like polyamide 9T was used instead of sheet-like polyamide 66.
  • the matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the readily impregnable carbon fiber bundle used in Example 10 was very easily impregnated with polyamide 9T.
  • ⁇ Comparative Reference Example C> a carbon fiber bundle having the same urethane / epoxy sizing agent content of 1.2% by mass as in Comparative Example 4 was used, and an impregnation aid was added, resulting in a thickness of 300 ⁇ m and a width of 10 mm.
  • the same operation as in Reference Example A was performed except that a sheet-like polyamide 66 having a length of 20 mm (UBE Nylon 66 manufactured by Ube Industries) was used.
  • the matrix resin impregnation rate was as extremely low as 2% by mass, and the carbon fiber filament used in Comparative Example 4 was extremely difficult to be impregnated with polyamide 66.
  • the molding material of the present invention makes it possible to produce a molded article having excellent mechanical strength by a simple process, such as transportation equipment such as automobiles, ships, and aircraft, electrical / electronic equipment, and office use. It is extremely useful in various industrial fields such as interior / exterior materials and parts of equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 優れた物性および外観を有する炭素繊維強化熱可塑性ポリアミド成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供する。 炭素繊維100質量部と、特定の条件を満たす1種類以上の含浸助剤3~15質量部とを含む易含浸性炭素繊維束に、50~2000質量部の熱可塑性ポリアミドが付着していることを特徴とする成形用材料。

Description

成形用材料、その成形体、および該成形体の製造方法
 本発明は、易含浸性炭素繊維束に熱可塑性ポリアミドが付着している成形用材料、該成形用材料から得られる機械的特性に優れた成形体、および該成形体の製造方法に関する。
 高強度、かつ脆弱破壊が抑制された樹脂材料を得る手段として、樹脂を炭素繊維で強化された複合材料とすることが知られている。特に、マトリックス樹脂として熱可塑性樹脂を炭素繊維で強化した複合材料(炭素繊維強化熱可塑性樹脂とも言い、以下、CFRTPと略することがある)は、成形用材料として易加工性およびリサイクル性に優れており、様々な分野への応用が期待されている。
 炭素繊維と熱可塑性樹脂との複合材料を製造する方法として、炭素繊維束に比較的高粘度である溶融状態の熱可塑性樹脂を含浸させて複合材料とする製造方法が知られている。この製造方法では、含浸不足により、成形品において強度低下が起こることを防止する為、雰囲気温度を上げて熱可塑性樹脂の溶融粘度を下げた状態で、過大な圧力にて長時間、炭素繊維束に含浸処理を行う必要があり、そのような高圧で長時間の含浸処理により製造コストが増大するなどの問題があった。
 例えば、炭素繊維束への熱可塑性樹脂の含浸を進ませる手法としては、炭素繊維と熱可塑性樹脂繊維とをより合わせて繊維束を作製し、熱と圧力をかけ熱可塑性樹脂を溶融させながら含浸を進める方法(特許文献1)、炭素繊維束に低分子量の溶融樹脂を含浸させたのち高分子量の熱可塑性樹脂を含浸させる方法(特許文献2)、溶融樹脂浴中で炭素繊維を開繊させ含浸させる方法(特許文献3)などが開示されている。
 また、特許文献4には、炭素繊維自体に熱可塑性樹脂の含浸を進ませる方法として、炭素繊維の収束剤を樹脂との濡れ性が良い剤に調整することが記載されている。
 このように、従来の製造方法では、強化繊維束に熱可塑性樹脂を充分に含浸させるために、独立した含浸工程を設け、当該工程における特殊な条件での処理を必要としていた。そのため、優れた物性および外観のCFRTP製品(成形体)を、種々の用途において使用が促進されるような安価な製造コストにて提供するには至っておらず、各分野における、CFRTPへの期待に充分に応えられていない。特に、熱可塑性樹脂として熱可塑性ポリアミド(以下、PAと略称することがある)を用いたCFRTPについては、自動車部品など様々な機能部品に幅広く応用できることが期待され、上記課題の早急な解決が望まれていた。
日本国特開平3-121146号公報 日本国特開平3-181528号公報 日本国特開平5-112657号公報 日本国特開平6-166961号公報
 本発明の目的は、優れた物性および外観を有する炭素繊維強化熱可塑性ポリアミド成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供することを目的とする。
 本発明者らは上記のような従来の課題の解決を検討するにおいて、特定の化合物を含む炭素繊維束(以後、易含浸性炭素繊維束と称する)が、可塑化された熱可塑性ポリアミドによって著しく容易に含浸されることを見出した。更に、本発明者らは、この易含浸性炭素繊維束に熱可塑性ポリアミドを付着させたものを成形用材料として用い、これを熱可塑性ポリアミドの可塑化温度の状態で、成形用の金型内に存在させると、熱可塑性ポリアミドが易含浸性炭素繊維束に含浸し、炭素繊維束を解きつつ金型内に広がるという驚くべき現象が起こることを見出した。そして、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、優れた物性および外観の複合材料の成形体を製造できることを見出し、本発明を完成させた。本発明の要旨を以下に示す。
[1] 炭素繊維100質量部に対し、下記の条件1~3を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部の熱可塑性ポリアミドが付着していることを特徴とする成形用材料。
 ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
 ・ 条件2:熱可塑性ポリアミド100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該熱可塑性ポリアミドのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
 ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
 ここで、含浸助剤配合率[%]は、以下式(B)、含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/熱可塑性ポリアミドの量[質量部]・・・(B)
にて定義される。
 ・ 条件3:常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である。
[2] 前記含浸助剤が、p-ヒドロキシ安息香酸アルキルエステルであり、そのアルキル基の炭素数が14以上のものである上記[1]に記載の成形用材料。
[3] 前記p-ヒドロキシ安息香酸アルキルエステルが、下記一般式(1)
Figure JPOXMLDOC01-appb-C000002

(上記一般式(1)中のnは4~7のいずれかの整数、jは6~9のいずれかの整数である。)で表されるものであることを特徴とする上記[2]記載の成形用材料。
[4] 前記熱可塑性ポリアミドが、250~300℃の融点を示すものである上記[1]に記載の成形用材料。
[5] 前記易含浸性炭素繊維束を芯成分、熱可塑性ポリアミドを鞘成分とする芯鞘型構造である上記[1]~[4]のいずれかに記載の成形用材料。
[6] 前記成形用材料の形態がペレットである上記[1]~[5]のいずれかに記載の成形用材料。
[7] 上記[1]~[6]のいずれかに記載の成形用材料からなる成形体。
[8] 前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする上記[7]記載の成形体。
[9] 炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)炭素繊維含有率(質量%)×4+100<引張強度(MPa) ・・・(C)の関係を満たす上記[7]または[8]記載の成形体。
[10] 前記の成形用材料を、前記熱可塑性ポリアミドの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該熱可塑性ポリアミドを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする上記[7]~[9]のいずれかに記載の成形体の製造方法。
 本発明により、優れた物性および外観を有する炭素繊維強化熱可塑性ポリアミド成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供できる。
 本発明は、炭素繊維100質量部に対し、下記の条件1~3を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部の熱可塑性ポリアミドが付着していることを特徴とする成形用材料、該成形用材料から得られる成形体、および該成形体の製造方法に関するものである。
 ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
 ・ 条件2:熱可塑性ポリアミド100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該熱可塑性ポリアミドのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
 ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
 ここで、含浸助剤配合率[%]は、以下式(B)、
 含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/熱可塑性ポリアミドの量[質量部]・・・(B)にて定義される。
 ・ 条件3:常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である。
 以下に、本発明を実施するための形態につき詳細に説明する。尚、本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。
[易含浸性炭素繊維束]
 本発明における易含浸性炭素繊維束とは、炭素繊維100質量部に対し、下記の条件1~条件3を満たす1種類以上の含浸助剤3~15質量部を含むことにより、熱可塑性ポリアミド(好ましくは可塑化された熱可塑性ポリアミド)により容易に含浸されることを特徴とする炭素繊維束である。
 ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
 ・ 条件2:熱可塑性ポリアミド100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該熱可塑性ポリアミドのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
 ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
 ここで、含浸助剤配合率[%]は、以下式(B)、
 含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/熱可塑性ポリアミドの量[質量部]・・・(B)にて定義される。
 ・ 条件3:常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である。
 この易含浸性炭素繊維束は、炭素繊維に対し、該含浸助剤を所定の量にて含む炭素繊維束であれば良く、その製造方法や、炭素繊維と含浸助剤とが含まれている形態を問わない。本発明で用いる含浸助剤は、上記の条件1を満たすものであり、これは、該含浸助剤が汎用の熱可塑性ポリアミドの代表的な加工温度である280℃において、低粘度状態であり、かつ、280℃において液体としての粘度測定が可能なものであることを意味する。含浸助剤の280℃における液体の粘度は8Pa・s以下であることが好ましく、6Pa・s以下であることがより好ましい。
 なお、上記の条件1について、含浸助剤の液体としての粘度を測定する方法としては、回転式粘度計が適している。具体的には高温槽付きパラレルプレートにて測定する方法などを例示することができる。
 更に、本発明で用いる含浸助剤は、上記の条件2を満たすものである。この条件2において、含浸助剤は、熱可塑性ポリアミド100質量部あたり、1~100質量部の配合量の範囲全域で、ガラス転移温度低下率(ΔTg)>0.2[℃/%]である必要は無く、当該配合量範囲の一部で、0.2℃/%より大きいガラス転移温度低下率(ΔTg)を示すものであれば良い。
 ガラス転移温度低下率(ΔTg)が0.2℃/%より大きいことにより、含浸を促進する効果を有するものであり、ΔTgが0.3℃/%より大きいものであるとより好ましい。ΔTgが0.2℃/%以下ということは、含浸助剤が熱可塑性ポリアミドのTgを低下させる効果が十分ではないことを意味し、そのため、熱可塑性ポリアミドのTgが殆どそのまま計測されると推測している。
 ΔTgが0.2℃/%以下の含浸助剤を炭素繊維束に加え、これに熱可塑性ポリアミドを付着させたものを成形しても、含浸助剤による含浸促進効果は著しく低いもので、得られる成形体において炭素繊維の分散不良が発生する。
 また、上記の条件2について、熱可塑性ポリアミドや、熱可塑性ポリアミドと含浸助剤との樹脂組成物のガラス転移温度を測定する方法としては、示差走査熱量測定(DSC)による方法などが挙げられる。
 上記の条件3について、「常圧下での沸点が340℃以上」とは、有る含浸助剤について、明確に常圧下での沸点を測定できなくても、340℃で明らかに沸騰がおこらず液体のままでいるのであれば当該条件を満たすものと解する。また、「窒素雰囲気下300℃での加熱減量が2%/分以下」に関して言うと、有る含浸助剤が、窒素雰囲気下300℃では激しく分解してしまい、加熱減量を正確に測定できないような場合は、当該条件を満たさないものと解される。
 なお、上記の加熱減量としては、示差熱天秤を用いて、当初質量Wpre(g)の含浸助剤の試料を窒素雰囲気下、室温(5~35℃)から10℃/分で300℃まで昇温した後、更に、300℃で15分間保持した後の該試料の質量Wpost(g)から、下記式(i)によって算出されたものが好ましく、試料数3以上で測定および算出を行った平均値であるとより好ましい。
 加熱減量(%/分)=100×{Wpre(g)-Wpost(g)}/Wpre(g)/15(分)    (i)
 本発明において、易含浸炭素繊維束に含まれる含浸助剤の量は、炭素繊維100質量部に対し3~15質量部であり、好ましくは5~12質量部である。3質量部未満では、炭素繊維への熱可塑性ポリアミドの含浸性が不十分となり、15質量部より多いと炭素繊維への熱可塑性ポリアミドの含浸性は優れるが、マトリクス樹脂である熱可塑性ポリアミドのガラス転移温度が低下することにより成形品の耐熱性が低下するため好ましくない。易含浸炭素繊維束に含まれる含浸助剤の量は、サイズ条件(例えばライン速度やエマルジョン中の含浸助剤濃度等)によって制御することができる。
 本発明にて用いられる易含浸性炭素繊維束は、複数種の含浸助剤を含むものでも良く、また本発明において用いられる含浸助剤としては、後述のとおり、特定のp-ヒドロキシ安息香酸アルキルエステルであると好ましい。
 易含浸性炭素繊維束の代表的な製法としては、ディッピング法、スプレー法、ローラー転写法、スリットコーター法などから選ばれる群より選ばれる1種類以上の方法にて、汎用の炭素繊維束に含浸助剤を含ませる方法が例示される。これらの方法において、炭素繊維束に含浸助剤を含ませた場合、含浸助剤は主に炭素繊維束の表面に付着し、一部は炭素繊維束の内部にも浸み込んでいるものと思われる。
 易含浸性炭素繊維束を製造する際における含浸助剤の形態としては、水性エマルジョン、有機溶媒希釈溶液、または加熱された粘調または溶融状態の液体として取り扱うことが可能である。製造方法と含浸助剤の形態との好ましい組合せとしては、水性エマルジョンの場合、ディッピング法、ローラー転写法であるが、十分に水分を乾燥させるために100℃以上の雰囲気下での乾燥工程が必要となる。また加熱粘調液体の場合、スリットコーター法などの一般的なコーティング手法が可能であり、適量を炭素繊維束に付着させた後にスムージングロールなどで均一に付着させることが可能である。
 本発明の成形用材料を用いて成形し、炭素繊維が熱可塑性ポリアミドに均質に分散した成形体を得るためには、炭素繊維束に含浸助剤をできるだけ均一に付着させるのが好ましい。炭素繊維束に含浸助剤をより均一に付着させる方法として、上記方法により含浸助剤を炭素繊維束に付着させた後、これら含浸助剤の粘度が十分に低下する温度以上に再度熱処理する方法が例示される。また、該熱処理には、例えば、熱風、熱板、ローラー、赤外線ヒーター等を使用することができ、ローラーを用いることが好ましい。
 [炭素繊維]
 本発明の成形用材料に含まれる炭素繊維は、ポリアクリロニトリル(PAN)系、石油・石油ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維であっても良い。特に、PANを原料としたPAN系炭素繊維が、工場規模における生産性及び機械的特性に優れており好ましい。
 上記の炭素繊維としては、平均直径3~12μmのものが好ましく、平均直径5~10μmのものがより好ましく使用でき、平均直径5~9μmのものが更に好ましく使用でき、平均直径5~7μmのものがより一層好ましく使用できる。なお、一般的な炭素繊維は、1000~50000本の単繊維が繊維束となった炭素繊維フィラメントである。本発明における炭素繊維束には、そのような一般的な炭素繊維フィラメントも含まれるが、該炭素繊維フィラメントを、更に重ね合わせて合糸したものや、合糸に撚りを掛け撚糸としたもの等も含まれる。
 本発明の成形用材料に含まれる炭素繊維としては、炭素繊維と熱可塑性ポリアミドとの接着性を高めるため、表面処理によって、表面に含酸素官能基を導入されたものも好ましい。
 また、前述のように、炭素繊維束に含浸助剤を含ませることにより易含浸性炭素繊維束を作る場合、含浸助剤を炭素繊維束に均一に付着させる工程を安定させるため、炭素繊維束としては、収束性を持たせる為の収束剤で処理されたものであると好ましい。収束剤としては、炭素繊維フィラメント製造用に公知のものを使用することができる。また、炭素繊維束としては、製造時に滑り性を上げるために使用された油剤が残存したものであっても、本願発明において問題無く使用することができる。なお、以後、含浸助剤と、上記の収束剤といったその他の処理剤とを包含する上位概念の意味で、表面処理剤との表現をする場合がある。
 [p-ヒドロキシ安息香酸アルキルエステル]
 本発明において用いられる、前記の条件1~3を満たす含浸助剤としては、p-ヒドロキシ安息香酸アルキルエステルであり、そのアルキル基の炭素数が14以上のものであると好ましく、該炭素数が14以上30以下のものであるとより好ましく、該炭素数が14以上20以下のものであるとより一層好ましい。
 そのようなアルキル基の炭素数が14以上のものであるp-ヒドロキシ安息香酸アルキルエステルとしては、炭素数14以上の直鎖脂肪族アルコール、炭素数14以上の分岐鎖を有する脂肪族アルコール、炭素数14以上で1つ以上の二重結合を含む脂肪族アルコール、および、炭素数14以上で1つ以上の芳香族環を含む脂肪族アルコールからなる群より選ばれる1種以上の脂肪族アルコールのp-ヒドロキシ安息香酸エステルであると好ましい。なお、ここで上記脂肪族アルコールのp-ヒドロキシ安息香酸エステルとは、該脂肪族アルコールをp-ヒドロキシ安息香酸とを直接エステル化して得られるものに限定されることは無く、アルキルハロゲン化物など他の誘導体を原料として得られた同化合物も当然含まれる。
 上記の炭素数14以上の直鎖脂肪族アルコールのp-ヒドロキシ安息香酸エステルとしては、例えば、1-テトラデカノール、1-ヘキサデカノール、1-オクタデカノール、1-エイコサノール、および1-ドコサノールからなる群より選ばれる1種以上の直鎖脂肪族アルコールのp-ヒドロキシ安息香酸エステルが挙げられる。
 上記の炭素数14以上の分岐鎖を有する脂肪族アルコールのp-ヒドロキシ安息香酸エステルとしては、例えば、ヘキシルデカノール、イソステアリルアルコール、オクチルドデカノール、およびデシルテトラデカノールからなる群より選ばれる1種以上の分岐鎖を有する脂肪族アルコールのp-ヒドロキシ安息香酸エステルが挙げられる。
 上記の炭素数14以上で1つ以上の二重結合を含む脂肪族アルコールのp-ヒドロキシ安息香酸エステルとしては、オレイルアルコールのp-ヒドロキシ安息香酸エステルなどを例示できる。
 上記の炭素数14以上で1つ以上の芳香族環を含む脂肪族アルコールのp-ヒドロキシ安息香酸エステルとしては、例えば、オクチルベンジルアルコールのp-ヒドロキシ安息香酸エステルなどが挙げられる。
 上記の、アルキル基の炭素数が14以上のものであるp-ヒドロキシ安息香酸アルキルエステルとしては、炭素数14以上の分岐鎖を有する脂肪族アルコールのp-ヒドロキシ安息香酸エステルであり、かつ、下記一般式(1)にて示される、ヒドロキシ基が付いている炭素原子の隣の炭素原子、つまり二位(β位)で分岐している第一級アルコールのp-ヒドロキシ安息香酸アルキルエステルであるとより好ましい。
Figure JPOXMLDOC01-appb-C000003

 (上記一般式(1)中のnは4~7のいずれかの整数、jは6~9のいずれかの整数である。)
 上記一般式(1)にて表されるアルキル基の炭素数が14以上のものであるp-ヒドロキシ安息香酸アルキルエステルとして特に好ましくは、p-ヒドロキシ安息香酸2-へキシルデシルエステル、p-ヒドロキシ安息香酸2-オクチルドデシルエステル、およびp-ヒドロキシ安息香酸2-デシルテトラデシルエステルからなる群より選ばれる1種類以上のものであり、更に好ましくは、p-ヒドロキシ安息香酸2-へキシルデシルエステルである。
 [成形用材料]
 本発明の成形用材料は、上記の易含浸性炭素繊維束に、熱可塑性ポリアミドが、易含浸性炭素繊維束に含まれる炭素繊維100質量部あたり50~2000質量部にて付着しているものであり、66~1900質量部にて付着しているとより好ましく、100~600質量部にて付着していると更に好ましい。本発明の成形用材料の形状は特に限定されず、柱状、板状、粒状、塊状、糸状(紐状)、網状等が挙げられ、異なる形状の成形用材料を複数種用いて成形することも可能である。
 前記の易含浸性炭素繊維束に熱可塑性ポリアミドを付着させ、本発明の成形用材料とする方法としては、易含浸性炭素繊維束の表面に溶融状態の熱可塑性ポリアミドを被覆する方法、易含浸性炭素繊維束を引き並べた上にTダイなどを使って溶融状態の熱可塑性ポリアミドをキャストし積層化する方法、引き並べた易含浸性炭素繊維束にフィルム状熱可塑性ポリアミド樹脂を積層ラミネートする方法、易含浸性炭素繊維束を引きそろえた上に粉末状熱可塑性ポリアミドを吹きつける方法などが挙げられる。連続上に引き並べられた易含浸性炭素繊維束の替わりに、所定の長さに切断された易含浸性繊維束の集合体を同様に用いることも可能である。
 本発明の成形用材用は、易含浸性炭素繊維束を芯成分、熱可塑性ポリアミドを鞘成分とする芯鞘型構造であることが好ましく、特に、本発明の成形用材用で、射出成形用のものとしては、易含浸性炭素繊維束の周囲に熱可塑性ポリアミドを被覆したストランドをストランドカッターにて切断するなどして得られる、易含浸性炭素繊維束を芯成分、熱可塑性ポリアミドを鞘成分とする芯鞘型構造の、ペレットであることがより好ましく、長手方向の長さ3~10mm程度のペレット(以下、芯鞘型ペレットと称することがある)が更に好ましい。該芯鞘型ペレットの直径に特に制限は無いが、ペレット長さの1/10以上2倍以下であると好ましく、ペレット長さの1/4以上かつペレット長さと同等以下であるとより好ましい。
 [熱可塑性ポリアミド]
 本発明において使用する熱可塑性ポリアミド樹脂は、ポリアミド(以下、PAと略記することがあり、ナイロンとの別称を用いることもある)としては、PA6(ポリカプロアミド、ポリカプロラクタムとも言い、より正確にはポリε-カプロラクタム)、PA26(ポリエチレンアジパミド)、PA46(ポリテトラメチレンアジパミド)、PA66(ポリヘキサメチレンアジパミド)、PA69(ポリヘキサメチレンアゼパミド)、PA610(ポリヘキサメチレンセバカミド)、PA611(ポリヘキサメチレンウンデカミド)、PA612(ポリヘキサメチレンドデカミド)、PA11(ポリウンデカンアミド)、PA12(ポリドデカンアミド)、PA1212(ポリドデカメチレンドデカミド)、PA6T(ポリヘキサメチレンテレフタルアミド)、PA6I(ポリヘキサメチレンイソフタルアミド)、PA912(ポリノナメチレンドデカミド)、PA1012(ポリデカメチレンドデカミド)、PA9T(ポリノナメチレンテレフタラミド)、PA9I(ポリノナメチレンイソフタルアミド)、PA10T(ポリデカメチレンテレフタラミド)、PA10I(ポリデカメチレンイソフタルアミド)、PA11T(ポリウンデカメチレンテレフタルアミド)、PA11I(ポリウンデカメチレンイソフタルアミド)、PA12T(ポリドデカメチレンテレフタラミド)、PA12I(ポリドデカメチレンイソフタルアミド)、ポリアミドMXD6(ポリメタキシリレンアジパミド)からなる群より選ばれる少なくとも1種が好ましい。
 上記熱可塑性ポリアミドのうち、好ましいものとしては、高融点のポリアミドである、芳香族ポリアミドと呼ばれ、芳香族ジカルボン酸と脂肪族ジアミン又は脂肪族ジカルボン酸と芳香族ジアミンから得られるもの、もしくは脂肪族ポリアミドのなかでも融点の高いポリアミド66やポリアミド46が挙げられる。より具体的に言うと、本発明において使用する熱可塑性ポリアミド単重合体の融点は好ましくは250~300℃であり、熱可塑性ポリアミド共重合体の融点は好ましくは260~290℃であり、さらに好ましくは265~285℃である。
 熱可塑性ポリアミド共重合体では、共重合する二官能以上の酸成分モノマーとしては、上記テレフタル酸またはその低級アルコールエステル誘導体以外の成分として、イソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、コハク酸等の脂肪族または芳香族多塩基酸、又はそのエステル形成可能な誘導体;ヒドロキシ安息香酸、ヒドロキシナフトエ酸等の芳香族ヒドロキシカルボン酸、又はそのエステル形成可能な誘導体等が挙げられる。酸成分モノマーと重縮合される二官能以上のポリヒドロキシ成分モノマーとしては、上記1,4-ブタンジオール以外の成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,3-オクタンジオール等の低級アルキレングリコール;2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、4,4’-ジヒドロキシビフェニルなどの芳香族ポリヒドロキシ化合物;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体などの芳香族ポリヒドロキシ化合物のアルキレンオキサイド付加体;グリセリン、ペンタエリスリトール等のポリオール等が挙げられる。
 本発明では、上記の如き酸成分モノマー及びポリヒドロキシ成分モノマーを重縮合して生成する種類の熱可塑性ポリアミドはいずれも使用することができる。上記の各成分モノマーは単独で、又は2種以上混合して使用することができるが、熱可塑性ポリアミド本来の物性を要求する観点から、好ましくは熱可塑性ポリアミドの単重合体が使用される。
 熱可塑性ポリアミド単重合体又は共重合体の製造方法としては、特殊なものではなく一般に知られている、(i)1,4-ブタンジオール、テレフタル酸及び必要に応じてコモノマー成分を直接重合させる方法、(ii)これらをエステル交換させて重合させる方法などにより重合させればよい。以後、区別の必要がある場合を除いて、熱可塑性ポリアミド単重合体及び共重合体を単に熱可塑性ポリアミド樹脂という。
 また、流動性、外観光沢、難燃特性、熱安定性、耐候性、耐衝撃性などを上げる目的で、機械的強度を損なわない範囲で、各種ポリマー、充填剤、安定剤、顔料などを配合してもよい。
 [成形体及びその製造方法]
 前述のとおり、本発明の成形用材料を、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、既存の熱可塑性樹脂成形プロセスにて成形することにより、成形用材料において、易含浸性炭素繊維束へ熱可塑性ポリアミドが含浸し、炭素繊維束を解きつつ溶融流動して金型内に広がることにより、良好な物性の成形体を得ることが可能である。
 つまり、本願には、前記の本発明の成形用材料からなる成形体の発明、および該成形用材料を、前記熱可塑性ポリアミドの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該熱可塑性ポリアミドを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする成形体の製造方法の発明も包含される。
 本発明の成形体の製造方法において、“易含浸性炭素繊維束の炭素繊維束を解き分散させる”とは、成形体において炭素繊維が塊状物となることが無い程度にまで、炭素繊維束が解繊され分散されることを意味し、炭素繊維フィラメント等の炭素繊維束を、その構成する数千~数万本の炭素繊維単糸1本1本まで完全に解くまでしなくても、優れた物性および外観の成形体を得ることができる。
 本発明の成形体を製造するにおいて、前記の成形用材料を、採用する成形方法に適した種々の形態として用いることができる。
 例えば、射出成形にて成形する場合は、前述のとおり、易含浸性炭素繊維束の周囲に熱可塑性ポリアミドを被覆したストランドをストランドカッターにて長さ3~10mm程度に切断したペレット状の成形用材料(芯鞘型ペレット)として用いることができる。
 また、板状の大型成形体を得る場合には、プレス成形が有効である。プレス成形を行う場合には、熱可塑性ポリアミドと易含浸性炭素繊維束とを積層した板状の成形用材料とし、これを、熱可塑性ポリアミドの可塑化温度以上に加熱し、プレス型内に設置後、所定のプレス圧にて成形することも可能である。形状などによっては、予め本発明にかかる成形用材料を加熱プレスして得られるプリフォーム体を用いて成形する方法なども有効である。
 本発明の成形用材料を用い、他の成形用材料や添加剤を加えることなく、成形を行って成形体を得た場合、該成形用材料と該成形体の炭素繊維含有量(質量基準)、およびこれを割合にて表した炭素繊維含有率等の組成は当然同じである。よって本発明の成形体に含まれる炭素繊維や熱可塑性ポリアミドの量やその好ましい範囲については、成形用材料について前述したものである。
 なお、本発明の成形用材料を用いて、他の成形用材料や添加剤を加えることなく成形を行った場合は、成形用材料または得られた成形体のいずれか一方の炭素繊維含有量(率)を測定し、これを他方の炭素繊維含有量(率)とみなすことができる。また、本発明の成形用材料に、他の成形用材料や添加剤等を加えて成形を行った場合でも、それらの添加量を元に計算を行い、本発明の成形用材料または成形体のいずれか一方の炭素繊維含有量(率)から、他方の炭素繊維含有量(率)を求めることができる。
 従来の炭素繊維強化熱可塑性樹脂の成形体は、炭素繊維が熱可塑性樹脂に均質に分散した状態にするために、2軸押出機等にて熱可塑性樹脂と炭素繊維とを溶融混練したペレット等を材料として成形することによって得られている。しかしこの方法では、高いせん断をかけて混練するために、炭素繊維が押出機内で破砕され、得られる成形体中の炭素繊維長さが0.3mm未満となってしまうため、繊維による物性補強効果が低下してしまう。これに対し、本発明の成形用材料の成形体は、炭素繊維束への熱可塑性ポリアミドの含浸性に優れるため、高いせん断で炭素繊維束と溶融樹脂とを混練する必要がない。このため得られる成形体中に炭素繊維が長いまま残存し、機械的強度に優れたものとなる。
 本発明の成形体は、成形体において、易含浸性炭素繊維束が解かれた炭素繊維が、平均繊維長0.3mm以上で分散しているものが好ましく、更に好ましくは該炭素繊維が平均繊維長0.4mm以上で分散しているものである。本発明の成形体において、残存する炭素繊維の平均繊維長の上限に特に制限は無く、用途や採用される成形方法による。例えば、易含浸性炭素繊維束の周囲に熱可塑性ポリアミドを被覆したストランドをストランドカッターにてペレット状にして成形用材料として用いて射出成形により得られた成形体については、炭素繊維の平均繊維長10mm以下程度が一般的であり、熱可塑性樹脂による含浸された度合が高い炭素繊維束ほど、射出成型時に折損が起きやすいことから、平均繊維長が2mm以下の場合も多い。
 更に、本発明の成形体は、ISO527規格肉厚4mmの引張試験片においては下式(C)の関係が成り立つものが好ましい。
  炭素繊維含有率(重量%)×4+100 < 引張強度(MPa) ・・・(C)
 上記式(C)が成り立つことは、炭素繊維強化熱可塑性樹脂の成形体において、炭素繊維含有率に比べて、成形体の引張強度が極めて高く、コストおよび性能の面で極めて好ましいことを意味する。
 以下、実施例により本発明を具体的に説明するが、本発明は以下の例に限定されるものではない。
 各実施例、比較例において用いた含浸助剤について、以下に示す。なお、これら含浸助剤の液体の粘度は、レオメトリックス社粘弾性測定器(RDA2)を用いて、パラレルプレートにて、ひずみ速度1/s、280℃の条件にて測定されたものである。また、熱可塑性ポリアミドや、これに含浸助剤を配合した樹脂組成物のガラス転移温度は、TAインスツルメント社製熱分析装置DSC-Q20を用いて、昇温速度20℃/minの条件にて測定されたものである。
 含浸助剤の加熱減量(%/分)は、示差熱天秤を用いて、当初質量Wpre(g)の該含浸助剤の試料を窒素雰囲気下、室温から10℃/分で300℃まで昇温した後、更に、300℃で15分間保持した後の該試料の質量Wpost(g)から、前記式(i)によって算出された、試料数3の平均値である。
 1)炭素数14以上のp-ヒドロキシ安息香酸アルキルエステル炭素数14以上のp-ヒドロキシ安息香酸アルキルエステルとして、p-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製エキセパール HD-PB)
Figure JPOXMLDOC01-appb-C000004
を用いた。
 その280℃における液体の粘度は5Pa・sである。ポリアミド66(Tg=50℃)100質量部あたり、該p-ヒドロキシ安息香酸アルキルエステルを10質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、45℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0.5℃/%であり、0.2℃/%より大きい。該p-ヒドロキシ安息香酸アルキルエステルの常温下での沸点は472℃であり、窒素雰囲気下300℃における加熱減量は0.077(%/分)である。
 2)p-ヒドロキシ安息香酸2-エチルへキシルエステル
 p-ヒドロキシ安息香酸2-エチルへキシルエステルの280℃における液体の粘度2mPa・s(2×10-3Pa・s)である。ポリアミド66(Tg=50℃)100質量部あたり、p-ヒドロキシ安息香酸2-エチルへキシルエステルを2質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、49℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0.5℃/%であり、0.2℃/%より大きい。しかし、p-ヒドロキシ安息香酸2-エチルへキシルエステルは、窒素雰囲気下300℃で激しく分解してしまい、その加熱減量を正確に測定することができなかった。よって、加熱減量2%/分以下でないことは明らかであった。
 また、実施例および比較例において用いた各測定試験法および評価方法は以下のとおりである。
 (成形用材料または成形体などにおける炭素繊維の含有量、含有率)
 炭素繊維の含有量は、ペレット等の成形用材料または、切り出された成形体の試料をるつぼに入れ、炉内温度を600℃に設定したマッフル炉に投入して樹脂成分を燃焼除去し、残った炭素繊維の質量から求めた。なお、成形用材料や成形体について炭素繊維含有率(質量%)と示してあるものは、炭素繊維と熱可塑性ポリアミドとだけではなく含浸助剤等も含めた全体の質量に対する炭素繊維の質量の割合である。
 (表面処理剤の含有量、含有率)
 易含浸性炭素繊維束や炭素繊維フィラメント等に含有されている含浸助剤等の表面処理剤の量は、1mの長さで切り出された炭素繊維束をるつぼに入れ、炉内温度を550℃に設定したマッフル炉に15分間投入し、表面処理剤成分を燃焼除去して、残った炭素繊維の質量から求めた。
 (引張強度の測定)
 得られた成形用材料よりダンベル試験片を射出成型機により作成し、ISO 527(JIS K 7161)に準拠し引張強度の測定を行った。
 (成形体の表面外観の評価)
 得られた成形体の表面外観を観察し、炭素繊維束への熱可塑性ポリアミドの含浸が不十分だったことにより発生する直径3mm以上の繊維状物質の塊、および気泡が表面に確認されなかったものを○(良好)、繊維状物質の塊は確認されなかったものの気泡又はシルバーストリークが確認されたものを△(やや不良)、繊維状物質の塊が確認されたものを×(不良)とした。
 (成形体中の炭素繊維長の評価)
 得られた成形体から20mm×10mmの試験片を切出し、550℃にて1.5時間有酸素雰囲気下で加熱し樹脂成分を燃焼除去した。残った炭素繊維を界面活性剤入りの水に投入し、超音波振動により十分に攪拌させた。攪拌させた分散液を計量スプーンによりランダムに採取し評価用サンプルを得て、ニレコ社製画像解析装置Luzex APにて、繊維数3000本の長さを計測し、長さ平均を算出し、成型体中における炭素繊維の平均繊維長を求めた。
 以下に、実施例および比較例にて詳細を示す。
 <実施例1>
 含浸助剤として、p-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製のエキセパールHD-PB)を用い、これを不揮発分12質量%にエマルジョン化した溶液内に、炭素繊維束としてPAN系炭素繊維フィラメント(東邦テナックス社製STS40 24K相当 繊維直径7.0μm フィラメント本数 24000本、引張強度4000MPa)を通過させた後、炭素繊維束に過剰に付着した溶液を、ニップロールにて取り除いた。更に、この含浸助剤が付着した炭素繊維束を180℃に加熱された熱風乾燥炉内を2分間かけて通過させることにより乾燥させ、易含浸炭素繊維束を得た。この易含浸炭素繊維束を200℃に加熱した直径60mmの2本の金属製ロールに沿わせ、再度の加熱処理を行い、炭素繊維束に、含浸助剤がより均一に付着した易含浸性炭素繊維束とした。この易含浸性炭素繊維束の含浸助剤の含有量は6質量%(炭素繊維100質量部あたり6.4質量部)であった。
 次に、上記で得られた易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリアミド66(宇部興産株式会社製:UBEナイロン66、融点265℃)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリアミド66が393.6質量部)、直径3.2mm、長さ6mmの射出成形に適した芯鞘型ペレットである成形用材料を得た。この成形用材料を、日本製鋼所製110ton電動射出成形機(J110AD)を用い、シリンダー温度C1/C2/C3/C4/N=280℃/290℃/290℃/290℃/280℃(C1~C4はキャビティ、Nはノズル)にて成形サイクル35秒で射出成形し、肉厚4mmの引張試験用ダンベル(成形体)を得た。得られた成形体は、分散不良による繊維状物質の塊や気泡は見られず外観が良好なものであり、引張強度は252MPaと優れた機械物性を示した。また成形体中に含まれる、平均繊維長は1.2mmであった。結果を表1に示す。
 <実施例2>
 含浸助剤であるp-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製のエキセパールHD-PB)のエマルジョン化溶液の濃度を不揮発分25重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有量11質量%(炭素繊維100質量部あたり12.3質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例3>
 易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリアミド66で被覆する際、得られるペレット状の成形用材料の炭素繊維含有率を30質量%(炭素繊維100質量部あたり、ポリアミド66が221質量部)とした以外は、実施例2と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例4>
 含浸助剤として、p-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製のエキセパールHD-PB)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、上記含浸助剤の含有量10.5質量%(炭素繊維100質量部あたり11.7質量部)の易含浸性炭素繊維束とした。
 次に、上記で得られた易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリアミド10T(ダイセルエボニック社製:VESTAMID HT plus、融点285℃)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリアミド10Tが388.3質量部)、直径3.2mm、長さ6mmの射出成形に適した芯鞘型ペレットである成形用材料を得た。この成形用材料を、日本製鋼所製110ton電動射出成形機(J110AD)を用い、シリンダー温度C1/C2/C3/C4/N=320℃/330℃/330℃/330℃/320℃(C1~C4はキャビティ、Nはノズル)にて成形サイクル35秒で射出成形し、肉厚4mmの引張試験用ダンベル(成形体)を得た。得られた成形体は、分散不良による繊維状物質の塊や気泡は見られず外観が良好なものであった。結果を表1に示す。
 <実施例5>
 易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリアミド10Tで被覆する際、得られるペレット状の成形用材料の炭素繊維含有率を30質量%(炭素繊維100質量部あたり、ポリアミド10Tが221.6質量部)とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例6>
 含浸助剤であるp-ヒドロキシ安息香酸2-へキシルデシルエステルのエマルジョン化溶液に替えて120℃に加熱し溶融し液体状となったp-ヒドロキシ安息香酸2-へキシルデシルエステルを炭素繊維束表面に滴下しさらには120℃に加熱したホットバーを通し溶融したp-ヒドロキシ安息香酸2-へキシルデシルエステルを炭素束に含浸させた。このように炭素繊維束を処理したことより、p-ヒドロキシ安息香酸2-へキシルデシルエステル含浸助剤の含有率6質量%(炭素繊維100質量部あたり6.4質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例7>
 含浸助剤であるp-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製のエキセパールHD-PB)のエマルジョン化溶液の濃度を不揮発分6重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有量3.0質量%(炭素繊維100質量部あたり3.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例8>
 含浸助剤であるp-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製のエキセパールHD-PB)のエマルジョン化溶液の濃度を不揮発分24重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有量12.9質量%(炭素繊維100質量部あたり14.8質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例9>
 含浸助剤として、p-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製のエキセパールHD-PB)を用い、これを不揮発分15質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、上記含浸助剤の含有量7.3質量%(炭素繊維100質量部あたり7.9質量部)の易含浸性炭素繊維束とした。
 次に、上記で得られた易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリアミド6(宇部興産社製:1015B、融点225℃)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が18質量%(炭素繊維100質量部あたり、ポリアミド6が447.7質量部)、直径3.2mm、長さ6mmの射出成形に適した芯鞘型ペレットである成形用材料を得た。この成形用材料を、日本製鋼所製110ton電動射出成形機(J110AD)を用い、シリンダー温度C1/C2/C3/C4/N=320℃/330℃/330℃/330℃/320℃(C1~C4はキャビティ、Nはノズル)にて成形サイクル35秒で射出成形し、肉厚4mmの引張試験用ダンベル(成形体)を得た。得られた成形体は、分散不良による繊維状物質の塊や気泡は見られず外観が良好なものであった。結果を表1に示す。
 <実施例10>
 含浸助剤として、p-ヒドロキシ安息香酸2-へキシルデシルエステル(花王株式会社製のエキセパールHD-PB)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、上記含浸助剤の含有量6.1質量%(炭素繊維100質量部あたり6.5質量部)の易含浸性炭素繊維束とした。
 次に、上記で得られた易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリアミド9T(クラレ社製:ジェネスタN1000A、融点300℃)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリアミド9Tが393.5質量部)、直径3.2mm、長さ6mmの射出成形に適した芯鞘型ペレットである成形用材料を得た。この成形用材料を、日本製鋼所製110ton電動射出成形機(J110AD)を用い、シリンダー温度C1/C2/C3/C4/N=320℃/330℃/330℃/330℃/320℃(C1~C4はキャビティ、Nはノズル)にて成形サイクル35秒で射出成形し、肉厚4mmの引張試験用ダンベル(成形体)を得た。得られた成形体は、分散不良による繊維状物質の塊や気泡は見られず外観が良好なものであった。結果を表1に示す。
 <比較例1>
 含浸助剤として、p-ヒドロキシ安息香酸2-へキシルデシルエステルではなく、p-ヒドロキシ安息香酸2-エチルへキシルエステルを用い、且つ、そのエマルジョン化溶液の濃度を不揮発分8重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有量7.0質量%(炭素繊維100質量部あたり7.5質量部)の炭素繊維束とした以外は、実施例1と同様に操作を行った。成型時に多量のガスが発生したため得られた成形体の表面には流動方向に銀白状の条痕いわゆるシルバーストリークが存在していた。結果を表1に示す。
 <比較例2>
 含浸助剤を用いて易含浸性炭素繊維を作成することはせず、ウレタン・エポキシ系収束剤が1.2質量%含浸されたPAN系炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いて、これをUBEナイロン66(宇部興産製UBEナイロン66)で被覆する以降の操作を実施例1と同様に行った。得られた成形体の表面には分散不良の繊維束の塊が存在しており、引張強度も低い値となった。結果を表1に示す。
 <比較例3>
 炭素繊維100質量部と、ポリアミド66を233.3質量部とを二軸押出成形機内にて溶融混練し、炭素繊維含有率30質量%のペレットとしたものである炭素繊維強化ポリアミド66を実施例1と同様の条件で射出成形を行った。得られた成形体は、炭素繊維の分散状態は良好であったが、成形体中における炭素繊維の平均繊維長は0.20mmと短く、引張強度も185MPaと満足できる値ではなかった。
 <比較例4>
 含浸助剤を用いて易含浸性炭素繊維を作成することはせず、ウレタン・エポキシ系収束剤が1.2質量%含浸されたPAN系炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリアミド66(宇部興産株式会社製:UBEナイロン66、融点265℃)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリアミド66が393.6質量部)、直径3.2mm、長さ6mmのペレットを得た。このペレットに炭素繊維100質量部あたりp-ヒドロキシ安息香酸2-へキシルデシルエステルを6.4質量添加(後添加)し、射出成形に適した成形用材料を得た。この成形用材料を、実施例1と同様の条件で射出成形し、肉厚4mmの引張試験用ダンベルを得た。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
 <比較例5>
 含浸助剤であるp-ヒドロキシ安息香酸2-へキシルデシルエステルのエマルジョン化溶液の濃度を、不揮発分4質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、p-ヒドロキシ安息香酸2-へキシルデシルエステル含浸助剤の含有率2.0質量%(炭素繊維100質量部あたり2.0質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
 <比較例6>
 含浸助剤であるp-ヒドロキシ安息香酸2-へキシルデシルエステルのエマルジョン化溶液の濃度を、不揮発分37.5質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、p-ヒドロキシ安息香酸2-へキシルデシルエステル含浸助剤の含有率16.6質量%(炭素繊維100質量部あたり20.0質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、外観は良好であったが、引張強度が低く、その耐熱性も劣るものであった。結果を表1に示す。
 <比較例7>
 含浸助剤として、p-ヒドロキシ安息香酸2-へキシルデシルエステルではなく、テルペンフェノール樹脂(ヤスハラケミカル株式会社製:YSポリスターG150)を用い、且つ、そのエマルジョン化溶液の濃度を不揮発分18重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有量8.9質量%(炭素繊維100質量部あたり9.8質量部)の炭素繊維束とした以外は、実施例9と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
 上記の実施例1~10において、炭素繊維が良好に分散し、機械物性が優れた成形体が得られていることから、本発明の成形用材料を用いて成形を行う際、易含浸性炭素繊維束に熱可塑性ポリアミドが円滑に含浸していることは明らかであるが、本発明者らは、より直接的に、それぞれの易含浸性炭素繊維束の易含浸性の度合を確認することを試みた。しかし、例えば、射出成形において、成形用材料を可塑化し、易含浸性炭素繊維束に熱可塑性ポリアミドが含浸し始める段階で、成形機を急停止して試料を採取するような作業は、安全性に問題があり、かつ成形機に損傷を与える可能性があるため、実施困難であった。
 そこで、本発明者らは、上記実施例や比較例と同じ、易含浸性炭素繊維束や炭素繊維フィラメント等を用いて、これらにシート状熱可塑性ポリアミドを乗せた成形用材料を、金属板上で短時間加熱した試料についてマトリックス樹脂である熱可塑性ポリアミドの含浸率(以後、熱可塑性ポリアミド以外の熱可塑性樹脂を用いた場合も含め、マトリックス樹脂含浸率と称する)を求め、易含浸性を評価した。以下、実施例1~10および比較例1~7の易含浸性炭素繊維束などの易含浸性を評価した結果を、それぞれ参考例A~Hおよび比較参考例A~Eとして示す。
<参考例A>
 実施例1と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステルの含有量6質量%(炭素繊維100質量部あたり6.4質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)の上面に厚み300μm幅10mm長さ20mmのシート状ポリアミド66(宇部興産製UBEナイロン66)を乗せた状態で、280℃に加熱した熱板上に置き、易含浸性炭素繊維束およびシート状ポリアミド66を2分間加熱した。加熱により溶融したポリアミド66易含浸性炭素繊維束に含浸した部分はウェット状態となり、炭素単繊維間がポリアミド66で固着する。一方、炭素繊維束における、ポリアミド66が含浸しなかった部分は、ドライ状態で炭素単繊維間におけるポリアミド66の固着はなく、炭素単繊維が剥離しやすい。そこで、加熱後の試料のポリアミド66が含浸しなかった部分から、炭素単繊維を剥離して質量を測定し、下記計算式(D)にて、マトリックス樹脂がポリアミド66である場合の易含浸性炭素繊維束へのマトリックス樹脂含浸率を算出した。
   マトリックス樹脂含浸率(質量%)=100-(マトリックス樹脂である未含浸の炭素単繊維質量/炭素繊維束質量)×100 ・・・(D)
 マトリックス樹脂含浸率は97質量%と極めて高く、実施例1において用いた易含浸性炭素繊維束が極めてポリアミド66に含浸されやすいことを確認できた。
<参考例B>
 実施例2および3と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステルの含有量11質量%(炭素繊維100質量部あたり12.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例2および3において用いた易含浸性炭素繊維束が極めてポリアミド66に含浸されやすいことを確認できた。
<参考例C>
 実施例4や実施例5と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステル含浸助剤の含有量10.5質量%(炭素繊維100質量部あたり11.7質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用い、更にシート状ポリアミド66の代わりにシート状ポリアミド10T(ダイセル・エボニック株式会社製)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は98質量%と極めて高く、実施例4において用いた易含浸性炭素繊維束が極めてポリアミド10Tに含浸されやすいことを確認できた。
<参考例D>
 実施例6と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステルの含有率6質量%(炭素繊維100質量部あたり6.4質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例6において用いた易含浸性炭素繊維束が極めてポリアミド66に含浸されやすいことを確認できた。
<参考例E>
 実施例7と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステルの含有率3質量%(炭素繊維100質量部あたり3.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は95質量%と極めて高く、実施例7において用いた易含浸性炭素繊維束が極めてポリアミド66に含浸されやすいことを確認できた。
<参考例F>
 実施例8と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステルの含有率12.9質量%(炭素繊維100質量部あたり14.8質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例8において用いた易含浸性炭素繊維束が極めてポリアミド66に含浸されやすいことを確認できた。
<参考例G>
 実施例9と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステルの含有率7.3質量%(炭素繊維100質量部あたり7.9質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用い、更にシート状ポリアミド66の代わりにシート状ポリアミド6を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例9において用いた易含浸性炭素繊維束が極めてポリアミド6に含浸されやすいことを確認できた。
<参考例H>
 実施例10と同様の操作にて得られた、p-ヒドロキシ安息香酸2-へキシルデシルエステルの含有率6.1質量%(炭素繊維100質量部あたり6.5質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用い、更にシート状ポリアミド66の代わりにシート状ポリアミド9Tを用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例10において用いた易含浸性炭素繊維束が極めてポリアミド9Tに含浸されやすいことを確認できた。
<比較参考例A>
 比較例1と同様の操作にて得られた、p-ヒドロキシ安息香酸2-エチルへキシルエステル含浸助剤の含有量7質量%(炭素繊維100質量部あたり7.5質量部)の炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は99質量%と高く、比較例1において用いた、含浸助剤の含有量7質量%の炭素繊維束は、ポリアミド66に含浸されやすいものであったが、加熱時に分解ガスが多量に発生した。
<比較参考例B>
 易含浸性炭素繊維束の代わりに、比較例2と同じウレタン・エポキシ系収束剤が1.2質量%含浸された炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は10質量%と極めて低く、比較例2において用いた炭素繊維フィラメントは、極めてポリアミド66に含浸されにくいものであった。
<比較参考例C>
 易含浸性炭素繊維束の代わりに、比較例4と同じウレタン・エポキシ系収束剤の含有率1.2質量%の炭素繊維束を用い、含浸助剤を添加して得られた厚み300μm幅10mm長さ20mmのシート状ポリアミド66(宇部興産製UBEナイロン66)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は2質量%と極めて低く、比較例4において用いた炭素繊維フィラメントは、極めてポリアミド66に含浸されにくいものであった。
<比較参考例D>
 易含浸性炭素繊維束の代わりに、比較例5と同じp-ヒドロキシ安息香酸2-エチルへキシルエステル含浸助剤が2.0質量%含浸された炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は90質量%であり、比較例5において用いた炭素繊維フィラメントは、ポリアミド66に含浸され易いものであった。
<比較参考例E>
 易含浸性炭素繊維束の代わりに、比較例6と同じp-ヒドロキシ安息香酸2-エチルへキシルエステル含浸助剤が20.0質量%含浸された炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、比較例6において用いた炭素繊維フィラメントは、極めてポリアミド66に含浸され易いものであった。
Figure JPOXMLDOC01-appb-T000005
 本発明の成形用材料は、優れた機械強度を有する成形体を、簡素なプロセスにて製造することを可能とするものであり、自動車、船舶、航空機など輸送機器、電気・電子機器、事務用機器等の内外装材や部品といった種々の産業分野において極めて有用なものである。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年7月5日出願の日本特許出願(特願2012-151469)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  炭素繊維100質量部と、下記の条件1~3を満たす1種類以上の含浸助剤3~15質量部とを含む易含浸性炭素繊維束に、50~2000質量部の熱可塑性ポリアミドが付着していることを特徴とする成形用材料。
     ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
     ・ 条件2:熱可塑性ポリアミド100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該熱可塑性ポリアミドのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
     ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
     ここで、含浸助剤配合率[%]は、以下式(B)、
     含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/熱可塑性ポリアミドの量[質量部]・・・(B)にて定義される。
     ・ 条件3:常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である。
  2.  前記含浸助剤が、p-ヒドロキシ安息香酸アルキルエステルであり、そのアルキル基の炭素数が14以上のものである請求項1に記載の成形用材料。
  3.  前記p-ヒドロキシ安息香酸アルキルエステルが、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中のnは4~7のいずれかの整数、jは6~9のいずれかの整数である。)
    で表されるものであることを特徴とする請求項2記載の成形用材料。
  4.  前記熱可塑性ポリアミドが、250~300℃の融点を示すものである請求項1記載の成形用材料。
  5.  前記易含浸性炭素繊維束を芯成分、熱可塑性ポリアミドを鞘成分とする芯鞘型構造である請求項1~4のいずれか1項に記載の成形用材料。
  6.  前記成形用材料の形態がペレットである請求項1~5のいずれか1項に記載の成形用材料。
  7.  前記ペレットの長手方向の長さが3~10mmである、請求項6に記載の成形用材料。
  8.  請求項1~7のいずれか1項に記載の成形用材料からなる成形体。
  9.  前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする請求項8記載の成形体。
  10.  炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)
     炭素繊維含有率(質量%)×4+100 < 引張強度(MPa) ・・・(C)の関係を満たす請求項8または9記載の成形体。
  11.  前記の成形用材料を、前記熱可塑性ポリアミドの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該熱可塑性ポリアミドを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする請求項8~10のいずれか1項に記載の成形体の製造方法。
PCT/JP2013/068041 2012-07-05 2013-07-01 成形用材料、その成形体、および該成形体の製造方法 WO2014007213A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147035294A KR101585824B1 (ko) 2012-07-05 2013-07-01 성형용 재료, 그 성형체, 및 그 성형체의 제조 방법
JP2014523733A JP5694610B2 (ja) 2012-07-05 2013-07-01 成形用材料、その成形体、および該成形体の製造方法
EP13813023.2A EP2871203B1 (en) 2012-07-05 2013-07-01 Material for molding, molded article produced from said material, and method for producing said molded article
CN201380035938.0A CN104428351B (zh) 2012-07-05 2013-07-01 成型用材料,由该成型用材料获得的成形制品以及该成形制品的制造方法
US14/412,726 US9284436B2 (en) 2012-07-05 2013-07-01 Material for molding, shaped product therefrom, and method for manufacturing shaped product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-151469 2012-07-05
JP2012151469 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014007213A1 true WO2014007213A1 (ja) 2014-01-09

Family

ID=49881969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068041 WO2014007213A1 (ja) 2012-07-05 2013-07-01 成形用材料、その成形体、および該成形体の製造方法

Country Status (6)

Country Link
US (1) US9284436B2 (ja)
EP (1) EP2871203B1 (ja)
JP (1) JP5694610B2 (ja)
KR (1) KR101585824B1 (ja)
CN (1) CN104428351B (ja)
WO (1) WO2014007213A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077340A (ja) * 2015-10-20 2017-04-27 ダイセルポリマー株式会社 成形品の製造方法
RU2670869C1 (ru) * 2017-10-10 2018-10-25 Иван Соломонович Пятов Способ изготовления изделия сложной формы на основе гибридной композитной матрицы
JP2020049240A (ja) * 2015-10-20 2020-04-02 ダイセルポリマー株式会社 射出成形品
JP2022510191A (ja) * 2018-11-27 2022-01-26 エルエス ケーブル アンド システム リミテッド. 炭素繊維編組部材及び炭素繊維熱収縮チューブ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976946B1 (fr) * 2011-06-24 2014-01-24 Arkema France Composition comprenant un polyamide semi-aromatique et ses utilisations, notamment pour un reflecteur a diode electroluminescente
US9752002B2 (en) * 2012-11-27 2017-09-05 Mitsubishi Chemical Corporation Fiber-reinforced thermoplastic resin prepreg, molded body of same, and method for producing fiber-reinforced thermoplastic resin prepreg
CN104870531B (zh) * 2012-12-21 2017-05-31 东丽株式会社 纤维增强热塑性树脂成型品、纤维增强热塑性树脂成型材料及纤维增强热塑性树脂成型材料的制造方法
US20180171142A1 (en) * 2015-07-16 2018-06-21 Mitsubishi Gas Chemical Company, Inc. Polyamide resin fiber, method for manufacturing polyamide resin fiber, polyamide resin composition, woven fabric, and knitted fabric
CN111196893B (zh) * 2018-11-19 2022-10-14 中国科学院宁波材料技术与工程研究所 基于碳纤维增强尼龙的功能复合线材及由其制成的电热驱动元件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271439A (ja) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd 導電性プラスチック成形材料
JPH03121146A (ja) 1989-10-03 1991-05-23 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物の製造法
JPH03158211A (ja) * 1989-11-16 1991-07-08 Sekisui Chem Co Ltd 繊維強化ポリ塩化ビニル系樹脂複合材の製造方法
JPH03181528A (ja) 1989-12-08 1991-08-07 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法
JPH05112657A (ja) 1991-10-21 1993-05-07 Mitsubishi Kasei Corp 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材
JPH06166961A (ja) 1992-11-27 1994-06-14 Petoca:Kk セメント補強用炭素繊維及びセメント複合体
JPH0711131A (ja) * 1993-06-25 1995-01-13 Kao Corp ポリアミド樹脂組成物
JPH08337716A (ja) * 1995-06-13 1996-12-24 Ube Ind Ltd ポリアミド樹脂組成物およびこれからなるチューブ状 成形物
JP2003253113A (ja) * 2002-02-27 2003-09-10 Ube Ind Ltd ポリアミド樹脂組成物及びそれを用いたチューブ
JP2008246782A (ja) * 2007-03-29 2008-10-16 Teijin Techno Products Ltd 繊維強化熱可塑性樹脂テープ製造装置及び繊維強化熱可塑性樹脂テープの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE32227T1 (de) 1982-07-28 1988-02-15 Ici Plc Verfahren zur herstellung von mit faeden verstaerkten zusammensetzungen.
ATE32226T1 (de) 1982-07-28 1988-02-15 Ici Plc Verfahren zur herstellung von mit fasern verstaerkten zusammensetzungen.
EP0599340B1 (en) 1992-11-27 1997-08-27 PETOCA Ltd. Carbon fibers for reinforcement of cement and cement composite material
US5789529A (en) 1995-06-13 1998-08-04 Ube Industries, Ltd. Polyamide resin composition and tubular molding comprising the same
JP2000309060A (ja) 1999-04-27 2000-11-07 Toray Ind Inc 長繊維強化成形材料、およびその成形品
FR2937324B1 (fr) 2008-10-22 2012-03-16 Arkema France Procede de preparation d'un materiau composite a base de nanotubes, notamment de carbone
JP5505304B2 (ja) * 2009-03-16 2014-05-28 東レ株式会社 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
EP2632709B1 (en) * 2010-10-29 2019-11-20 E. I. du Pont de Nemours and Company Polyamide composite structures and processes for their preparation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271439A (ja) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd 導電性プラスチック成形材料
JPH03121146A (ja) 1989-10-03 1991-05-23 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物の製造法
JPH03158211A (ja) * 1989-11-16 1991-07-08 Sekisui Chem Co Ltd 繊維強化ポリ塩化ビニル系樹脂複合材の製造方法
JPH03181528A (ja) 1989-12-08 1991-08-07 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法
JPH05112657A (ja) 1991-10-21 1993-05-07 Mitsubishi Kasei Corp 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材
JPH06166961A (ja) 1992-11-27 1994-06-14 Petoca:Kk セメント補強用炭素繊維及びセメント複合体
JPH0711131A (ja) * 1993-06-25 1995-01-13 Kao Corp ポリアミド樹脂組成物
JPH08337716A (ja) * 1995-06-13 1996-12-24 Ube Ind Ltd ポリアミド樹脂組成物およびこれからなるチューブ状 成形物
JP2003253113A (ja) * 2002-02-27 2003-09-10 Ube Ind Ltd ポリアミド樹脂組成物及びそれを用いたチューブ
JP2008246782A (ja) * 2007-03-29 2008-10-16 Teijin Techno Products Ltd 繊維強化熱可塑性樹脂テープ製造装置及び繊維強化熱可塑性樹脂テープの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871203A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077340A (ja) * 2015-10-20 2017-04-27 ダイセルポリマー株式会社 成形品の製造方法
WO2017068958A1 (ja) * 2015-10-20 2017-04-27 ダイセルポリマー株式会社 成形品の製造方法
JP2020049240A (ja) * 2015-10-20 2020-04-02 ダイセルポリマー株式会社 射出成形品
TWI724039B (zh) * 2015-10-20 2021-04-11 日商大賽璐塑膠股份有限公司 成形品之製造方法
RU2670869C1 (ru) * 2017-10-10 2018-10-25 Иван Соломонович Пятов Способ изготовления изделия сложной формы на основе гибридной композитной матрицы
JP2022510191A (ja) * 2018-11-27 2022-01-26 エルエス ケーブル アンド システム リミテッド. 炭素繊維編組部材及び炭素繊維熱収縮チューブ
JP7213979B2 (ja) 2018-11-27 2023-01-27 エルエス ケーブル アンド システム リミテッド. 炭素繊維編組部材及び炭素繊維熱収縮チューブ

Also Published As

Publication number Publication date
CN104428351A (zh) 2015-03-18
JPWO2014007213A1 (ja) 2016-06-02
EP2871203B1 (en) 2016-11-30
JP5694610B2 (ja) 2015-04-01
KR20150032839A (ko) 2015-03-30
US20150191583A1 (en) 2015-07-09
KR101585824B1 (ko) 2016-01-14
EP2871203A4 (en) 2015-11-18
EP2871203A1 (en) 2015-05-13
CN104428351B (zh) 2016-03-16
US9284436B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5694610B2 (ja) 成形用材料、その成形体、および該成形体の製造方法
JP6602678B2 (ja) 立体構造物の製造方法
CA2904496C (en) Commingled yarn, method for manufacturing the commingled yarn, and, woven fabric
WO2014136662A1 (ja) 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
JP5676080B2 (ja) 有機繊維強化複合樹脂組成物および有機繊維強化複合樹脂成形品
JP5885223B1 (ja) 混繊糸の製造方法、混繊糸、巻取体、および、織物
WO2014132776A1 (ja) 複合繊維、織物、編み物および複合材料
WO2007097184A1 (ja) ガラス繊維強化熱可塑性樹脂組成物および成形品
JP6163485B2 (ja) 成形用材料、その成形体、および該成形体の製造方法
JP2021535004A (ja) 付加プリント用フィラメント材料
CN107109054B (zh) 具有改进的流动性的聚酰胺混合物
JP5292744B2 (ja) 長繊維強化ポリアミド樹脂組成物
CN1872913A (zh) 缩聚反应型长纤维增强热塑性树脂的制备方法
JP6456048B2 (ja) ガラス繊維強化ポリアミド樹脂組成物及び成形体
JP5634638B2 (ja) 成形体の製造方法
JP7275962B2 (ja) 長尺平板状材料
CN114206579A (zh) 注射成型品
JP2005068225A (ja) 複合成形材料及びそれを用いた成形品
JP2014019583A (ja) ポリエステル樹脂強化用ガラス繊維集束剤、ガラス繊維、及びガラス繊維強化ポリエステル樹脂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380035938.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523733

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035294

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013813023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013813023

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14412726

Country of ref document: US