WO2014007064A1 - 複合銅粒子及びその製造方法 - Google Patents

複合銅粒子及びその製造方法 Download PDF

Info

Publication number
WO2014007064A1
WO2014007064A1 PCT/JP2013/066871 JP2013066871W WO2014007064A1 WO 2014007064 A1 WO2014007064 A1 WO 2014007064A1 JP 2013066871 W JP2013066871 W JP 2013066871W WO 2014007064 A1 WO2014007064 A1 WO 2014007064A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
copper
particles
alloy
copper particles
Prior art date
Application number
PCT/JP2013/066871
Other languages
English (en)
French (fr)
Inventor
寿博 児平
隆史 佐々木
慎司 青木
坂上 貴彦
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US14/412,734 priority Critical patent/US20150144849A1/en
Priority to CN201380035784.5A priority patent/CN104470657A/zh
Priority to JP2014523667A priority patent/JP6182531B2/ja
Priority to KR1020147036952A priority patent/KR20150035805A/ko
Publication of WO2014007064A1 publication Critical patent/WO2014007064A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]

Definitions

  • the present invention relates to composite copper particles having a coating layer made of an alloy of copper and tin on the surface.
  • the present invention also relates to a method for producing the composite copper particles.
  • copper is a material with high electrical conductivity, it is useful as a conductive material for electrical conduction between electrodes.
  • it is used in the form of a conductive powder or a conductive paste obtained by adding a vehicle or the like to this, and is used for forming fine wiring by means of screen printing, dispensing, ink jet printing or the like.
  • it is advantageous to reduce the particle size of the copper particles.
  • copper is a metal that is easily oxidized, if the particle size of the particles is reduced, the oxidation is more likely to proceed, and as a result, the electrical conductivity tends to decrease.
  • copper particles with improved oxidation resistance have been proposed.
  • Patent Document 1 proposes tin-coated copper particles in which copper particles are used as a core material and tin is coated thereon.
  • the tin-coated copper particles have an average particle diameter of 0.1 to 5 ⁇ m and are provided with a tin coating layer of 5 to 40% by mass.
  • the tin-coated copper particles are produced by mixing a slurry in which copper particles are dispersed in water and a tin solution containing a tin salt and thiourea and substituting and depositing tin on the surfaces of the copper particles.
  • Patent Document 2 proposes copper particles containing 0.07 to 10 atomic% of aluminum and 0.01 to 0.3 atomic% of phosphorus inside the particles.
  • the copper particles are preferably produced by an atomizing method. This document describes that the balance between oxidation resistance and conductivity of copper particles can be achieved by containing a specific amount of aluminum inside the copper particles.
  • the oxidation resistance of copper particles can be increased.
  • the subject of this invention is providing the copper particle which various performances improved further than the copper particle of the prior art mentioned above.
  • the present invention has core particles made of copper and a coating layer made of an alloy of copper and tin disposed on the surface of the core particles, and the volume cumulative particle diameter D 50 at a cumulative volume of 50% by volume is 0.
  • the present invention solves the above-mentioned problems by providing composite copper particles having a size of 1 to 10.0 ⁇ m.
  • the present invention provides a suitable method for producing the composite copper particles by mixing an aqueous slurry containing a core particle composed of copper and a tin source compound and a tin reducing agent, and copper on the surface of the core particle.
  • the present invention provides a method for producing composite copper particles having a step of forming a coating layer made of an alloy with tin.
  • FIG. 1 is a view showing the XRD measurement results of the composite copper particles obtained in Example 1.
  • FIG. 2 is a graph showing differential heat (DTA) measurement results of copper particles obtained in Examples and Comparative Examples.
  • FIG. 3 is a graph showing the thermogravimetric (TG) measurement results of the copper particles obtained in Examples and Comparative Examples.
  • the composite copper particles of the present invention have core particles made of copper and a coating layer that covers the surface of the core particles.
  • the coating layer is made of an alloy of copper and tin.
  • the surface of the core particles made of copper was coated with a coating layer made of tin, but by using a coating layer made of an alloy of copper and tin instead, it was surprisingly resistant to acid resistance. It has been found that it is possible to further improve the chemical resistance and to exhibit low electrical resistance even at high temperatures.
  • the oxidation resistance of the composite copper particles of the present invention can be evaluated, for example, at a temperature at which an exothermic peak due to copper oxidation measured by differential thermal analysis is observed.
  • the composite copper particles of the present invention preferably have an exothermic peak due to copper oxidation, preferably 450 ° C. or higher, in a differential thermal analysis performed under conditions of a heating rate of 10 ° C./min in an air atmosphere. Preferably it has 500 degreeC or more.
  • alloys of copper and tin for example, alloys having various compositions such as CuSn, Cu 3 Sn, Cu 6 Sn 5 , Cu 6.25 Sn 5 , Cu 39 Sn 11 , Cu 40.5 Sn 11 are known. In the invention, one or more of these alloys can be used. In particular, it is preferable to use at least one kind of CuSn, Cu 6 Sn 5 or Cu 3 Sn alloy as an alloy of copper and tin because it has higher oxidation resistance and low electrical resistance even at high temperatures. It is preferable to use a CuSn alloy.
  • the alloy of copper and tin is present on the surface of the composite copper particle of the present invention and in the vicinity thereof.
  • the inside of the composite copper particles is substantially composed only of copper, and tin is not substantially present. Further, metallic elements other than tin and other nonmetallic elements are not substantially present. “Substantially non-existent” is intended to exclude intentionally containing elements other than copper, and the presence of trace elements inevitably mixed in the production process of composite copper particles is allowed. It is the purpose.
  • the coating layer made of an alloy of copper and tin preferably covers the surface of the core particle with a thickness of 5.0 to 500.0 nm, more preferably 40.0 to 200.0 nm. From the viewpoint of sufficiently improving the property.
  • the thickness of the coating layer may be selected appropriately from the reduction plating conditions for producing composite copper particles by the method described later.
  • the thickness of the coating layer can be measured by, for example, cutting particles to form an observation cross section and observing the cross section using SEM or SEM-EDS.
  • the atomic ratio of copper and tin may be constant in the thickness direction, or the ratio may be gradually changed in the thickness direction.
  • the ratio of copper gradually increases from the coating layer to the core particles, which increases the sense of unity between the coating layer and the core particles, and the coating layer is peeled off. It is preferable from the point that it is difficult to occur.
  • the coating layer may be formed by a method described later.
  • the ratio of tin contained in the composite copper particles is preferably 1.0 to 50.0% by mass, more preferably 2.0 to 25.0% by mass, and most preferably 2.5 to 15.0%. % By mass.
  • the ratio of copper contained in the composite copper particles is preferably 50.0 to 99.0% by mass, more preferably 75.0 to 98.0% by mass, and 85.0 to 97.5%. Mass% is most preferred.
  • the resistance value of a composite copper particle can be made low by making the ratio of tin into 50.0 mass% or less.
  • the ratio of tin and copper contained in the composite copper particles can be measured, for example, by dissolving the composite copper particles in an acid such as mineral acid and performing analysis by ICP using the solution as a measurement target.
  • the composite copper particles have a volume cumulative particle diameter D 50 at a cumulative volume of 50% by volume of 0.1 to 10.0 ⁇ m, and preferably 0.5 to 8.0 ⁇ m.
  • D 50 volume cumulative particle diameter
  • the composite copper particles have a volume cumulative particle diameter D 50 at a cumulative volume of 50% by volume of 0.1 to 10.0 ⁇ m, and preferably 0.5 to 8.0 ⁇ m.
  • the shape of the composite copper particles for example, a spherical shape, a polyhedral shape, a flake shape or the like can be adopted. These shapes can be appropriately selected according to the specific application of the composite copper particles. For example, when composite copper particles are used to form a fine electric circuit by a printing method, it is preferable to use spherical composite copper particles. Note that. Since the thickness of the coating layer in the composite copper particles is much smaller than the particle diameter of the composite copper particles as described above, the shape of the composite copper particles is not significantly different from the shape of the core particles made of copper. Therefore, the shape of the core particles can be regarded as equivalent to the shape of the composite copper particles.
  • the core particles for example, those produced by a wet method or those produced by an atomizing method can be used. As will be described later, in view of performing the formation of the coating layer by reduction plating, it is advantageous in the manufacturing process to use the core particles manufactured by a wet method.
  • the core particles have a volume cumulative particle size D 50 at a cumulative volume of 50% by volume of 0.1 to 10.0 ⁇ m, and preferably 0.2 to 5.0 ⁇ m.
  • the composite copper particles preferably have a tap density of 1.0 to 10.0 g / cm 3 , and more preferably 1.5 to 5.0 g / cm 3 .
  • the tap density is in this range, it is easy to ensure high electrical conductivity when the composite copper particles are used as a fine wiring material for an electric circuit or an electronic element.
  • an appropriate shape is selected as the core particle made of copper, or it is suitable as a reduction plating condition when forming a coating layer in the method for producing a composite copper particle described later. You can select the conditions.
  • a powder tester manufactured by Hosokawa Micron Corporation can be used for measuring the tap density.
  • the composite copper particles preferably have a BET specific surface area of 0.1 to 10.0 m 2 / g, 0.2 to 5. More preferably, it is 0 m 2 / g.
  • the BET specific surface area can be measured, for example, using a monosorb (trade name) manufactured by Cantachrome Co., Ltd., with a He / N 2 mixed gas.
  • a coating layer made of an alloy of copper and tin is formed on the surface of the core particles made of copper by reduction plating.
  • the present inventor has found that it is possible to unexpectedly deposit an alloy of copper and tin by employing reduction plating.
  • displacement plating which is another plating method is adopted, as described in Patent Document 1 described above, a coating layer made of a single tin is formed.
  • an aqueous slurry containing a core particle and a tin source compound and a tin reducing agent are prepared.
  • the ratio of the core particles contained in the aqueous slurry is preferably 80.0 to 99.0% by mass, more preferably 88.0 to 97.0% by mass.
  • a water-soluble compound can be used as the tin source compound contained in the aqueous slurry.
  • a water-soluble tin complex salt can be used.
  • tin (II) organic sulfonates such as tin (II) methanesulfonate, tin (II) chloride, tin (II) bromide, tin (II) iodide, tin (II) lactate, citric acid
  • tin (II) organic sulfonates
  • tin (II) methanesulfonate such as tin (II) methanesulfonate, tin (II) chloride, tin (II) bromide, tin (II) iodide, tin (II) lactate, citric acid
  • tin (II) tin (II) tartrate, tin (II) gluconate, and
  • an organic aminocarboxylic acid compound can be added to the slurry.
  • the organic aminocarboxylic acid compound include ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethyliminodiacetic acid, dihydroxyethyliminoacetic acid, glycine, arginine, glutamine, lysine, and nitrilotriacetic acid.
  • alcohol amines such as monoethanolamine, diethanolamine, and triethanolamine can be added instead of or in addition to the organic aminocarboxylic acid compound. These can be used alone or in combination of two or more.
  • the concentration (mol / L) of the organic aminocarboxylic acid compound or alcohol amine contained in the aqueous slurry is preferably 0.1 to 20 times the concentration of tin (mol / L), 1.0 to More preferably, it is 10 times.
  • the respective concentrations preferably satisfy the above relationship.
  • the ratio of copper and tin in the aqueous slurry can be adjusted to 10.0: 0.1 to 10.0: 2.0 by weight% to suppress the precipitation of tin alone and the surface of the copper particles It is preferable from the viewpoint of uniform tin alloy coating.
  • a substance capable of reducing tin ions is used as the tin reducing agent mixed with the aqueous slurry.
  • a reducing agent having a reducing power having a redox potential at pH 9.0 preferably ⁇ 900 mV or less, more preferably ⁇ 950 mV or less, and even more preferably ⁇ 1000 mV or less from an alloy of tin and copper. It is preferable from the point that the intended coating layer can be successfully formed.
  • a reducing agent having such a reducing power for example, sodium borohydride, potassium borohydride, hydrazine and the like can be used. These reducing agents are generally used in the form of an aqueous solution.
  • the pH of the aqueous slurry Prior to mixing the aqueous slurry and the tin reducing agent, it is preferable to adjust the pH of the aqueous slurry in order to successfully form the target coating layer. Specifically, it is preferable to adjust the pH of the aqueous slurry to 9.0 to 11.0, particularly 9.0 to 10.0.
  • aqueous ammonia, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution or the like can be used.
  • the mixing of the aqueous slurry and the tin reducing agent is performed by adding the reducing agent to the aqueous slurry, or conversely, adding the aqueous slurry to the reducing agent.
  • a reducing agent to the aqueous slurry.
  • the reducing agent may be added to the aqueous slurry all at once, or may be added continuously or discontinuously over a predetermined time. Considering the ease of control of the reduction reaction, it is preferable to add sequentially rather than batch addition.
  • Addition of a reducing agent starts tin reduction reaction, and an alloy of copper and tin precipitates on the surface of the core particles.
  • the composition of the alloy can be controlled by controlling the reduction reaction by adjusting the ratio of the amount of tin contained in the aqueous slurry and the amount of reducing agent added, for example.
  • a CuSn alloy as an alloy
  • more preferably 1.0 to 5.0 equivalents of a reducing agent is added to the amount of tin contained in the aqueous slurry. It is advantageous to do so.
  • it is preferable to stir the aqueous slurry so that a uniform reduction reaction occurs. The stirring of the aqueous slurry is preferably continued even after the addition of the reducing agent is completed.
  • the solid content is filtered off, and further washed with water or methanol as necessary.
  • the composite copper particles thus obtained are mixed with, for example, a known vehicle to form a conductive paste.
  • a conductive paste is suitably used, for example, for forming fine wiring of electric circuits and electronic elements. Specifically, it can be used for forming a conductor circuit by a screen printing additive method. Moreover, it can be used as various electrical contact members for external electrodes of multilayer ceramic capacitors.
  • Example 1 What was manufactured by the wet method as the core particle which consists of copper was used.
  • the core particles were spherical with a volume cumulative particle size D 50 of 0.99 ⁇ m.
  • 200 g of core particles were dispersed in 8.9 L of pure water, and tin (II) methanesulfonate was further added as a tin source compound.
  • the amount added was 30 g in terms of tin.
  • ethylenediaminetetraacetic acid, an aminocarboxylic acid was added as a tin source stabilizer. The amount added was the same as the tin concentration. After mixing at a liquid temperature of 50 ° C.
  • Tin (II) methanesulfonate was used as a tin source compound, and this was added to 22.5 L of pure water. The amount added was 75.0 g in terms of tin.
  • ethylenediaminetetraacetic acid, an aminocarboxylic acid was added as a tin source stabilizer. The amount added was the same as the tin concentration.
  • sodium hydroxide was added to adjust the pH of the solution to 9.6.
  • the core particles were produced by a wet method and were spherical with a volume cumulative particle size D 50 of 3.29 ⁇ m.
  • An aqueous solution obtained by dissolving 12.5 g of sodium borohydride in 100 mL of water was added to the aqueous slurry thus obtained four times at 15 minute intervals. The slurry was allowed to stir during the addition. Addition of sodium borohydride caused a reduction reaction of tin, and a coating layer made of an alloy of copper and tin was formed on the surface of the core particles made of copper.
  • the repulp washing was performed once, and the solid content was subsequently filtered off, followed by washing with pure water and methanol and drying to obtain the desired composite copper particles.
  • XRD measurement was performed on the obtained composite copper particles, a peak attributed to either CuSn or Cu 6 Sn 5 was observed, and it was confirmed that an alloy of Cu and Sn was formed.
  • the ratio of tin contained in the composite copper particles was 11.2%.
  • Example 3 Tin (II) methanesulfonate was used as a tin source compound and added to 8.1 L of pure water. The amount added was 24.4 g in terms of tin.
  • ethylenediaminetetraacetic acid, an aminocarboxylic acid was added as a tin source stabilizer. The amount added was the same as the tin concentration.
  • sodium hydroxide was added to adjust the pH of the solution to 9.6.
  • core particles made of copper were dispersed in this solution.
  • the core particles were produced by a wet method and were spherical with a volume cumulative particle size D 50 of 3.29 ⁇ m.
  • an aqueous solution in which 4.1 g of sodium borohydride was dissolved in 80 mL of water was added four times at 15 minute intervals. The slurry was allowed to stir during the addition. Subsequently, the repulp washing was performed once, and the solid content was subsequently filtered off, followed by washing with pure water and methanol and drying to obtain the desired composite copper particles.
  • Example 1 This comparative example corresponds to Example 1 of Patent Document 1 (Japanese Patent Laid-Open No. 2006-225691). 190 g of stannous chloride dihydrate, 1465 g of thiourea, and 1000 g of tartaric acid were dissolved in pure water, and the liquid temperature was maintained at 40 ° C. to 10 L. This was used as displacement precipitation tin solution. On the other hand, 1 kg of the same core particles used in Example 1 was placed in 4 L of pure water maintained at 40 ° C. and stirred to obtain an aqueous slurry. The substituted precipitated tin solution was placed in this aqueous slurry and stirred for 30 minutes while maintaining the liquid temperature at 40 ° C.
  • filtration washing, filtration, and drying were performed to obtain tin-coated copper particles.
  • XRD measurement was performed on the obtained tin-coated copper particles, diffraction peaks of copper and tin were observed, but a diffraction peak of an alloy of copper and tin was not observed.
  • the ratio of tin contained in the tin-coated copper particles was 5.4%.
  • This comparative example is an example in which copper particles themselves are produced, and corresponds to Example 1 of Patent Document 2 (Japanese Patent Laid-Open No. 2003-342621). Moreover, this copper particle is also the core particle itself used in Example 1.
  • 4 kg of copper sulfate (pentahydrate) and 120 g of aminoacetic acid were dissolved in water to prepare an 8 L aqueous solution of copper salt having a liquid temperature of 60 ° C. While stirring this aqueous solution, 5.75 kg of 25% sodium hydroxide solution was quantitatively added over about 5 minutes, and stirring was performed at a liquid temperature of 60 ° C. for 60 minutes. Cupric oxide was produced by aging until the color of the liquid was completely black. After standing for 30 minutes, 1.5 kg of glucose was added and the mixture was aged for 1 hour to reduce cupric oxide to cuprous oxide. Subsequently, 1 kg of hydrated hydrazine was quantitatively added over 5 minutes to reduce cuprous oxide to obtain copper powder.
  • the apparent diameter was measured by image processing of an image of particles observed using a scanning electron microscope.
  • the apparent diameter is the particle diameter derived from the area in plan view, and primary particles can be reliably captured.
  • a 0.1 g sample was mixed with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco) and then dispersed for 5 minutes with an ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Seisakusho). The particle size distribution was then measured using a laser diffraction / scattering particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup).
  • the composite copper particles (products of the present invention) of each example were copper as compared with the tin-coated copper particles of Comparative Example 1 and the copper particles themselves of Comparative Example 2 itself. It can be seen that the temperature of the exothermic peak due to the oxidation of is high and the oxidation resistance is excellent.
  • the composite copper particles of the present invention have high oxidation resistance and low electrical resistance even at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 本発明の複合銅粒子は、銅からなるコア粒子と、該コア粒子の表面に配置された、銅とスズとの合金からなる被覆層とを有し、累積体積50容量%における体積累積粒径D50が0.1~10.0μmである。前記合金はCuSnであることが好適である。スズを3.0~12.0質量%含有することも好適である。この複合銅粒子は、銅からなるコア粒子及びスズ源の化合物を含む水性スラリーと、スズの還元剤とを混合し、該コア粒子の表面に銅とスズとの合金からなる被覆層を形成することで好適に製造される。

Description

複合銅粒子及びその製造方法
 本発明は、表面に銅とスズとの合金からなる被覆層を有する複合銅粒子に関する。また本発明は該複合銅粒子の製造方法に関する。
 銅は電気伝導性の高い材料なので、電極間の電気的な導通をとるための導電材料として有用である。例えば導電性粉末や、これにビヒクル等を添加してなる導電性ペースト等の形態で用いられ、スクリーン印刷、ディスペンシング、インクジェット印刷等の手段で微細配線の形成に用いられる。微細配線の形成のためには、銅粒子の粒径を小さくすることが有利である。しかし銅は酸化されやすい金属であるため、粒子の粒径を小さくしていくと酸化が一層進行しやすくなり、そのことに起因して電気伝導性が低下しやすい。そこで、耐酸化性を高めた銅粒子が提案されている。
 例えば特許文献1においては、銅粒子をコア材とし、これにスズを被覆したスズコート銅粒子が提案されている。このスズコート銅粒子は、その平均粒径が0.1~5μmであり、5~40質量%のスズコート層を備えている。このスズコート銅粒子は、銅粒子を水に分散させたスラリーと、スズ塩及びチオ尿素を含むスズ溶液とを混合し、銅粒子の表面にスズを置換析出させることで製造される。
 特許文献2には、粒子内部にアルミニウムを0.07~10原子%含有し、更にリンを0.01~0.3原子%含有する銅粒子が提案されている。この銅粒子はアトマイズ法によって好適に製造される。同文献には、銅粒子の内部に特定量のアルミニウムを含有させることで、銅粒子の耐酸化性と導電性とのバランスを図ることができる旨が記載されている。
特開2006-225691号公報 US2011/031448 A1
 上述の各文献に記載の技術によれば銅粒子の耐酸化性を高めることはできるが、昨今の電子材料の進歩に伴い、更に耐酸化性を高めつつ高導電性とのバランスを図ることが求められている。したがって本発明の課題は、上述した従来技術の銅粒子よりも種々の性能が更に向上した銅粒子を提供することにある。
 本発明は、銅からなるコア粒子と、該コア粒子の表面に配置された、銅とスズとの合金からなる被覆層とを有し、累積体積50容量%における体積累積粒径D50が0.1~10.0μmである複合銅粒子を提供することにより前記の課題を解決したものである。
 また本発明は、前記の複合銅粒子の好適な製造方法として、銅からなるコア粒子及びスズ源の化合物を含む水性スラリーと、スズの還元剤とを混合し、該コア粒子の表面に銅とスズとの合金からなる被覆層を形成する工程を有する複合銅粒子の製造方法を提供するものである。
図1は、実施例1で得られた複合銅粒子のXRD測定結果を示す図である。 図2は、実施例及び比較例で得られた銅粒子の示差熱(DTA)測定結果を示すグラフである。 図3は、実施例及び比較例で得られた銅粒子の熱重量(TG)測定結果を示すグラフである。
発明の詳細な説明
 本発明の複合銅粒子は、銅からなるコア粒子と、該コア粒子の表面を被覆する被覆層とを有している。被覆層は銅とスズとの合金から構成されている。従来技術によれば、銅からなるコア粒子の表面を、スズからなる被覆層で被覆していたが、これに代えて銅とスズとの合金からなる被覆層を用いることで、意外にも耐酸化性を一層高めることが可能となり、かつ高温下でも低電気抵抗を示すことが判明した。
 本発明の複合銅粒子についての耐酸化性は、例えば示差熱分析によって測定される銅の酸化に起因する発熱ピークが観察される温度で評価することができる。具体的には、本発明の複合銅粒子は、大気雰囲気下、昇温速度10℃/minの条件で行った示差熱分析において、銅の酸化に起因する発熱ピークを好ましくは450℃以上、更に好ましくは500℃以上に有する。
 銅とスズとの合金としては、例えばCuSn、Cu3Sn、Cu6Sn5、Cu6.25Sn5、Cu39Sn11、Cu40.5Sn11などの種々の組成を有するものが知られており、本発明においてはこれらの合金のうちの1種又は2種以上を用いることができる。特に、耐酸化性が一層高く、かつ高温下でも低電気抵抗を示すことから、銅とスズとの合金としてCuSn、Cu6Sn5又はCu3Sn合金の少なくとも1種を用いることが好ましく、特にCuSn合金を用いることが好ましい。
 銅とスズとの合金は、本発明の複合銅粒子における表面及びその近傍に存在している。複合銅粒子の粒子内部は実質的に銅のみから構成されておりスズは実質的に存在していない。またスズ以外の金属元素及びその他の非金属元素等も実質的に存在していない。「実質的に存在していない」とは、意図的に銅以外の元素を含有させることを排除する趣旨であり、複合銅粒子の製造過程において不可避的に混入する微量の元素の存在は許容する趣旨である。
 銅とスズとの合金からなる被覆層は、好ましくは5.0~500.0nm、更に好ましくは40.0~200.0nmの厚みでもってコア粒子の表面を被覆していることが、耐酸化性の十分な向上の点から好ましい。被覆層の厚みは、後述する方法で複合銅粒子を製造するときの還元めっき条件を適切に選択すればよい。被覆層の厚みは、例えば粒子を切断して観察断面を形成し、該断面をSEMやSEM-EDSを用いて観察して測定することができる。
 被覆層においては銅とスズとの原子比率が厚み方向において一定であってもよく、あるいは厚み方向において比率が漸次変化していてもよい。特に、被覆層におけるコア粒子との境界近傍においては、被覆層からコア粒子に向けて銅の比率が漸次高くなっていることが、被覆層とコア粒子との一体感が高まり、被覆層の剥離等が起こりづらくなる点から好ましい。このような態様の被覆層を形成するには、例えば後述する方法で被覆層を形成すればよい。
 複合銅粒子に含まれるスズの比率は、好ましくは1.0~50.0質量%であり、更に好ましくは2.0~25.0質量%であり、最も好ましくは2.5~15.0質量%である。一方、複合銅粒子に含まれる銅の比率は50.0~99.0質量%であることが好ましく、75.0~98.0質量%であることが更に好ましく、85.0~97.5質量%が最も好ましい。スズ及び銅の比率をこの範囲内に設定することで、複合銅粒子の電気伝導性を損なうことなく耐酸化性を高めることができる。スズの比率を1.0%質量以上とすることによって、複合銅粒子の耐熱性を高めることができる。また、スズの比率を50.0質量%以下とすることによって、複合銅粒子の抵抗値を低くすることができる。複合銅粒子に含まれるスズ及び銅の比率は例えば、複合銅粒子を鉱酸等の酸に溶解させ、溶解液を測定対象としてICPによる分析を行うことで測定することができる。
 複合銅粒子は、累積体積50容量%における体積累積粒径D50が0.1~10.0μmであり、0.5~8.0μmであることが好ましい。この範囲の粒径を有することで、複合銅粒子を電気回路や電子素子の微細配線材料として用いた場合に、印刷性や配線の緻密性を確保しつつ、複合銅粒子の耐酸化性を高めることが可能となる。複合銅粒子の粒径が10.0μmよりも大きい場合には、比表面積が小さくなり酸化されづらくなるので、被覆層を殊更形成する実益が薄くなる。一方、粒径が0.1μmよりも小さい場合には、複合銅粒子に占めるスズの割合が相対的に高くなる傾向にあるので、低電気抵抗を確保することが容易でなくなる。
 複合銅粒子の形状としては、例えば球状、多面体状、フレーク状等の形状を採用することができる。これらの形状は、複合銅粒子の具体的な用途に応じて適切に選択することができる。例えば印刷法によって微細な電気回路を形成するために複合銅粒子を用いる場合等には、球状をした複合銅粒子を用いることが好ましい。なお。複合銅粒子における被覆層の厚みは、先に述べたとおり複合銅粒子の粒径よりも非常に小さいので、複合銅粒子の形状は、銅からなるコア粒子の形状と大差はない。したがってコア粒子の形状は、複合銅粒子の形状と同等とみなすことができる。
 コア粒子としては、例えば湿式法によって製造されたものやアトマイズ法によって製造されたものを用いることができる。後述するとおり、被覆層の形成を還元めっきで行うことを考慮すると、湿式法によって製造されたコア粒子を用いることが製造工程上有利である。コア粒子は、累積体積50容量%における体積累積粒径D50が0.1~10.0μmであり、0.2~5.0μmであることが好ましい。
 複合銅粒子は、そのタップ密度が1.0~10.0g/cm3であることが好ましく、1.5~5.0g/cm3であることが更に好ましい。タップ密度がこの範囲内にあることで、複合銅粒子を電気回路や電子素子の微細配線材料として用いた場合に、高い電気伝導性を確保することが容易となる。タップ密度をこの範囲内に設定するには、銅からなるコア粒子として適切な形状のものを選択したり、後述する複合銅粒子の製造方法において被覆層を形成するときの還元めっき条件として適切な条件を選択したりすればよい。タップ密度の測定は、例えばホソカワミクロン株式会社製のパウダーテスターを用いることができる。
 タップ密度を上述の範囲とすることが好ましいことと同様の理由によって、複合銅粒子は、そのBET比表面積が0.1~10.0m2/gであることが好ましく、0.2~5.0m2/gであることが更に好ましい。BET比表面積は例えば、カンタクロム社製のモノソーブ(商品名)を用い、He/N2混合ガスによって測定することができる。
 次に、本発明の複合銅粒子の好適な製造方法について説明する。本製造方法においては、銅からなるコア粒子の表面に、還元めっきによって銅とスズとの合金からなる被覆層を形成する。還元めっきを採用することによって、意外にも銅とスズとの合金を析出させることが可能であることを、本発明者は見いだした。これに対して、別のめっき方法である置換めっきを採用すると、先に述べた特許文献1に記載されているとおり、スズ単体からなる被覆層が形成される。
 還元めっきを採用してコア粒子の表面に銅とスズとの合金からなる被覆層を形成するには、まずコア粒子及びスズ源の化合物を含む水性スラリーと、スズの還元剤とを用意する。水性スラリーに含まれるコア粒子の割合は好ましくは80.0~99.0質量%、更に好ましくは88.0~97.0質量%とする。
 水性スラリーに含まれるスズ源の化合物としては、水溶性の化合物を用いることができる。例えば水溶性のスズ錯塩を用いることができる。具体的には、メタンスルホン酸スズ(II)などの有機スルホン酸スズ(II)、塩化スズ(II)、臭化スズ(II)、ヨウ化スズ(II)、乳酸スズ(II)、クエン酸スズ(II)、酒石酸スズ(II)、グルコン酸スズ(II)、コハク酸スズ(II)等を挙げることができる。これらの化合物はそれぞれ単独で又は2種以上を組み合わせて用いることができる。水性スラリーに含まれるスズ源の化合物の濃度は、スズに換算して10-3~2.0mol/Lであることが好ましく、10-3~0.5mol/Lであることが更に好ましい。
 スズ源を水性スラリー中で安定化させるために、該スラリー中に有機アミノカルボン酸化合物を添加することができる。有機アミノカルボン酸化合物としては、例えば、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルイミノ二酢酸、ジヒドロキシエチルイミノ酢酸、グリシン、アルギニン、グルタミン、リシン、ニトリロトリ酢酸などが挙げられる。また、有機アミノカルボン酸化合物に代えて、又はこれに加えて、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアルコールアミン類を添加することもできる。これらは、単独又は2種以上を組み合わせて用いることができる。水性スラリーに含まれる有機アミノカルボン酸化合物又はアルコールアミン類の濃度(mol/L)は、スズの濃度(mol/L)に対して0.1~20倍であることが好ましく、1.0~10倍であることが更に好ましい。有機アミノカルボン酸化合物とアルコールアミン類を併用する場合は、それぞれの濃度が、前記の関係を満たすことが好ましい。
 水性スラリーにおける銅とスズとの比率は、重量%で10.0:0.1~10.0:2.0のように調整することが、スズ単独での析出を抑制し、かつ銅粒子表面への均一なスズ合金コートの点から好ましい。
 水性スラリーと混合されるスズの還元剤としては、スズのイオンの還元能を有する物質が用いられる。特に、pH9.0での酸化還元電位が好ましくは-900mV以下、更に好ましくは-950mV以下、一層好ましくは-1000mV以下である還元力を有する還元剤を用いることが、スズと銅との合金からなる目的とする被覆層を首尾よく形成し得る点から好ましい。そのような還元力を有する還元剤としては、例えば水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジンなどを用いることができる。これらの還元剤は一般に水溶液の状態で用いられる。
 水性スラリーとスズの還元剤とを混合するのに先立ち、水性スラリーのpHを調整することが、目的とする被覆層を首尾よく形成し得る点から好ましい。具体的には水性スラリーのpHを9.0~11.0、特に9.0~10.0に調整することが好ましい。pHの調整には、例えばアンモニア水、水酸化ナトリウム水溶液、水酸化カリウム水溶液などを用いることができる。
 水性スラリーとスズの還元剤との混合は、水性スラリーに還元剤を添加するか、又はその逆に還元剤に水性スラリーを添加することで行われる。還元反応の制御のしやすさを考慮すると、水性スラリーに還元剤を添加することが好ましい。この場合、水性スラリーに還元剤を一括添加してもよく、あるいは所定の時間にわたって連続に又は不連続に逐次添加してもよい。還元反応の制御のしやすさを考慮すると、一括添加するよりも逐次添加することが好ましい。
 還元剤の添加によってスズの還元反応が開始され、銅とスズとの合金が、コア粒子の表面に析出する。合金の組成は、例えば水性スラリーに含まれるスズの量と、還元剤の添加量との比率を調整して、還元反応を制御することでコントロール可能である。合金としてCuSn合金を析出させたい場合には、水性スラリーに含まれるスズの量に対して好ましくは1.0~10.0当量、更に好ましくは1.0~5.0当量の還元剤を添加することが有利である。還元剤を添加している最中は、水性スラリーを撹拌して均一な還元反応が生じるようにすることが好ましい。水性スラリーの撹拌は還元剤の添加完了後も引き続き行うことが好ましい。
 以上の操作によって目的とする複合銅粒子が得られたら、リパルプ洗浄を行った後に、固形分を濾別し、更に必要に応じ水洗やメタノールによる洗浄等を行う。
 このようにして得られた複合銅粒子は、例えば公知のビヒクル等と混合されて導電性ペーストとなされる。そのような導電性ペーストの成分や配合割合は当業者において周知の事項である。この導電性ペーストは、例えば電気回路や電子素子の微細配線を形成するために好適に用いられる。具体的には、スクリーン印刷アディティブ法による導体回路形成に用いることができる。また、積層セラミックコンデンサの外部電極用等の各種電気的接点部材として用いることができる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
 銅からなるコア粒子として湿式法によって製造されたものを用いた。このコア粒子は体積累積粒径D50が0.99μmである球状のものであった。200gのコア粒子を純水8.9Lに分散させ、更にスズ源の化合物としてメタンスルホン酸スズ(II)を添加した。添加量はスズに換算して30gとなる量とした。これに加えてスズ源の安定化剤として、アミノカルボン酸であるエチレンジアミン四酢酸を添加した。添加量はスズ濃度の等倍の量とした。液温50℃で混合を行いスズ源の化合物を溶解させた後、アンモニアを添加してスラリーのpHを9に調整した。このようにして得られた水性スラリーに、14.35gの水素化ホウ素ナトリウムを100mLの水に溶解させた水溶液を10分かけて連続的に添加した。添加中はスラリーを撹拌しておいた。水素化ホウ素ナトリウムの添加によってスズの還元反応が生じ、銅からなるコア粒子の表面に、銅とスズとの合金からなる被覆層が形成された。次いで、リパルプ洗浄を1回行い、引き続き固形分を濾別した後、純水及びメタノールで洗浄し、乾燥を行い、目的とする複合銅粒子を得た。得られた複合銅粒子についてXRD測定を行ったところ、図1に示すとおりCuSnかCu6Sn5のいずれかに帰属されるピークが観測され、CuとSnとの合金が形成されていることが確認された。また、ICPを用いた元素分析を行ったところ、複合銅粒子に含まれるスズの比率は8.5%であった。
  〔実施例2〕
 スズ源の化合物としてメタンスルホン酸スズ(II)を用い、これを純水22.5Lに添加した。添加量はスズに換算して75.0gとなる量とした。これに加えてスズ源の安定化剤として、アミノカルボン酸であるエチレンジアミン四酢酸を添加した。添加量はスズ濃度の等倍の量とした。液温50℃で混合を行いスズ源の化合物を溶解させた後、水酸化ナトリウムを添加して溶液のpHを9.6に調整した。この水溶液に37.5gの水素化ホウ素ナトリウムを100mLの水に溶解させた水溶液を添加した。次いで、この溶液に銅からなるコア粒子714gを分散させた。コア粒子は湿式法によって製造されたものであり、体積累積粒径D50が3.29μmである球状のものであった。このようにして得られた水性スラリーに、12.5gの水素化ホウ素ナトリウムを100mLの水に溶解させた水溶液を15分間隔で4回添加した。添加中はスラリーを撹拌しておいた。水素化ホウ素ナトリウムの添加によってスズの還元反応が生じ、銅からなるコア粒子の表面に、銅とスズとの合金からなる被覆層が形成された。次いで、リパルプ洗浄を1回行い、引き続き固形分を濾別した後、純水及びメタノールで洗浄し、乾燥を行い、目的とする複合銅粒子を得た。得られた複合銅粒子についてXRD測定を行ったところ、CuSnかCu6Sn5のいずれかに帰属されるピークが観測され、CuとSnとの合金が形成されていることが確認された。また、ICPを用いた元素分析を行ったところ、複合銅粒子に含まれるスズの比率は11.2%であった。
  〔実施例3〕
 スズ源の化合物としてメタンスルホン酸スズ(II)を用い、これを純水8.1Lに添加した。添加量はスズに換算して24.4gとなる量とした。これに加えてスズ源の安定化剤として、アミノカルボン酸であるエチレンジアミン四酢酸を添加した。添加量はスズ濃度の等倍の量とした。液温50℃で混合を行いスズ源の化合物を溶解させた後、水酸化ナトリウムを添加して溶液のpHを9.6に調整した。この水溶液に12.2gの水素化ホウ素ナトリウムを80mLの水に溶解させた水溶液を添加した。次いで、この溶液に銅からなるコア粒子775.6gを分散させた。コア粒子は湿式法によって製造されたものであり、体積累積粒径D50が3.29μmである球状のものであった。このようにして得られた水性スラリーに、4.1gの水素化ホウ素ナトリウムを80mLの水に溶解させた水溶液を15分間隔で4回添加した。添加中はスラリーを撹拌しておいた。次いで、リパルプ洗浄を1回行い、引き続き固形分を濾別した後、純水及びメタノールで洗浄し、乾燥を行い、目的とする複合銅粒子を得た。得られた複合銅粒子についてXRD測定を行ったところ、CuSnかCu6Sn5のいずれかに帰属されるピークが観測され、CuとSnとの合金が形成されていることが確認された。また、ICPを用いた元素分析を行ったところ、複合銅粒子に含まれるスズの比率は2.7%であった。
  〔比較例1〕
 本比較例は、特許文献1(特開2006-225691号公報)の実施例1に相当するものである。純水に塩化第一スズ二水和物190g、チオ尿素1465g、酒石酸1000gを溶解させ、液温を40℃に維持して10Lとした。これを置換析出スズ溶液として用いた。一方、40℃に維持した4Lの純水中に、実施例1で用いたコア粒子と同様のものを1kg入れ撹拌して、水性スラリーとした。この水性スラリー中に置換析出スズ溶液を入れ、液温を40℃に維持したまま、30分間撹拌した。その後、常法にしたがって、濾過洗浄、濾過、及び乾燥を行い、スズコート銅粒子を得た。得られたスズコート銅粒子についてXRD測定を行ったところ、銅及びスズの回折ピークは観察されたが、銅とスズとの合金の回折ピークは観察されなかった。また、ICPを用いた元素分析を行ったところ、スズコート銅粒子に含まれるスズの比率は5.4%であった。
  〔比較例2〕
 本比較例は、銅粒子そのものを製造した例であり、特許文献2(特開2003-342621号公報)の実施例1に相当するものである。また、この銅粒子は、実施例1で用いたコア粒子そのものでもある。硫酸銅(五水塩)4kg及びアミノ酢酸120gを水に溶解させて、液温60℃の8Lの銅塩水溶液を調製した。この水溶液を撹拌しながら、25%水酸化ナトリウム溶液5.75kgを約5分間かけて定量的に添加し、液温60℃で60分間の撹拌を行った。液の色が完全に黒色になるまで熟成させて酸化第二銅を生成させた。30分間放置した後、グルコース1.5kg添加して、1時間熟成することで酸化第二銅を酸化第一銅に還元した。引き続き水和ヒドラジン1kgを5分間かけて定量的に添加して酸化第一銅を還元することで銅粉を得た。
  〔評価〕
 実施例及び比較例で得られた銅粒子について、上述した方法で、粒子中に含まれるスズの割合を測定した。また、BET比表面積、タップ密度、見た目粒径、粒度分布を以下の方法で測定した。更に、熱重量(TG)及び示差熱(DTA)測定を以下の方法で行い、TGの測定結果に基づく発熱ピーク温度を求めた。それらの結果を以下の表1、並びに図2及び図3に示す。
  〔BET比表面積〕
 2.00gの試料を用い、75℃で10分間の脱気処理を行った後、モノソーブ(カンタクロム社製)によってBET1点法で測定した。
  〔タップ密度〕
 120gの試料を用い、パウダーテスターPT-E(ホソカワミクロン株式会社製)によって測定した。
  〔見た目粒径〕
 見た目径は、走査型電子顕微鏡を用いて観察される粒子の像を画像処理することによって測定した。見た目径は、平面視での面積から出した粒子径であり、一次粒子が確実に捉えられることになる。
  〔粒度分布〕
 0.1gの試料を、SNディスパーサント5468の0.1%水溶液(サンノプコ社製)と混合した後、超音波ホモジナイザ(日本精機製作所製 US-300T)で5分間分散させた。そしてレーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320-X100型(Leeds+Northrup社製)を用いて粒度分布を測定した。
  〔TG・DTA測定〕
 試料を白金製のパンに入れ、セイコーインスツルメンツ社製TGDTA/Exstar6000を用いて、大気中で常温から1000℃まで昇温速度10℃/minで加熱を行った。
Figure JPOXMLDOC01-appb-T000001
 表1並びに図2及び図3に示す結果から明らかなとおり、各実施例の複合銅粒子(本発明品)は、比較例1のスズコート銅粒子や比較例2の銅粒子そのものに比べて、銅の酸化に起因する発熱ピークの温度が高く、耐酸化性に優れていることが判る。
 本発明の複合銅粒子は、耐酸化性が高く、かつ高温でも低電気抵抗を示すものである。

Claims (9)

  1.  銅からなるコア粒子と、該コア粒子の表面に配置された、銅とスズとの合金からなる被覆層とを有し、累積体積50容量%における体積累積粒径D50が0.1~10.0μmである複合銅粒子。
  2.  スズを1.0~50.0質量%含有する請求項1に記載の複合銅粒子。
  3.  前記合金がCuSn、Cu6Sn5又はCu3Sn合金である請求項1又は2に記載の複合銅粒子。
  4.  大気雰囲気下、昇温速度10℃/minの条件での示差熱分析において、コアである銅の酸化に起因する発熱ピークを450℃以上に有する請求項1ないし3のいずれか一項に記載の複合銅粒子。
  5.  請求項1ないし4のいずれか一項に記載の複合銅粒子とビヒクルとを含んでなる導電性ペースト。
  6.  銅からなるコア粒子及びスズ源の化合物を含む水性スラリーと、スズの還元剤とを混合し、該コア粒子の表面に銅とスズとの合金からなる被覆層を形成する工程を有する複合銅粒子の製造方法。
  7.  スズ源の化合物として二価スズ化合物を用い、かつpH9.0での酸化還元電位が-900mV以下である還元力を有する還元剤を用いる請求項6に記載の製造方法。
  8.  前記還元剤が水素化ホウ素ナトリウム又は水素化ホウ素カリウムである請求項7に記載の製造方法。
  9.  pHが9~11に調整された前記水性スラリーと還元剤とを混合する請求項7又は8に記載の製造方法。
PCT/JP2013/066871 2012-07-06 2013-06-19 複合銅粒子及びその製造方法 WO2014007064A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/412,734 US20150144849A1 (en) 2012-07-06 2013-06-19 Composite copper particles, and method for producing same
CN201380035784.5A CN104470657A (zh) 2012-07-06 2013-06-19 复合铜粒子及其制造方法
JP2014523667A JP6182531B2 (ja) 2012-07-06 2013-06-19 複合銅粒子及びその製造方法
KR1020147036952A KR20150035805A (ko) 2012-07-06 2013-06-19 복합 구리입자 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-152956 2012-07-06
JP2012152956 2012-07-06

Publications (1)

Publication Number Publication Date
WO2014007064A1 true WO2014007064A1 (ja) 2014-01-09

Family

ID=49881823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066871 WO2014007064A1 (ja) 2012-07-06 2013-06-19 複合銅粒子及びその製造方法

Country Status (6)

Country Link
US (1) US20150144849A1 (ja)
JP (1) JP6182531B2 (ja)
KR (1) KR20150035805A (ja)
CN (1) CN104470657A (ja)
TW (1) TW201412435A (ja)
WO (1) WO2014007064A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172912A (ja) * 2015-03-18 2016-09-29 三菱マテリアル株式会社 ハンダ粉末の製造方法及びこの粉末を用いたハンダ用ペースト
JP2017106047A (ja) * 2015-12-07 2017-06-15 山陽特殊製鋼株式会社 導電フィラー用粉末
WO2018107846A1 (zh) * 2016-12-14 2018-06-21 苏州金仓合金新材料有限公司 一种镀镍碳化硅颗粒及其制备方法
JP2018178254A (ja) * 2017-04-13 2018-11-15 Dowaエレクトロニクス株式会社 Fe−Ni系合金粉末およびその製造方法
CN109716449A (zh) * 2016-09-23 2019-05-03 泰连公司 复合配料和复合制品
JP2019163512A (ja) * 2018-03-20 2019-09-26 三菱マテリアル株式会社 接合用成形体の製造方法及びこの方法で得た接合用成形体を用いた接合方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160012931A1 (en) * 2014-07-11 2016-01-14 Tyco Electronics Corporation Conductive Particle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225691A (ja) * 2005-02-15 2006-08-31 Mitsui Mining & Smelting Co Ltd スズコート銅粉及び当該スズコート銅粉を用いた導電性ペースト
JP2009215569A (ja) * 2008-03-07 2009-09-24 Doshisha 溶融塩反応浴を利用した合金粉末製造法
JP2011040301A (ja) * 2009-08-12 2011-02-24 Sekisui Chem Co Ltd 導電性微粒子、異方性導電材料、及び、接続構造体
JP2012092376A (ja) * 2010-10-25 2012-05-17 Ishihara Chem Co Ltd スズめっき銅粉の製造方法
JP2012157870A (ja) * 2011-01-31 2012-08-23 Mitsubishi Materials Corp ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP2013094836A (ja) * 2011-11-02 2013-05-20 Mitsubishi Materials Corp プリコート用ハンダペースト及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113641A1 (ja) * 2009-03-31 2010-10-07 積水化学工業株式会社 導電性微粒子、異方性導電材料、及び、接続構造体
CN102220046A (zh) * 2011-06-01 2011-10-19 上海大学 纳米锡包铜导电墨水的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225691A (ja) * 2005-02-15 2006-08-31 Mitsui Mining & Smelting Co Ltd スズコート銅粉及び当該スズコート銅粉を用いた導電性ペースト
JP2009215569A (ja) * 2008-03-07 2009-09-24 Doshisha 溶融塩反応浴を利用した合金粉末製造法
JP2011040301A (ja) * 2009-08-12 2011-02-24 Sekisui Chem Co Ltd 導電性微粒子、異方性導電材料、及び、接続構造体
JP2012092376A (ja) * 2010-10-25 2012-05-17 Ishihara Chem Co Ltd スズめっき銅粉の製造方法
JP2012157870A (ja) * 2011-01-31 2012-08-23 Mitsubishi Materials Corp ハンダ粉末及びこの粉末を用いたハンダ用ペースト
JP2013094836A (ja) * 2011-11-02 2013-05-20 Mitsubishi Materials Corp プリコート用ハンダペースト及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172912A (ja) * 2015-03-18 2016-09-29 三菱マテリアル株式会社 ハンダ粉末の製造方法及びこの粉末を用いたハンダ用ペースト
JP2017106047A (ja) * 2015-12-07 2017-06-15 山陽特殊製鋼株式会社 導電フィラー用粉末
CN109716449A (zh) * 2016-09-23 2019-05-03 泰连公司 复合配料和复合制品
WO2018107846A1 (zh) * 2016-12-14 2018-06-21 苏州金仓合金新材料有限公司 一种镀镍碳化硅颗粒及其制备方法
JP2018178254A (ja) * 2017-04-13 2018-11-15 Dowaエレクトロニクス株式会社 Fe−Ni系合金粉末およびその製造方法
JP2019163512A (ja) * 2018-03-20 2019-09-26 三菱マテリアル株式会社 接合用成形体の製造方法及びこの方法で得た接合用成形体を用いた接合方法

Also Published As

Publication number Publication date
TW201412435A (zh) 2014-04-01
US20150144849A1 (en) 2015-05-28
JPWO2014007064A1 (ja) 2016-06-02
CN104470657A (zh) 2015-03-25
KR20150035805A (ko) 2015-04-07
JP6182531B2 (ja) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6182531B2 (ja) 複合銅粒子及びその製造方法
WO2014084021A1 (ja) 銀コート銅粉及びその製造方法
JP4821014B2 (ja) 銅粉の製造法
JP6324237B2 (ja) 微粒子、微粒子の製造方法、及び微粒子分散溶液
JP2010077495A (ja) 銀被覆銅微粒子とその分散液及びその製造方法
JP5255223B2 (ja) 銅合金微粒子の製造方法、及び該製造方法で得られる銅合金微粒子
JP2014001443A (ja) 酸化物被覆銅微粒子及びその製造方法
JP5622127B2 (ja) 還元析出型球状NiP微小粒子およびその製造方法
JP4651533B2 (ja) 銅粒子の製造方法
JP2012251222A (ja) 銀ナノ粒子の製造方法およびインク
JP2020076155A (ja) 銀被覆銅粉およびその製造方法
JP6567921B2 (ja) 銀被覆銅粉およびその製造方法
JP6271231B2 (ja) 銀被覆銅粉および導電ペースト
JP6209249B2 (ja) 酸化物被覆銅微粒子の製造方法
US20110284807A1 (en) Metal fine particle, conductive metal paste and metal film
JP2003342621A (ja) 銅粉の製造方法及びその方法で得られた銅粉
JP6714440B2 (ja) 複合銅粒子
JP2017082263A (ja) 金属複合粉末およびその製造方法
JP4150638B2 (ja) 無機酸化物コート金属粉及びその無機酸化物コート金属粉の製造方法
JP6491595B2 (ja) 白金パラジウムロジウム合金粉末の製造方法
JP2018076597A (ja) 銀被覆銅粉および導電ペースト、並びにそれらの製造方法
JP6715588B2 (ja) 金属複合粉末の製造方法
JP2019206760A (ja) 金属複合粉末およびその製造方法
JP2015124414A (ja) 銀コート銅粉及びその製造方法
TWI756467B (zh) 覆銀玻璃粉末及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523667

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147036952

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812747

Country of ref document: EP

Kind code of ref document: A1